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Aggregation of Sampling Units: An Analytical 
Solution to Predict Variance 

Geographical variables generally show spatially structured patterns correspond- 
ing to intrinsic characteristics of the environment. The size of the sampling unit 
has a critical effect on our perception of phenomena and is closely related to the 
variance and correlation structure of the data. Geostatistical theory uses analyt- 
ical relationships f o r  change of support (change of sampling unit size), allowing 
prediction of the variance and autocorrelation structure that would be observed 
$ a  survey was conducted using different sampling unit sizes. 

To check the geostatistical predictions, we use a test case about tree density in 
the tropical rain forest of the Pasoh Reserve, Malaysia. This data set contains 
exhaustive information about individual tree locations, so it allows us  to simu- 
late and compare various sampling designs. The original data set was reorga- 
nized to  compute tree densities f o r  5 x 5-, 10 x lo-, and 20 x 20-meter quadrat 
sizes. Based upon the 5 x 5-meter data set, the spatial structure is modeled using 
a nugget effect (white noise) plus an exponential model. The change of support 
relationships, using within-quadrat variances inferred f rom the variogram 
model, predict the spatial autocorrelation structure and new variances corre- 
sponding to 10 x 10-meter and 20 x 20-meter quadrats. The theoretical and 
empirical results agreed closely, whereas neglecting the autocorrelation struc- 
ture would have led to largely underestimating the variance. As the quadrat 
size increases, the range of autocorrelation increases, while the variance and 
the proportion of noise in the data decrease. 

INTRODUCTION 

Geography and many other scientific disciplines use data arranged into areal 
sampling units (that is, surfaces). The size of the sampling units or the level of 
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aggregation of these units is an important component of the scale of an investi- 
gation and may critically influence our perception of phenomena spread out in 
space. Changing sampling unit size induces changes in the statistical parameters 
estimated for a population. This problem is very well known in geography and 
was studied among others by Openshaw (1977,1984), Dudley (1991), and Cressie 
(1991, pp. 284-89). 

Classical statistical and geostatistical theories give analytical solutions to pre- 
dict the change in variance due to different sampling unit sizes. Classical statis- 
tical theory works well to predict these changes when the hypothesis of inde- 
pendence of the sampling units is valid (no spatial autocorrelation in the data). 
This, however, is rarely the case in geographical sciences. Most variables relat- 
ing to spatial environments present spatial structures such as gradients, patches, 
trends, etc. These structures can exist at many scales and correspond to intrinsic 
features of the environment. 

This paper presents a simple analytical method, already known in geo- 
statistics, to perform change of support operations enabling the prediction of 
the statistical parameters and features of the spatial autocorrelation structure 
resulting from the aggregation of sampling units (Journel and Huijbregts 1978; 
Cressie 1991). The method considers the within-unit variance which is calcu- 
lated from a variogram model. We will study a rain forest plot of Malaysia as a 
test case, using the variable “tree density” for different quadrat sizes. A tract of 
mapped forest (1 kilometer long and 0.5 kilometer wide), located at 102’18’ W 
and 2O55’ N, was established in the Pasoh Reserve, Malaysia, to monitor long- 
term changes (Kochummen, LaFrankie, and Monokaran 1991). The survey 
enumerated all trees and positioned each one by geographic coordinates. We 
reorganized the data into nonoverlapping quadrat units and calculated tree den- 
sities (number of trees per square meter in a quadrat) corresponding to 5 x s-, 
10 x lo-, and 20 x 20-meter quadrats. 

METHODS 

Changing Sampling Unit Size 

Several scientific disciplines dealing with data spread out in space have 
observed that the sampling unit size influences the estimates of the statistical 
parameters of a population. Chou (1991), Openshaw (1984), and Clark and 
Avery (1976), among others, pointed out that census data are frequently aggre- 
gated over geographical areas, and the aggregation level influences the statisti- 
cal parameters of a distribution. The simultaneous change of the sampling unit 
size and the variance of plant density have been extensively used, in plant 
community analysis, to measure empirically the occurrence of spatial patterns 
at several scales (among others, Greig-Smith 1952, Ludwig and Goodall 1978). 
Levin (1992) presents empirical results concerning the description of ecosystems, 
which show the complexity of the relationships between the variance and the 
sampling unit size when the spatial pattern displays spatial autocorrelation struc- 
tures. In the field of remote sensing, Marceau, Howarth, and Gratton (1994) 
resampled remote sensing images to different spatial resolutions and deduced 
empirical relationships between variances and spatial resolutions. These studies, 
however, construct specific empirical relationships and do not provide a general 
framework to make predictions of statistical and spatial structure parameters. 

