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This study compared empirical type [ error and power of different permutation
techniques for the test of significance of a single partial regression coefficient in a
multiple regression model, using simulations. The methods compared were permutation
of raw data values, two alternative methods proposed for permutation of residuals under
the reduced model, and permutation of residuals under the full model. The normal-
theory ¢-test was also included in simulations. We investigated effects of (1) the sample
size, (2) the degree of collinearity between the predictor variables, (3) the size of the
covariable’s parameter, (4) the distribution of the added random error and (5) the
presence of an outlier in the covariable on these methods. We found that two methods
that had been identified as equivalent formulations of permutation under the reduced
model were actually quite different. One of these methods resulted in consistently inflated
type 1 error. In addition, when the covariable contained an extreme outlier, permutation
of raw data resulted in unstable (often inflated) type | erroc. There were no significant
differences in power among the three permutation methods (raw data permutation,
reduced-model permutation and full-model permutation), but all had greater power than
the normal-theory r-test when errors were non-normal. The reduced model permutation
method had the most consistent and reliable results of the methods investigated here for
the test of a partial regression coefficient. However, reasonably extreme situations
needed to be simulated in order to distinguish methods from the normal-theory r-test
and from one another. Permutation of raw data, permutation under the reduced model,
and permutation under the full model are generally asymptotically equivalent.
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1. INTRODUCTION

Various permutational strategies have been proposed for a test of
significance of a single predictor variable in multiple regression. It is
well known that such a test may be influenced by the presence of one
or more other variables in the linear model. This is true in the case of
continuous or discrete predictor variables, as well as when the
predictor variables represent orthogonal treatments in a linear
analysis-of-variance model. The proposed permutation methods for
such tests have different bases in terms of their philosophies and have
been proposed in different contexts, (e.g., Freedman and Lane, 1983;
Smouse et al., 1986; Oja, 1987; ter Braak, 1992; Kennedy, 1995;
Manly, 1997). Properties of some of these approaches have been
reviewed in part by Kennedy (1995) and Kennedy and Cade (1996).
Expected and desirable qualities of the various techniques with regard
to type 1 error and power have been suggested from a theoretical
perspective, but few if any empirical simulations supporting these
claims have been provided.

An important application of such permutation tests is their use in
canonical analysis of multivariate data (e.g., in ecological, biological
and agricultural applications: ter Braak, 1987, 1990; Legendre and
Legendre, 1998), where the data generally do not fulfill assumptions
required by traditional parametric testing procedures. The present
study only examines the behavior of the methods with respect to a
single dependent variable, but the results will apply equally to
multivariate situations. Any method found to be inappropriate in this
simple case, however, will also be inappropriate for the analogous
permutation tests for multivariate responses.

We present results of simulations designed to compare empirically
certain methods of permutation under conditions of known changes to
particular factors. Consider the following linear equation for muitiple
regression:

Y=p+ 08X+ 5 Z+¢ )]
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where Y is the response variable, X and Z are each predictor variables,
812 and 8, are the partial regression coefficients of the least-squares
multiple regression of ¥ on X and Z, respectively, and ¢ is the added
random error term. The notation 3, is used to indicate that this is the
partial regression coeflicient for the relationship between Y and
variable 2 (Z) while controlling for the effect of variable 1 (X),
similarly for 3;.;. The null hypothesis of interest is: 3., = 0, that is,
there is no significant effect of variable Z in the multiple linear
regression. The familiar s-statistic for this null hypothesis takes the
following form:

_ (bz.] — 0)
Ty ¥

where b, is the least-squares estimate of 3, and se(h,,) is the
estimated standard error of the partial regression coefficient.

We investigated type 1 error and power of different permutational
procedures with regard to changes in the following factors: (a) sample
size; (b) degree of collinearity between the predictor variables X and Z;
(c) size of the covariable’s parameter 3,.» ; and (d) distribution of the
added random error e. Each of these factors has been discussed to
some extent by proponents of the various permutation methods,
without having been investigated empirically to any great length or
detail. Our simulations are much more extensive than any presented so
far for comparative analysis of these permutation methods (e.g.,
Kennedy and Cade, 1996; Manly, 1997).

We restricted our attention to methods which do not ignore a
potential relationship (collinearity) between the predictor variables
(i.e., methods which do not disobey the principle of ancillarity, which
means relatedness: Welch, 1990; ter Braak, 1992). This limits the
discussion to methods which permute either the raw data values (Y) or
residuals of some kind, as opposed to permuting predictor variable(s)
(such as described by Oja, 1987). Neither do we consider methods
involving restricted randomization, which will generally be applicable
only to cases involving several replicates at each individual set of
paired values of X and Z (e.g., Brown and Maritz, 1982).

We begin with a description of the permutation methods to be
investigated, along with the predictions offered in the literature with
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regard to their relative type I error or power. We then present the
methodology used and the results of simulations designed to test these
specific predictions, with a view to understanding the general behavior
of these permutational strategies.

2. DESCRIPTION OF THE PERMUTATION METHODS

2.1. Permutation of Raw Data

Permutation of raw data for multiple regression was described by
Manly (1991, 1997). The following procedure is employed to test the
null hypothesis 55, = 0.

1. The variable Y is regressed on X and Z together (using least
squares) to obtain an estimate by, of 3>., and a value of the usual -
statistic, f.., for testing 35,1 = 0 for the real data. We hereafter refer
to this as the reference value of .

2. The Y values are permuted randomly to obtain permuted values
Y~

3. The Y* values are regressed on X and Z (unpermuted) together to
obtain an estimate b}, of 3>, and a value " for the permuted data.

4, Steps 2-3 are repeated a large number of times, yielding a
distribution of values of t* under permutation.

5. The absclute value of the reference value f.r is placed in the
distribution of absolute values of ¢ obtained under permutation
(for a two-tailed s-test). The probability is calculated as the
proportion of values in this distribution greater than or equal, in
absolute value, to the absolute value of t.; (Hope, 1968).

Permutation of the raw data preserves the covariance between Z
and X as well as covariances among the X variables, if there are more
than one, across all permutations.

