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Abstract This paper describes a geostatistical tech-
nique based on conditional simulations to assess
confidence intervals of local estimates of lake pH
values on the Canadian Shield. This geostatistical
approach has been developed to deal with the esti-
mation of phenomena with a spatial autocorrela-
tion structure among observations. It uses the auto-
correlation structure to derive minimum-variance
unbiased estimates for points that have not been
measured, or to estimate average values for new
surfaces. A survey for lake water chemistry has
been conducted by the Ministère de l’Environne-
ment du Québec between 1986 and 1990, to assess
surface water quality and delineate the areas af-
fected by acid precipitation on the southern Cana-
dian Shield in Québec. The spatial structure of lake
pH was modeled using two nested spherical vario-
gram models, with ranges of 20 km and 250 km, ac-
counting respectively for 20% and 55% of the spa-
tial variation, plus a random component account-
ing for 25%. The pH data have been used to con-
struct a number of geostatistical simulations that
produce plausible realizations of a given random
function model, while ‘honoring’ the experimental
values (i.e., the real data points are among the si-
mulated data), and that correspond to the same
underlying variogram model. Post-processing of a
large number of these simulations, that are equally

likely to occur, enables the estimation of mean pH
values, the proportion of affected lakes (lakes with
pH^5.5), and the potential error of these paramet-
ers within small regions (100 km!100 km). The
method provides a procedure to establish whether
acid rain control programs will succeed in reducing
acidity in surface waters, allowing one to consider
small areas with particular physiographic features
rather than large drainage basins with several
sources of heterogeneity. This judgment on the re-
duction of surface water acidity will be possible
only if the amount of uncertainty in the estimation
of mean pH is properly quantified.

Key words Acid rain 7 Conditional simulations 7
Confidence intervals 7 Geostatistics 7 Lake acidity

Introduction

Several environmental and ecotoxicological problems re-
quire the estimation of the average value of a variable
calculated within a certain area. The estimation of the
mean value of the concentration of a pollutant allows one
to evaluate potential ecological and health hazards, and
to make environmental decisions (such as soil remedia-
tion, design of new regulation, etc.). Because an estimate
is based upon a fraction of the total population, an un-
certainty needs to be attached to the estimate of the con-
centration of the pollutant. This uncertainty can be re-
lated to a distribution model and to its statistical param-
eters, and a decision is made on the basis of the proba-
bility of exceeding a given ecotoxicological threshold.
The present study aims at estimating the mean pH of
lakes in the southern Québec part of the Canadian Shield,
as well as the confidence interval of this estimate using a
geostatistical method, considering the autocorrelation
structure of the data. Acid precipitation is believed to be
the cause of important environmental damage. Wright
and Henriksen (1978) were among the first to establish
clear links between acid precipitation and regional lake
acidification. Following these findings, a maximum 20 kg
ha–1 year–1 target loading of wet sulfate from atmospher-
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ic precipitation was proposed by the United States–Cana-
da Work Group (US–Canada 1983) in order to protect
moderately sensitive ecosystems. The pursuit of this ob-
jective has entailed industrial investments which have
contributed to reduce sulfate emissions in the atmo-
sphere. Since that period, governmental agencies have
carried out a number of sampling surveys of water chem-
istry with the purpose of assessing surface water quality
and delineating the areas affected by acid precipitation.
Surveys of lake chemistry were conducted in the United
States (Linthurst and others 1986), in Scandinavia (Hen-
riksen and others 1988) and in Canada (Dupont and Gri-
mard 1986; Kelso and others 1986). Major motivations of
these surveys were to delineate areas affected by acidifi-
cation and to produce data that could be compared to
data of the same type to be obtained several years later,
in order to establish whether the acid rain control-pro-
grams have succeeded in reducing acidity in surface wa-
ters. This judgment on the reduction of surface water
acidity will be possible only if the amount of uncertainty
in the estimation of mean pH is properly quantified. The
only ways of improving the estimation are to intensify
the sampling or to use more appropriate statistical mod-
els.
The geostatistical approach was developed to deal with
estimation problems of phenomena presenting a spatial
autocorrelation structure among observations. Geostatis-
tical methods use the autocorrelation structure as a de-
terministic component, to estimate – without bias and
with minimum estimation variance – values for points
that were not measured, or to estimate average values for
new “supports” (surfaces or volumes of different sizes
than those of the actual sampling program). Geostatistics
has proved very effective for ore reserve estimation in the
mining industry (David 1977; Journel and Huijbregts
1978); these techniques are now widely used in several
other disciplines such as environmental studies (among
others, Posa and Rossi 1991; Schaug and others 1993; En-
glund and Heravi 1994).
In geostatistics, the spatially structured variation of a
phenomenon is quantified by a variogram which de-
scribes the degree of dissimilarity between sampling units
as a function of their geographical distance. The vario-
gram characterizes the continuity of a random function
model describing the spatial dispersion pattern of the
study variable. The use of random function models has
important practical effects. Taking into account the de-
terministic aspect of a spatial dispersion allows one to
improve the accuracy of estimations in comparison with
classical statistical relationships neglecting spatial struc-
tures, or to reduce the sampling effort needed to achieve
a predetermined degree of precision. The present paper
has the objective of providing (1) estimates of the mean
pH of lakes and of the proportion of lakes with pH below
a reference value, and (2) measures of uncertainty for
these estimates. The method is based on a set of simula-
tions of a random function model that capture both the
deterministic and random components of the spatial dis-
persion of lake pH in the study area.

