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Abstract

Detection of structured spatial variation and identification of spatial scales are important aspects of ecological
studies. Spatial structures can correspond to physical features of the environment or to intrinsic characteristics of
ecological processes and phenomena. Spatial variability has been approached through several techniques such as
classical analysis of variance, or the calculation of fractal dimensions, correlograms or variograms. Under certain
assumptions, these techniques are all closely related to one another and represent equivalent tools to characterize
spatial structures.

Our perception of ecological variables and processes depends on the scale at which variables are measured. We
propose simple nested sampling designs enabling the detection of a wide range of spatial structures that show the
relationships among nested spatial scales. When it is known that the phenomenon under study is structured as
a nested series of spatial scales, this provides useful information to estimate suitable sampling intervals, which
are essential to establish the relationships between spatial patterns and ecological phenomena. The use of nested
sampling designs helps in choosing the most suitable solutions to reduce the amount of random variation resulting
from a survey. These designs are obtained by increasing the sampling intensity to detect a wider spectrum of
frequencies, or by revisiting the sampling technique to select more representative sampling units.

Introduction

Biological and ecological systems are maintained by a
network of dependencies among physical, geological,
environmental, and biotic processes of various origins.
These natural processes, which operate simultaneous-
ly and interact at multiple scales, correspond to spatial
(and/or temporal) patterns and structures that can be
observed over a continuum of scales. When it is known
that the phenomenon under study is structured as a
nested series of spatial scales, this helps us understand
and explain the mechanisms producing these patterns.

In a general review dealing with problems of pat-
terns and scales in ecology, Levin (1992) mentioned
that a fundamental problem of ecology is to relate
broad-scale phenomena (such as climatic, geological,
hydrological, etc.) to processes at the scale of eco-
logical information, and to understand how informa-

tion is transferred across scales. The scales involved
in a process represent an important aspect to consid-
er in order to understand ecological phenomena. Our
perception depends on three main components of the
sampling design:

1) The size of the sampling unit, which is the sur-
face or volume support of any particular measurement:
size of the vegetation quadrat, volume of the bucket
of water in which a measurement is made, etc. Large
sampling units filter out spatial variation occurring at
scales finer than their size. On the other hand, small
sampling units are less representative of the sampling
stations; they introduce noise in the signal, and pro-
duce a larger estimated variance for the variable of
interest (He et al. 1994; Bellehumeur et al. 1997).

2) The extent of the total area being sampled, or
field size (length of the series, in time series analy-
sis) determines the broadest spatial process that can be
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detected (He et al. 1994). It also influences the rela-
tive importance of each of the various spatial scales
detected. For example, climatic phenomena can con-
tribute strongly to shape dispersion patterns in vege-
tation surveys covering very large areas, whereas bio-
logical phenomena become more important in surveys
of small extent.

3) The sampling interval (lag, in time series) is the
average distance between neighboring sampling units.

Several techniques have been developed for the
description of spatial patterns of populations and
ecosystems (Legendre and Fortin 1989; Levin 1992).
The first studies concerned with spatial heterogeneity
and spatial variability used classical analysis of vari-
ance to measure the relative importance of variance
components corresponding to distances among sam-
pling stations and to test the hypothesis that a phe-
nomenon exhibits a spatially random pattern (Greig-
Smith 1952; Platt and Filion 1973; Lewis 1978; Lud-
wig and Goodall 1978). Using techniques previous-
ly developed in geography, Sokal and Oden (1978a
and 1978b) introduced, in population studies, the use
of spatial correlograms based upon Moran’sI and
Geary’sc coefficients. Several studies have also mea-
sured the Fourier spectrum of frequencies to charac-
terize spatial variance components (Renshaw and Ford
1984). Burrough (1987), Legendre and Fortin (1989)
and Rossi et al. (1992) introduced geostatistical con-
cepts in ecology and used variograms as a tool for spa-
tial characterization. Most applications of geostatistics
have dealt with ore reserve estimation in the mining
industry (David 1977; Journel and Huijbregts 1978),
but these statistical techniques are now widely used
in several other disciplines (Cressie 1991). The frac-
tal dimensionD is another commonly-used measure
to study features of spatial dispersion (Milne 1991;
Palmer 1988; Burrough 1981).