The test of significance of a partial regression coefficient is the same
as that of the corresponding partial correlation coefficient. Thus, as an
alternative to calculating the estimate for the slope parameter and its
standard error to obtain the s-statistic, in the case of a single
covariable one can calculate the partial regression coefficient
casily using the well-known formula: ryzyx= (ryz—ryxrzx)/
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V(I =r)(1 —ry); the t-statistic is then ¢=ryzx\/(n -3)/
VI=rizy

Manly (1991) initially introduced this permutation method using a
non-pivotal test-statistic for the test. The importance of using a pivotal
(or asymptotically pivotal) test-statistic, such as ¢, as opposed to
derivatives (such as sums of squares), has been shown for permutation
tests of single terms in complex models (Stapel and ter Braak, 1994;
Kennedy and Cade, 1995} and for the related technique of
bootstrapping (Hall and Titterington, 1989; Fisher and Hall, 1990).
By a pivotal statistic, we mean the following: in general, to find a
confidence interval for a parameter 6, based on an estimator 7(.x),
where x denotes a vector of n independent random variables, a pivotal
statistic 7 has the following properties: (i) 7 is a function of 7(x) and
f, (i1) 7 1s monotonic in 8, and (1ii) 7 has a known sampling distribution
that does not depend on 8 or on any other unknown parameters. In the
present context, § = 8oy, T(x)=15by, and 7=1¢ of Eq. (2) (or
alternatively 7 = 13, 4, the squared partial correlation coefficient, also
fulfills these requirements), where the “known” sampling distribution
is created by permutation. Note that b,.; is not pivotal because it does
not fulfill item (iii) above, but depends on the value of 3;.,. In all of the
simulations done in this paper, we only consider permutation tests
carried out using the ¢-statistic, shown in Eq. (2), as in Manly (1997).

The rationale for this method is that the permutable units for the
test are the original Y values, independent of any model (linear or
otherwise) which might be imposed: that is, any value of Y could have
been observed associated with any combination of paired values
(X, Z). Thus, the error associated with each Y value “travels with it”
because it is considered to be a part of that individual replicate. This
view is expressed clearly in the work of Edgington (1995) concerning
randomization tests and experimental design. Edgington states that
tests involving the implicit assumption of “‘unit additivity” (as is the
case for permutation of residuals from a linear model, see Sections 2.2
and 2.3 below) should not be regarded as distribution-free or non-
parametric tests ( p. 122). In the context of analysis of variance or with
other models involving categorical variables, restricted permutations
may be applied as a means of controlling for one factor (X') while
testing for the effects of another (Z) (e.g., Brown and Maritz, 1982;
Edgington, 1995).
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Kennedy (1995) and Kennedy and Cade (1996) stated that the
method of permuting Y is only justified when the covariable’s
parameter [, is zero. Their argument is essentially that the
permutation of raw data ignores the covariable’s parameter, which
often may not be justified. In particular, Kennedy and Cade (1996)
suggested that the method of permuting raw data for a test of 35,
would give biased results if the errors £ and the Y values had radically
different distributions in the presence of a non-zero 3;.,. In limited
simulations, they found that permutation of the raw data (Y) in
multiple regression resulted in inflated type I error when outliers were
included in X and ;,# 0 (Kennedy and Cade, 1996).

The results of Kennedy and Cade (1996) were not supported by
further simulations published by Manly (1997). Although Manly
(1997) suggested that a more extensive set of simulations was needed
on the topic, his results seemed to show that the method of permuting
Y for tests of partial regression coefficients was not necessarily flawed
in the way that Kennedy and Cade (1996) had claimed.

We did empirical simulations to test whether permutation of raw
data would have biased type I error compared with the other methods
(described below), particularly in the presence of a non-zero value for
the covariable’s parameter. We also examined in more depth the idea
of Kennedy and Cade (1996), that a problem with this method would
be particularly emphasized if X contained an outlier. In an attempt to
resolve this issue, we replicated and expanded the simulation studies
done by them and by Manly (1997).

2.2. Permutation of Residuals under the Reduced Model

In contrast to Manly’s method of permuting raw data and to the view
of Edgington (1995), concerning randomization methods, are those
techniques which use the residuals of a linear (or other) model as the
permutable units for the test. This approach can generally be referred
to as model-based permutation. Here, the stochastic element is
considered to be the error &', disassociated from each particular value
of Y by the application of a model to produce residuals, as opposed to
the original Y values themselves (e.g., Kempthorne, 1952).

Consider a model where the null hypothesis 35 = 0 is true, which
we can call the “reduced model™, as follows:
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Y=8+/AX+€ (3)

The rationale for permutation of residuals under the reduced model

is that, given some estimate of the relationship between ¥ and X (even
if it is zero), there is no further variation in ¥ which can be explained
by Z. There are two different methods of permutation which have been
described to provide a test having this rationale. First, there is the
approach of Freedman and Lane (1983); second, there is the approach
outlined by Smouse et al. (1986) in the context of comparisons among
multivariate distance matrices and articulated for ordinary multiple
regression by Kennedy (1995).

Freedman and Lane (1983) proposed the following permutational

procedure:

1.

The variable Y is regressed on X and Z together to obtain an
estimate b,.; of 8>, and a reference value f.r for the real data.

The variable Y is regressed on X alone according to the model in
Eq. (3), providing estimates by of Gy, b, of 4 and residuals Ryy.

. The residuals from the regression in 2 are permuted randomly,

producing Ry, ..

. New values for Y™ are calculated by adding the permuted residuals

to the fitted values as follows: Y™ = by + b1 X + R’;,lX.

. Y* are regressed on X and Z together according to the model

E(Y*)= 38§+ 37,X+ 35,Z to obtain an estimate 55 of 35, and
a value ¢ for the permuted data. Here, ¢ = b3, /se(b3.,).

. Steps 3-5 are repeated a large number of times, yielding a

distribution of values of 1* under permutation.

The absolute value of the reference value f.r is placed in the
distribution of absolute values of ¢* obtained under permutation
(for a two-tailed s-test). The probability is calculated as the
proportion of values in this distribution greater than or equal, in
absolute value, to the absolute value of 7. Permutation of the
residuals under the reduced model preserves across all permutations
the covariances between Y and X, Z and X, and among the X
variables if there are more than one — but not between Y and Z.

Although Freedman and Lane (1983) wrote that their method wasa

“nonstochastic” approach, referring to the proportion of the values
>t as a “descriptive statistic” instead of a probability, the
rationale for the test is effectively that of a model-based approach. The
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goal is to isolate the test of Y on Z alone, while taking X into account
through the use of the linear regression equation and permutation of
residuals.