Lake water quality survey

Sampling surveys for water chemistry were carried out by
the Ministère de l’Environnement du Québec between
1986 and 1990, with the purpose of assessing surface wa-
ter quality and delineating areas affected by acid precipi-
tation in the most sensitive parts of the Canadian Shield
(Fig. 1). Lake-water sampling units were collected from
1239 lakes covering the southern part of the Canadian
Shield (Dupont 1991). Sampling was conducted during
winter, under ice cover, near the center of each lake. Wa-
ter sampling units were analyzed for 19 chemical varia-
bles including pH. Three sampling units were taken and
analyzed from each lake in order to evaluate the data
variability due to sampling and laboratory analyses. No
significant differences were revealed among sampling
units (Dupont 1991). Figure 2 gives the histogram and
summary statistics of pH values for the 1239 lakes. A
goodness-of-fit Kolmogorov-Smirnov test of normality,
including the correction proposed by Lilliefors (1967), es-
tablished that the distribution of pH values was fairly
normal (K-S statistic: 0.0452; P-value;0.01).

Methods

Classical statistical relationships usually neglect spatial
autocorrelation structure and only consider the random
component of the spatial process. Generally, if the spatial
autocorrelation structure is present and well-developed,
the use of geostatistical methods can have important
practical effects. It allows one to perform local estimation
and to improve the accuracy of estimates. Several geosta-
tistical methods have been developed to compute the
confidence interval of an estimate (Journel and Huij-
bregts 1978; Cressie 1991). Ordinary kriging allows calcu-
lation of the error variance related to each estimate. This
kriging variance is independent of the data values and
depends on the sampling configuration and on a chosen
variogram model. It represents the average estimation er-
ror variance for a fixed configuration of sampling units.
Generally, the estimation errors are assumed to be nor-
mally distributed with zero mean, and the kriging var-
iance allows the construction of a symmetrical confidence
interval around the estimated value. A major problem is
that the error variance is not conditioned by the data,
and iso-kriging-variance maps generally only tend to
mimic data position maps (Journel 1983).
To overcome these drawbacks, parametric methods such
as disjunctive kriging (Matheron 1976), multigaussian
kriging (Verly 1983) and bigaussian kriging (Marcotte
and David 1985), as well as nonparametric methods such
as indicator kriging (Journel 1983) and probability krig-
ing (Sullivan 1984), were developed to estimate the con-
ditional cumulative distribution function of the variable
of interest. However, disjunctive kriging and nonpara-
metric methods do not ensure that the cumulative distri-
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Fig. 1
Location map of the lake
water quality survey, south of
517N and north of St.
Lawrence River, in the
Québec peninsula, Canada,
and delimitation of
100 km!100 km surfaces for
which statistics are computed.
The dashed line delimits
Abitibi