The purpose of this paper is to show that under cer-
tain assumptions, these techniques and concepts are
all closely related and constitute equivalent tools to
characterize spatial structures. We will suggest sim-
ple sampling designs enabling the detection of a wide
range of spatial structures and showing the relation-
ships between nested spatial scales.

As test cases, we will study: (1) the density of
a tree species,Macaranga lowii (Euphorbiaceae),
in 10 m � 10 m quadrats in a tropical rain forest
plot of Malaysia; (2) counts of the bivalve mollusks
Macomona lilianaandAustrovenus stutchburyiin 10-
cm-diameter sediment cores collected along six 150-

m-long transects on the sandflat of Wiroa Island in the
Manukau Harbour, North Island of New Zealand.

Materials

A tract of mapped forest, located at 102�180 W and
2�550 N, was established in the Pasoh Reserve, Negeri
Sembilan, Malaysia, to monitor long-term changes in
a primary forest (Kochummen et al. 1991). The forest
tract under study is a rectangle 1 km long in the east-
west direction and 0.5 km north-south, for a total of 50
ha. The survey enumerated all free-standing trees and
shrubs at least 1 cm in diameter at breast height, posi-
tioning each one by geographic coordinates on a refer-
ence map, and identifying the species. We reorganized
the data set in quadrat units and calculated tree densi-
ties (number of trees per square meter in each quadrat)
corresponding to square quadrats of 100 m2 (10 m�

10 m quadrat sizes). This data set contains exhaustive
information about tree locations; so it allowed us to
simulate various sampling designs. These data have
been analyzed in more detail by He et al. (1994, 1996,
1997) and by Bellehumeur et al. (1997).

In December 1993, three sites were selected on
the Wiroa Island sandflat, on the northeastern side
of Manukau Harbour, within the security zone of the
Auckland Airport, New Zealand. This sandflat has an
extensive mid-tide area 1 to 2 km wide; sediment is
composed of well-sorted fine sand and is bivalve dom-
inated. At each site, two directions were selected, one
parallel and the other perpendicular to the main hydro-
logical gradient (tide). Transects 150 m long were
established in each of these two directions, crossing
at their mid-point. Along each transect, 61 sediment
cores, 10 cm in diameter, were obtained following two
sampling intervals: (1) every five meters, that is, at
positions 0 m, 5 m,: : : , 145 m, 150 m along the tran-
sect; and (2) at one meter after each of previous sam-
pling units, that is, at positions 1 m, 6 m,: : : , 146 m
along the transect. The sediment was sieved and the
bivalve mollusks found therein were counted (speci-
mens larger than 4 mm of speciesMacomona liliana
andAustrovenus stutchburyi). To study the spatial dis-
persion of these mollusks, the three transects parallel
to the shoreline on the one hand, and the three perpen-
dicular transects on the other (tide movement direc-
tion), were combined, making up two distinct data sets
representing the main hydrological directions. These
data have been analyzed in more detail by Hewitt et
al. (1997).
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Measures of spatial dispersion and spatial
heterogeneity

Ecologists conducting surveys in geographic space are
often interested in measuring the spatial heterogene-
ity of the variables of interest (Dutilleul and Legen-
dre 1993). Spatial heterogeneity indicates spatially
structured variation, whereby we can expect zones of
aggregation of high values and other zones of low
values. Heterogeneity contrasts with the concept of
homogeneity, which indicates that there is no local
differentiation, that zones of low and high abundance
cannot be identified, and that there is no tendency
for neighboring areas to be more similar than distant
areas. Notice that homogeneity does not mean ‘no
variation’. Important variation is possible, but no spa-
tial organization of values can be recognized.

As pointed out by Dutilleul (1993), while nature
appears clearly heterogeneous, the scales at which spa-
tial heterogeneity is identified vary widely. As men-
tioned above, our perception of spatial scales depends
on the sampling design (i.e., the size of the sampling
units, the extent of the study area, and the sampling
interval). Even if the true spatial distribution can be
called heterogeneous, the information available may
look like noise on a map, leading to the perception of a
homogeneous phenomenon. The search for structures
revealing spatial heterogeneity has led to the develop-
ment of several mathematical techniques and sampling
designs.

