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Abstract

Larval dispersal is a crucial factor for fish recruitment. For fishes with relatively small-bodied larvae, drift has the potential to
play a more important role than active habitat selection in determining larval dispersal; therefore, we expect small-bodied
fish larvae to be poorly associated with habitat characteristics. To test this hypothesis, we used as model yellow perch (Perca
flavescens), whose larvae are among the smallest among freshwater temperate fishes. Thus, we analysed the habitat
association of yellow perch larvae at multiple spatial scales in a large shallow fluvial lake by explicitly modelling directional
(e.g. due to water currents) and non-directional (e.g. due to aggregation) spatial patterns. This allowed us to indirectly
assess the relative roles of drift (directional process) and potential habitat choice on larval dispersal. Our results give weak
support to the drift hypothesis, whereas yellow perch show a strong habitat association at unexpectedly small sizes, when
compared to other systems. We found consistent non-directional patterns in larvae distributions at both broad and medium
spatial scales but only few significant directional components. The environmental variables alone (e.g. vegetation) generally
explained a significant and biologically relevant fraction of the variation in fish larvae distribution data. These results
suggest that (i) drift plays a minor role in this shallow system, (ii) larvae display spatial patterns that only partially covary
with environmental variables, and (iii) larvae are associated to specific habitats. By suggesting that habitat association
potentially includes an active choice component for yellow perch larvae, our results shed new light on the ecology of
freshwater fish larvae and should help in building more realistic recruitment models.
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Introduction

Larval dispersal is crucial to several fish species, determining,

among other things, the chances of individuals to settle in optimal

habitats or the level of connectivity among populations [1]. Many

fishes begin their pelagic larval stage as plankton but end it as

nekton, gradually improving their ability to influence their

dispersal [2]. A better knowledge of the ontogeny of this transition

will improve our understanding of dispersal patterns and, in turn,

our ability to integrate behavior into dispersal models. It is now

recognized, at least for marine species, that even small larvae can

select the habitat in which they settle [2], but there is limited

knowledge on the relative roles of drift versus habitat selection in

shaping the spatial distribution of fish larvae. Because most larval

stages of fishes have limited locomotion capabilities, processes

governing their distribution in large systems should act across

multiple spatial scales; passive processes should dominate at broad

scales, while active habitat selection should dominate at smaller

scales.

Among temperate freshwater fish species, yellow perch (Perca

flavescens) is probably one of the few showing a clear larval pelagic

phase with a high potential to drift offshore over long distances

[3,4]. Like for the ecologically similar Eurasian perch (Perca

fluviatilis), the duration of the larval phase in yellow perch is

relatively long: the pelagic stage of Perca spp. begins shortly after

larvae hatch in the littoral zone and lasts 2–3 weeks in small lakes

to approximately 40 days in larger lakes [5,6]. The duration of the

pelagic period may be even longer in systems driven by marine-

like hydrodynamics such as the Great Lakes, with some individuals

captured in the pelagic zone after 75 days [3,4]. This extended

pelagic phase suggests that spatially and temporally variable

current patterns could be crucial for yellow perch larvae timing of

settlement (e.g. [4]). Whereas Perca spp. habitat shifts were typically

studied in lacustrine systems with a narrow littoral zone and a well-
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defined pelagic habitat [6,7], we have poor knowledge about this

phenomenon in systems lacking a true offshore habitat.

In this study, we modelled the spatial distribution of yellow

perch larvae collected in Lake St. Pierre (LSP), the largest fluvial

lake of the St. Lawrence River, which is the remnant of former

postglacial Lake Lampsilis. LSP is dominated by shallows with

patchy vegetation, excepted for the exclusion of the main channel,

and is considered an important fish nursery area [8]. LSP is thus

an ideal system to analyze early habitat associations in yellow

perch in systems lacking a true pelagic zone. Its heterogeneous

hydrodynamics along the transversal axis makes it particularly

interesting since LSP could be seen as a large river with fast

directional flow in the main channel and extensive slow-flowing

zones with limited transversal exchange between adjacent water

masses [9,10]. These characteristics could potentially lead to larval

drift in some areas and retention in other areas with slower current

[11,12].

Preliminary results from field sampling indicated that, at the

peak of their pelagic phase, the highest abundances of larvae are

found at the interface of these two habitats, in water masses where

currents are close to the swimming speed of the newly hatched

yellow perch (1 cm sec21) [13]. However, since velocity measure-

ments are not available for the years sampled in this study and

discharge differs among years, it is rather difficult to predict the

importance of drift on yellow perch larvae distribution in LSP. To

overcome these limitations, we adopted a method based on

multiple a priori hypotheses to infer processes from spatial patterns

[14]. Following this approach, we tested hypotheses about the

relative importance of directional (e.g. due to water currents) and

non-directional processes (e.g. due to aggregation), used as proxies

of drift and potential active habitat choice, respectively, on yellow

perch larvae distribution at multiple spatial scales.

We structured our modeling approach in two main steps. In a

first step, we partitioned the variation of the abundance data [15]

to model the spatial patterns of yellow perch larvae under

hypotheses of presence (asymmetric eigenvector maps – AEM) or

absence (Moran’s eigenvector maps – MEM) of directional

processes [16–18]. This approach allowed us to compare the

relative ability of AEM and MEM to model larval abundance and

therefore to infer about the relative importance of directional and

non-directional processes in shaping their distribution. By

explicitly testing hypotheses related to the role of directional vs.

non-directional processes on abundance of yellow perch larvae at

different scales, we wanted to highlight the importance of drift and

potential habitat choice as potential determinants of larval

distribution. In a second step, variation partitioning at different

spatial scales also allowed the assessment of the independent

contributions of spatial and environmental variables (e.g. abun-

dance of aquatic vegetation) on larvae abundance to determine the

potential of the larvae to select their habitat. Our two-steps

approach thus allowed us to asses the relative roles of drift and

potential active habitat choice in determining the distribution of

yellow perch larvae at multiple scales, which were defined on the

basis of the autocorrelation properties of the spatial models built to

analyze the larval abundance data.