Classical statistical relationships attempt to predict the change in variance 
due to different sizes of sampling units. If one neglects spatial correlation, a 
classical relationship suggests that the variance of aggregated samples should 
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decrease linearly with the number of sampling units in an aggregated sample: 

where Var(VAgglA) is the variance of the aggregated samples V A ~  in area A, 
Var(w1A) is the original variance of the sampling units w in the same area, and N 
is the number of aggregated sampling units. An aggregated sample is formed by 
combining several sampling units into a single sample. This relationship is only 
valid for homogeneous areas where sampling units are independent of each other. 
It is necessary to consider the spatial structure of phenomena in order to correctly 
predict the effect of aggregation on the statistical parameters of a distribution. 

Spatial Structure 

Several techniques have been developed for the description of spatial pat- 
terns of populations (Cliff and Ord 1981; Haining 1990). The variogram is a 
tool to characterize the spatial variability of a variable distributed across a geo- 
graphic area. The traditional estimator of the variogram is defined as (Journel 
and Huijbregts 1978, pp. 26-40; Cressie 1991, p. 40): 

y*(h) = (2N(h))-l C[Z(X) - Z(X + h)]' 

where ~ ( x )  and z(x + h) are measurements of a given variable at locations x and 
x + h, separated by the vector of directional distance h, and N(h) is the number 
of pairs of samples considered in the given distance class. Generally, the vario- 
gram tends to level off at a sill equal to the variance of the variable. The distance at 
which this occurs is referred to as the range. The discontinuity at the origin (nonzero 
intercept) is called the nugget efect. It is a random component corresponding to local 
variations occurring at scales smaller than the sampling interval, such as fine-scale 
spatial variability and measurement error (Cressie 1991, pp. 59-61). 

Change of Support Operations 

Problems of change of support have received a lot of attention in the geosta- 
tistical literature because ore reserve estimation requires estimation of the grade 
of large blocks, based upon small drill core data (Journel and Huijbregts 1978, 
pp. 61-94; Lantuejoul 1988; Isaaks and Srivastava 1989, chap. 19). 

The additivity property of variances in nested designs implies (Isaaks and 
Srivastava 1989, pp. 476-80): 

Var(w1A) = Var(vlV) + Var(V1A) (3) 

where Var(w1A) is the variance of a small sampling unit w in area A, Var(V1A) is 
the variance of a large sampling unit V in area A, and Var(vJV) is the variance of 
a small sampling unit w in the large sampling unit V. This relationship shows 
that the variance of sampling units v in a certain area A can be expressed as a 
sum of within and between sampling unit variances. Journel and Huijbregts (1978, 
pp. 66-67) show that the variance Var(w1V) is related to the variogram: 

Var(v(V) = F(V, V) - F(w,  w) (4) 

where ?(V, V) is the average point variogram value calculated over all possible 
distance vectors h contained in V, and similarly for Y(v, w). Equations (3) and (4) 
allow one to calculate the variance corresponding to a new sampling unit size V, if 
we know the autocorrelation structure for a point. 
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When u is used to compute an empirical variogram, a regularized form of vario- 
gram is estimated. We then deduce a point model y(h) (that is, w = 0 )  from a 
regularized model y,(h). If y,(co) = Cl,, which is the sill value or the variance 
component of the spatial structure for v, and if w is smaller than the range, then, 

c1, = Cl* - 7 ( V ,  U) (5) 

where C1, is the sill value for a point support. This relationship leads to 

c1. = Cl,/(l - F )  (6) 

where F is equal to & ( U , U ) ,  representing the mean variogram value for a point 
variogram model with a sill equal to 1. Then, F can be computed from only the 
knowledge of the type of model and its range (Journel and Huijbregts 1978, 
p. 109). This correction only concerns the spatially structured part of the vari- 
ance. The variance component ascribed to random variation and modeled by a 
nugget effect (Co) follows the classical relationship [equation (I)]. 

The range of the spatial structure is affected by the size of the sampling 
units. The range of a spatial component Cl,, estimated from a support of size 
1 x 1 = u, is al, + 1, where al,  is the practical range that would be measured if 
the support was a point (Journel and Huijbregts 1978, p. 84). 

In practice, if the data are defined for a support u, we deduce first an approx- 
imate point model y(h) which is coherent with the empirical variogram y,(h). 
Obtaining the point support variogram from a regularized variogram is, strictly 
speaking, impossible as it requires knowledge of the point scale structure, which 
is not available. However, the main features (sill and range) of the new model 
y,,(h) can be deduced from the model y,(h). The following rules provide 
acceptable approximations to deduce the point variogram and the regularized 
variograms y,, (h) corresponding to new supports u’: 

1. For the spatially structured part of yu(h), the point variogram is approxi- 
mated by a variogram of the same type with a practical range of al, = 
al, - I and a sill C1, = C1,/(1 - F) .  

2. For the variogram of the new support u’, the above defined point variogram 
is used, assuming that y,,(h) is of the same type with a range al, + 1’ and a 
sill Cl,, = C1, - y(v‘,v’). 