We note that equivalent regression models under permutation for
Step 5 above are E(Y") = B85+ 81,X + B3, Rax, or E(Ryy) = B+

12X+ 85,7, or E(R*YIX) =84+ 87X+ B85 Rzx, with Rz de-
fined as in the Kennedy method (below). The values of 43, and ¢
obtained under permutation are exactly the same for these models as
for the model in Step 5 above.

Freedman and Lane (1983) emphasized two conditions for the use
of their method of permutation: that the data should not contain
extreme outliers and that X and Z should not be highly collinear. Also,
the sample size, n, should be relatively large. Due to the permutation
of residuals, the test is not exact in the randomization sense (e.g.,
Edgington, 1995), but has asymptotically exact significance levels.

Kennedy (1995) presented a method of permutation which he stated
(on p. 90) was identical to the Freedman and Lane (1983) method. The
rationale for Kennedy’s method is the same as that for the Freedman and
Lane approach, but computationally, it proceeds by the following steps:

1-3. The same first three steps are done as in the Freedman and Lane

method.

4. The variable Z is regressed on X alone according to the model
E(Z) = M + A X, providing residuals Rz y.

5. The permuted residuals R*Y!X from Step 3 are regressed on Ryx
according to the model E(R*),,X'):BSJr_B;RZM to obtain an
estimate b3 of 33 and a value ¢* for the permuted data. Here,
t* = b} /se(b}) and ¢” is calculated with (# — 3) degrees of freedom,
as in the Freedman and Lane method.

6. Step 3 followed by Step 5 is repeated a large number of times,
yielding a distribution of values of 7* under permutation. (The
residuals Ry calculated in Step 4 are not recalculated with each
permutation; they remain constant).

7. The absolute value of the reference value f.¢ is placed in the
distribution of absolute values of 1* obtained under permutation
(for a two-tailed t-test). The probability is calculated as the
proportion of values greater than or equal, in absolute value, to the
absolute value of ...
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An equivalent regression model for calculating the reference value
for the t-statistic is E(Ryjx) = 8o + 2.1 Rzx- This alternative formula
is a standard computational method for obtaining partial regression
coefficients and gives the same estimated partial regression coefficient
b,.1. The t-statistic is calculated with (n — 3) degrees of freedom, to
account for the fact that variable X has been used to obtain the
residuals Ry;x and R y.

This permutation technique has also been used by earlier workers in
the context of tests of partial correlation coefficients for distance
matrices (e.g., Smouse et al., 1986; Legendre and Fortin, 1989).
Although the Kennedy method will give the same value as the
Freedman and Lane method for the estimate of the slope coefficient
b, .1, the value of the ¢-statistic under permutation is different for the
two methods.

The reason for the discrepancy between the methods is a rather
subtle point, but has important consequences {e.g., see Section 4.1).
Kennedy’s method ostensibly removes the effect of the variable which
is not of interest for the test by an initial regression of Y on X (Step 2).
Thus, the parameter associated with X in the underlying multiple
regression model remains fixed throughout the ensuing permutations.
In the Freedman and Lane method, however, this parameter does not
stay fixed. The permuted residuals *Y\ y are added back onto the fitted
values to obtain Y. These are then regressed on X and Z together, so
the parameter for X in the multiple regression model changes with
each permutation. If the true value of the parameter of the regression
of Y on X alone were known (i.e., 3, in Step 2 above), there would be
no difference between these two methods. Although there is no
relationship between Ry x and X, some small relationship is
reintroduced between R*Yl v and X, simply by the permutation of these
residuals. The method of Freedman and Lane takes this into account
by maintaining the conditioning on X throughout the permutations,
whereas that of Kennedy does not.

The two methods described above have generally been called
permutation ‘“‘under the null model” by ter Braak (1990), or “‘under
the reduced model” by Cade and Richards (1996). We tested the
prediction that these two techniques would give similar results, in
various circumstances (see Section 3).
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2.3. Permutation of Residuals under the Full Model

This approach was developed by ter Braak (1990, 1992), who
introduced it as a permutational analog (resampling without replace-
ment) to the bootstrapping method (resampling with replacement)
which had been proposed by Hall and Titterington (1989). It is
referred to as permutation “under the full model™ by ter Braak (1990)
and it uses the residuals from the full regression model as the
permutable units for the test. The rationale for the method is that it
uses the estimate of F;., as part of the test (akin to the Freedman and
Lane method), but also uses the original estimate of J,., as part of the
permutational procedure. This should have the effect of reducing the
variance of the parameter of interest under permutation for purposes
of the test, thus increasing power (ter Braak, 1992). This permutation
method proceeds as follows:

1. The variable Y is regressed on X and Z together to obtain estimates
bo of p, by, of 31, by of 35,1 and residuals Ryjyz, as well as a
reference value ¢ for the original data.

2. The residuals Ry xz are permuted randomly, producing R’;,I 7

3. New values are calculated from the permuted residuals as follows:

Y*=by+ b2 X +b0 2+ R}\XZ'

4. The new values Y™ are regressed on X and Z to obtain an estimate
b5, and a value " under permutation. Here, ¢ = (b3, — b2y)/
se(h3 ).

5. Steps 2-4 are repeated a large number of times, yielding a
distribution of values of * under permutation.

6. The absolute value of the reference value f.¢ is placed in the
distribution of absolute values of 1" obtained under permutation
(for a two-tailed #-test). The probability is calculated as the
proportion of values in this distribution greater than or equal, in
absolute value, to the absolute value of f.. Permutation of the
residuals under the full model preserves all covariances across the
permutations, i.e., among Y, X and Z, as well as among the X
variables if there are more than one. Note that, as was the case for
the Freedman and Lane method, this permutation test under the
full model also has asymptotically exact significance levels.
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There are two other important points to note about this approach.
The first is that the ¢-statistic is calculated under permutation
according to the hypothesis that b5, = b, that is, that the values
of b3, obtained under permutation are close to the original estimated
value of b;;. For this reason, this approach has also been called
permutation ‘“under the alternative hypothesis’ by ter Braak (1990). A
diagrammatic interpretation of the conceptual difference between this
approach and the approach of permutations under the reduced model
is shown in Figure 1.