Based on our knowledge of yellow perch larval ecology in our

study system, we made the following predictions: (i) at broad scale

(ca. 4.5 to 30 km) (i.e. at the between-spawning area scale; Fig. 1),

yellow perch distribution patterns should be mainly non-

directional because they are controlled by static factors such as

the locations of the main spawning areas and should have similar

importance from year to year. Yellow perch larvae were expected

to show large scale aggregation patterns in correspondence with

the spawning areas but, because of relatively weak currents in the

near-shore study areas and the short time since hatching,

directional processes along the river longitudinal axis should not

be important at that scale (MEM should thus outperform or

perform equally well with AEM at that scale); (ii) at medium (ca. 3

to 4.5 km) and fine scales (ca. 2 to 3 km) (i.e. at the within-

spawning area scale), the spatial patterns should be caused by

downstream flow (i.e. AEM should outperform MEM at both

scales); and (iii) while controlling for the spatial components, no

relationship was expected locally (i.e. at the scale of the sites)

between larvae abundance and the environmental variables, since

we assumed that larval dispersal was mainly passive and driven

both by directional (e.g. drift) and/or non-directional hydrody-

namic factors (e.g. wave action at spawning locations).

Methods

Study Area
Lake St. Pierre (LSP; 46u129N; 72u509W) is the largest (315

km2) fluvial lake of the St. Lawrence River (Québec, Canada). The

north and south shore areas of the lake are shallow (,3 m) and

separated by a deep (.10 m) navigation channel (Fig. 1). LSP is

characterized by distinct water masses forming a series of lanes

parallel to the main channel and extending the length of the entire

system (see Fig. 1 in [10]). The floodplain of LSP, covering

approximately 14 000 ha during 5–9 weeks of the spring freshet, is

an extremely important spawning ground for yellow perch. The

submerged vegetation is dominated by Vallisneria americana,

Potamogeton richardsonii, and P. pectinata. The emergent vegetation

is patchy and dominated by Schoenoplectus lacustris, Sagittaria latifolia

and Sparganium eurycarpum. The fish community is composed of up

to 80 species [19].

Larvae Sampling
Yellow perch larvae were collected during the spring of 2005

(28-May to 10-June), 2006 (05-June to 16-June) and 2007 (28-May

to 14-June). Sampling was scheduled to occur approximatively 6–7

weeks after peak spawning of yellow perch (20-April in 2005, 13-

April in 2006, and 24-April in 2007; Yves Mailhot, Ministère des

Ressources Naturelles et de la Faune du Québec, comm. pers.). A

total of 198 sites were sampled once each year during daytime.

The sampling sites were located all over the lake perimeter at

regular intervals (ca. 700 m) on two isobaths (60–80 cm and 100–

120 cm; Fig. 1). Whereas the distance between two contiguous

sites along the same isobaths was relatively constant, the distance

between two contiguous sites located on different isobaths varied

depending on the slope of the bottom between the isobaths (Fig. 1).

These isobaths were selected following a pilot study which showed

that the abundance of yellow perch larvae was close to zero outside

the 50–150 cm depth range during the study period (P. Brodeur,

P. Magnan and M. Mingelbier, unpublished data). Our sampling

protocol can be considered as a snapshot of the distribution

pattern of larvae during the abundance maximum in the pelagic

zone, at isobaths where they are potentially subjected to drift.

Given the peculiar hydrology of our study system, with lateral

water masses slowly flowing along the longitudinal axis and

showing little transversal mixing [9,10], we considered the

longitudinal axis as the more interesting to study potential larval

drift. Therefore, by analysing the patterns of longitudinal

distribution of larvae over different years, our study aimed

explicitly at analysing the longitudinal component of larval

dispersion in LSP. Because of variations in water levels, the

coordinates of the sampling sites were adjusted after 2005 in order

to meet the pre-established isobaths: once the exact location was

found, we measured the depth of the water column and moved
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perpendicular to the shore until the exact isobaths was found.

Larvae were sampled using push nets at a velocity of 1 mNs–1 (see

[20]). Push nets size (a 2 m long plankton-type net, 0.4060.40 m

square mount, 500 mm mesh) was chosen to efficiently sample in

shallow waters. A 50-m long transect parallel to the shore was

sampled at each site. Larvae were sampled in the top 40 cm at the

60–80 cm isobaths and in the top 80 cm at the 100–120 cm

isobaths. Avoiding bottom layers is necessary to safely operate

push-nets. After capture, larvae were narcotized with Tricaine

methanesulfonate (MS-222TM – Sandoz) and immediately pre-

served in 75% ethanol for further laboratory analyses. In the

laboratory, larvae were individually identified and measured to the

nearest 0.1 mm under a binocular microscope. Abundance data

were expressed per unit surface (ind m–2) rather than per volume

(ind m–3) to standardize data between isobaths.