Classical analysis of variance

Surveys can be hierarchically organized, suggesting
the application of classical analysis of variance using
a nested (or hierarchic) design to estimate the com-
ponents of variance associated with different spatial
scales. Several scientific disciplines such as aquatic
biology (Platt and Filion 1973; Lewis 1978; Pinel-
Alloul et al. 1988; Troussellier et al. 1989), vegeta-
tion science (Greig-Smith 1952; Ludwig and Goodall
1978), geology (Garrett 1983), and pedology (Nort-
cliff 1978; Oliver and Webster 1986), have devel-
oped and used this type of approach. Nested surveys
are constructed in such a way that the total popula-
tion is subdivided into primary sampling units (lots,
sites, or stations), which in turn are subdivided into
secondary sampling units in which several determi-
nations are made, representing the tertiary sampling
units, and so on. Generally, the stations (primary sam-
pling units) are separated by a distance chosen to rep-

resent a broad spatial scale of variation of the study
variable; this distance, and the variation expected from
it in the response variable, are assumed to be known
a priori. The secondary level could represent a col-
lection of replicate sampling units at the same loca-
tion, to verify the representativeness of these sampling
units, and the third level could represent replications of
measurements to verify the precision of measurement
devices.

The underlying model of nested variation is based
on the notion that the spatial components of the popu-
lation of interest are divided into distinct organization
levels (Sokal and Rohlf, 1995, chap. 10; Oliver and
Webster, 1986). Observations are viewed as the result
of the nested contributions of the various levels. Fork
levels (random factors), the nested analysis of variance
model is:

Zij::: k = �+Ai +Bij + : : : + �ij:::k (1)

whereZij::: k is the observed value of thekth unit in
the jth class of level 2 and in theith class of level 1.
The observed valueZij::: k is the result of deviations
from a general population mean�, by amounts relat-
ed to the spatial components of variabilityA, B and
�. Ai is the deviation (random effect) between� and
classi, representing values separated, for example, by
the inter-site distances;Bij is the deviation (random
effect again) from the mean�i of the mean of thejth
subclass within the previous class of higher level. The
quantity �ij::: k, which is a random error term, rep-
resents the deviation of the observed value from its
class mean at the last level of subdivision. The mod-
el assumes thatA, B and � are normally distributed,
independent and unbiased with means zero and vari-
ances�2

A; �
2
B2A; : : : �

2
� : The symbol�2

B2A indicates
that the variance is of levelB within levelA. The total
variance is viewed as containing the components:

�2
Z = �2

A + �2
B2A + : : : + �2

� (2)

Traditionally, nested sampling schemes have been
balanced, which means that the number of sampling
units in each group of any level of the hierarchy is
the same, although it may differ from level to lev-
el. Sample size at least doubles for each additional
level. If the survey aims at characterizing the spa-
tial dispersion over a wide range of spatial scales,
the number of sampling units would become very
large. In order to reduce the number of sampling units
without an important loss of precision, Gower (1962)
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introduced the notion of unbalanced sampling design,
where economy can be achieved by replicating at only
a portion of the sampling sites, at one or more levels
(Oliver and Webster, 1986). This approach has been
widely used in geochemical surveys (Garrett, 1983), in
pedology (Nortcliff 1978) and in ecology (Shaw and
Mitchell-Olds 1993). However, even with an unbal-
anced design, it remains difficult to design a survey
exceeding three or four levels for the regional char-
acterization of a phenomenon. For example, Nortcliff
(1978) used a four-level sampling design characteriz-
ing spatial scales from 5 m to 500 m. The third and
fourth levels (scales from 200 to 500 m) were defined
by only four pairs of points which do not cover exhaus-
tively the study area. So, generally the efficiency of the
technique relies on ana priori knowledge of the spa-
tial scales of the phenomenon to be studied. To reveal a
wider range of spatial scales, surveys can be designed
to allow the computation of spatial (or temporal) struc-
ture functions, such as variograms and autocorrelo-
grams, where a sequence of data is compared to itself
for various lags (geographic distances or time classes).