The second important aspect of this method is that it requires a
pivotal statistic (such as the z-statistic) for the test. The method works
because the variability of the permuted values b5, around the
estimated value b,; mimics the variability of b, around the true
value /,.;, as described by ter Braak (1992) and shown in Figure 1.
Thus, the value of a pivotal statistic for the test of 3, = 0 with the
real data, as a ratio, can be validly compared with the distribution of
that statistic for the test of b3, = b2.y.

We note that an equivalent model for Step 4 would be to regress
Ry|yz on X and Z to obtain an estimate b5, (different from that
obtained in Step 4 above) and a value ¢ =53 /se(b3,) under
permutation which has the same value as in Step 4 and may be
compared directly to the original ¢ value (e.g., Manly, 1997).

In his exposition of this approach, ter Braak (1992) suggested that,
by reference to the theory put forth by Hall and Titterington (1989) in
the context of bootstrapping, permutations under the full model
should have greater power than permutations under the reduced
model. Empirical simulation results demonstrating this effect have not
been provided, however., We tested ter Braak’s prediction in the
present study.

Thus, the five methods we compared were: (1) permutation of raw
data (Manly, 1997); (2) the Freedman and Lane method (1983); (3) the
Kennedy method (1995); (4) the ter Braak method (1992) and (5) the
normal-theory #-test.

3. METHODS FOR SIMULATIONS

We restricted our attention to the case of a linear model using ordinary
least-squares regression for two-tailed t-tests. Systematic changes to
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FIGURE 1 Frequencies of occurrence of 1000 values of the slope coefficient under
each of two different methods of permutation: permutation under the reduced model
(dark bars) and permutation under the full model (striped bars), where the null
hypothesis was false and the slope parameter of interest was 3 = 0.04 (errors were
N(0, 1) and the covariable’s parameter was equal to zero). The familiar method of
permutation under the reduced model produces a distribution of values of the slope
coefficient around the value of zero, in keeping with the null hypothesis that the slope
parameter 3 = 0. The method of permutation under the full model, or *“‘alternative
hypothesis,” produces a distribution of values of the slope coefficient around the
estimate obtained from the original data, b. For the present data, the slope was estimated
at b = 0.024. The distribution of 5" under the full mode! mimics its distribution under the
reduced model, but is centered on & instead of zero. For the test, the reference value f,.r is
the same for both methods (see text).

particular factors of interest were made within this framework.
Replicate simulations were done across all levels of all factors under
consideration in a completely crossed experimental design. Computer
programs for simulations and calculations were written and compiled
in Fortran 77. Random values were generated using functions snorm
for standard normal errors, sexpo for standard exponential errors, and
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genunf for uniform values, from the “Ranlib” library of subroutines
(PEcuyer and Coté, 1991). Permutations of the simulated data were
done using a uniform random generation algorithm (Furnas, 1984).

3.1. Examination of Type I Error

Empirical probabilities of type I error were studied for the four
permutation methods with regard to the following four factors:

The size of the sample, n = {9, 18,36, 54,72,90}.

The degree of collinearity between X and Z, p = {0.0,0.5,0.9}.
The size of the covariable’s parameter, 3;, = {0.0,0.5,1.0,2.41}.
The distribution of added random errors, € = {standard normal,
exponential, or exponential®}.

el o

X and Z were set uniformly at values of {1,2,3} in a crossed 3 x 3
design, in accordance with model I regression. Y was generated as a
vector using the model Y = WP + ¢ where matrix W contained the
standardized vectors X and Z as columns, vector B contained chosen
values of the parameters 3;, and (3, and vector ¢ contained errors
drawn randomly from a standard normal (0, 1) or an exponential (1)
distribution (factor 4 above). Radically non-normal errors were
created as in Manly (1997) by a third distribution: random drawing
of an exponential variate which was then cubed (denoted in factor 4
above as exponential")‘ For type I error, the parameter under test 35,
was set at 0. The smallest sample size consisted of one replicate at each
combination of the 3 x 3 values for (X, Z): (i.e., n = 9). Sample size (1)
was increased in multiples of 9 by increasing the number of replicates
(1,2,4,6,8 or 10) drawn within each combination of (X,Z)
(corresponding to n = 9, 18, 36, 54,72 or 90, respectively).

Collinearity was introduced between X and Z through the use of the
square root of a correlation matrix, R, reflecting the desired
correlation between the two variables. We computed

Wy =WR'/? (4)

where Wy is a matrix of two new variables Xz and Zg, correlated
according to the correlation coefficient (p) in the correlation matrix R,
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which could then be used to compute simulated Y, using the model
Y=WrB + c.

Data were simulated in all combinations of the chosen levels for
each of the above four factors. Empirical type I errors and 95%
confidence intervals were calculated from 10,000 simulated data sets
for each combination of factors for each permutation method. There
were 999 permutations done according to each of the four methods of
permutation for each set of simulated data. The probability associated
with the normal-theory ¢-test was also calculated for each data set. The
significance level for the tests was set at « = 0.05. For type I error to
match the significance level, the number of significant p-values out of
the 10.000 simuiations was expected to be 500 for each of the methods.

3.2. Examination of Power

The empirical probability of type I error for the Kennedy method was
clearly above 0.05, especially with small samples (see Results), so this,
method was not considered further and comparisons of power were
only done for the three other permutation methods (i.e., Manly,
Freedman and Lane and ter Braak) and the normal-theory r-test.
Power was defined as the proportion of rejections, out of 10,000
simulations, of the null hypothesis when it was false. Power was
examined using the same design (with the same four factors) as was
done for comparisons of type | error.

Data were generated in the same manner as for type 1 error, except
that the null hypothesis was false (3, #0). Preliminary trials were
done to determine appropriate values for [, under different
conditions of collinearity and distributions of errors. We chose values
of 3., for different sample sizes that would allow measurement and
comparison of power (i.e., 3., was chosen to be large enough to have
the null hypothesis rejected relatively frequently, but not so large as to
generate a 100% rejection rate). Naturally, 5, needed to be smaller
for larger sample sizes. For normal or exponential error distributions,
the following parameters were used: (B, =0.75 (for n =9, 1),
5.1 = 0.4 (for n = 36, 54), and 3,., = 0.3 (for n = 72, 90). There were
10,000 simulated data sets for each combination of the above factors
and 999 permutations done on each set of simulated data.
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Theoretically, increasing values of the parameter under test should
result in greater power for the full-model method under permutation,
compared to the reduced-model method (ter Braak, pers. comm.). This
specific prediction was examined by producing results on power for the
Freedman and Lane method and the ter Braak method alone while
increasing the value of 3. Data were simulated with 3, =0 and
p = 0 for each of exponential errors and exponential errors cubed for
sample sizes of n =9, 18, 36, 54, 72 and 90. There were 10,000
simulations, each tested with 999 permutations.