Environmental Variables
At each sampling site, we estimated the substrate type as sand,

clay, silt or debris. Submerged and emerged aquatic vegetation

density was visually evaluated independently using a semi-

quantitative scale: 0 (open water), 1 (sparse), 2 (dense, bottom

visible), 3 (very dense, bottom not visible but open water at the

surface) or 4 (extremely dense, bottom not visible, no open water

at the surface). The dominant structure of emerged and

submerged vegetation was noted as linear (e.g. Juncus sp.), floating

(e.g. Nymphea sp.) or arbustive (e.g. Potamogeton sp.). Water

conductivity (61 mS/cm) was measured in the field with a WTW-

P340i conductivity meter whereas nephelometric turbidity

(60.01 NTU) was measured in the laboratory on a water sample

collected at each site using a WTW-550 turbidity meter. Since

samples were taken at two different isobaths, a binary variable

‘isobaths’ was included in the list of environmental variables. The

water level at the sampling day and the day of the year counted

from January 1st were also included in the list of environmental

variables. In addition to account for the variability in larvae

abundance due to differences in time since hatching (day of the

year), these two factors may affect larvae capturability through a

dilution effect (water level), or because of larvae growth (day of the

year). Temperature was not included in the analyses since most of

the variation in this variable was related to the day of the year or

differences among the years.

Statistical Analyses
Spatial patterns. We used AEM, MEM, and linear trend

surface analyses (hereafter TREND) to explicitly model the spatial

correlation present in the larval abundance data at multiple scales

[15,18]. Whereas the AEM approach is explicitly designed to

model directional patterns (e.g. due to river flow), the MEM and

TREND are meant to model non-directional processes (e.g. due to

aggregation). AEM and MEM variables result from a spectral

decomposition of the spatial relationship among the sites, whereas

TREND is simply a regression of larval abundance against the XY

geographic coordinates of the sites.

The spatial relationships among the sites are provided by a

connection diagram (Fig. 1); this information is used to construct

the AEM and MEM spatial variables. The connection diagram,

representing all the possible paths that larvae could take to move

from one site to an adjacent one, was constructed from prior

knowledge of water movements and water masses in the lake based

on satellite imagery and two-dimensional hydrodynamic models

[9,10,21]. With current speeds higher than 30 cm sec-1 during

spring [22], the main channel of the St. Lawrence River can be

considered as a near-complete barrier for larvae between the north

and the south shores of Lake St. Pierre; for this reason, separate

connection diagrams were constructed for the northern and

southern portions of the lake, which were analysed separately. The

directional links (considering the arrows on the links in Fig. 1) were

used to construct the AEM eigenfunctions, whereas the same

connection diagrams with arrows in both directions, transformed

into two binary matrices of presence-absence of links among sites,

were used to construct the MEM eigenfunctions. This approach

can be easily applied to other systems (e.g. rivers or oceanic

streams), given that a proper connection diagram can be drawn

from knowledge of directional processes. The connection diagram

of 2005 (Fig. 1) was used as template for 2006 and 2007; the only

differences were due to slight changes in the geographic

coordinates (see Larvae sampling section) and to missing data,

which required slight modifications to the connections (not shown).

This sampling design allowed us to highlight the variations due to

water currents along the longitudinal axis rather than due to an

eventual offshore migration of the larvae. The reduced lateral

mixing among water masses, typical of LSP (see Fig. 1 in [10]),

supports our choice of focusing on the longitudinal axis. This is the

rationale behind the exclusion of arrows in the offshore direction

(i.e. perpendicular to the shore) in the connection diagrams.

Since we did not know how the larvae were spatially structured

over the theoretical connection diagram, we tested different

weighting functions to incorporate into the analysis some measure

of the difficulty of moving from one site to another. Five weighting

functions were applied during the construction of the AEM and

MEM eigenfunctions. The weights are functions of the sampling

sites; the distances are computed from the XY coordinates of the

sites following [18]. The five functions were: (1) no weights

(connection present = 0, absent = 1); (2–3) the weights follow a

concave-down function of the distances (f1~1{dij=max dij

� �a
);

and (4–5) they follow a concave-up function (f2~1=dija ); in f1 and

f2, a is equal to either 1 or 2 [18]. The weights leading to the

highest fraction of explained variation in the larval abundance

data were retained for further analyses (Online Resource A).

Moran’s I coefficients of spatial correlation were computed for

each AEM and MEM eigenfunction. They were used to select the

eigenfunctions that modelled positive spatial correlation; these had

Moran’s I values higher than the expected value. The expected

value of Moran’s I is –1/(n–1); this is the mean value it would have

if calculated for random variables under the normal distribution.

Moran’s I coefficients were computed for the first-order connec-

tions, that is, using only the direct links connecting sites, following

[23]; they were tested for significance through 999 random

permutations. AEM eigenfunctions were constructed using the

‘‘AEM’’ package [24] in the R statistical language [25], following

the procedure presented in Blanchet et al. [18]. MEM eigenfunc-

tions were constructed using the ‘‘spacemakeR’’ package in R

Figure 1. Study system and sampling sites. Lake St. Pierre, St. Lawrence River, Québec, Canada. Filled and open circles represent the locations of
the sampling sites in 2005 at the 60–80 cm isobath and at the 80–120 cm isobath, respectively. The inset shows for a subset of sampling sites the
general structure of the connection diagram used to build the AEM eigenfunctions. In 2006 and 2007, the sampling sites were located close to the
2005 sites, but adjusted for the water level so that they were located at the pre-determined isobaths. The connection diagram was in some cases
adapted to take account of missing data. Arrows indicate the approximate locations of the main known spawning grounds. The main channel of the
St. Lawrence River (.10 m deep; dark grey) flows from S-W to N-E. Depth contours are based on averaged water levels in June.
doi:10.1371/journal.pone.0050239.g001
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[26]. Functions available in these packages were also used to

compute the optimum weights for the five weighting functions.