3. The nugget effect component, corresponding to w’, is computed as CO,, = 
C O ~ O U / V ‘ ,  where Co, is the nugget effect corresponding to support u. This 
random component is added to the spatially structured model y,,(h) defined 
in step 2. 

RESULTS 

Summary Statistics 

Summary statistics of tree density values for quadrats of 5 x 5,  10 x 10, and 
20 x 20 meters, show that as size increases, extreme values disappear because 
they are diluted and combined into larger quadrats (Table 1). The mean 
remains constant but the variance decreases. The empirical results show an im- 
portant departure from classical relationship predictions (Figure 1). Consider- 
ing the empirical counts in 5 x 5-meter quadrats as our base for calculations 
(variance = 0.0610), we would expect variances of 0.0153 and 0.00381 for quad- 
rats of 10 x 10 and 20 x 20 meters, respectively. These results are much smaller 
than the empirical variances of 0.0275 and 0.0161. 
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TABLE 1 
Summary Statistics for Tree Density (number of trees per square meter) for Each Quadrat Size 

Quadrat size (m2) 
5 x 5  10 x 10 20 x 20 

n 20,000 5,000 1,250 
Mean 0.668 0.663 0.665 
Variance 0.0610 0.0275 0.0161 
Minimum 0.0 0.0 0.33 
Maximum 1.72 1.60 1.23 

0.06 k 0 

ExDerimental variance 

Theoretical variance 

""2 t k - 0 '  

5 x 5  10 x 10 20 x 20 

Quadrat size 

FIG. 1. Relationship between the Variance and Quadrat Size for the Empirical Results and the 
Results Expected from the Classical Relationship (equation 1) 

Spatial Structure of Tree Density 

Empirical variograms of tree density corresponding to the 5 x 5-, 10 x lo-, 
and 20 x 20-meter sampling units, for the north-south and east-west directions, 
show well-defined sills (Figure 2). The underlying process is considered to be 
isotropic, that is, y(h) does not depend on the direction of h. Exponential models 
with nugget effect provided good adjustment to the empirical variograms: 

~ ( h )  = Co + Ci(1- exp(-h/k)) (7) 

where CO is the nugget effect, C1 is the variability due to the structure in the 
exponential model, and k is a shape parameter (Table 2). The ratio of the nugget 
effect to the sill, called the relative nugget effect, can be used to evaluate sam- 
pling error and fine-scale spatial effects. The exponential model reaches its sill 
(Co + C1) asymptotically. The practical range of an exponential model is defined 
as a = 3k, the distance at which the variogram is 95 percent of C1. 

As the quadrat size increases, sill values decrease and ranges increase. The 
most important effect is the decrease in relative nugget effect. For the 5 x 5- 
meter quadrats, the proportion of random variation is very high (75 percent), 
and the process does not seem very strongly spatially structured. On the other 
hand, for 20 x 20-meter quadrats, the process displays an important spatially 
structured component accounting for 83 percent of the spatial variance. 
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FIG. 2. Directional Variograms of the Tree Density Variable for 5 x 5-, 10 x lo-, and 20 x 20- 
Meter Quadrats 



264 1 Geographical Analysis 

TABLE 2 
Parameters of Exponential Variogram Models for Each Quadrat Size 

Quadrat size (m2) Co CI Sill a Re1 Co 

5 x 5  0.0446 0.0151 0.0597 104 0.75 
10 x 10 0.0113 0.0139 0.0253 110 0.45 
20 x 20 0.00245 0.0118 0.0145 129 0.17 

Co is the nugget effect, CI i s  the variance component associated to the structured spatial scale, the sill is CO + C,, a is the practical 
range, and RelCo is the relative nugget effect (Co/(Co + Cl)). 

TABLE 3 
Parameters of the Change of Support Transformation 

Quadrat size (m*) 
5 x 5  10 x 10 20 x 20 

7(v, 4 0.00123 
F 0.0755 
Cb(emp) 0.0446 
CohO 0.0446 
G(emp) 0.0151 
G(inf)  0.0151 
Variance 0.0610 
Var(v1A) 0.0597 

0.00234 
0.143 
0.0113 
0.0112 
0.0139 
0.0140 
0.0275 
0.0252 

0.00429 
0.263 
0.00245 
0.00279 
0.0118 
0.0120 
0.0161 
0.0148 

y(u, v )  is the average point variogram value calculated for a quadrat of size u. 
F is the mean variogram value for the point variogram model with a sill equal to 1. 
Co(emp) is the empirical nugget effect. 
Co(inf) is the nugget effect inferred from the empirical value of the 5 x 5 quadrat size. 
Cl(emp) is the empirical structured variance component. 
C,(inO is the structured variance component inferred from the theoretical model. 
Var(u1A) is the variance of a unit u in the study area A, given by the analytical relationship. 