Fig. 2
Frequency histogram of pH values in 1239 lakes of the lake
water quality survey; x̄ arithmetic mean, s standard deviation,
skew p skewness

bution function F(z)B [0, 1] is non-decreasing. Moreover,
for data collected on a point support, inference on sur-
faces or volumes requires a change of support model. Bi-
gaussian and multigaussian methods do not have incon-
sistencies in the estimated probability distribution, as op-
posed to disjunctive kriging and nonparametric methods.
Parametric methods, on the other hand, all require bi-
gaussian or multigaussian distributions of normal-trans-
formed variables. This strong hypothesis cannot easily be
tested from the data.
As indicated by Englund (1993), conditional spatial simu-
lation is a technique that has great potential as a tool for

dealing with various problems associated with spatial un-
certainty. Conditional spatial simulation refers to the
generation of spatial data constrained to reproduce a giv-
en variogram model and the observed values of a pre-ex-
isting set of sample data. The use of simulations allows
direct extrapolation of probability distributions from
point support to any given surface or volume.

Spatial structure and kriging
The variogram is the basic tool of geostatisticians for the
estimation and mapping of regionalized variables. It re-
veals the randomness and the structured aspects of the
spatial dispersion. The experimental variogram is defined
as:

g*(h)p(2N(h))–1 S[z(x)–z(xch)]2 (1)

where z(x) and z(xch) are measurements of a given
variable at locations x and xch, separated by the direc-
tional distance h, and N(h) is the number of pairs of
sampling units considered in the given distance class.
This calculation is repeated for different values of h and
provides the experimental variogram which is a plot of
the values of g*(h) as a function of distance h. Generally,
the variogram tends to level off at a sill equal to the em-
pirical variance of the variable for large fields relatively
to the scale of the autocorrelation structure. The distance
at which this occurs is referred to as the range of the
variable. The range is the distance over which the sam-
pling sites cease to be spatially correlated. The discon-
tinuity at the origin (non–zero intercept) is called the
nugget effect. It is a random component corresponding
to the local variation occurring at scales smaller than the
sampling interval.
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Kriging is a linear-weighted average interpolation tech-
nique used to estimate unknown points, surfaces or vol-
umes, from surrounding sampling units. The estimation
of a variable z(x0) at location x0 is carried out from a
combination of the values observed in the surrounding
neighborhood (z(x1), ... z(xi), ... z(xn)):

z*(x0)p
n

A
ip1

wi7z(xi) (2)

where wi are the weighting coefficients associated with
the sampling values z(xi) which sum to 1 to ensure un-
biased results (E[z*(x0)–z(x0)]p0). The wi are estimated
in such a way as to minimize the variance of errors of es-
timates.
In the case of ordinary kriging, intrinsic stationarity con-
ditions are assumed, representing conditions of applica-
tion of the model. They correspond to the hypothesis of
a certain regional homogeneity of the spatial dispersion
of the phenomenon. If the population mean and the spa-
tial covariance are constant over the study area, the var-
iogram has a sill and the variable under study is said to
be second-order stationary. If the variogram does not
have a sill, then the covariance does not exist, but kriging
can still be performed. This situation corresponds to the
intrinsic hypothesis situation.

Conditional simulations
The use of a random function model to describe the spa-
tial dispersion pattern of a phenomenon allows us to per-
form conditional simulations, where alternative and
equally probable high-resolution models of the spatial
dispersion of the study variable are generated. Such si-
mulations produce plausible spatial patterns which ‘hon-
or’ the experimental values (i.e., the real data points with
their observed values are among the simulated data) and
correspond to the same underlying variogram model.
Journel and Huijbregts (1978, chap. 7), Deutsch and Jour-
nel (1992, chap. 5) and Dowd (1992) provide the theory
for these simulations.
The empirical data and the variogram model have been
used to construct several stochastic images of potential
lake pH values for a given surface. Post-processing of a
large number of these simulations, all equally likely to
occur, directly shows the mean value, the probability of
exceeding a given environmental threshold, as well as a
probability interval for the mean value, for any given sur-
face. The procedure involves the following steps (Fig. 3):
1. Generate a number of simulated point values covering
the study area.

2. Define the surfaces over which the mean values are to
be calculated.

3. For each simulation, the simulated points falling with-
in a given surface are averaged, giving a simulated lo-
cal value for the surface S(x).

4. Producing a series of n simulations allows estimation
of a prediction interval for the mean of pH and for the
proportion of lakes strongly affected by acidification
(pH^5.5).