The larval abundance data were modelled by multiple

regression via the lm() function in R by using all eigenfunctions

with Moran’s I larger than the expected value (MEM or AEM).

Each regression model was recomputed with a canonical

redundancy analysis (RDA) using the rda() function of the

‘‘vegan’’ package [27]. This was done in order to perform

permutation tests (999 permutations) with the anova.cca()
function of the ‘‘vegan’’ package; when there is a single response

variable, as in the present study, an RDA is simply a multiple

regression. This approach was preferred to parametric testing

because of the distribution of the larval abundance data. Despite

the fact that larvae counts had been log-transformed (y9 = log(y+1)),

we had not eliminated skewness because of the large number of

zeros in the count data. Permutation tests of non-normal data,

even highly skewed, have correct levels of type I error in multiple

regression and are thus valid [28]. Although it is not necessary to

remove the trend from the response when selecting AEM

eigenfunctions [18], detrended data should be used with MEM

eigenfunctions if the TREND analysis is significant [16]. The

linear trend was thus removed from the log-transformed response

variables (larvae counts) prior to performing MEM analysis by

extracting the explained variation due to the XY coordinates of

the sampling sites [16].

All analyses were conducted separately at three scales: whereas

the TREND modelled patterns only at broad scale, AEM and

MEM eigenfuctions were classified as broad, medium or fine-

scaled if their Moran’s I was .0.75, comprised between 0.75 and

0.45, or ,0.45, respectively. This arbitrary choice of the

thresholds used to define the scales led to spatial variables

corresponding roughly to spatial structures of 4.5–30 km, 3–

4.5 km, and 2–3 km in size, respectively. Given that the main bays

are 4 to 5 km wide, these three scales are used to model the

variability between (broad) or within (medium and fine) the

spawning grounds. Within a given type of analysis (i.e. AEM or

MEM), spatial eigenfuctions are orthogonal (i.e. linearly indepen-

dent) by construction, so there is no correlations within or between

any of the three groups of spatial variables.

The performance of directional spatial variables in modelling

the larval abundance data was compared with that of non-

directional ones for each of the three scales separately by variation

partitioning [15]. This method uses RDA to partition the variation

in species assemblage explained by independent variables into

different components (see [15] for computation details). The

fractions of variation were calculated from adjusted R2 (R2
adj),

following Peres-Neto et al. [29], using the varpart() function of

the ‘‘vegan’’ package. This approach allowed an unbiased

estimation of the portions of the variation due only to directional

spatial processes (AEM), only to non-directional spatial influences

(MEM+TREND), or both. For parsimony reasons, the fraction of

variation confounded between MEM+TREND and AEM was

considered non-directional since that portion of the larval

abundance data signal is modeled equally well by directional or

non-directional spatial variables. The total non-directional fraction

was assumed to be the sum of the ‘‘pure’’ MEM+TREND fraction

plus the fraction confounded between MEM+TREND and AEM.

In some cases both total directional and non-directional fractions

were significantly related to the variation in the abundance of

larvae but neither pure fractions were significant (i.e. all the

variation was confounded). In these situations, a strict partition of

the variation is not possible despite a significant spatial effect, and

thus only the non-directional spatial variables were considered in

our interpretation. Following this conservative approach, we

considered that a directional pattern existed in the larval

abundance data only when a significant ‘‘pure’’ AEM fraction

was found.

Habitat Association
The strength of the relationship between larval abundance and

habitat features was modelled by using the environmental

variables as predictors. Forward procedure was used to select the

environmental variables to be included in the regression model

following Blanchet et al. [30] through the forward.sel() function

of the ‘‘packfor’’ package [31]. Both the type of substrate and the

vegetation are qualitative variables. In order to use them in later

analyses, we included them in the analysis as levels of dummy

variables following Legendre and Legendre [32]. To avoid

creating missing data, the absence of vegetation was coded as a

level of a dummy variable as well. A principal component analysis

(PCA) was then applied to each set of dummy variables to assure

their orthogonality since a different number of observations for

each level of a dummy variable might lead to artificial collinearity

among the levels. Since no selection was done on the dummy

variables, there is no information lost when transforming

qualitative variables into quantitative ones using the PCA

approach. Each selected axis will subsequently be used as an

independent quantitative explanatory variable in the following

analyses.

The relative contribution of each environmental variable

included in the models was assessed by calculating average semi-

partial R2 using the ‘‘lmg’’ metric in the ‘‘relaimpo’’ package [33].

Note that the individual contributions may not sum up to the total

contribution of the selected environmental variables since these are

unlikely to be orthogonal. However, preliminary analyses showed

that the collinearity between environmental explanatory variables

was not an issue here: the variance inflation factor was always

smaller than 10.

Since the environmental variables showed spatial heterogeneity,

the variation explained by the environmental and spatial variables

may be redundant. To explain this potential redundancy,

variations in larvae abundance were analyzed against the spatial

and environmental variables combined, using variation partition-

ing [15]. In this case, TREND will be considered jointly with

MEM to represent the non-directional portion of the spatial

variation.

All statistical analyses were conducted in the R statistical

environment [25].

Ethics Statement
No specific permits were required for the described field studies

since this work was done in collaboration with the Ministère des

Ressources naturelles et de la Faune of Québec. The study

location is not privately-owned or protected in any way and the

field studies did not involve endangered or protected species.