Geostatistics and autocorrelation structure

Students of spatial structures belonging to several dis-
ciplines are using correlograms based upon Moran’s
I or Geary’sc coefficients of spatial autocorrelation
(Moran 1950; Geary 1954; Cliff and Ord 1981). On
the other hand, the French school of geostatistics, led
by Matheron (1965), developed the theory of region-
alized variables which provides a means for analyzing
the spatial variability of a variable distributed across a
geographic area. A regionalized variable is an attribute
that takes a value at every point of the study area.
These values are considered to be realizations of a ran-
dom function whose spatial distribution is character-
ized by the variogram. The variogram reveals the ran-
domness (irregularity of values from location to loca-
tion) and the structured aspects of the spatial disper-
sion. The empirical (semi-) variogram is defined as:

�(h) = (2N(h))�1�[z(x)� z(x+ h)]2 (3)

where z(x) and z(x+h) are measurements of a giv-
en random variable at locationsx and x+h, separat-
ed by the directional distanceh, andN(h) is the num-
ber of pairs of sampling units considered in the given
distance class. This calculation is repeated for differ-
ent values ofh and provides the empirical variogram
which is a plot of the empirical values of variance

�(h) as a function of distanceh. The rate of increase
of �(h) allows one to characterize the continuity of
the variable. Generally, the variogram tends to lev-
el off at a sill equal to the variance of the variable.
The distance at which this occurs is referred to as the
rangeof the variable. The range is the distance over
which the sampling units are not spatially correlated
any longer. The discontinuity at the origin (non-zero
intercept) is called thenugget effect. It corresponds to
the local variation occurring at scales finer than the
sampling interval, including sampling error.

A variogram function is a theoretical model cho-
sen to represent the spatial structure of a phenomenon
and to perform estimations of unknown values. This
inference is valid only if some hypothesis of station-
arity can be fulfilled, representing conditions of appli-
cation of the model. If the population mean and the
spatial covariance are assumed to be constant over
the study area, the variable under study is said to be
second-order stationary (Journel and Huijbregts 1978,
pp. 32–34). In other words: (1) the first moment (math-
ematical expectation) E[Z(x)] = m exists and does not
depend on the sampling point locations; it is constant
and finite for allx inside the study area; and (2) for
each pair of random variables Z(x) and Z(x+h), the
second moment (spatial covariance):

C(h) = E[Z(x+ h) � Z(x)] �m2 (4)

exists and depends only onh and on the orientation of
the distance vectors, but not on their positions in the
study area.

Stationarity of the covariance implies stationarity
of the variance and of the variogram, so that:

Var[Z(x)] = E[Z(x)�m]2 = C(0)
(h) = 1=2E[(Z(x + h)� Z(x))2] = C(0)�C(h)

are the same anywhere on the surface (‘Var’ is the
variance of classical statistics). Under the hypothe-
sis of second-order stationarity, the variogram and the
covariance are related and can define the correlogram
�(h) (Journel and Huijbregts 1978; Rossi et al. 1992):

(h) = C(0)�C(h) = �2
�C(h)

�(h) = 1� ((h)=�2)
(5)

So, �(h) = 1 – Geary’sc coefficient of spatial auto-
correlation (Geary 1954). The variogram, covariance,
Geary’sc coefficient and correlogram represent equiv-
alent tools to characterize spatial structures under the
hypothesis of second-order stationarity.
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The presence of a sill implies stationarity of the
covariance, i.e., the covariance exists and depends
only on vectorh (second-order stationarity hypothe-
sis). Models without a sill correspond to random func-
tions that are said to be intrinsic only. Theira priori
variance and covariance are not defined. The incre-
ments (z(x) – z(x+h)) have a finite variance which
does not depend on locations but only onh. If only
the intrinsic hypothesis is satisfied, the variance is
an increasing function of the size of the study area
and the variogram is a monotonically increasing func-
tion of h. The intrinsic hypothesis is less restric-
tive than the second-order stationarity conditions; on
the other hand, this hypothesis is always satisfied if
the second-order stationarity conditions are satisfied.
Even if interpolation or estimation are not the main
purposes of a study, the shape of the variogram char-
acterizes the spatial dispersion of a phenomenon and
allows one to assess the appropriateness of the station-
arity hypothesis. Models without sills may correspond
to fractal dispersion (next section).