Fig. 3
Calculation method of a probability interval for statistical
parameters of given surfaces from conditional simulations.
Plausible point pH values are simulated over the whole survey
area, and for each simulation, the mean pH value for each
surface is calculated by averaging the point pH values falling
within a given surface

A sequential Gaussian simulation algorithm found in
Deutsch and Journel (1992) was used for these simula-
tions. It consists of the following steps:
1. Transform all data to standard Gaussian values.
2. Calculate and model the variogram of the transformed
values.

3. Define a grid of n nodes on which values are to be si-
mulated.

4. Simulate nodes in a random sequence, estimating the
value at a given node by kriging, and using a local
neighborhood containing all the other values (simu-
lated and experimental).

5. Under the multigaussian hypothesis, at a given grid
node, the estimated value (kriged) and the kriging var-
iance are the parameters of a Gaussian distribution. A
value is drawn at random from this Gaussian distribu-
tion and constitutes a value of the set of simulated
data.

6. Go back to step (4) until values have been simulated
at all grid nodes.

7. Take the inverse Gaussian transformation used in step
(1) to return to the original variable.

Surfaces of 100 km!100 km containing 36 simulated
points arrayed in a 6!6 grid have been considered.



Research article

Environmental Geology 39 (3–4) January 2000 7 Q Springer-Verlag 215

Results

Variograms
Figure 4 shows the experimental variograms of the pH
values computed for four directions, as well as the fitted
model. These directional variograms do not present
strong geometric or zonal anisotropy; fluctuations at dis-
tances greater than 175 km do not allow the identification
of any clear pattern of anisotropy, so they can be consid-
ered isotropic. The resulting model can be adequately
represented by combining two simple variogram models
with different ranges and with their own structured var-
iance components, each one characterizing the variability
at a particular scale (Table 1). The global model reaches a
sill at a distance of approximately 250 km. The variance
of the data (0.2916) is approximately equal to this sill
value (0.298). The nugget effect (model 0 in Table 1), cor-
responding to the amount of random variation in the
data, represents 25% of the spatial variation (p0.075/
0.298). The nugget effect reflects micro-structures at
scales smaller than the sampling interval as well as an in-
tegration of the measurement errors.
The structured spatial variation exhibits two structures
corresponding to a pronounced increase at small lag dis-
tances (0–20 km) and a long-range structure (0–250 km).
The global variogram is modeled by the sum of two

Fig. 4
Directional variograms of pH values in 1239 lakes of the lake
water quality survey and spherical variogram model

Table 1
Parameters of nested variogram models for lake pH data and
Gaussian transformed scores of pH. C0 is the nugget effect, Cn

is the variance component associated to a given structured spa-
tial scale and an is the practical range of the model

Model Parameters (pH) Parameters
(Gaussian pH)

0. Nugget effect C0p0.075 C0p0.25
1. Spherical C1p0.060 a1p20 km C1p0.21 a1p20 km
2. Spherical C2p0.163 a2p250 km C2p0.54 a2p250 km

spherical models (models 1 and 2 in Table 1) and a nug-
get effect. The global model has the following set of
equations:

g(h)pC0cC1 [1.5(h/a1)–0.5(h/a1)3] (3)
cC2[1.5(h/a2)–0.5(h/a2)3] if h^a1

g(h)pC0cC1cC2[1.5(h/a2)–0.5(h/a2)3]
if h1a1 and h^a2

g(h)pC0cC1cC2 if h1a2
g(0)p0

where C0 is the nugget effect, C1 and C2 are the struc-
tured variance contribution values, a1 and a2 are shape
parameters which, for a spherical model, give the range
of each model, and C0cC1cC2 is the sill. An important
part of the structured spatial variation is related to a re-
gional scale where the zone of influence (range) is ap-
proximately 250 km. This structure accounts for 55%
(p0.163/0.298) of the total spatial variation. The small-
scale model has a range of 20 km and a variance compo-
nent of 20% (p0.060/0.298).