Results

Directional vs. Non-directional Patterns
2005 – North shore. A fairly large part of the variation in the

larvae abundance data was explained at broad and medium scales

(Table 1a). At broad scale, both pure directional and non-

directional significant patterns were found, explaining respectively

19.4% and 21.9% of the variation in the larval abundance data.

Taking into account the confounded part, non-directional broad

spatial patterns accounted for 36.7% of the variation (Table 1a).

Therefore, the patterns at this scale are mainly non-directional,

but co-occur with a non trivial directional component representing

Inferring Processes from Fish Larvae Distribution
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19.4% of the variation. At medium scale, only non-directional

patterns were detected, with an additional 19.7% of the variation

in larval abundance data explained at this scale (Table 1a). The

mean size of larvae was of 12.162.6 mm (n = 924).

2005 – South shore. A large portion of the variation was

explained at broad scale in the larval abundance data (Table 1b).

At this scale, most of the explained variation (63.0%) was

confounded between directional and non-directional variables

(i.e. explained equally well by both set of variables). Neither the

directional, nor the non-directional pure fractions were significant

after partitioning (Table 1b). Therefore, the patterns at this scale

were considered non-directional with the non-directional spatial

variables explaining 64.4% of the variation in the larval

abundance data. At medium and fine scales, no significant spatial

patterns were detected (Table 1b). The mean size of larvae was of

11.562.2 mm (n = 1850).

2006 – North shore. As in 2005, a large portion of the

variation was explained at broad and medium scales in the larval

abundance data (Table 1a). At broad scale, 18.8% of the variation

was confounded between directional and non-directional (MEM

and TREND) variables. However, both pure fractions were

significant after partitioning and explained relatively large parts of

the variation in the larval abundance data (Table 1a). Therefore,

the patterns at this scale could be considered as having both a

directional and a non- directional component. The non-direction-

al component represented 50.1% of the variation in the larval

abundance data, whereas the pure directional fraction was 21.2%.

At medium scale, only the directional component was significant

and explained 12.7% of the variation in the larval abundance

(Table 1a). The mean size of larvae was of 15.662.4 mm

(n = 594).

2006 – South shore. Variation was only explained at broad

scale (10.9%) and was completely confounded between directional

and non-directional spatial descriptors (Table 1b). The pattern was

thus considered entirely non-directional. The mean size of larvae

was of 19.362.6 mm (n = 489).

2007 – North shore. Relatively to 2005 and 2006, a smaller

fraction of the variation was explained in 2007 at broad scale on

the north shore in the larval abundance data (Table 1a). At this

scale, nearly half of the explained variation (11.9%) was

confounded between directional and non-directional variables.

Only the non-directional pure fraction was significant after

partitioning (Table 1a). Therefore, the patterns at this scale were

considered non-directional; non-directional variables explained

23.8% of the variation in the larval abundance data. The pure

directional fraction was negligible. Whereas at medium scale no

spatial pattern was detected, we found that at the fine scale 9.2%

of the variation was explained by the non-directional spatial

variables (Table 1a). The mean size of larvae was of 11.762.9 mm

(n = 960).

2007 – South shore. A relatively large portion of the

variation in the larval abundance data was explained by spatial

Table 1. Results of variation partitioning.

a) North shore variation partitioning

Year Scale pure directional Confounded pure non-directional total explained

2005 Broad 19.4* 14.8 21.9* 56.1

Medium 0.0 0.0 19.7* 19.7

Fine 0.0 0.0 0.0 0.0

2006 Broad 21.2* 18.8 31.3* 71.3

Medium 12.7* 0.0 0.0 12.7

Fine 0.0 0.0 0.0 0.0

2007 Broad 0.0 11.9 11.9* 23.8

Medium 0.0 0.0 0.0 0.0

Fine 0.0 0.0 9.2* 9.2

b) South shore variation partitioning

Year Scale pure directional Confounded pure non-directional total explained

2005 Broad 3.7 63.0 1.4 68.1

Medium 0.0 0.0 0.0 0.0

Fine 0.0 0.0 0.0 0.0

2006 Broad 0.0 10.9 0.0 10.9

Medium 0.0 0.0 0.0 0.0

Fine 0.0 0.0 0.0 0.0

2007 Broad 0 0 32.2* 32.2

Medium 9.9* 7.2 8.0* 25.1

Fine 7.7 4.0 9.4* 21.1

Results of variation partitioning on the log-transformed abundances of yellow perch larvae per square meter in the three study years among three spatial scales. Pure
directional components are represented by Asymmetric Eigenvector Maps (AEM), whereas pure non-directional ones are represented by Moran Eigenvector Maps
(MEM). The linear trend (TREND) is included in the non-directional component at the broad scale. Fractions are expressed as percentages of the total variation,
computed from adjusted coefficient of multiple determination (R2

adj). Asterisks indicate pure fractions that are significant at the 0.05 significance level. Results are
presented separately by spatial scale. (a) North shore; (b) South shore.
doi:10.1371/journal.pone.0050239.t001
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variables at all the three spatial scales (Table 1b). At broad scale,

nearly one third of the explained variation (32.2%) was explained

by broad scale non-directional variables, whereas the directional

fraction was zero (Table 1b). Therefore, the pattern at this scale

was considered completely non-directional. In contrast, at medium

scale, we found that both the directional and the non-directional

model explained independently a significant portion of the

variation (9.9 and 8.0%, respectively; Table 1b), with the total

non-directional part (i.e. the pure non directional and the

confounded part) accounting for 15.2% of the variation. A similar

picture was found at the fine scale, but in this case, only the non-

directional component was significant after partitioning (Table 1b):

this latter fraction explained 13.4% of the variation in the larvae

data. The mean size of larvae was of 12.662.2 mm (n = 1335).