3.3. Examination of Effects of an Outlier in X

Kennedy and Cade (1996) and Manly (1997) drew different
conclusions concerning effects of an outlier in X on the permutation
of raw data versus permutation of residuals under the reduced model.
We therefore simulated data in the same general manner as described
by Manly (1997, see pp. 162—166) and Kennedy and Cade (1996).
Our study differs from theirs by providing more extensive sets of
simulations, yielding a stronger basis of comparison.

First, (n— 1) values of X were chosen randomly from a uniform
distribution on the interval (0, 3). The nth value of X was set as an
outlier equal to 55. Then, n values of Z were chosen randomly from a
uniform distribution on the interval (0, 3). We wished to investigate
type 1 error, so [3;; was set equal to zero. We generated data Y using
the model in Eq. (1) (with g = 0) for all combinations of the following
parameters: 3., = {0,2,4,5,6,8,10,20}, n = {10, 20, 100}, ¢ = {nor-
mal, exponential®}. Note that although X and Z have been simulated
without any explicit collinearity, they are not strictly uncorrelated
here, as they were above for p = 0.0 (Sections 3.1, 3.2). Although X
and Z were drawn randomly from uncorrelated uniform distributions
(p = 0.0), they are finite samples from these distributions and thus
have some measurable correlation (i.e.,r%, > 0.0). We generated
10,000 simulated data sets in this way, with each data set tested using
999 permutations under each of three different permutation methods:
Freedman and Lane’s (reduced model), ter Braak’s (full model), and
Manly’s method (raw data permutation). The probability associated
with the normal-theory t-test was also calculated for each data set.
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Each simulated data set contained new values of X, Z and Y, as
described above. This differs from the other sets of simulations, where
X and Z were fixed for a given n. Measures of type I error for two-
tailed tests were obtained as before for each of the methods.

As in Manly (1997), we investigated the further effect of collinearity
in the situation where an outlier was present in X, Manly had done this
by creating new Z values which were Znew = 0.5X + Zold. Although
Manly stated that this creates collinearity between X and Z
(ryz = 0.972), this is only the case in the presence of the outlier point,
which is an extremely high leverage point. When the outlier point is
removed, the collinearity is only ryz = 0.286 (see data in Tab. 8.8,
Manly, 1997). Thus, instead, we introduced stronger collinearity by
creating new Z values as Znew = 1.0X + Zold. By doing this,
collinearity is apparent even when the high leverage point (the
introduced outlier) is removed from the data (ryz = 0.583). We
repeated the above experimental design (eight values of 3, and three
values of »n for each of two error distributions) but where collinearity
had been introduced. Again, 10,000 simulations were done.

4. RESULTS OF SIMULATIONS

4.1. Type I Error

The Kennedy method of permutation resulted in inflated type I error
for data of virtually all kinds (e.g., Fig. 2). This was especially
apparent at small sample sizes, with the problem decreasing as the
sample size increased (Fig. 2a). The presence of a non-zero parameter
for the covariable (Fig. 2b, d) or the presence of collinearity between X
and Z (Fig. 2¢, d) had little influence on the consistently inflated type 1
error at small sample sizes for this method. For data generated with
standard normal or standard exponential errors, type I error was
significantly greater than « = 0.05 for the Kennedy method in all
situations for n = 9. In general, Kennedy’s method did not consis-
tently produce type 1 error at 0.05 until sample sizes reached n = 54.

Intuitively, one could consider using (# — 2) degrees of freedom for
the Kennedy method under permutation only. The rationale for doing
this is that the model in Step 5 of the Kennedy method, where R*Y‘ y are
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regressed on Rz x, only contains 2 parameters, rather than the three
parameters of the original model. That is, we might consider R*Y| y and
Rzx to be two new variables under permutation. Some simulations
were done to determine the extent to which the problems of inflated
type I error with the Kennedy method could be remedied by using
(n—2) degrees of freedom under permutation, even though (n—3)
degrees of freedom had been used to calculate 7.

The simulations showed that the problem of inflated type I error
with the Kennedy method was indeed reduced by using (# — 2) degrees
of freedom under permutation (Tab. I, number of independent
variables = 2). However, with increases in the number of covariables
in the model (i.e., when X becomes a matrix)}, the bias in the Kennedy
method becomes larger and larger, such that even using (n — 2) degrees
of freedom under permutation does not eliminate the problem for
small z (Tab. I, number of independent variables = 5 or 10). Although
Kennedy’s method asymptotically approaches the Freedman and Lane
method as n increases (Tab. I), we obtained a 60.2% rejection rate of a
true null hypothesis for » = 12 with 9 covariables using Kennedy’s
method, which is clearly unacceptable for a valid testing procedure.

For normal or exponential errors, there were no significant
differences among the other three methods (raw data permutation,
Freedman and Lane’s or full-model permutation); they matched the
normal-theory t-test and had type 1 error which did not differ
significantly from 0.05 in all sets of simulations. With radically non-
normal errors, however, all methods had a tendency to become more
conservative. The normal-theory z-test had type 1 error consistently
below 0.05 for all sets of simulations with exponential cubed errors
(Fig. 3). For smaller sample sizes (n < 54) the permutation methods
(except the Kennedy method) also showed conservative type 1 error
rates. When the covariable’s parameter was equal to zero, raw data
permutation maintained error rates at 0.05 for small samples, while the
model-based tests were too conservative (Fig. 3a,c). In contrast, with
increases in the covariable’s parameter and with collinearity between X
and Z, permutation under the reduced model had the best level-
accuracy for smaller sample sizes (Fig. 3d). All permutation methods,
however, converged asymptotically to appropriate type 1 error much
more quickly than the normal-theory t-test in these situations of
extremely non-normal error distributions.
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TABLE I Type I error from 20,000 simulations, each with 999 permutations, for three
different methods of permutation: the Freedman and Lane method (F and L), the
Kennedy method where (n— 2)df were used for the test (K(n — 2)), and the Kennedy
method where (n — p) degrees of freedom were used for the test (K(z — p)), where p is the
number of independent variables plus 1 (i.e., the total number of parameters in the full
model including an intercept). Note that the different degrees of freedom used for the
Kennedy method were for permuted data only. All of these methods of permutation use
(n — p) df when calculating ¢,.r. The simulated data ¥ were generated under the following
model: ¥ = 8, X, + 5:X, + --- + 8,_1X,_1 + £, where each independent variable X; was
generated from a random uniform distribution on the interval (0, 3), the £'s were random
deviates drawn from a standard exponential distribution, 3; was set at zero and all other
B87s were set equal to 1.0. The r-test was then done with permutations to test the true null
hypothesis: 3, =0