Cross-validation procedure
A cross-validation procedure is used to assess the rele-
vance of the chosen variogram model and to select the
best search method – search radius and number of points
to use in the kriging system. The search method is chos-
en on the basis of statistics for the errors, by comparing
estimated and observed values. The sampling unit value
at a particular location is omitted, and the value at this
location is estimated using the remaining neighboring
sampling units.
Cross-validation results are presented in Table 2. Each so-
lution reasonably satisfies the global unbiasedness condi-
tion, where the distributions of errors (z*(xi)–z(xi)) are
centered on a zero mean. The spread of the errors given
by the standard deviation, and the correlation coefficient
of the known values against the kriged estimates, were
used to determine an adequate search strategy. On this

Table 2
Cross-validation results of search methodology (search radius
and maximum number of points). x̄E and SDE are the mean and
standard deviation of the error (z*(xi)Pz(xi)), r and b1 are the
correlation coefficient and the slope of the linear regression
zpb0cb17z*

Search
Radius
(km)

Max. nr.
of points

x̄E SDE r b1

75 8 0.048 0.793 0.61 0.91
75 12 0.039 0.797 0.61 0.92
100 8 0.042 0.794 0.61 0.91
100 12 0.031 0.786 0.64 0.95
150 12 0.031 0.789 0.64 0.95
150 16 0.033 0.776 0.67 0.98
250 16 0.032 0.778 0.70 0.99
250 24 0.032 0.775 0.71 0.99
300 30 0.031 0.777 0.71 0.99
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Fig. 5
Results of repeated simulations over a small area
(100 km!100 km) around Rouyn-Noranda. a Frequency
distribution of the mean, over the small area, of the simulated
lake pH values. b Frequency distribution of simulation results
distributed according to the proportion of lakes with pH^5.5
(abscissa). Quantiles (Q) are used to estimate probabilities and
prediction intervals

basis, a search radius of 250 km and the use of the near-
est 24 points were selected as an optimal solution.
The estimation procedure performed better for large radii
and high numbers of points, showing that the long-range
structure contributed to the estimation. Notice that the
slope of the regression coefficient b1 [of z(xi) against
z*(xi)] is close to but always smaller than one. It indi-
cates that the kriging procedure slightly underestimated
the true low values, and overestimated the high values.

Conditional simulations
The probability distributions of pH values in given sur-
faces S(x) are estimated through the realization of nu-
merous small-scale conditional simulations of normal
scores of pH performed on a dense grid of points. The
normal scores of simulated point values were backtrans-
formed to obtain pH values. The pH values were aver-
aged over a surface S(x), providing a simulated mean pH
for a surface. In order to obtain the proportion of lakes
affected by acidification, each normal score of point val-
ues was transformed to pH values. The proportion of af-
fected lakes was directly estimated by the number of pH
point values less than or equal to 5.5, divided by the total
number of simulated points in the surface S(x) (Fig. 5b).
A pH of 5.5 was considered as the threshold value be-
cause at this pH, it is recognized that adverse environ-
mental effects are produced affecting many organisms in
aquatic systems (Schindler 1988). A histogram of simu-
lated values was constructed; the mean and the predic-
tion interval limits were computed directly from the fre-
quency distribution for predetermined quartile limits. For
example, Fig. 5a indicates that, for a surface of
100 km!100 km around Rouyn-Noranda, the lower and
upper 95% predictive limits for the mean pH are 5.78
and 6.36. Because a number of possible mean values for
given surfaces have been simulated, it is therefore possi-
ble to estimate the local spatial probability of exceeding a
given critical level by directly reading on the histogram
the quartile corresponding to the threshold. For example,
Fig. 5a shows that the probability, for the mean of lake
pH to be ~6.0, is 0.272.
Generally, classical statistical relationships are used to
calculate a confidence interval for the mean and the pro-
portion of affected lakes. Figure 6 shows the relationships
between 95% confidence intervals deduced from usual
classical relationships and 95% prediction intervals de-
duced from conditional simulations. The comparison of
these methods is done by using the variance of the total
sample of 1239 lakes (s2Xp0.29) and the relationship
s2X̄ps2X/n to estimate the uncertainty associated with the
estimation of the mean pH for surfaces of
100 km!100 km (Fig. 6a). The value of n represents the
number of sampling units in a surface of
100 km!100 km. This comparison integrates regional in-
formation on the total population, and it supposes the
homogeneity of the phenomenon and the absence of spa-
tial autocorrelation in the data. Figure 6a shows that the
prediction intervals calculated from geostatistical simula-
tions are generally smaller than confidence intervals and