Spatial vs. Environmental Factors
2005 – North shore. The density of emergent vegetation was

the only environmental variable retained in 2005. It explained

more than half of the variation in larvae abundance (Table 2a;

Online Resource B: Fig. B1b). The partial contribution of the

spatial component was not significant after variation partitioning

and therefore it is not necessary to control for its effect in the

analysis of the larvae-environment relationship. The partial

relationship with larvae abundance remained significant after

partialling out the effect of the spatial variables. It explained alone

13.9% of the variation in the response data (Fig. 2a; Online

Resource B: Fig. B1d). The coefficient relating the density of

emergent vegetation to the abundance of larvae remained

significant and did not change its sign after controlling for spatial

structure (Table 2a).

The pure spatial components did not explain significant

portions of the variation in larvae abundance after variation

partitioning (Fig. 2a). Therefore, the spatial component (both

directional and non –directional) was entirely related to the

spatially-structured portion of the environmental variation (i.e.

confounded between the environmental and the spatial compo-

nents).

2005 – South shore. In 2005, five environmental variables

(water level, conductivity, day of the year, emergent vegetation

structure and turbidity) were significantly related to larvae

abundance (Table 2b). However, their individual contributions

were relatively small and not significant after taking spatial

structure into account. This reveals that the variation in larval

abundance data was explained mostly by spatially structured

environmental variables (Table 2b, Fig. 2b; Online Resource B:

Fig. B1bcd).

Variation partitioning also showed that the response had a

significant pure non-directional spatial structure at broad scale

(29.2%) (Fig. 2b).

2006 – North shore. In 2006, four environmental variables

(day of the year, submerged vegetation structure, emergent

vegetation density and submerged vegetation density) were

significantly related to larvae abundance (Table 2a). However,

only submerged vegetation structure and emergent vegetation

density were significant after controlling for spatial correlation.

The variable describing the structure of submerged vegetation was

significantly related to larvae abundance and seemed to be related

more to the presence-absence of submerged vegetation than to its

structure: based on the PCA scores for the qualitative variables,

sites with either linear or arbustive vegetation had in fact higher

abundances of larvae than sites without submerged vegetation

(results not shown). The density of emergent vegetation was

positively related to larvae abundance, and remained significant

after partialling out the effects of spatial structure (Table 2a), albeit

it explained a smaller fraction of the variation than the previous

year.

Among the spatial variables retained, both directional (broad

and medium-scale) and non-directional (broad) variables were

significantly related to larvae abundance after variation partition-

ing; they explained alone 11.9% and 9.3% of the variation in the

response, respectively (Fig. 2c). More than 45% of the spatial

variation was confounded with the environmental variables

(Fig. 2c; Online Resource B : Fig. B2bcd).

2006 – South shore. All three selected environmental

variables, the abundance of submerged vegetation, the isobaths

and the structure of emergent vegetation, were significantly related

to larvae abundance after controlling for spatial correlation

(Table 2b). The abundance of submerged vegetation was associated

to higher larvae abundances whereas the isobaths was inversely

related to it. Emergent arbustive vegetation was associated to higher

larvae abundances than vegetation with a linear structure. Overall,

the pure environmental component explained 14.7% of the

variation in the larval abundance data (Online Resource B: Fig.

B2d). All broad-scale non-directional variation was confounded

with the environmental variables (Fig. 2d).

2007 – North shore. As in 2005, a large portion of the

variation (37.7%) in larvae abundance was directly related to the

density of the emergent vegetation on the north shore (Table 2a).

The structure of emergent vegetation was also significantly related

to the abundance of larvae, but explained a smaller fraction of the

variation (8.3%). In contrast to the south shore in 2005, this

variable suggests that larvae were more associated to the linear

than to the arbustive vegetation structure. All these variables

remained significantly related to the abundance of larvae and did

not change the sign of their coefficient after taking spatial structure

into account (Table 2a). In contrast, conductivity and water level

were related to larvae abundance only before taking spatial

structure into account. Variation partitioning showed that the

environmental variables were partly spatially structured (32.1%),

but a relatively large portion of their variation was significantly

related to larvae abundances after controlling for spatial structure

(20.5%) (Online Resource B: Fig. B3bcd). The environmental

variables were structured at both broad and small scales and had a

non-directional spatial structure. Virtually no pure spatial

variation remained after variation partitioning (Fig. 2e; Online

Resource B : Fig. B3c); all the variation explained by small- and

broad-scale non-directional spatial variables was confounded with

the environmental variables.

2007 – South shore. In 2007, the environmental variables

explained together a large fraction (64.5%) of the variation in the

larval abundance data. More than half of this variation was

spatially structured (Fig. 2f, Online Resource B: Fig. B1bcd) but

only the non-directional spatial component was significant after

variation partitioning. If the non-significant directional part is not

taken into account, the pure spatial and environmental compo-

nents, both significant, represented respectively 4.7 and 22.7% of

the variation in the larval abundance data. The pure environ-

mental fraction was mostly related to conductivity, which was

directly related to the abundance of larvae (Table 2b; Fig. 2f).