No. of variables

(p-1 Sample size, n Fand L K(rn—2) K(n—p)
2 9 0.048 0.054 0.069
2 18 0.050 0.051 0.058
2 36 0.051 0.051 0.055
2 54 0.049 0.050 0.052
2 72 0.052 0.052 0.054
2 90 0.050 0.050 0.052
5 9 0.050 0.097 0.216
5 18 0.051 0.056 0.095
5 36 0.049 0.051 0.066
5 54 0.051 0.051 0.060
5 72 0.050 0.050 0.057
5 90 0.051 0.051 0.056
10 12 0.048 0.264 0.602
10 18 0.048 0.070 0.206
10 36 0.051 0.054 0.097
10 54 0.050 0.052 0.076
10 72 0.049 0.050 0.069
10 90 0.051 0.052 0.065
4.2. Power

The Kennedy method was not included in tests of power since it
generally had inflated type I error rates. Not surprisingly, all methods
showed decreases in power with increases in collinearity between X and
Z (e.g., see the differences in scales of the ordinates for Fig. 4a vs. b and
Fig. 4¢c vs. d). Also, for all methods, there were increases in power with
increases in sample size (e.g., Fig. 5a vs. ¢ and Fig. 5b vs. d).

For data generated with normal errors, there were no significant
differences in power among any of the methods, including the normal-
theory r-test (Fig. 4). This result was consistent for all sets of
simulations for data generated with exponential errors as well (not

Copyright ©2001. All Rights Reserved.



'paqod [enusuodxa 21am 10113 21oym Jng ‘7 andi{ 10] sV € AANOII

Apouusy —{3— [RULON—V—  YEEig I3

1= X —

QU] 79 URWPIBY] -~ -O-- -

ey —e—

u ‘a1dures jo 371§

u *a1dures jo 921§

001 08 09 oy 0T 0 001 08 (0] or 0z 0
“ : + : + 100 : . : + ¥ 100
1700 1200
T £0°0 + €00
T $0°0 1 900
1500 T 500
1500 T 900
L o0 <100
001 0 001 08 09 oy 0T 0
' 100 - o
{7200 1200
+€0°0 1 €00
L vo0 1700
1 500 T 00
{900 T 500
+ 100 L 100

0=d1wpz="Y ,m_m::u:oaxm g

q

o=d ="y .m_a::unc&mA

Jowna | adLL

Copyright ©2001. All Rights Reserved.



06 = ¥ ‘(60 = ¢) IB3UIj0> Z pur Y (P) Pue 06 = ¥ 'PABPLIOOUN Z pue
X (0) 8] = u‘(g'0 = d) 1eUN[Od Z pue ¥ (q) ‘8] = ¥ ‘PIIB[RLIOOUN Z PUR Y (B) Y1IM [BULIOU PIBPUR]S 2TIM SIOLID JISUM SUOTIB[NILUIS (‘)] WOI] PIUILIqO
189)-1 A1osy)-Teuriou 3y} pue uonenuiiad jo spoylow a1y 10§ (1319wered s a[qeLIRA0D) Tlgf Jo sanfea Fuiseatout Yum (‘1D %S6 F) omod AANDIA

[PUON —%— PRI 10— -X-— O] R UMUIPAAL --O---  MEY ——
1atowresed s 9[qELIEAOD JO AN[EA 1arawered S 3[qULIEACD JO on[EA
4 0T 41 o1 S0 00 §T 0z st 0l )] 00
' + } t + 170 — t + + . 8L°0
H“ |||||||||||||||||| €20 r 080
1670 T80
Lo ~ 80
06=4'60=d ‘0¢’0= "% ‘reunon p 06=u'0=0"0£0= "¢ TeutoN > .
=]
i
34 0T Sl ol S0 00 %4 0z Sl ol S0 00 =
’ + ; : + + 10 — ! ; + : +8L0

gl=u'60=0d 'sr0="Y ‘eunoN 'q gl=u'g=0d gro="Tg eaoN e

Copyright ©2001. All Rights Reserved.



"paqud [enusuodxd 319m SIOLIS 21aym Ing ‘p 2InSL] 10} Y § TANDIA

[UION—F—  YeRIg J9}—-X-—  2Ue] 9 UewpoINg --O---  MEY—O—

1owered §,9[QELEAOD JO anfeA I9jourered $,3[qeLIAOD JO ANfRA

%4 0z [ 0t £0 00
' + g + —+— FE¥0
S0
1 & o
r' e o X
T E n.il/l» \\\\
= = 670
; 150 ) 68°0
06=v'60=0 ‘0L = "7 * [enusuodxg p 06=u'p=0d gy = ' ‘ renusuodxy >

§T 0T st oL S0 00

—— + + + —- tSE°0

\\\\\

£ro
gi=w'ep=d'or="Y .n_w:co:&xm G

gl=ug=d gr="l ,mﬁ_Eo:oaxm ®

1amod

Copyright ©2001. All Rights Reserved.



TESTS OF PARTIAL REGRESSION COEFFICIENTS 293

shown). On the other hand, for data generated with radically non-
normal errors, the normal-theory r-test was significantly less powerful
then the permutation methods when p = 0.0 or p= 0.5 (e.g., Fig.
5a,c). When p = 0.9, the normal-theory t-test was less powerful, on
average, than the permutation methods, but not significantly so (e.g.,
Fig. 5b, d). None of the permutation methods differed significantly in
terms of power for any of the simulations done here (Figs. 4 and 5 and
results for exponential errors, not shown).