are relatively constant for all surfaces. Prediction inter-
vals deduced from conditional simulations range from
0.25 to 0.8 pH unit, while confidence intervals deduced
from classical relationships range from 0.25 to 3.8 pH
units. These results demonstrate that it is difficult to cal-
culate local probabilities with the few sampling units con-
tained in surfaces of 100 km!100 km. Figure 6b shows
prediction intervals versus confidence intervals for the
proportion of lakes with pH^5.5. A group of points,
spread out along the line of slope 1, indicates equivalent
intervals for all methods. However, a group of points lo-
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Fig. 6
Relationship between 95% confidence intervals deduced from
classical statistical relationships and prediction intervals for (a)
mean of pH using information about the whole sample of 1239
lakes, (b) proportion of lakes with pH^5.5. The line of slope
1.0 is shown as reference. A 100(1–a)% symmetrical confidence
interval for the mean is given by Ip27ta/27sx̄, where sx̄
represents the standard deviation of the sample mean
(sx̄p(s2x/n)0.5)), and ta/2 is the (1–a/2) quantile of the Student t
distribution. An approximate 100(1–a)% symmetrical
confidence interval for a proportion p is given by
Ip27ta/27(var(p*))0.5c(1/2n), where

var(p*)p1NPn
N 2 p*(1Pp*)

nP1
,

n is the sample size and N is the population size

cated under the line presents large confidence intervals
when there are few sampling points in the surfaces
(n~15).
Conditional simulations, which consider a spatial auto-
correlation model linking together the observations, lead
to an improvement of the precision of estimates and al-
low estimation within regions that contain little informa-
tion. If a surface contains several sampling units, the si-
mulated points are strongly conditioned by these sam-
pling units; and the high sampling density and the small-
scale correlation structure ensures low kriging variance.

As a consequence, the simulated values are drawn from a
narrow distribution, providing a small confidence interval
for the mean. On the other hand, if a surface contains
few sampling units, then the surrounding regional infor-
mation and the regional autocorrelation structure contri-
bute to the estimation of surfaces with little information.
It should be noted that simulations can represent the re-
ality only if the variogram model also represents the real-
ity. Considering the shape of the experimental variogram,
it clearly indicates that the spatial dispersion of pH val-
ues is not random, but spatially structured. Moreover,
each experimental variogram value is calculated using
more than 164 pairs of sampling points, providing a good
confidence in the chosen variogram model.
The calculation of mean values and prediction intervals
was done for the whole survey area. It allowed us to map
the estimated mean values and probability of exceeding a
given threshold to determine the areas affected by acidifi-
cation. The prediction intervals of each surface can also
be mapped to point out the areas displaying the largest
estimation errors which can be due to low sampling den-
sity or to an unfavorable sampling configuration (Figs. 7
and 8).
The Abitibi area, in the region of Rouyn-Noranda, is
strongly affected by lake acidification (Fig. 7a). This area
is an important mining district and is subjected to smelt-
er emissions. Moreover, sulfide minerals contained in ore
deposits and associated rocks have been spread by gla-
ciers and can make up an important component of gla-
cial deposits, representing a natural source of acidity
(Shilts and others 1981). Bedrock, soil and surficial sedi-
ments of this area have a low capacity to neutralize acid
solutions. Low pH are also found in the Baie-Comeau-
Chicoutimi area. This area is characterized by granite
gneiss lithologies overlain by a very thin soil cover de-
rived from local bedrock, producing a sensitive cover to
acid loading with low buffering capacity.
High pH found south and east of Chibougameau (3 white
squares in Fig. 7a) are associated with carbonate-rich gla-
cial material. This type of glacial deposit is also found
north of Rouyn-Noranda, reducing the effect of sulfate
emissions. Similarly, high pH in the Montréal-Hull area
correspond to the occurrence of limestone and fine-
grained glacio-marine and glacio-lacustrine sediments
with an important buffering capacity produced by the
process of cation exchange and hydrolysis (Shilts and
others 1981).
Figure 7b shows that the highest uncertainties of pH esti-
mates occur in the periphery of the study area where few
experimental points are involved in the estimation proce-
dure, and in the region north of Rouyn-Noranda where
few lakes can be sampled due to low lake density.
Figure 7c shows that the simulation model allows the cal-
culation of the spatial probability of exceeding a given
threshold. The general spatial pattern is similar to the
spatial pattern of local mean pH. It shows that the proba-
bility for the mean pH to be ^6.0 reaches 1.0 two
squares east of Rouyn-Noranda and in the Baie-Comean
area.
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Fig. 7
Estimated mean values and 95% prediction intervals for mean
of pH, calculated over surfaces of 100 km!100 km (conditional
simulations for b and c)