Empirical Verijication of the Change of Support Relationships 

The previous sections have shown empirically that changing the sampling unit 
size modifies the variance, as well as the spatial autocorrelation structure of 
data. We will now check whether the analytical solution allows the prediction 
of our empirically obtained results. For the 5 x 5-meter quadrat size, the prac- 
tical range is 3 x 34.67 meters = 104 meters (Table 2). Given that for an expo- 
nential model, the practical range equals 3k, then the parameter al, of a point 
model is equal to (3k - 1)/3 = 33.0. Estimating the point sill value of the struc- 
tured component requires the evaluation of the within-quadrat variance y(w, w). 
The mean value ?(w, w) and the parameter F can be calculated numerically from 
function y(h) by discretizing sampling unit w into a finite number of points or by 
generating random lags within w (stochastic integration), and calculating the 
average variogram values for lags contained in w (Table 3 ) .  

Using the mean variogram values for the 5 x 5-meter quadrat size (Table 3 ) ,  
the point sill value of the structured component is given by formula (6) as 

Cl, = 0.0151/(1 - 0.0755) 

C1. = 0.0163. 

The theoretical point support variogram is an exponential model: 

y(h) = 0.0163(1- exp(-h/33)). 
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Such a point variogram model could be deduced for any other quadrat size, as 
long as the quadrats are not too large relative to the range of the point vario- 
gram. From this theoretical point model, it is possible to calculate the variance 
of any given sampling unit size in the whole area and to find an appropriate vario- 
gram model describing the spatial structure features for various quadrat sizes. 

The variogram models shown in Figure 2 have two components each: a ran- 
dom and a spatially structured component. The change in the random compo- 
nent due to a change of support follows the classical relationship [equation (l)]. 
The random component for the 5 x 5-meter quadrats is 0.0446. Therefore, for 
10 x 10-meter quadrats, the random component should be 0.0112 (0.0446/4), 
and for 20 x 20-meter quadrats, 0.00279 (0.0446/16) (Table 3). The effect of a 
change of support operation on the spatially structured component of variance 
is given by equation (5) .  For 10 x 10-meter quadrats; y ( w , w )  = 0.00234 (Table 
3), the structured variance component for the 10 x 10-meter quadrat size is 

~ l ( 1 0 x 1 0 )  = Cl. - 7(10,10) 

Cl(lox~o) = 0.0163 - 0.00234 

This analytical solution gives a variance of 0.0252 for 10 x 10-meter quadrats 
(Co(10~10) + C1(lox1o)). The empirical value is 0.0275, while the classical approach 
would have given 0.0153 (0.0610/4). The analytical solution above is closer to the 
empirical value than the classical relationship (Table 3) .  The slight underestima- 
tion may be due to a long-range spatial structure in the north-south direction 
which is not modeled, considering the size of this structure compared with the 
size of the study area. 

DISCUSSION 

Changing the size of sampling units induces changes in the variance and in 
the spatial autocorrelation structure of the data. Geostatistical theory considers 
the autocorrelation structure to perform change of support operations, using the 
within-support variance inferred from the variogram model. The method allows 
the prediction of the statistical parameters and the features of the spatial struc- 
ture which would be observed for aggregated sampling units. 

A change of support operation involves the following steps: (i) A variogram 
model y,(h) is derived from the empirical data, corresponding to a regularized 
form of variogram for a given sampling unit size w. (ii) A point model y(h) is 
deduced from the regularized model, using equation (6): C1. = Cl,,/(l - 8’). 
The variance component ascribed to random variation follows equation (1).  
(iii) Once the point model y(h) and its parameters have been found, another 
expression y,,(h) can be derived for another sampling unit size 0’. Knowledge 
of the point model allows one to calculate the mean variogram values ~ ( v , v )  
for any sampling unit size. 

The geostatistical predictions were verified using a data set about tree density 
in the tropical rain forest of the Pasoh Reserve. The comparison confirms that 
the results computed from the change of support relationships agree closely 
with empirical results. We have shown four key results: 

(1) As the size of the sampling units increases, the variance decreases while the 
mean remains constant. 
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With an increase in quadrat size, the range of autocorrelation increases, 
while the variance and the proportion of noise in the data decrease. 
The reduction in variance for the aggregation of spatially autocorrelated 
sampling units is less important than for aggregated independent sampling 
units. Consider a spatially autocorrelated process. Within an aggregated 
sampling unit, the original sampling units are more similar than if they 
were the result of a process corresponding to white noise only. As a conse- 
quence, the within-unit variance is smaller than the variance expected by 
classical statistical theory; on the other hand, the among-unit variance is 
larger. 
From an empirical variogram, we can deduce a theoretical point model that 
enables the estimation of appropriate models corresponding to various sup- 
port sizes. 
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