Fractal dimension and variogram

The fractal dimension of transects and surfaces can be
related to the variogram (Bolviken et al. 1992; Carr
and Benzer 1991). For a fractal transect, the variogram
follows the equation (Mandelbrot 1983, p. 353):

(h) = K h
2H (6)

corresponding to a power model without a sill. The
fractal dimension of a transect is given by:

D = 2�H (7)

(that of a surface would be given byD = 3–H). This
result allows one to calculate the fractal dimensionD
for a real data set from the log-log plot of the vari-
ogram:

log((h)) = �+ �log(h) (8)

The slope� (= 2H) of the equation is then equal to
4 - 2D. So, a fractal transect represents a spatial dis-
persion characterized and modeled by a power mod-
el variogram (eq. 6). For a transect, if a variable has
its values randomly distributed in space (no autocor-
relation), D equals 2. Burrough (1981) and Palmer
(1988) have calculated fractal dimensions from empir-
ical variograms for transects in one dimension. He et
al. (1994) have calculated the fractal dimensions of

Figure 1. Empirical variogram values for the density ofMacomona
liliana along the transects perpendicular to the shoreline of the
Wiroa Island sandflat: a) variogram values plotted as a log-log
graph; the power function log(h) = � + �log(h) is fitted to the var-
iogram between 1 m and 20 m (� = 0.12). b) Empirical variogram
values and exponential variogram model.

tree density, species richness and Shannon diversity in
a tropical forest plot (i.e. a surface).

The variogram of the density ofMacomona liliana
along the transects perpendicular to the shoreline of
the Wiroa sandflat is given as a log-log plot of(h)
versush (Fig. 1a). A straight line can be fitted to the
empirical values between 1 m and 20 m, with a slope
corresponding to a fractal dimensionD = 1.94. This
high value, close to 2, indicates a rugged surface, with
variation mostly occurring at fine scale.

Computation of the fractal dimension corresponds
to the fit of a variogram power model to the spatial dis-
persion of the variable of interest. The power model,
which describes a self-similar fractal, corresponds to
a phenomenon with an unlimited capacity for spatial
dispersion and with an undefineda priori variance. So
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the fractal nature or the self-similarity of the phenom-
enon is only defined locally, near the origin where the
variogram is linear in the log-log plot. It is bounded by
a lower and an upper scale of self-similarity which are
1 and 20 m in the present case.

Figure 1b shows that an exponential model can also
be fitted to the empirical variogram values of the den-
sity of Macomona lilianaalong the transects perpen-
dicular to the shoreline, between 1 m and 45 m. The
exponential model has a sill and a defined and finitea
priori variance. The model has a range of 17 m and
a sill of 14.2. The nugget effect (random variation)
represents 66.9% of the spatial variation (= 9.5/14.2).
The structured spatial variation accounts for 33.1%
[= (14.2–9.5)/14.2] of the total spatial variation. This
example shows that both the exponential and fractal
models can describe the same reality. From a method-
ological point of view, examination of the empirical
variogram is, however, much more informative than
the simple calculation of a fractal dimension.

Analysis of variance and variogram

Greig-Smith (1952) and Ludwig and Goodall (1978)
proposed the paired-quadrat variance method which
calculates the variance between quadrats at particular
spacings. These authors pointed out that the variance
estimates are not derived from independent data, so
the usual tests of significance cannot be applied. But
the technique can be useful for descriptive purposes
and to calculate variance components corresponding
to particular spatial scales. The paired-quadrat vari-
ance estimate of Ludwig and Goodall (1978) exactly
corresponds to the variogram (equation 3).