Discussion

The distribution of yellow perch larvae in LSP revealed in

several occasions both directional and non-directional patterns,

depending on the spatial scale considered. However, only in one

case did the pure directional component explain a significant

fraction of the variation in larval abundance (i.e. the north shore in

2006, Fig. 2c). Moreover, most of the spatial patterns of larvae
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Figure 2. Relative importance of environmental and spatial variables. Venn diagrams illustrating the results of variation partitioning on the
log-transformed abundance of yellow perch larvae per square meter in the three study years among environmental and spatial variables. The
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were shared with the environmental variables. Notwithstanding

the confounding between directional and non-directional forces,

our results suggest at best a moderate role for downstream

dispersal of yellow perch larvae in this system. Furthermore, a

positive association between larvae and environmental variables

(mostly aquatic vegetation), independent of spatial structure,

suggests that habitat selection is a factor determining yellow perch

larvae distributions. Taken together, our results suggest that yellow

perch larvae cannot be considered merely as passive particles in

LSP. By explicitly analyzing the relative importance of directional

processes at different scales, the statistical approach used here

helped us extract this crucial information from the larval

abundance data.

As predicted, broad-scale non-directional patterns were detect-

ed on both shores for each study year, confirming our prediction

(i). We interpret these patterns as being related to the locations of

the main spawning grounds (Fig. 1, Online Resource B). In LSP,

spawning yellow perch aggregate in the main bays, which are

densely vegetated and in the spring offer extensive spawning

grounds in shallow flooded areas [8]. The higher vegetation

abundance in the bays relatively to the rest of the lake probably

explains why the larvae distribution has a strong non-directional

component, resulting from the overlapping of spawning grounds

with spatially structured environmental factors. The absence of

directionality in most broad-scale patterns is not surprising since,

according to our prediction (ii), we did not expect current to

strongly affect larvae distribution at this spatial scale along the

sampled isobaths. However, it is difficult to know if the swimming

speed of yellow perch larvae was sufficient for larvae to avoid drift

at the selected isobaths during our sampling. The available

variation explained by environmental and non-directional spatial variables (i.e. MEM and TREND) is represented by circles (grey and open,
respectively), whereas plectrum-shaped objects represent the variation explained by directional spatial variables (AEM). Percentage of unexplained
variation is given at the bottom right of each panel (Residuals). The sizes of the objects are not proportional to their importance in terms of explained
variation.
doi:10.1371/journal.pone.0050239.g002

Table 2. Results for the regression models.

a) North shore Full model Partial model

Year Selected variables P model P R2 Coeff P model P R2 Coeff

2005 Emergent vegetation density ,0.001 ,0.001 0.573 0.252 ,0.001 ,0.001 0.139 0.193

2006 Day of the year ,0.001 ,0.001 0.238 20.023 ,0.001 0.650 0.001 20.006

Submerged vegetation structure ,0.001 0.078 0.100 0.014 0.017 0.055

Emergent vegetation density ,0.001 0.162 0.131 0.049 0.010 0.064

Submerged vegetation density 0.004 0.046 20.090 0.777 0.005 20.011

2007 Emergent vegetation density ,0.001 ,0.001 0.377 0.243 ,0.001 ,0.001 0.146 0.214

Water level 0.005 0.042 20.238 0.759 0.004 20.046

Emergent vegetation structure 0.009 0.083 20.064 0.035 0.026 20.056

Conductivity 0.010 0.045 0.001 0.147 0.005 0.001

b) South shore Full model Partial model

Year Selected variables P model P R2 Coeff P model P R2 Coeff

2005 Water level ,0.001 0.200 0.093 20.960 0.097 n.d. 0.004 1.252

Conductivity ,0.001 0.132 0.003 n.d. 0.001 0.001

Day of the year 0.002 0.119 20.125 n.d. 0.002 0.039

Emergent vegetation structure 0.011 0.030 0.160 n.d. 0.023 0.108

Turbidity 0.043 0.027 0.028 n.d. 0.003 20.014

2006 Submerged vegetation density ,0.001 ,0.001 0.132 0.055 ,0.001 0.010 0.053 0.049

Isobath 0.002 0.060 20.115 0.007 0.048 20.108

Emergent vegetation structure 0.012 0.086 20.044 0.013 0.071 20.044

2007 Emergent vegetation density ,0.001 0.053 0.186 0.058 ,0.001 0.159 0.055 0.049

Conductivity ,0.001 0.235 0.003 ,0.001 0.132 0.003

Day of the year ,0.001 0.077 20.027 0.316 0.016 20.010

Submerged vegetation density ,0.001 0.161 0.109 0.137 0.024 0.052

Results for the regression model relating the abundance of yellow perch larvae to environmental variables. P model = P-value of the global test of significance; P = P-
value for the test of significance of a variable with all the other terms included in the model; R2 = explained variation due to the explanatory variable (calculated as the
average semi-partial R2); Coeff = regression coefficient. Bold indicates those variables significant at the 0.05 level after controlling for spatial correlation; n.d. = not
determined since the global test was not significant.
Note: The selected variables are ranked following their entry order in the full model (i.e. the model without covariables) during the forward selection procedure. Partial
model: model with spatial covariables. Note that forward selection was only applied to build the full model.
doi:10.1371/journal.pone.0050239.t002
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hydrodynamics data in LSP in other years suggest that water

velocities at the sampled isobaths are relatively slow (,10 cm

sec21) [21], but within a range in which drift cannot be excluded.

Only in one case (north shore in 2006, Fig. 2c), we detected a

significant pure directional pattern, at both broad and medium

scales, suggesting that in some situations drift is a driving force.

