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[1] New tools are needed in hydrology to improve our understanding of process
heterogeneity and its relationship to catchment topography. We tested the distance‐based
Moran’s eigenvector maps (DBMEM) method, which models patterns using a
combination of positively and negatively autocorrelated structures, searching for soil
moisture characteristic scales in a temperate humid forested system. We focused on three
questions: (1) What are the characteristic spatial scales of shallow soil moisture? (2) Is
there a strong relationship between soil moisture patterns and topographic variables at
these scales? and (3) Which hydro‐meteorological variables influence soil moisture scales
and topographic controls in a significant way? Data consisted of 16 surveys of soil
moisture at depths of 5, 15, 30, and 45 cm in the 5.1 ha Hermine catchment (Laurentians,
Canada). The global DBMEM model explained 21 to 96% (adjusted R square) of
the spatial variations in soil moisture apportioned into decreasing fractions over six
spatially nested, additive submodels: very large (0.85–1.4 ha), large (0.54–0.85 ha),
meso (0.50–0.54 ha), fine positive (0.22–0.50 ha), fine negative (0.10–0.22 ha), and very
fine (0.02–0.10 ha). The effects of catchment topography (e.g., slope and contributing
area) on soil moisture were significant at large and very large scales. Moisture patterns
at these scales were dependent on previous storm properties and were good predictors of
catchment response. The DBMEM approach provided insightful quantitative evidence
regarding the temporal dependency of the relationships between dynamic soil moisture
content and static topographic variables across scales.
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1. Introduction

[2] Soil moisture is a critical hydrological state variable
since its spatiotemporal variation indicates the presence of
“active” or “contributing” areas and periods [Ambroise,
2004]. It is often used to determine if a catchment is char-
acterized as being in a dry or wet state. Throughout this
paper, the phrases “dry state” and “wet state” do not refer to
evaporation dynamics but rather to the spatial organization
of soil moisture. The dry state is when moisture patterns are
disorganized because of the influence of local catchment
attributes (e.g., soil and vegetation characteristics and terrain
slope) and the predominance of vertical soil water fluxes
[Grayson et al., 1997]. The wet state occurs when moisture
patterns are highly organized/connected due to the influence
of nonlocal factors (e.g., upslope contributing area) and the
predominance of lateral soil water fluxes [Grayson et al.,

1997]. These states stress the effects of various topographic
controls on soil moisture [Western et al., 2002]. The refer-
ence to local and nonlocal control factors implies that the
issue of spatial scale must be carefully considered while
investigating hydrological processes. Here, “scale” refers to
the spatial size of a phenomenon while “scaling” refers to
the transfer of information between scales. Scale and scaling
issues are critical in complex hydrological systems, since
catchment dynamics are the result of intertwined processes
that are hierarchically structured. Processes occurring at a
broad scale may be the result of other processes interacting
at finer scales, yet the emergent behavior is not the exact
sum of the parts [Sivapalan and Young, 2005]. It is therefore
crucial to identify the controlling variables and to assess if
their relative influence on emergent soil moisture patterns
depends on the chosen scale of observation.
[3] One challenge concerns the choice of the most appro-

priate mathematical approach to discriminate and better
understand scale‐dependent hydrological mechanisms. Schulz
et al. [2006, p. 1] called for the use of techniques aimed at
providing a new mathematical description and quantifica-
tion of structure and pattern building processes at different
scales. To achieve such a description and quantification,
one can either work with single‐scale methods repeatedly
at different scales or use alternative methods that contain
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multiple‐scale components in their mathematical formulation
[Wu et al., 2000]. That is notably the case for semivariance
analysis [e.g., Western et al., 1999; Skøien et al., 2003;
Western et al., 2004], wavelet analysis [e.g., Redding et al.,
2003], spectral analysis [e.g., Cassel et al., 2000], and frac-
tal analysis [e.g., Kumar, 1999; Green and Erskine, 2004].
Klemeš [1983, p. 1] stated: “We cannot impose scale but
have to search for those which exist and try to understand
their relationships and patterns.” It implies that natural vari-
ables have their own distinctive range of spatial scales that
characterize their behavior. Characteristic scales are the suc-
cessive levels in a hierarchy that are associated with scale
breaks and are thus easily differentiable [Wu and Li, 2006].
These scales can be derived from a semivariogram analysis
of spatial patterns [Skøien et al., 2003] or from Fourier anal-
yses and harmonic regressions [Blöschl, 2001]. Quantification
of spatial structure can also be obtained through trend sur-
face analysis which models spatial gradients with polyno-
mial regressions [Legendre and Legendre, 1998]. A major
drawback of these methods is that they only allow for the
very broadscale spatial variation to be modeled while finer
spatial features remain undetected. This issue may, however,
be resolved if examined in the framework of Moran’s eigen-
vector maps (MEMs).
[4] MEMs are a recent family of spatial analysis techniques

gaining popularity in ecology and fluid dynamics [Borcard
et al., 2004; Brind’Amour et al., 2005; Dray et al., 2006;
Griffith and Peres‐Neto, 2006; Bellier et al., 2007; Lacey
et al., 2007; Roy et al., 2009] but still unused in hydrol-
ogy. They include spatial‐filtering methods (e.g., distance‐
based Moran’s eigenvector maps (DBMEMs) and principal
coordinates of neighbor matrices (PCNMs)) which rely on
the diagonalization of a spatial connectivity matrix. The
eigenvectors computed from the spatial connectivity matrix
represent the decomposition of the Moran coefficient of
spatial autocorrelation into all mutually orthogonal and lin-
early uncorrelated map patterns [Griffith and Peres‐Neto,
2006]. There is precedence in using the Moran coefficient
in catchment hydrology. In a study of 10 catchments with
different terrain characteristics and climatic regimes, Cai
and Wang [2006] notably found a critical extent area of
1 km2 over which the spatial autocorrelation of the topo-
graphic index becomes weak and static. These results refer
to the representative elementary area concept [Woods et al.,
1995] and show the existence of threshold scales. Cai and
Wang [2006] also detected a range of digital elevation model
resolutions within which spatial autocorrelation was invari-
ant. These findings underline the effect of sampling designs
and data accuracy on our ability to capture scale‐dependent
processes. At first, the PCNM method was developed to
dissect one‐dimensional or two‐dimensional spatial patterns
across the whole range of scales perceptible within a given
data set [Borcard and Legendre, 2002]. It achieves a spec-
tral decomposition of the sampling space to describe the
dominant spatial scales to which a given variable can poten-
tially respond. The PCNM method therefore allows one to
identify the fraction of the total variation in a dependent var-
iable that is spatially structured [Lacey et al., 2007]. It was
later found that PCNMs are a particular case of DBMEM
in the MEM framework (PCNM � dbMEM � MEM), the
difference between DBMEMs and PCNMs residing in their
approximation of the Moran coefficient of spatial autocorre-
lation [Dray et al., 2006]. Regardless of whether DBMEMs

or PCNMs are computed, the eigenvectors extracted from
the spatial connectivity matrix are similar; they can be used
as explanatory variables in multiple regression analysis to
study the spatial structure of a single variable or in multi-
variate constrained ordination methods (e.g., canonical redun-
dancy analysis) to study multiple variables at once. The MEM
framework therefore enables us to link dominant spatial
scales of the response variable(s) (e.g., soil moisture) to the
spatial patterns of environmental variables (e.g., topography).
It is not aimed at depicting pairwise relationships (e.g.,
connectivity) between point locations but rather at modeling
the correlation structure present at each scale and linking
this structure to the spatial heterogeneity of environmental
factors. Identifying characteristic scales through the appli-
cation of the DBMEM procedure would substantially enhance
our understanding of hydrological processes and their scal-
ing properties.
[5] Here, we introduce the MEM framework as a new,

promising ensemble of spatial statistical techniques for hydrol-
ogy. For illustration purposes, we applied the DBMEM
method to investigate the spatial scale dependency of soil
moisture content in a headwater temperate humid forested
catchment. There are few studies, if any, that have used
multivariate statistics to describe the spatial dependency
of soil moisture and to quantify the effects of topographic
controls on this variable. This study addresses three ques-
tions regarding soil moisture content and scale:
[6] 1. What are the characteristic spatial scales of shallow

soil moisture?
[7] 2. Is there a strong relationship between soil moisture

patterns and topographic variables at these scales?
[8] 3. Which hydrometeorological variables influence soil

moisture scales and topographic controls in a significant
way?
[9] This paper demonstrates that the DBMEM procedure

provides some insightful, quantitative answers to these ques-
tions for a specific catchment.