The link between a variogram and the classical
analysis of variance applied to nested surveys was
pointed out by Miesch (1975) and Ver Hoef et al.
(1993). Miesch (1975) used the additive scheme of
equation (2), where a component�2

h is a measure of
the variance at scales finer thanh, and a component
�2

2h is a measure of the variance at scales betweenh
and 2h. On the other hand, variogram values mea-
sured at distancesh and 2h represent all the variance
at scales finer thanh and 2h respectively. Consider-
ing thekth level of a nested design, the relationship
between the variogram and the variance components
is given by:

(k � h) = �2
h + �2

2h + : : : + �2
kh (9)

In the field of vegetation science, grids of contin-
uous quadrats have been studied by agglomeration,
whereby groups of adjacent quadrats are combined
hierarchically into blocks of different sizes (Greig-
Smith 1952). This agglomerative technique uses the
formalism of nested ANOVA. Sums of squared differ-
ences between adjacent blocks (for blocks containingr
quadrats) are calculated and plotted against block size.
A peak in this plot characterizes the patch size and the
scale of pattern. Ver Hoef et al. (1993) have demon-
strated that the method corresponds to the first lag of
a variogram calculated for a given block size. Gard-
ner (1997) pointed out that the main problems with
this agglomerative approach are the inefficiency of the
sampling technique and the limited extent of scales
that can be detected by this method.

Test case 1: Nested spatial structures of tree
density in the Pasoh forest

Figure 2 shows the empirical variograms for the north-
south and east-west directions and the fitted mod-
el describing tree density for the speciesMacaranga
lowii measured in 10 m� 10 m quadrats in the
Pasoh forest. These empirical variograms show abrupt
changes in their slopes at a distance of approximately
50 m, revealing the existence of more than one scale
of variation. The empirical variogram exhibits a super-
position of different scales of variation, called “inter-
meshed” or “nested structures”, each scale adding its
own contribution. The resulting model can be ade-
quately represented by combining simple variogram
models with different ranges and with their own struc-
tured variance components, each one characterizing
the variability at a particular scale.

The variogram model of tree density in the east-
west direction has three components indicated by the
discontinuities in the shape of the empirical vari-
ogram. Its parameters are given in Table 1. The global
model reaches a sill at a distance of approximately 500
m. The variance of the data is equal to this sill value
(1.46). The nugget effect (model 0 in Table 1), cor-
responding to the amount of fine-scale random varia-
tion in the data, represents more than 37% of the spa-
tial variation (= 0.55/1.46). The nugget effect reflects
micro-structures at scales finer than the sampling inter-
val and an integration of the measurement errors.

The structured spatial variation exhibits two struc-
tures corresponding to a pronounced increase at small
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Figure 2. Empirical directional variograms (north-south and east-west) for density values of the tree speciesMacaranga lowiiin 10 m� 10 m
quadrats, with a 10 m sampling interval; a three-component model is fitted to the east-west variogram (Tab. 1).

Table 1. Parameters of nested variogram models
for tree density (east-west direction) in 10 m�
10 m quadrats (visually adjusted parameters).C0
is the nugget effect,Cn is the variance component
associated to a given structured spatial scale and
an is the practical range of the model.

Model Parameters

0. Nugget effect C0 = 0.55

1. Spherical C1 = 0.68 a1 = 50 m

2. Spherical C2 = 0.23 a2 = 500 m

lag distances (0–50 m) and a long-range structure (0–
500 m). The global variogram is modeled by two
spherical models (models 1 and 2 in Table 1). The
most important part of the structured spatial variation
is related to a local scale where the zone of influence
(range) is approximately 50 m. This structure accounts
for 47% (= 0.68/1.46) of the total spatial variation. The
long-range component is 500 m long and it accounts
for 16% of the total spatial variation. It would be pos-
sible to add a periodic component modeled by a func-
tion such as:

(h) = C[1� cos(2� � h=a)] (10)

wherea is the period of the model. However, as indi-
cated by the amplitude of cycles, this structure would
account for less than 5% of the spatial variance and

it is difficult to differentiate it from random sampling
fluctuations in the variogram computation.

In the north-south direction, the short-range struc-
ture is recognized, but the long-range structure reaches
higher variogram values than in the east-west direc-
tion, corresponding to a slight zonal anisotropy. This
type of pattern expresses different degrees of overall
spatial variability depending on the direction.