Further tests on power of the reduced and full-model methods
showed more details concerning any possible difference in these two
methods with increasing values of 3, (Fig. 6). Note how the power
curves for the two methods are virtually identical (Fig. 6a,b,c).
Differences between the two methods were detectable, however, at the
smallest sample sizes, but disappeared as sample size increased. In
Figure 6 {d, e, f), the difference between the two methods is plotted as
[power(Freedman and Lane)-power(ter Braak)], so negative values
indicate comparatively greater power for the full-model method of
permutation. At the lowest values of 3,., the Freedman and Lane
method had slightly greater power. As 3;; increased, the ter Braak
method became more powerful than the Freedman and Lane method.
As power approached 100%, the two methods converged. The size of
the difference in power between the methods was, at most, only about
1.5% (Fig. 6d, n = 9). The size of the difference also decreased as
sample size increased, becoming barely detectable by n = 36.
No confidence intervals are plotted in Figure 6, for clarity, but out
of 132 sets of simulations (11 wvalues of 3, for each of
n={9,18,36,54,72,90} and for each of exponential or exponential3
errors), only three tests showed a significant difference between the two
methods. This is certainly no more than could be expected by chance
alone with this number of tests.

4.3, Effect of an Outlier in X

The presence of an outlier in X (the covariable) caused the type 1 error
for the method of raw data permutation to be destabilized when
81270 (Figs. 7, B). This destabilization was not systematic for small
to intermediate sample sizes (e.g., Fig. 7a,b). That is, sometimes the
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FIGURE 6 Power with increasing values of 3,, (parameter under test) for two
methods of permutation obtained from 10,000 simulations where errors were
exponential with (a) n = 9, (b) n = 36, (c) n = 90. Also, the difference in power between
the Freedman and Lane method and the ter Braak method of permutation for increasing
values of 3., with () n =9, (e) n = 36, (f) n = 90.

method erred on the side of giving too many rejections (inflated type 1
error), while at other times the test was too conservative. With larger
sample sizes, however, the problem was a consistent inflation of type 1
error (e.g., n = 100, Fig. 7c).
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a. Normal, n = 10, collinearity present
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FIGURE 7 Type I error (£95% C.1.) with increasing values of j3,, (covariable’s
parameter) for three methods of permutation and the normal-theory f-test obtained from
10,000 simulations where X contains an outlier and errors were standard normal for (a)
n =10, (b) n = 20 and (c) » = 100. Results are shown for the situation where there was
collinearity between X and Z. Similar results were obtained where no explicit collinearity
was created (not shown).
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a. Exponential’, n = 19, collincarity present
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FIGURE 8 As for Figure 7, but where errors were exponential cubed.

In contrast, Freedman and Lane and ter Braak’s method, along with
the normal-theory f-test, showed no such problems and maintained
type 1 error at the chosen a = 0.05, provided errors were normally
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distributed (Fig. 7). When errors were radically non-normal, however,
the type 1 error of the normal-theory r-test and ter Braak’s method
were destabilized in a similar manner to (but not to the same extent as)
the destabilization of the test by raw data permutation. For a given set
of simulations, these methods resulted in the opposite problem to that
for raw data permutation: i.e., when Manly’s method gave too many
rejections, ter Braak’s method and the normal-theory ¢-test gave too
few and vice versa (Fig. 8). Theoretical results supporting this observa-
tion will be published elsewhere by M. J. Anderson and J. Robinson.

Nevertheless, it is important to note that the problem disappears for
ter Braak’s method with large sample sizes (n = 100, Fig. 8c) or with
more reasonable error structures (i.e., normal or exponential, Fig. 7).
This is not the case with raw data permutation, which for large sample
sizes has inflated type 1 error when X contains such an outlier,
regardless of the nature of the errors (Figs. 7c, 8c).

In all of the simulations we did that included an outlier in X, even in
the most extreme situations, the type 1 error of the Freedman and
Lane method never differed significantly from 0.05.

5. DISCUSSION

The primary conclusions obtained by this simulation study were the
following:

1. The Kennedy method of permutation will not give equivalent
results to the Freedman and Lane method of permutation under the
reduced model for tests using the f-statistic. The Kennedy method
has inflated type I error, especially with small sample sizes. Using
{(n — 2) rather than (» — p) degrees of freedom (under permutation
only), where p is the number of independent variables plus 1 (for
the intercept), reduces the bias in this method when the number of
covariables is small; the type I error is still seriously inflated with
increases in the number of covariables at small sample sizes
(n < 18). Permutation under the reduced model should therefore be
done using the Freedman and Lane method.

2. Permutation of raw data, permutation under the reduced model (in
the manner of Freedman and Lane) and permutation under the full
model all gave asymptotically equivalent results in most situations
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and provide good approximate tests for a partial regression
coefficient by permutation. They have significantly greater power
and type 1 error closer to nominal « than the normal-theory #-test
for data with non-normal error structures.

3. Permutation of raw data resulted in destabilized type I error when
the covariable contained an extreme outlier, whether or not there
was collinearity between predictor variables or the data were
normal or non-normal. This problem was not amended with
increasing sample sizes, but rather resulted in consistently inflated
type 1 error in these situations.

4, Permutation under the reduced model (Freedman and Lane, 1983)
and under the full model (ter Braak, 1992) generally gave very
similar results and would probably be equally appropriate for most
situations. In the extreme situation of a remote outlier in the
covariable (X') coupled with extremely non-normal errors and small
sample sizes, type | error for the ter Braak method may be de-
stabilized. This problem is generally in the direction of a more
conservative test, however, and disappears for large n.

5. There was no significant difference in power among any of the
permutation methods (excluding the Kennedy method, which was
not included in power analyses).

Some comparisons of these methods of permutation have been done
in the context of least absolute deviation (LAD) regression by Cade
and Richards (1996). Their results suggested that permutation of raw
data and permutation of residuals under either the reduced or full
models had similar type 1 error when predictor variables were not
correlated and when the covariable’s parameter (3,.,) was zero. When
there was collinearity among the independent variables or when
B31.2#0, however, permutations under the reduced model maintained
type I error closer to nominal « than the other two methods for LAD
regression. Our results with least squares are consistent with the few
simulations for type I error provided by Cade and Richards (1996) and
by Kennedy and Cade (1996). Formal theoretical comparisons of these
methods for least squares will be published elsewhere by M. J.
Anderson and J. Robinson.