2. Field Measurements

2.1. Study Site

[10] This study was done within a 5.1 ha headwater tem-
perate humid forested catchment, the Hermine, located in
the Lower Laurentians natural province about 80 km north
of Montréal, Québec, Canada (45°59’N, 74°01’W, elevation
c. 400 m) (Figure 1a). An intermittent first‐order stream
flows east to west in the valley of the catchment, which has
an elongated open booklike shape. Relief is moderate, with
a maximum elevation change of 31 m from the lowest valley
location to the highest point in the catchment. The forest
floor has a complex microtopography, partially due to fallen
tree trunks and boulders at the soil surface. The total annual
precipitation to the watershed averages 1150 mm (± 136 mm)
over the last 30 years, of which about 30% falls as snow
[Biron et al., 1999].
[11] Soils are 1 to 2 m deep bouldery podzols developed

over a glacial till. The occurrence of rapid lateral shallow
subsurface flow and the formation of humid source areas are
highly frequent at the Hermine, given a confining soil layer
at a depth of 50 to 75 cm that restricts root penetration and
slows water infiltration. Data from wells installed at nine
riparian, midslope and upslope 300 m2 sampling plots in the
catchment and monitored over the last 12 years confirm that
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the perched water table fluctuates between 1 and 108 cm
below the soil surface (mean value: 68 cm). The occurrence
of perched water tables is, however, sporadic during sum-
mer seasons, and surface runoff hardly ever happens due to
interception of the forest canopy, uptake from the trees, and
high potential evapotranspiration. Between October and
April, transpiration is minimal, so that changes in soil mois-
ture and the water table during that period are mostly gov-
erned by snow‐related processes and downslope drainage.

2.2. Soil Moisture Monitoring

[12] Volumetric moisture content in the top 5, 15, 30, and
45 cm of the soil profile was measured in the Hermine
catchment using a 15 m by 15 m sampling grid, for a total
of 121 cells. Measurements were taken using a portable
30 in. long rod equipped with a capacitance‐based probe
(AQUATERR Instruments andAutomation). Sixteen surveys
were collected betweenAugust 2007 and July 2008 to capture
patterns associated with various antecedent conditions and
hydrologic responses at the catchment outlet. Figure 2 shows
examples of soil moisture patterns. Table 1 provides a list of
hydrometeorological variables that were used in this study
to illustrate antecedent conditions and hydrologic responses,
while Table 2 contains the specific values of selected hydro-
meteorological characteristics for the 16 soil moisture sur-
veys. These variables were meant to help us assess the
hydrometeorological dependence of the soil moisture pat-
terns and their scaling properties.

2.3. Topographic Variables

[13] A surface digital elevation model (DEM) of the Her-
mine catchment (horizontal resolution: 1 m) was obtained

by interpolating 640 elevation points collected in the field
[Drouin, 1999] with a smooth simple natural neighbor algo-
rithm (see Sibson [1981] for details on the interpolation
method). Bilinear resampling was used to convert the inter-
polated data into a 15 m resolution surface DEM (Figure 1b)
so that soil moisture data and elevation data were at the
same scale of observation. The depth to the confining layer
was measured on 257 points using a small hand auger that
was forced vertically through the soil profile to refusal. For
each sampling location, three auger‐to‐refusal measure-
ments were made in a 1 m radius and checked for consis-
tency to discard data associated with individual rocks rather
than the impermeable layer. The data were interpolated at a
15 m resolution, thus giving a map (Figure 1c) having the
same resolution as the surface DEM and the soil moisture
surveys results.
[14] For each sampling square, elevation above the catch-

ment outlet and depth to the confining layer were extracted.
From the surface DEM, the terrain slope, the upslope con-
tributing area, and the topographic index [Beven and Kirkby,
1979] were also computed for each sampling square using the
D8 [O’Callaghan and Mark, 1984] and the D∞ [Tarboton,
1997] algorithms. These topographic variables were then put
in two groups to illustrate possible local and nonlocal controls
on soil moisture patterns. Terrain slope and depth to the con-
fining soil layer were considered as local influences (hereafter
called “local” variables or controls), while the elevations above
the catchment outlet, the upslope contributing area, and the
topographic index were assumed to represent nonlocal influ-
ences (hereafter called “nonlocal” variables or controls). To
account for potential nonlinear topographic controls on soil
moisture, the quadratic and cubic functions of each topo-

Figure 1. (a) Location of the Hermine catchment, (b) surface digital elevation model, and (c) depth to
the confining soil layer.
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graphic variable were also included in the local and nonlocal
groups of variables. The local and nonlocal groups of vari-
ables were meant to be used as explanatory matrices in sub-
sequent regression analyses.

3. Analytical Methods

[15] The MEM framework stands apart from traditional
spatial analysis methods such as geostatistics. Geostatis-
tical methods aim to explain how variance and covariance
depend on the distance between observations. They model
spatial structure by fitting a variogram function to an empir-
ical variogram, assuming that the variable under study can
be represented by a second‐order stationary spatial process
[Bellier et al., 2007]. Geostatistics are therefore referred
to as a model‐based approach. Moran’s eigenvector maps
rather appear as a nonparametric method, as they do not pre-
sume any form of spatial structure. Specifically, the DBMEM
method is a spatial filtering technique [Blanchet et al., 2008]
proceeding in two major stages: (1) the definition of a set of
spatial proxy variables (this is done by means of a spatial
connectivity matrix indicating the strength of the potential
interaction between spatial units), and (2) the selection of
the most important spatial proxy variables to explain the
spatial structure of the variable under study. The definition
of a spatial connectivity matrix only relies on the geo-
graphic coordinates of the sampling sites, hence the refer-
ence to a design‐based approach. Regression or canonical
analyses are later performed to associate the variable under
study to a subset of spatial proxy variables. Specific ana-
lytical steps related to stages 1 and 2 of the DBMEM

method are described in sections 3.1 and 3.2, respectively,
and in Figure 3.

3.1. DBMEM Generation

[16] The steps involved in the generation of DBMEM are
illustrated in Figure 3 and summarized below:
[17] 1. Starting from the x‐y coordinates of the sampling

grid locations, a Euclidean distance matrix D is calculated
to store all possible distances dij between sampling loca-
tions i and j (D = [dij]).
[18] 2. A spatial connectivity function called W is con-

structed by truncating D at a threshold distance (or trunca-
tion distance) dt as follows [Borcard and Legendre, 2002;
Dray et al., 2006; Griffith and Peres‐Neto, 2006]:

W ¼ wij

� � ¼
4� dt if dij > dt

dij if dij � dt

8<
: ð1Þ

Matrix W is therefore a truncated matrix in which not all
sites are connected. Each nonnull weight wij indicates the
possible connection between sites i and j, and the actual
value of wij illustrates the strength of the potential interac-
tion between the two spatial units i and j [Dray et al., 2006].
The threshold distance dt is estimated by computing a mini-
mum spanning tree on D and it is either equal to or larger
than the length of the longest link in the minimum spanning
tree; that length represents the shortest distance required
to maintain the graph of all locations connected [Borcard
et al., 2004; Lacey et al., 2007].