The nested spatial structures can indicate environ-
mental, biological, or behavioral influences that are
shaping the spatial patterns of tree density. Environ-
mental, biological, or other variables are needed to
relate ecological phenomena to these spatial scales
of variation; see for instance Borcard and Legendre
(1994) for a method to investigate this question. The
spatial pattern features indicate that for this tract of
tropical rain forest, 50 ha in area, an important pro-
portion of the spatial variation of tree density occurs
at scales finer than 50 m. So, the spatial analysis
provides the scale of investigation to understand the
underlying phenomena producing the spatial pattern
of tree species. In the next section, we will suggest
simple sampling designs enabling the detection of a
wide range of spatial structures and showing the rela-
tionships among nested spatial scales.
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Test case 2: Detection of spatial scales, and design
of a mollusk sampling program

Variograms provide methodological information that
may be used at an early stage in ecological surveys.
They enable the estimation of suitable sampling inter-
vals for detecting specific components with particular
spatial continuities. The sampling interval has a deter-
mining influence on the detection of specific structures
and phenomena with a particular continuity. In the
vegetation data of the previous test case, for example,
a sampling interval of 50 m would not have enabled
the detection of the fine-scale structures which have
been revealed by a sampling interval of 10 m (compare
Fig. 3 to Fig. 2). Using a sampling interval of 50 m, the
fine-scale structure (range = 50 m) appears as a pure
nugget effect (Fig. 3). Thus such sampling schemes
cannot allow for the distinction between fine (range
= 50 m) and broad (range = 500 m) spatial scales. A
pure nugget effect represents the perception of a high
degree of homogeneity of the variable of interest: no
aggregation, no cycle, no spatial trend, etc. There is no
local differentiation and zones of low and high abun-
dances cannot be identified. As in classical statistical
theory, at every location in the study area, the best
estimator of the abundance is the mean abundance. It
should be noted that the most important part of the
spatial variation occurs at scales finer than 50 m. To
understand this spatial variation, the sampling scheme
must allow the identification of local biological and
environmental factors controlling the spatial distribu-
tion of trees.

Our perception of the random component is closely
related to the scale of observation. The random com-
ponent represents variation occurring at scales finer
than the sampling interval and includes: (1) the vari-
ance due to high frequencies, which cannot be detect-
ed using the sampling interval that has been used in
the study (or in the variogram calculation); and (2) the
variance due to the survey method itself (counting,
sampling unit processing, etc.).

The detection of fine spatial scales and the reduc-
tion of the random component may be achieved in
two ways: (1) by increasing the sampling density in
order to detect a wider spectrum of frequencies; or
(2) by revisiting the sampling technique in order to
collect observations more representative of each sam-
pling location. The first method should always be con-
sidered in designing pilot studies, prior to a large sur-
vey effort. It will be effective only if a part of the ran-
dom component is due to phenomena with fine spa-

tial structures, which should be detected by a denser
sampling grid. If the sampling units are collected at
regular intervals, it is good practice to collect at least
some sampling units at a smaller interval, which will
allow the detection of nested scales if present. The
basic sampling interval for the density measurements
of the bivalveAustrovenusalong the six transects of
the Wiroa Island sandflat survey was 5 m, but addition-
al sampling units have been collected 1 m from this
first set of sampling units. The variogram shows that a
fine-scale variance component is indeed present in the
direction perpendicular to the shoreline (Fig. 4). This
component could not have been detected with the sam-
pling interval of 5 m only. The 1 m sampling interval
allows the assignment of approximately one third of
the spatial variance to a fine spatial scale of less than 5
m. So, to detect the main components of the spatially-
structured variability, a broad-scale sampling program
should include a small sampling interval. In the direc-
tion parallel to the shoreline, no spatially-structured
component is detected by the sampling design used
in this study; the variogram only displays a nugget
effect (Fig. 4). Likewise, Oliver and Webster (1986)
and Fortin et al. (1989) have recommended the use of
nested sampling designs and analysis of variance, in
pilot studies, to avoid the problem of failing to detect
phenomena occurring at fine spatial scales.