This finding suggests that in our system directional processes can

affect the distribution of larvae, probably because these latter

occur at the edge of backwaters and at current speed where larvae

are not capable of swimming for long periods. However, their

relatively low occurrence suggests that drift is a minor component

of early larvae dispersal in LSP, at least at the sizes observed here,

giving only weak support to our second prediction. The lack of any

other pure directional pattern at medium and small scales

corroborates this point. Perca spp. larvae are known to move out

into the pelagic area and after some time return to shallow-water

habitats [5,34,35]. There is a lack of agreement, however, as to

how (i.e. passive vs. active), when and why these changes take

place (e.g. see [7]). Perca spp. appear to be adapted to variable

environments and, depending on the system, the initiation of post-

hatching dispersal has been considered as merely passive [3] or

more active [6]. Our results give indirect support to the hypothesis

that the newly-hatched larvae could make an active habitat choice,

at least in the absence of strong currents [6,36]. Currents probably

play a greater role in the dispersal process in some systems, as in

the Canadian Great Lakes where currents are relatively strong

(10–20 cm?s–1) and yellow perch larvae can be found more than

50 km offshore [3,4]. Our results give low support to the passive

advection hypothesis, by showing that directional processes have a

small importance in our atypical study system, which is

characterized by vast macrophyte beds. This is not enough to

exclude a role for passive transport due for example to wind-

induced currents or changes in water level, especially in deeper

offshore areas not sampled in our study. However, the consistent

relationship with the density of emergent vegetation after

controlling for spatial structure suggests that larvae can select

their habitat, at least at the time of our sampling (i.e. 2 weeks ca.

after hatching). This might be similar to what has been found for

the larvae of marine reef fishes, previously considered mainly as

passive particles transported by currents, and which are now

considered to be selecting where they settle [37]. To our

knowledge, potential active habitat selection by freshwater fish

larvae has been the object of very few studies to date. By

combining two statistical methods currently available, our

approach suggests a simple and new way to analyze the relative

importance of different hypothesis about the role of passive

transport versus active swim to settlement habitats.

The association of larvae with vegetation may also be partly

explained by three other hypotheses not associated with habitat

choice: i) a lack of horizontal offshore migration, (ii) a ‘‘sediment

trap’’ effect in macrophyte beds, and (iii) a reduction of larval

mortality in macrophyte beds. Hypothesis (i) is in contrast with the

current paradigm of yellow perch larvae leaving the littoral

vegetated areas just after hatching [4,5,7]. The absence of a typical

deep pelagic zone in LSP would possibly contribute to this pattern.

However, this is only partly in agreement with our personal

observations in LSP, since egg strands are typically found on the

temporarily flooded areas, relatively far from our sampling sites.

Moreover, the association with the vegetation remained significant

after controlling for the effect of the spatial locations of the bays,

suggesting that the observed relationship is at least partly

independent of bay locations. Hypothesis (ii) suggests that since

macrophyte beds reduce locally current velocity, they might trap

drifted fish larvae as these were sediment particles. We cannot

exclude this hypothesis, but this seems at odds with the results of

the AEM analysis, which showed only little evidence of directional

processes. However, it is also possible that, by counteracting the

effects of drift, this mechanism would reduce artificially the

directional component of the model. In contrast, it is possible that

the reduced current speed within macrophyte beds is a condition

sought by larvae, in accordance with the habitat choice hypothesis.

Hypothesis (iii) suggests that larvae mortality (e.g. predation-

dependent) is higher in open water areas and that the observed

patterns might be simply due to the higher survival into

macrophyte beds. Current knowledge is inadequate to address

this controversial hypothesis (e.g. [7]) and studies explicitly design

to test this hypothesis would be needed to answer this question.

Weak or absent downstream drift combined with habitat

selection by larvae might reduce gene flow within the lake. For

P. fluviatilis, it has been shown that genetic differentiation is

possible not only in large [38,39] but also in small lakes in the

absence of evident barriers to gene flow [40]. Genetic analyses on

a large number of AFLP genetic markers in larvae from LSP in

2004 suggest that genetic differences exist among individuals from

the fours known spawning grounds (Fig. 1), even on the same shore

of the lake [41]. The limited larval drift hypothesis suggested by

our results is in accordance with this finding.

In general, the directional spatial variables tended to model the

larval abundance data more efficiently than the non-directional

ones since they modelled appropriately broad-scale patterns

without previous detrending and using relatively few eigen vectors

to model the same spatial structures (results not shown). However,

our results indicate that this is not enough to infer the presence of a

directional pattern in the data, since directional spatial variables in

most cases did not extract more information from the larval

abundance data than non-directional ones. Therefore, our results

also show that AEM analysis alone cannot be used to infer the

importance of directional patterns, and that only the comparison

with a non-directional counterpart (e.g. MEM) can help to reach

this goal. This approach may help in revealing the potential for

broad-scale physical transport processes when only the patterns of

larval distribution are known. We hope that our results will

encourage future research using this approach in other systems, to

assess the relative importance of directional and non-directional

processes in determining the distribution of living organisms.

By revealing a strong link between larvae and the structure of

the habitat, our results suggest that settlement of yellow perch

larvae could be predicted from simple habitat variables. A better

understanding of the habitat-larvae relationship will improve our

ability to predict recruitment success in fish and help in planning

better management strategies to protect their populations.
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de régularisation du système lac Ontario – Saint–Laurent. Ministère des

Ressources naturelles et de la faune, Direction de la recherche sur la faune.
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