Figure 2. Sample soil moisture maps obtained after three contrasted surveys in the Hermine catchment.
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[19] 3. Given that n is the number of sampling locations,
I is an n × n identity matrix, 1 is an n × 1 vector of ones, and
t represents matrix transpose, the eigenvectors (DBMEM)
of the centered connectivity matrix (equation (2)) are
computed:

W ¼ I � 11t=nð ÞW I � 11t=nð Þ ð2Þ

Each eigenvector has a specific value for each sampling
point, thus allowing the transition from the original loca-
tion data to the eigenvector maps (see bubble maps in
Figure 3). The black and white circles in the bubble maps
illustrate possible autocorrelation patterns to which the
variable under study (e.g., soil moisture) may or may not
correspond. Matrix W is non‐Euclidean, because not all con-
nections among the sampling sites are considered after trun-
cation. Thus, the DBMEM procedure yields both positive
and negative eigenvalues. According to Griffith and Peres‐
Neto [2006], W is also a term appearing in the numerator
of the Moran coefficient of spatial autocorrelation. Hence,
eigenvectors obtained from W represent the decomposi-
tion of the Moran coefficient into mutually orthogonal and
linearly uncorrelated map patterns. The Moran coefficient
(MC) associated with each eigenvector v can be estimated
as follows:

MC vð Þ ¼ n

1tW1
vtWv ð3Þ

The values of the MC are in the range [(n/1t W1)lmin′

(n/1t W1)lmax], given that lmin and lmax are the extreme
eigenvalues of W [Dray et al., 2006]. As a result, DBMEMs
corresponding to small absolute eigenvalues represent fine
scales and patchy spatial patterns in which spatial autocor-
relation is low and spatial structures are difficult to discern.
On the contrary, DBMEMs corresponding to large absolute
eigenvalues represent large or coarse scales of variability
and are very suitable to define spatial structures (see bubble
maps in Figure 3). Also, DBMEMs paired with positive
eigenvalues depict a positive spatial association, whereas
DBMEMs paired with negative eigenvalues depict a nega-
tive spatial association [Griffith and Peres‐Neto, 2006].
DBMEMs are able to model a wide range of spatial features

Table 2. Value of Selected Hydrometeorological Variables Associated With the 16 Soil Moisture Surveys in the Hermine Catchmenta

Survey Date
MSMC
(%)

AP7
(mm)

AP14
(mm)

PD_Discharge
(mm/d)

CD_Discharge
(mm/d)

DA1_Discharge
(mm/d)

6 August 2007 33.8 4 36 0.0066 0.6619 0.2721
13 August 2007 23.3 44 48 0.0766 0.2224 0.0677
7 September 2007 27.0 8 44 0.0376 0.0486 0.0172
14 September 2007 29.0 14 22 0.0486 0.0667 0.4960
21 September 2007 27.7 18 32 0.0769 0.0649 0.0462
28 September 2007 27.9 4 22 0.0306 0.0980 0.1354
5 October 2007 17.3 6 10 0.0881 0.0881 0.0881
12 October 2007 39.6 42 48 0.2483 5.8726 3.0560
26 October 2007 23.1 43 67 1.0059 0.9087 4.3714
2 November 2007 21.5 33 76 1.3622 1.5208 1.4634
9 November 2007 21.1 17 50 2.0025 1.7077 1.4937
20 May 2008 34.4 39 54 0.9484 1.7975 1.0892
2 June 2008 30.0 29 61 0.8787 0.8288 0.8288
17 June 2008 32.2 29 37 0.5245 0.5241 0.4877
15 July 2008 31.5 43 59 0.5325 0.4193 0.3667
21 July 2008 35.2 35 75 0.9026 0.7835 1.4204

aSee Table 1 for descriptions of hydrometeorological variables at the top of each column.

Table 1. Hydrometeorological Variables Used as Surrogates for
Antecedent Conditions and Hydrologic Responses in the Hermine
Catchment

Variable Description

Surrogates for Antecedent Conditions
MSMC (%) Catchment mean soil moisture content
PET (mm/d) Potential evapotranspiration

[Hargreaves, 1975] on day of survey
Rainfall (mm) Rainfall on day of survey
AP2 (mm) Cumulative precipitation from 2 days

before survey; indicative of short‐term
antecedent conditions

AP5, AP7 Cumulative precipitation from 5 and
7 days before survey; indicative of
medium‐term antecedent conditions

AP12, AP14 Cumulative precipitation from 12 and
14 days before survey; indicative of
long‐term antecedent conditions

DSP (d) Days since precipitation Number of days
since last recording at rain gauge

DSP5mm (d) Number of days since last rainfall
intensity exceeding 5 mm/d

DSP10mm (d) Number of days since last rainfall
intensity exceeding 10 mm/d

DSP20mm (d) Number of days since last rainfall
intensity exceeding 20 mm/d

DSP30mm (d) Number of days since last rainfall
intensity exceeding 30 mm/d

PD_Discharge (mm/d) Catchment discharge on day preceding
survey

Surrogates for Hydrologic Response
CD_Discharge (mm/d) Catchment discharge on day of survey
DA1_Discharge (mm/d) Catchment discharge on day following

survey
DA2_Discharge (mm/d) Catchment discharge in 2 days following

survey
DA3_Discharge (mm/d) Catchment discharge in 3 days following

survey
DA4_Discharge (mm/d) Catchment discharge in 4 days following

survey
DA5_Discharge (mm/d) Catchment discharge in 5 days following

survey
DA6_Discharge (mm/d) Catchment discharge in 6 days following

survey
DA7_Discharge (mm/d) Catchment discharge in 7 days following

survey
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Figure 3. Methodology for developing distance‐based Moran’s eigenvector map (DBMEM) variables
and obtaining soil moisture fitted values (DBMEM fitted values). B, broad; VL, very large; L, large;
M, meso; FP, fine positive; FN, fine negative; VF, very fine.
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from planes, saddles, and parabolas representing bumps or
troughs to random autocorrelated variables [Borcard and
Legendre, 2002; Dray et al., 2006]. All obtained eigenvec-
tors are orthogonal to one another (i.e., their scalar product
is null), with the consequence that their explained varia-
tion is additive. They represent nested spatial scales. These
DBMEMs (also called spatial eigenfunctions or spatial base
functions) are spatial predictors/filters that can be used as
explanatory variables in any classical statistical analysis.
[20] For regularly spaced points, DBMEMs are similar to

a series of sine waves of decreasing periods [Borcard and
Legendre, 2002]. However, the DBMEM method does not
only apply to periodic spatial processes, as the flexible com-
bination of sine waves can model nonlinear features of any
shape [Borcard et al., 2004]. DBMEM analysis does opti-
mally when uniform sampling grids are used, but it still does
well with points having irregularly spaced x and y coordinates
[Borcard and Legendre, 2002; Lacey et al., 2007]. The largest
detectable scale corresponds to the DBMEM variable with the
largest period, which is dictated by the distance between the
furthest sampling locations [Lacey et al., 2007]. The technique
cannot detect scales smaller than the threshold distance dt
[Borcard and Legendre, 2002].