We do not recommend the use of the Kennedy method as a
substitute for the Freedman and Lane method. These methods are not
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equivalent. By not explicitly conditioning the test on the covariable(s)
throughout the permutations, the type I error is inflated substantially
with Kennedy’s method. This becomes especially important as the
number of covariables increases, especially with small sample sizes. We
found type I error averaging as large as 0.602 with this method (with
n = 12 and 9 covariables in the model). Attempts to adjust the inflated
type I error by estimating the s-statistic with (z — 2) df, as an intuitive
remedy, did not completely cure this problem.

Although Kennedy (1995) showed how the proposed method was
equivalent to the Freedman and Lane method of permutation in terms
of producing the same estimate of the slope coefficient under
permutation, the value of the pivotal r-statistic under permutation
differs for the two methods. Insofar as it is necessary to use the pivotal
t-statistic for tests of partial regression coefficients in a linear model,
the Kennedy method of permutation is not equivalent to Freedman
and Lane’s method, causes inflated type 1 error and cannot be used.
These results have implications for tests of partial correlation among
distance matrices by permutation, proposed by Smouse et al. (1986) as
an extension of the Mantel test. One of their proposed methods is the
same as that suggested by Kennedy for the univariate test, but applied
to distance matrices. We expect that it will suffer from the same
problems as Kennedy’s method. Simulation results supporting this will
be published elsewhere by P. Legendre.

We also cannot unreservedly recommend the unrestricted use of
permutation of raw data, which had some problems and differed
significantly from results obtained with the model-based methods
when the value of the covariable’s parameter was not zero and X
contained an outlier. It would appear that this method cannot handle
these particular situations due to the fact that the relationship between
X and Y is the held constant throughout the permutations., as
suggested by Kennedy and Cade (1996). There are several possible
reasons for the discrepancy between our results and those of Manly
(1997) concerning the effect of an outlier in X. Manly (1997) did not
obtain new values of X and Z for each simulation, but simply re-
randomized the error terms to obtain new simulations of data. Also,
Manly used 5000 simulations, whereas we used 10,000 simulations. In
addition, Manly used 99 permutations for each simulation, whereas we
used 999 permutations per simulation.
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Depending on the circumstances, permutation of raw data may err
on the side of too many rejections or on the side of too few. However,
it was necessary to simulate a very extreme outlier in X in order to see
a destabilization of type 1 error for raw data permutation. When there
are such extreme outliers in predictor variables, these should be
identifiable as high leverage points in diagnostic analyses prior to the
regression analysis. Outliers in covariables may be removed from the
data set, so that the potential problem may be caught ahead of time.
Nevertheless, the presence of outliers in a multiple regression context
with more than 2 predictor variables may not always be readily
apparent or easy to find. Furthermore, permutation methods are
prized for their lack of assumptions concerning distributions of
variables, meaning we should hope that much diagnostic checking of
distributions of variables would become unnecessary with the
permutational approach. At the very least, these results highlight that
the method of raw data permutation is not an exact test for a partial
regression coefficient in a linear model unless all other parameters in
the model are truly equal to zero. The method provides an approxi-
mate test, as stated by Manly (1997), relying on the pivolal statistic,
like the model-based permutational strategies that permute residuals.

The methods of Freedman and Lane (permutation under the
reduced model) and ter Braak (permutation under the full model)
gave the best overall results in terms of level accuracy and power
whether the errors were normal or exponential, in the presence or
absence of collinearity or an outlier in the predictors, and when the
value of the covariable’s parameter was not zero. Permutation under
the full model suffered from some destabilization of type 1 error in the
situation with an outlier in X and radically non-normal errors coupled
with small sample sizes. Generally in these cases type 1 error was too
small, making the test slightly too conservative. This problem
disappeared in any event with larger sample sizes. The introduction
of an outlier in X had no effect on the level accuracy of the Freedman
and Lane method of permutation, in any situation.

In terms of relative power, we detected no significant differences
among any of the permutation methods. For the model-based
methods, greater power should theoretically attend the ter Braak
method of permutation under the full model. In situations of
increasing values of the parameter under test, it was possibie to
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demonstrate a slight difference in power between ter Braak’s method
and Freedman and Lane’s method for small sample sizes. This
difference was not significant, however, and never measured more than
about 1.5% and thus, for practical purposes, is not an important
distinction between the methods.

In general, in cases with radically non-normal errors, we found that
the full-model method of permutation did not maintain level accuracy
at small sample sizes as well as the reduced-model method (which was
expected: ter Braak, 1992; Cade and Richards, 1996), although the
nature of this deviation was on the conservative side, generally
resulting in even smaller type I error, at least for the data we
simulated. For each of the model-based permutation methods, level
accuracy deviated most from o with small sample sizes. This is because
these methods have only asymptotically unbiased type I error. The
estimates of the regression coefficients used in these procedures are less
accurate with smaller samples, causing the inexactness.

Although the Freedman and Lane method might be preferable to
use with smaller sample sizes, for some situations there is a
computational advantage in using the ter Braak method. One can
use the permutation of a single set of residuals from the full model to
test a number of different hypotheses concerning individual partial
regression coefficients in a multiple regression model. With the
Freedman and Lane method, on the contrary, testing several
hypotheses about different coefficients in a multiple regression model
will each require a different set of residuals from several different
reduced models (Manly, pers. comm.). This is computationally more
demanding and requires more thought and care on the part of the
experimenter regarding which particular term or set of terms is being
tested with any particular set of permutations.

The principles investigated here are not restricted to the univariate
model with two predictor variables. We expect our results to hold
generally for greater numbers of predictor variables in multiple
regression or analysis of variance. We have not compared here the
permutation methods for their use with multivariate distance matrices
(e.g., Smouse er al., 1986; Legendre, in prep.), nor with multiple
response variables as in canonical analysis (e.g., ter Braak, 1987). It
also remains to be investigated how well restricted randomization
methods (e.g., Brown and Maritz, 1982; Edgington, 1995) will
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perform when compared to the model-based permutation methods
examined here, in situations where such restricted randomizations can
actually be done. The type I error for the restricted randomization
methods will be assured (unlike the method of unrestricted raw data
permutation), but it remains to be seen how powerful these tests will be
compared to the model-based permutation tests.

Substantial computer power is now available, enabling researchers
to investigate the behavior of computationally intensive methods.
Obtaining empirical measures of type I error or power allows direct
practical comparisons of permutation methods. Current theoretical
comparisons of the methods cannot provide us with complete
information on how the methods will compare in different situations
in practice.
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