For studies dealing with variables where measure-
ment error is anticipated, or where representative sam-
pling units are difficult to collect, taking replicate sam-
pling units may aid in determining if it is worth the
effort to conduct an additional sampling campaign to
detect finer-scale phenomena. The goal is to verify
whether the residual variance (nugget effect) is larger
than the variance due to analysis and sampling units
processing. The combined sampling and analytical
variance is calculated as follows:

s2
sa =

1
N

NX
i=1

2
4 1
ni

niX
j=1

(xij � xi)
2

3
5 (11)

whereN is the number of sites where replicates were

collected,ni is the number of replicates at each sitei,
xi is the average value of replicates at sitei andxij is
the value of a replicate at sitei. Obtaining a value of
s2
sa smaller than the nugget effect allows the detection

of phenomena whose extent is finer than the sampling
interval. On the other hand, equality of these vari-
ances signifies that taking additional sampling units
on a denser grid would not allow new high-frequency
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Figure 3. Empirical directional variograms of density values of the tree speciesMacaranga lowiifor 10 m� 10 m quadrats, with a 50 m
sampling interval.

Figure 4. Empirical variograms of the abundance of the bivalveAustrovenus stutchburyialong transects parallel and perpendicular to the
shoreline of the Wiroa Island sandflat.

variation to be detected; the variation due to analysis
and sampling is masking these frequencies. In such a
case, it is preferable to improve the processing of sam-
pling units or the analytical techniques, rather than to
collect additional sampling units on a finer grid. This
approach requires the collection of replicates at some
sampling sites of the survey area (at least 30 to 50). We
do not have such a data set to illustrate the method; we
have merely suggested this simple technique to veri-
fy the occurrence of variation at short spatial scales.
Classical analysis of variance is probably inappropri-
ate to compares2

sa to C0 because the sampling units
are spatially autocorrelated, but this technique allows

nevertheless a useful evaluation of the corresponding
variance ratio.

Discussion

Many environmental variables can be described by a
spatial model that presents both a structured and a ran-
dom component. This description of spatial hetero-
geneity contrasts with more traditional ways of consid-
ering spatial processes, where a homogeneous disper-
sion of variables in space is assumed. The hypothesis
of homogeneous dispersion implies the independence
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of sampling units and does not allow for the search of
local differentiation.

Several techniques have been used to detect
spatially-structured variation. The classical analysis of
variance, coupled with nested survey designs, is his-
torically one of the first approaches used to detect spa-
tial heterogeneity. The total variance is partitioned into
variance components associated with distance class-
es. This approach, very useful for small surveys and
preliminary investigations, is difficult to implement
effectively in large surveys and for more than three
or four levels of replication. Therefore, we generally
have few spatial variance measurements and the effi-
ciency of the technique depends on the investigator’s
a priori knowledge of the spatial scales of variation
of the phenomenon. To reveal a wider range of spa-
tial scales, surveys can be designed to use similari-
ty association measures (variograms, autocorrelation
functions) where a data sequence is compared to itself
for various lags (geographic distances, or time dis-
tance classes). These techniques are easy to adapt to
regular or stratified random sampling designs. Using
such regular sampling schemes, we have shown that
it is useful to collect sampling units at two different
scales of observations, making possible the detection
of nested structures and providing solutions to reduce
the amount of random variation in the survey.

It has been shown that under the hypothesis
of second-order stationarity, the variogram, spatial
covariance and correlogram represent equivalent tools
to characterize spatial structures. Moreover, variogram
and classical analysis of variance are closely linked,
since the cumulative variance components of a nest-
ed scheme form the variogram. The variogram reflects
the variance components acting at different scales,
enabling the extent of the zone of influence of a phe-
nomenon to be characterized and, therefore, provid-
ing useful information about the nature of the phe-
nomenon. The recognition of scales of variation may
have an impact on the sampling methodology used in
surveys, suggesting that sampling unit spacing should
be chosen according to the extent of the component
of interest. Variograms also enable the proportion of
the structured spatial variance resulting from a specif-
ic sampling interval to be estimated.
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