3.2. Characterization of Relevant Spatial Scales

[21] Spatial eigenfunctions obtained from DBMEM
analysis form a global model which can explain a certain
amount of the soil moisture patterns’ spatial variation. This
global model can be decomposed into individual DBMEM
submodels or into nested submodels, each containing sev-
eral eigenfunctions, to unravel the hierarchical levels at
which processes may be the most important. The selection
of the number of submodels and their associated scales is
subjective and is generally decided upon consideration of
the research objectives and the similarity between the peri-
ods of the significant eigenfunctions [Lacey et al., 2007].
[22] Here, we chose to study each of the 64 soil moisture

patterns (16 dates × 4 depths) individually rather than con-
sidering all four depths from each survey in a multivariate
framework. In doing so, we investigated whether surface or
subsurface patterns of hydrologic properties should be used
to predict our catchment response. This choice is particu-
larly crucial in humid temperate systems that are thought to
be dominated by subsurface stormflow [Weiler et al., 2005].
Hence, it is important to study the scales at which bedrock‐
induced and confining layer‐induced saturated areas occur
at different levels in the soil column [Tromp‐Van meerveld
and McDonnell, 2006]. Besides, nonparametric Kruskal‐
Wallis tests showed that our soil moisture patterns were
significantly different (p < 0.05) among both survey dates
and studied depths, thus calling for an individual analysis. A
regression analysis was therefore run with each moisture
pattern as the response variable and each spatial DBMEM
submodel, in turn, as the explanatory variable. We took
advantage of the orthogonal property of the spatial eigen-
functions, which implies that the variations explained by the
various DBMEM submodels are additive. The contribution
of each DBMEM submodel to the explanation of each
moisture pattern was quantified using the coefficient of
determination or R squared (R2). We examined a global
DBMEM model that was decomposed into six distinct and
additive spatial submodels: very large (VL), large (L), meso

(M), fine positive (FP), fine negative (FN) and very fine
(VF) as in:

R2
global ¼ R2

VL þ R2
L þ R2

M þ R2
FP þ R2

FN þ R2
VF ð4Þ

The higher the value of R2, the higher the explained spatial
variation in soil moisture at a particular scale. While the VL,
L, M, and FP scales represent positive spatial autocorrela-
tion, the FN and VF scales represent the negative spatial
association. The adjusted R square Ra

2 was used in addition
to the “unadjusted” one. Unlike R2, Ra

2 has the advantage
of allowing the comparison of regression equations involv-
ing different numbers of objects and explanatory variables,
and its value increases only if a new explanatory variable
improves the model more than would be expected by chance.
Ra
2 can take negative values in the case of a low ratio of

observations to regressors, thus suggesting the absence of a
link between the variables that are being tested. Equation (4),
however, does not hold when Ra

2 is used [Lacey et al., 2007].
The global spatial model (containing all DBMEMs) and each
of the six submodels were tested for significance (p < 0.05)
using 999 Monte Carlo unrestricted permutations. Multiple
regressions yielded “fitted soil moisture values” (hereafter
called “DBMEM fitted values”) that were kept for further
analysis.

3.3. Data Detrending

[23] Borcard et al. [2004] suggested checking the response
data (e.g., soil moisture patterns) for linear trends before
DBMEM analysis. Such trends indicate the presence of a
spatial structure at a scale broader than the sampling extent.
The use of undetrended and nonstationary data is not
problematical for DBMEM analysis, except that it com-
promises the modeling of fine‐scale spatial features. In such
cases, half of the available DBMEM variables would be
used only to model the broadscale, trend while finer‐scale
features could go undetected. Each soil moisture pattern was
therefore detrended by removing its spatial linear gradient.
This was achieved by multiple regressions involving only
the x and y coordinates as explanatory variables and the soil
moisture data for each survey, in turn, as a response vari-
able. The linear gradient removed from each pattern was
then considered as a seventh spatial predictor, the broad (B)
scale, in addition to the DBMEMs associated with the VL,
L, M, FP, FN and VF scales. As the B scale is not a
DBMEM‐derived model, however, it does not share the
additive property that the VL, L, M, FP, FN, and VF scales
have. Multiple regressions yielded fitted soil moisture values
(hereafter called “trend fitted values”) that are used for
further analysis.

3.4. Scale‐Dependent Relationships Between Moisture
Patterns and Topographic Variables

[24] Lastly, we linked the spatial structure in soil moisture
patterns to the influence of topographic variables. This was
achieved by using the trend fitted values or the DBMEM
fitted values of each submodel as a response variable and the
topographic (explanatory) variables in the variation parti-
tioning analyses. In this common method, one partitions the
variation of a response variable (or data table) among two or
more sets of explanatory variables using a series of regres-
sions (or canonical analyses). The adjusted R squares of
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the analyses are combined to compute the amount of vari-
ation explained uniquely by each explanatory table and
jointly by two tables. The rather simple algebra is described
in Borcard et al. [1992] and Legendre and Legendre
[1998]. In our case, variation partitioning helped discrimi-
nate four fractions of variation, namely, the variation in soil
moisture at each scale (i.e., B, VL, L, M, FP, FN, or VF) that
is (1) uniquely explained by local controls (fraction [a]);
(2) uniquely explained by nonlocal controls (fraction [c]),
(3) explained by the joint effect of local and nonlocal con-
trols (fraction [b]), and (4) unexplained by any of the topo-
graphic variables included in our analysis (fraction [d]). The
contribution of each group of topographic variables to the
explanation of the soil moisture structure at each scale was
quantified using Ra

2 and illustrated using Venn diagrams.
Individual fractions of variance were tested for significance
(p < 0.05) using permutation tests. Joint effects could not
be tested for significance, because they cannot be obtained

directly by a canonical analysis. Following variation par-
titioning, we kept the “fitted site scores” (hereafter called
“fractions fitted site scores”) associated with fractions [a +
b + c], [a], and [c]. These fractions fitted site scores would
be used to map the strength of the spatial control that each
topographic variable bears on soil moisture at each scale.
[25] All statistical analyses were done using the space-

makeR package [Dray et al., 2006], the Vegan package
(Vegan package data available at http://cc.oulu.fi/∼jarioksa/
softhelp/vegan.html), and some custom‐made functions in
the R environment [R Development Core Team, 2009].

4. Results

4.1. Characteristic Scales of Soil Moisture

[26] Data detrending and DBMEM analysis enabled us to
quantify characteristic spatial scales of soil moisture in the
Hermine catchment. Preliminary multiple regressions of soil

Figure 4. Summary of scale‐dependent soil moisture explained variance for the trend and distance‐
based Moran’s eigenvector map submodels. Circles represent statistical outliers. Notches show the
95% confidence interval in the median for box‐to‐box comparison. B, broad; VL, very large; L, large;
M, meso; FP, fine positive; FN, fine negative; VF, very fine.

ALI ET AL.: SOIL MOISTURE PATTERNS AND TOPOGRAPHY AT MULTIPLE SCALES W10526W10526

8 of 17



moisture patterns on the x and y coordinates revealed sig-
nificant (p < 0.05) linear spatial gradients. They correspond
to the B‐scale structure that explained between 1 and 72%
of the soil moisture spatial variation (Figure 4). We assume
that this B scale represents the variation occurring at a scale
larger than 1.4 ha, since 1.4 ha is the area corresponding to
the VL scale (see below). In general, the B‐scale soil‐
moisture‐explained variation was the largest at a depth of
5 cm.
[27] For DBMEM analysis, matrix W was created using

dt = 15 m. Diagonalization of matrix W yielded 116 DBMEM,
58 of which had positive eigenvalues. The progression from
large to fine scale was observed with the obtained spatial
eigenfunctions: the first DBMEMs illustrate very large scale
features, while the last ones characterize very fine scale
features (see bubble maps in Figure 3). Regardless of the
survey date and measurement depth, the global DBMEM
model explained a large proportion of the variation in soil
moisture: 0.82 ≤ R2 ≤ 0.99 (0.21 ≤ Ra

2 ≤ 0.96). Spatial base
functions associated with positive eigenvalues accounted
for most of the variation in soil moisture (0.74 ≤ R2 ≤ 0.98;
0.57 ≤ Ra