Fig. 8 Estimated mean values and 95% prediction intervals
for proportion of lakes with pH^5.5, calculated over surfaces
of 100 km!100 km (conditional simulations)

One of the fundamental goals of lake water quality sur-
veys is to obtain interval estimates of the number of
lakes in defined geographic regions that may be sensitive
to acid deposition (Patil and others 1985; Dupont 1991).
This estimate is a direct measure of the extent of the
acidification problem. Simulations allow the direct calcu-
lation of this type of statistic. The general spatial disper-
sion pattern of this variable (Fig. 8a) and its prediction
interval (Fig. 8b) are very similar to the dispersion of
mean pH and its prediction interval. Figure 8a shows that
locally, the proportion of lakes strongly affected by acid-
ification can exceed 50% in surfaces of 100!100 km in
the Abitibi and Baie-Comeau areas. For Abitibi, Dupont
(1993) reached very different conclusions. He concluded
that 16% of the lakes have a pH^5.5, with lower and up-
per confidence limits of 11.79% and 21.02%. This area,
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delimited on Fig. 1 (dashed line), covers approximately
155000 km2. This regional estimate gives a poor picture
of the situation. The important difference in the esti-
mates of the proportion of lakes strongly affected by
acidification is due to two main factors. First, Dupont
(1993) performed estimation over a large area while our
estimation used much smaller surfaces. There is impor-
tant small-scale heterogeneity between small areas, which
is not taken into account when considering a large drain-
age basin. Geological and pedological features present
small-scale variation in this area. Second, the model used
by Dupont (1993) considers a random spatial pattern,
while our model integrates structured spatial variation.

Conclusion

The assessment of uncertainty is a central problem in en-
vironmental evaluation. The evaluation of potential errors
of estimation constitutes a key information to appreciate
the seriousness of an environmental problem. A condi-
tional simulation procedure has been applied to estimate
local means, probabilities and confidence intervals of pH
values. The method allowed the production of accurate
local pH estimates enabling the delimitation of areas af-
fected by lake acidification. Conditional simulations of a
random function model, taking into account the spatial
autocorrelation structure of the data, produced more ac-
curate estimates than estimation based upon classical sta-
tistical relationships, showing the usefulness of the deter-
ministic component of the model.
The southern part of the Canadian Shield in Québec
shows large geographical variation in lake acidity. Two
areas are identified as strongly affected by lake acidifica-
tion. The area east of Rouyn-Noranda is subjected to
smelter emissions; bedrock and mining activities repre-
sent additional sources of acidity in this area. The Baie-
Comeau area is characterized by lithologies and a thin
soil cover with low buffering capacity. In return, some
large areas display high pH values due to high buffering
capacity related to the occurrence of carbonate-rich ma-
terial in bedrock and glacial deposits, or the occurrence
of clay deposits.
Previous studies on lake acidity using classical statistical
relationships have drawn conclusions at the scale of large
drainage basins (Dupont 1991), neglecting small-scale
phenomena acting as local sources of heterogeneity.
These sources of heterogeneity produce sharp transitions
between affected areas and other areas with high buffer-
ing capacity. This phenomenon is particularly obvious in
the Abitibi and Baie-Comeau areas, where changes in
physiographic features produce changes in pH levels.
These sharp transitions are taken into account by the
small-scale structure of the variogram. Generally, few
sampling units are available in a small region, making it
difficult to estimate a local pH value. One of the major
advantages of the conditional simulation technique is its

ability to produce accurate local estimates with a poten-
tial error determined by sampling density and configura-
tion, data values and autocorrelation structure. The esti-
mation of accurate local values with low potential errors
allows a more precise evaluation of the extent of environ-
mental problems.
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