2 ≤ 0.96), whereas base functions associated with
negative eigenvalues explained 15% or less of the variation
in soil moisture.
[28] DBMEMs were grouped into six spatial submodels

based on the size of the patches in the bubble plots (see
examples in Figure 3) and on eigenvectors associated with
values of the MC significantly different from 0 (p < 0.05).
[29] 1. The first spatial submodel was VL (DBMEM 1):

0.85 ≤ Patches area (ha) ≤ 1.4; MC = 1.05.
[30] 2. The second spatial submodel was L (DBMEMs 2

to 9): 0.54 ≤ Patches area (ha) ≤ 0.85; 0.83 ≤ MC ≤ 1.02.
[31] 3. The third spatial submodel was M (DBMEMs 10

to 18): 0.50 ≤ Patches area (ha) ≤ 0.54; 0.60 ≤ MC ≤ 0.78.
[32] 4. The fourth spatial submodel was FP (DBMEMs 19

to 47): 0.22 ≤ Patches area (ha) ≤ 0.50; 0.13 ≤ MC ≤ 0.58.
[33] 5. The fifth spatial submodel was FN: no DBMEMs

were associated with significant values of MC.
[34] 6. The sixth spatial submodel was VF (DBMEMs 71

to 116):0.02 ≤ Patches area (ha) ≤ 0.10; −1.09 ≤MC ≤ −0.15.
[35] The global variation in detrended soil moisture was

unequally partitioned between the DBMEM‐derived char-
acteristic spatial scales, as illustrated in Figure 4. Variation
mostly occurred at the L scale (0.05 ≤ Ra

2 ≤ 0.70), while
the VF scale explained no variation in soil moisture pat-
terns at any date nor any depths. The M, FP, and VL scales
explained an intermediate portion of the variation in soil
moisture at all depths (M: −0.01 ≤ Ra

2 ≤ 0.50; FP: −0.20 ≤
Ra
2 ≤ 0.32; VL: −0.01 ≤ Ra

2 ≤ 0.20). For all DBMEM‐
derived spatial models, the average values of explained soil
moisture spatial variation hardly varied among sampling
depths (Figure 4).

4.2. Scale‐Dependent Influence of Topographic
Variables on Soil Moisture

[36] Figure 5 illustrates the strength of the scale‐dependent
relationships between soil moisture patterns and topographic
variables. Variation partitioning following the computations
of spatial gradients and DBMEMs showed the presence of
linear correlations between the structure of soil moisture at
different characteristic spatial scales and topography, which
also varies at these scales. At the B scale, topography was

responsible for the spatial organization of soil moisture in a
proportion of 21 to 53%. This was mainly attributable
to nonlocal variables (0.13 ≤ Ra

2 ≤ 0.46), while local con-
trols explained much smaller proportions of soil moisture
spatial variance (0.01 ≤ Ra

2 ≤ 0.13). Topography had a
lesser influence on the spatial organization of soil moisture
at the DBMEM‐derived scales. Nonlocal controls generally
explained most of the soil moisture spatial structure at the
VL and L scales, while topographic controls were the weakest
at the M, FP, and VF scales. For all DBMEM‐derived
scales, a large fraction of the variation in soil moisture
(0.60 ≤ Ra

2 ≤ 0.99) could not be explained by any of the
studied topographic variables, especially at the finest levels.

4.3. Temporal Dependency of Preferential Scales
and Topographic Controls

[37] We found that the spatial scales at which soil mois-
ture content are structured, as well as the explanatory
potential of topographic controls, vary along gradients of
antecedent conditions. Spearman correlation coefficients
were computed between trend and DBMEM‐related Ra

2

values and surrogate variables for antecedent conditions.
Some significant correlations were found when variables
such as AP5, AP7, AP12, AP14, DSP5mm, DSP30mm, and
PD_Discharge were used (Table 2; also see Table 1 for
variables definitions). The presence of B‐scale spatial struc-
ture at the 15 cm depth was positively linked to DSP30mm
(rSpearman = 0.61, p < 0.05), which suggests that broadscale
patterns at that depth are not observed immediately after a
significant storm event. On the contrary, VL‐scale soil
moisture spatial structure at that same depth was negatively
linked to DSP30mm (rSpearman = −0.76, p < 0.05), which
seems to indicate that coherent 1.4 ha wide patterns settle in
soon after significant rainfall inputs in the Hermine catch-
ment. Soil moisture explained spatial variance at the L, M,
and FP scales was not significantly linked to most of the
surrogate variables for antecedent conditions (Table 3).
[38] The most consistent correlations were obtained

between VL‐scale‐related Ra
2 values at depths of 5, 30 and

45 cm and discharges monitored at the catchment outlet
on each survey date and in the following days (0.49 ≤
rSpearman ≤ 0.79, p < 0.05) (see Figure 6). Some significant
correlations were obtained between the magnitude of the
topographic influences on soil moisture (i.e., variation parti-
tioning fractions) and AP14, DSP30mm, and PD_Discharge
(Table 4). For example, it appeared that the wetter the
prior conditions, the larger the effects of nonlocal controls
on VL‐scale soil moisture at 5 cm (see positive correla-
tions between fraction [c] and AP14 and PD_Discharge in
Table 4). At depths of 30 and 45 cm, however, nonlocal
controls at the VL scale were important when antecedent
conditions were dry (see positive correlations between frac-
tion [c] and DSP30mm in Table 4).
[39] The effects of local and nonlocal controls on VL‐scale

soil moisture were compared between three contrasted sur-
veys (Figure 7). The 5 October 2007 survey took place
at the end of a dry spell, while the 12 October 2007 and
15 July 2008 surveys yielded the wettest patterns in our data
set (AP7 > 30 mm). The main difference between the two
wet surveys was the number of days elapsed since the last
significant storm event (DSP20mm value of 1 day versus
3 days). For the driest survey, the proportion of VL‐scale
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Figure 5. Summary of scale‐dependent topographic controls on soil moisture. Notches show the 95%
confidence interval in the median for box‐to‐box comparison. B, broad; VL, very large; L, large; M,
meso; FP, fine positive; FN, fine negative; VF, very fine.
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soil moisture spatial variance explained by topography
ranged from 14 to 31%, depending on the depth considered.
That proportion of explained spatial variance was almost
equally distributed between fractions [a], [b], and [c], except
at a depth of 30 cm. Similarly, on 12 October 2007, effects
of local and nonlocal controls (fractions [a] and [c]) had the
same order of magnitude, while joint effects were null.
Unlike on 15 July 2008, the influence of nonlocal controls
on VL‐scale soil moisture was markedly higher than that of
local controls. Vegan diagrams shown in Figure 7 hence
suggest that the influence of one meteorological variable
alone cannot explain the magnitude of topographic influ-
ences on soil moisture spatial variation at a given scale. The
influence of nonlocal control factors on soil moisture spatial
variation at the three largest scales (B, VL, and L) was

dependent on not only rainfall amounts (e.g., AP7) but also
on the way the water inputs were distributed in time (e.g.,
DSP20mm). The VL‐scale fraction [a] at all depths was
the lowest on 12 October 2007 and 15 July 2008, thus
hinting that local controls at that scale are the most signif-
icant when prior conditions are dry (e.g., 5 October 2007).
Maps of the fractions fitted site scores were drawn to visu-
alize the regions where topographic control on 45 cm soil
moisture was the most important at a given scale (Figure 8).
Red areas correspond to regions where topographic influ-
ences are the most important, whereas blue colored areas
correspond to regions where there is a lack of or a weak
topographic control. These maps clearly show that topo-
graphic influences on the B‐scale soil moisture are more
important than those on the VL‐scale soil moisture (see
fraction [a + b + c] maps in Figure 8). For the VL‐scale
fraction [a] map associated with the 5 October 2007 survey,
the sites subjected to the strongest local controls are very
few; they correspond to the locations of large boulders and
bare outcrops visually identified in the Hermine catchment.
The VL‐scale nonlocal controls on 15 July 2008 are more
“widespread” and located on the moderately steep hill
slopes rather than in the bottom valley area (see fraction [c]
maps in Figure 8).

5. Discussion

5.1. Scale‐Dependent Soil Moisture Variation
and Topographic Influences

[40] The global DBMEM model explained a large pro-
portion of the spatial variation in soil moisture at all depths.
This is partly attributable to a dense, regular sampling
scheme over a fairly small catchment. The explicit quanti-
fication of characteristic scales is particularly interesting
in the context of a headwater catchment to distinguish the
so‐called “small scale” and “large scale” over a 5.1 ha
region. Values of R2 and Ra

2 (Figure 4) allowed a precise
assessment of the hydrological relevance of the scale‐
dependent critical source areas. Even though we considered
a nested spatial framework, it appears that hydrologically
relevant processes that produce coherent soil moisture pat-
terns occur at a specific sensitive scale (VL, patches of
0.85 to 1.4 ha) and are not perceptible at the smaller scales
(L and M, in particular). This is in accordance with the
common assumption in the complex systems theory that the
emergent behavior is not the exact sum or the linear
extrapolation of its parts. We expected, however, the F and
VF DBMEM submodels (less than 0.22 ha) to explain a
larger portion of the soil moisture spatial variation given
the complex microtopography of the catchment forest floor
that may disrupt spatial soil moisture patterns. It is possible
that the sampling resolution of 15 m was too coarse to
capture such fine‐scale variability in soil moisture.
[41] The influence of nonlocal variables on soil moisture

was significantly larger at the two largest scales (B and VL)
than at the four smallest ones (L, M, FP, and VF). This
result is puzzling in the context of a headwater catchment, as
it either means that topographic controls should primarily be
studied at a scale of 1.4 ha or more or that the two largest
scales, especially the B scale, only describe the main hydro-
logical flow gradient across the catchment, i.e., the main-
stream channel. The latter hypothesis is the most realistic

Table 3. Spearman Correlation Coefficients Between the Presence
of Spatial Structure in Soil Moisture at Each Scale and the Magnitude
of Selected Hydrometeorological Variables

Hydrometeorological
Variablesa cm

Scaleb

B VL L M FP FN VF

PET 5
15
30
45

AP2 5
15
30
45

AP5 5 −0.51
15
30
45

AP7 5 0.52
15
30
45

AP12 5 0.64
15
30
45

AP14 5 0.64
15
30 0.63
45 0.65

DSP5mm 5 0.51
15
30
45

DSP10mm 5
15
30
45

DSP20mm 5
15
30
45

DSP30mm 5
15 0.61 −0.76
30
45 0.54 0.64 0.59

PD_Discharge 5 0.49
15
30 0.67
5 0.61

aSee Table 1 for descriptions of hydrometeorological variables.
bB, broad; VL, very large; L, large; M, meso; FP, fine positive; FN, fine

negative; VF, very fine. Scale is the adjusted R square.
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since the main flow direction, namely, the stream channel
in the valley, is the catchment major spatial linear gradient
that is not reflected in the detrended soil moisture data used
for DBMEM analysis. To avoid such a “bias”, one could use
undetrended topographic variables to explain the B‐scale
soil moisture patterns, while detrended topographic vari-
ables would be used to explain the detrended moisture
patterns at the DBMEM‐derived spatial scales. The expla-
nation for local controls having an effect only at the three
largest scales may be of a statistical nature rather than
hydrological. Several studies have noted that fine‐scale pat-
terns identified by DBMEM analysis are often not explained
by the available explanatory variables [Borcard et al., 2004;
Bellier et al., 2007]. It is also possible that fine‐scale features
might be influenced by fine‐scale topographic variables that
are yet to be measured. There was a significant fraction of soil
moisture spatial variation at all depths that was not explained
by any of the tested topographic variables. Nontopographic
yet influential factors like soil texture or hydraulic conduc-
tivity could be important variables worth considering in var-
iation partitioning.

5.2. Temporal Dependency of Soil Moisture Structure
and Topographic Influences

[42] Given the relatively small soil moisture data set used
in this study (16 surveys × 4 depths), it is difficult to build
a robust conceptual model of the Hermine catchment
behavior across spatial scales and time. However, some of
the strongest correlations obtained enable us to say that the
B and VL scales were the most responsive to surrogate
variables for antecedent conditions. Correlations between
next day catchment discharge and VL‐scale soil moisture

structure (Figure 6) suggest that “critical” source areas
should preferably be investigated at the level of 0.85 to 1.4 ha
patches. This is plausible, given that source areas are usually
well delineated in space and located on the lower hill slopes
and in the bottom of the valley at the Hermine. It was also
observed that the importance of nonlocal controls for soil
moisture spatial variation at the three largest scales (B, VL,
and L) was dependent on not only rainfall amounts (e.g.,
AP7) but also on the way the water inputs were distributed
in time (e.g., DSP20mm, see Figure 7). That observation can
be opposed to time‐invariant topography‐derived upslope
contributing areas or wetness indices that are often used in
predictive or modeling studies when soil moisture data are
missing [Beven and Kirkby, 1979; Barling et al., 1994;
Sørensen et al., 2006]. Our results indicate that not only real
patterns of critical source areas but also the topographic
influences they are subjected to are dynamic and highly
dependent on antecedent conditions.

5.3. Spatial Filtering Methods and Characteristic
Scales: An Improvement or a Burden?

[43] The principal advantage of DBMEM analysis is that
it enabled us to partition soil moisture structure over a
range of nested characteristic spatial scales and to identify
some crucial relations with controlling variables. Conclu-
sions and hypotheses about the Hermine catchment soil
moisture dynamics can be drawn for all scales but the finest,
especially those modeling negative spatial association. The
major drawback of the method is the subjective visual
identification of the DBMEM submodels. No other tech-
nique but the combination of nested variogram analysis and
filter kriging is able to provide such precise estimates of the

Figure 6. Relationships between the presence of very large (VL)‐scale structure (adjusted R‐square)
in soil moisture at 45 cm and discharge values measured at the catchment outlet (0.51 ≤ R2 ≤ 0.79).
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spatial variation of a variable across so many different scales
as the DBMEM method. Bellier et al. [2007] presented an
ecological application where they compared PCNM analysis
and geostatistical estimation. The combination of nested
variograms and filter kriging is not problem free, notably, as
far as the identification of fine‐scale structure is concerned.
Bellier et al. [2007] therefore concluded that “for a more
objective identification of the relevant scales, both methods
need further developments.” One of the main differences
between geostatistics and DBMEM analysis is philosophi-
cal, as one may choose to go for a classical design‐based
approach (i.e., DBMEM approach) rather than for a proba-
bilistic model‐based approach (i.e., geostatistical) [Bellier
et al., 2007]. Spatial filtering methods present another
advantage for hydrology, as recent developments have led
to the use of asymmetric eigenvector maps (AEM) [Blanchet
et al., 2008]. AEM are an extension of the MEM framework
for directional processes [Griffith and Peres‐Neto, 2006;
Blanchet et al., 2008; Mahecha and Schmidtlein, 2008]; they

could help us solve the question: At which spatial scale
should hydrologic connectivity be defined? Hence, we fore-
see interesting applications of AEM in hydrological studies
where detailed spatial data about drainage networks or sub-
surface stormflow paths are available.

6. Conclusion

[44] Our objective was to test the effectiveness of a fairly
new method to detect characteristic spatial scales in a small
temperate humid forested catchment. Through an applica-
tion to soil moisture data, we have shown that DBMEM
analysis is a powerful tool for depicting the spatial structure
of hydrological state variables. The global DBMEM model
explained 21 to 96% (adjusted R square) of the variation
in the detrended soil moisture data apportioned into signif-
icant decreasing fractions from the very large scale (0.85–
1.4 ha) to the very fine scale (0.02–0.10 ha). The role of
catchment topography was also quantified, as the effects

Table 4. Spearman Correlation Coefficients Between the Presence of Significant Topographic Controls
on Soil Moisture at Each Scale and the Magnitude of Selected Hydrometeorological Variables

Hydrometeorological
Variablesa cm

Scaleb

B VL L M FP FN VF

Fraction [a]
AP14 5

15
30 0.59
45 0.61 0.61

DSP30mm 5
15
30
45 −0.51

PD_Discharge 5
15
30
45 0.64 0.70 0.85

Fraction [c]
AP14 5 0.65

15
30 −0.65 0.52
45 −0.60 0.58

DSP30mm 5 0.64
15 0.52 0.74
30 0.54 0.55
45 0.49

PD_Discharge 5 0.74
15
30 −0.49
45 −0.52 0.52 0.53 0.58

Fraction [d]
AP14 5

15
30 0.59
45 0.56 −0.63 −0.54

DSP30mm 5 −0.59
15
30 −0.57
45

PD_Discharge 5 −0.62
15
30 −0.49
45 −0.61 −0.61 −0.69

aSee descriptions of hydrometeorological variables in Table 1.
bB, broad; VL, very large; L, large; M, meso; FP, fine positive; FN, fine negative; VF, very fine. Scale is adjusted

R‐square values associated with fractions [a], [c], and [d] in variation partitioning.
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Figure 7. Relative importance of very large (VL)‐scale topographic influences on soil moisture for three
contrasted surveys. Significant variation partitioning fractions are flagged with an asterisk in parentheses
on the Venn diagrams.
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Figure 8. Sample maps of the fitted site scores for three fractions of the variation. Arbitrary units are not
shown. Each map/date has its own color scale: orange and red areas show sites that are subjected to the
strongest topographic controls on that specific date. B, broad; VL, very large.
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of topographic controls, both local and nonlocal, on soil
moisture spatial organization were important at the large
scale (0.54–0.85 ha) and above. Also, soil moisture broad
linear gradients (>1.4 ha) and very large scale spatial pat-
terns were strongly dependent on previous storm proper-
ties (antecedent rainfall and days elapsed since the storm).
Very large scale soil moisture patterns, in particular, were a
good predictor of the catchment hydrologic response. The
DBMEM method therefore allowed us to investigate the
issue of spatial scale quantitatively rather than qualitatively.
Apart from some issues related to spatial structure and
effective spatial controls at the fine scale, the combination
of DBMEM analysis and variation partitioning was valuable
to extract the spatiotemporal relationships between dynamic
soil moisture content, static topographic variables, and tem-
porally variable hydrometeorological conditions. The poten-
tial of this method should therefore be exploited to test
scale‐dependent relationships between any hydrologic var-
iable and any environmental variable sampled according to
any design in both humid and arid regions. The fact that the
DBMEM‐derived characteristic spatial scales are nested
fits well in the course of recent catchment hydrological
studies [e.g., Cammeraat, 2002; Skøien et al., 2003; Soulsby
et al., 2006;Didszun and Uhlenbrook, 2008]. Similarly, future
work at the Hermine or in similar environments should
involve searching for scale‐dependent runoff generation
processes that are responsible for scale‐dependent soil
moisture patterns, topographic controls, and temporal influ-
ences on catchment outflows.

[45] Acknowledgments. We wish to thank three anonymous reviewers
and the associate editor whose comments and suggestions led to a signifi-
cant improvement of the primary manuscript. We gratefully acknowledge
fellowship support of the first author, awarded by the Natural Sciences
and Engineering Research Council of Canada and the Fonds Québécois
de la Recherche sur la Nature et les Technologies (FQRNT). The research
was also funded by the FQRNT. We thank the staff of the Station de Bio-
logie des Laurentides de l’Université de Montréal, Marie‐Claude Turmel
for her insightful suggestions toward the planning of the soil moisture sur-
veys, and Marius Dulgheru, Gabi Chiaburu, Julie Thérien, Marie Lambois,
and Claude Gibeault for their occasional help on the field. We heartily
thank our field assistants Rachel Thériault and Katherine Sicotte, who were
able to take over the organization of the surveys when needed and contrib-
uted great effort in data collection. This study is part of the research pro-
gram of the Canada Research Chair in fluvial dynamics.

References
Ambroise, B. (2004), Variable, ‘active’ versus ‘contributing’ areas or per-

iods: A necessary distinction, Hydrol. Processes, 18(6), 1149–1155.
Barling, R. D., I. D. Moore, and R. B. Grayson (1994), A quasi‐dynamic

wetness index for characterizing the spatial‐distribution of zones of sur-
face saturation and soil‐water content, Water Resour. Res., 30(4),
1029–1044, doi:10.1029/93WR03346.

Bellier, E., P. Monestiez, J. P. Durbec, and J. N. Candau (2007), Identifying
spatial relationships at multiple scales: principal coordinates of neigh-
bour matrices (PCNM) and geostatistical approaches, Ecography, 30(3),
385–399.

Beven, K. J., and M. J. Kirkby (1979), A physically based variable contrib-
utive area model of basin hydrology, Hydrol. Sci. Bull., 24, 43–69.

Biron, P. M., A. G. Roy, F. Courchesne, W. H. Hendershot, B. Cote, and
J. Fyles (1999), The effects of antecedent conditions on the relationship
of hydrology to hydrochemistry in a small forested watershed, Hydrol.
Processes, 13(11), 1541–1555.

Blanchet, F. G., P. Legendre, and D. Borcard (2008), Modelling directional
spatial processes in ecological data, Ecol. Modell., 215, 325‐336.

Blöschl, G. (2001), Scaling in hydrology, Hydrol. Processes, 15(4),
709–711.

Borcard, D., and P. Legendre (2002), All‐scale spatial analysis of ecological
data by means of principal coordinates of neighbour matrices, Ecol.
Modell., 153(1–2), 51–68.

Borcard, D., P. Legendre, and P. Drapeau (1992), Partialling out the spatial
component of ecological variation, Ecology, 73(3), 1045–1055.

Borcard,D., P. Legendre, C. Avois‐Jacquet, andH. Tuomisto (2004), Dissect-
ing the spatial structure of ecological data atmultiple scales,Ecology, 85(7),
1826–1832.

Brind’Amour, A., D. Boisclair, P. Legendre, and D. Borcard (2005), Multi-
scale spatial distribution of a littoral fish community in relation to envi-
ronmental variables, Limnol. Oceanogr., 50(2), 465–479.

Cai, X. M., and D. B. Wang (2006), Spatial autocorrelation of topographic
index in catchments, J. Hydrol., 328(3–4), 581–591.

Cammeraat, L. H. (2002), A review of two strongly contrasting geomor-
phological systems within the context of scale, Earth Surf. Processes
Landforms, 27, 1201–1222.

Cassel, D. K., O. Wendroth, and D. R. Nielsen (2000), Assessing spatial
variability in an agricultural experiment station field: Opportunities
arising from spatial dependency, Agron. J., 92(4), 706–714.

Didszun, J., and S. Uhlenbrook (2008), Scaling of dominant runoff gener-
ation processes: Nested catchments approach using multiple tracers,
Water Resour. Res., 44, W02410, doi:10.1029/2006WR005242.

Dray, S., P. Legendre, and P. R. Peres‐Neto (2006), Spatial modelling: A
comprehensive framework for principal coordinate analysis of neighbour
matrices (PCNM), Ecol. Modell., 196(3–4), 483–493.

Drouin, D. (1999), Génération d’un modèle numérique d’élévation adéquat
pour la modélisation hydrologique d’un petit bassin versant, M.Sc. dis-
sertation, Dept. de Géographie, Univ. de Montréal, Montréal, Quebec,
Canada.

Grayson, R. B., A. W. Western, F. H. S. Chiew, and G. Blöschl (1997),
Preferred states in spatial soil moisture patterns: local and nonlocal con-
trols, Water Resour. Res., 33(12), 2897–2908, doi:10.1029/97WR02174.

Green, T. R., and R. H. Erskine (2004), Measurement, scaling, and topo-
graphic analyses of spatial crop yield and soil water content, Hydrol.
Processes, 18(8), 1447–1465.

Griffith, D. A., and P. R. Peres‐Neto (2006), Spatial modeling in ecology:
The flexibility of eigenfunction spatial analyses, Ecology, 87(10),
2603–2613.

Hargreaves, G. H. (1975), Moisture availability and crop production,
Trans. ASAE, 18, 980–984.

Klemeš, V. (1983), Conceptualization and scale in hydrology, J. Hydrol.,
65, 1–23.

Kumar, P. (1999), A multiple scale state‐space model for characterizing
subgrid scale variability of near‐surface soil moisture, IEEE Trans.
Geosci. Remote Sens., 37(1), 182–197.

Lacey, R. W. J., P. Legendre, and A. G. Roy (2007), Spatial‐scale partition-
ing of in situ turbulent flow data over a pebble cluster in a gravel‐bed
river, Water Resour. Res., 43, W03416, doi:10.1029/2006WR005044.

Legendre, P., and L. Legendre (1998), Numerical Ecology, 2nd ed.,
Elsevier Sci., Amsterdam, Netherlands.

Mahecha, M. D., and S. Schmidtlein (2008), Revealing biogeographical
patterns by nonlinear ordinations and derived anisotropic spatial filters,
Global Ecolog. Biogeography, 17, 284–296.

O’Callaghan, J. F., and D. M. Mark (1984), The extraction of drainage
networks from digital elevation data, Comput. Vision Graphics Image
Processing, 28, 328–344.

R Development Core Team (2009), R: A language and environment for sta-
tistical computing, R Found. for Statistic. Comput., Vienna, Austria.
(Available at http://www.R‐project.org)

Redding, T. E., G. D. Hope, M. J. Fortin, M. G. Schmidt, and W. G. Bailey
(2003), Spatial patterns of soil temperature and moisture across subalpine
forest‐clearcut edges in the southern interior of British Columbia, Can. J.
Soil Sci., 83(1), 121–130.

Roy, M. L, A. G. Roy, and P. Legendre (2009), The relations between stan-
dard fish habitat variables and turbulent flow at multiple scales in mor-
phological units in a gravel‐bed river, River Res. Appl., 26(4), 439–455,
doi:10.1002/rra.1281.

Schulz, K., R. Seppelt, E. Zehe, H. J. Vogel, and S. Attinger (2006), Impor-
tance of spatial structures in advancing hydrological sciences, Water
Resour. Res., 42, W03S03, doi:10.1029/2005WR004301.

Sibson, R. (1981), A brief description of the natural neighbor interpolant, in
Interpreting Multivariate Data, edited by D. V. Barnett, John Wiley,
Chichester, England, U. K.

Sivapalan, M., and P. C. Young (2005), Downward approach to hydro-
logical model development, in Encyclopedia of Hydrological Sciences,

ALI ET AL.: SOIL MOISTURE PATTERNS AND TOPOGRAPHY AT MULTIPLE SCALES W10526W10526

16 of 17



edited by M. G. Anderson, pp. 2081–2100, John Wiley, Chichester,
England, U. K.

Skøien, J. O., G. Blöschl, and A. W. Western (2003), Characteristic space
scales and timescales in hydrology, Water Resour. Res., 39(10), 1304,
doi:10.1029/2002WR001736.

Sørensen, R., U. Zinko, and J. Seibert (2006), On the calculation of the
topographic wetness index: evaluation of different methods based on
field observations, Hydrol. Earth Syst. Sci., 10, 101–112.

Soulsby, C., D. Tetzlaff, S. M. Dunn, and S. Waldron (2006), Scaling up
and out in runoff process understanding: insights from nested experimen-
tal catchment studies, Hydrol. Processes, 20, 2461–2465.

Tarboton, D. G. (1997), A new method for the determination of flow direc-
tions and upslope areas in grid digital elevation models, Water Resour.
Res., 33(2), 309–319, doi:10.1029/96WR03137.

Tromp‐Van Meerveld, H. J., and J. J. McDonnell (2006), Threshold rela-
tions in subsurface stormflow: 2. The fill and spill hypothesis, Water
Resour. Res., 42(2), W02411, doi:10.1029/2004WR003800.

Weiler, M., J. McDonnell, I. Tromp‐van Meerveld, and T. Uchida (2005),
Subsurface stormflow, in Encyclopedia of Hydrological Sciences, edited
by M. G. Anderson, pp. 1719–1732, John Wiley, Chichester, England,
U. K.

Western, A. W., R. B. Grayson, G. Blöschl, G. R. Willgoose, and T. A.
McMahon (1999), Observed spatial organization of soil moisture and
its relation to terrain indices, Water Resour. Res., 35(3), 797–810,
doi:10.1029/1998WR900065.

Western, A. W., R. B. Grayson, and G. Blöschl (2002), Scaling of soil
moisture: A hydrologic perspective, Annu. Rev. Earth Planet. Sci., 30,
149–180.

Western, A. W., S. L. Zhou, R. B. Grayson, T. A. McMahon, G. Blöschl,
and D. J. Wilson (2004), Spatial correlation of soil moisture in small
catchments and its relationship to dominant spatial hydrological pro-
cesses, J. Hydrol., 286(1–4), 113–134.

Woods, R., M. Sivapalan, and M. Duncan (1995), Investigating the repre-
sentative elementary area concept: An approach based on field data,
Hydrol. Processes, 9(3–4), 291–312.

Wu, J., and H. Li (2006), Concepts of scale and scaling, in Scaling and
Uncertainty Analysis in Ecol.: Methods and Applications, edited by
J. Wu, K. B. Jones, H. Li, and O. L. Loucks, pp. 3–15, Springer,
Netherlands.

Wu, J., D. E. Jelinski, M. Luck, and P. T. Tueller (2000), Multiscale anal-
ysis of landscape heterogeneity: Scale variation and pattern metrics,
Geogr. Inf. Sci., 6(1), 6–19.

G. A. Ali and A. G. Roy, Chaire de Recherche du Canada en Dynamique
Fluviale, Département de Géographie, Université de Montréal, C.P. 6128,
Montréal, QC H3C 3J7, Canada. (genevieve.ali@umontreal.ca)
P. Legendre, Département de Sciences Biologiques, Université de

Montréal, C.P. 6128, Succursale Centre‐ville, Montréal, QC H3C 3J7,
Canada.

ALI ET AL.: SOIL MOISTURE PATTERNS AND TOPOGRAPHY AT MULTIPLE SCALES W10526W10526

17 of 17



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (ECI-RGB.icc)
  /CalCMYKProfile (Photoshop 5 Default CMYK)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Preserve
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /Courier-Oblique
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Symbol
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /Times-Roman
    /ZapfDingbats
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects true
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /ConvertToRGB
      /DestinationProfileName (sRGB IEC61966-2.1)
      /DestinationProfileSelector /UseName
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements true
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /UseDocumentProfile
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


