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ANALYZING OR EXPLAINING BETA
DIVERSITY? COMMENT

Raphaël Pélissier,1,4 Pierre Couteron,1,2 and

Stéphane Dray3

In a recent paper, Tuomisto and Ruokolainen (2006,

hereafter referred to as TR) discussed the domains of

application of the so-called ‘‘raw-data approach’’

compared to the ‘‘distance (Mantel) approach’’ for

studying and testing hypotheses about patterns and

determinants of beta diversity. Following Legendre et al.

(2005, hereafter referred to as LBP), they addressed the

dilemma of an either/or approach in reference to a

conceptual framework made of three different ‘‘levels of

abstraction’’ depending upon the ecological question to

be addressed and thus on the response variable to be

studied: (1) community composition data; (2) variation

in community composition data or beta diversity; or (3)

variation in beta diversity, i.e., variation in variation in

community composition data.

TR contradicted LBP, however, by claiming that only

the third level of abstraction is relevant to address

ecological hypotheses involving geographic distance

such as the dispersal limitation underlying the neutral

theory of biodiversity (Hubbell 2001). More specifically,

they considered that submitting matrices of distances/

dissimilarities in community composition to multiple

regression along with Mantel tests is the only way to

test such hypotheses (TR: p. 2700).

We disagree with such a restrictive vision and the

main purpose of our comment is to show that spatially

explicit, distance-based analyses of beta diversity do not

necessarily belong to the so-called third level of

abstraction, let alone to multiple regression on distance

matrices and can, moreover, be viewed as a prolonga-

tion of the raw-data approach, in accordance with the

overall concept of variance partition. This emerges from

a general definition of alpha and beta diversity

components as functions of variance in species identity

among individuals within and among communities,

which is homologous to the definitions of diversity

adopted in various other domains and especially in

population genetics (e.g., Lewontin 1972, Nei, 1973,

Rao 1982). In the sequel, we will show that such a

definition leads naturally to an additive relationship

between the portions of species diversity explained and

unexplained by external environmental variables. We

believe, just like Lande (1996), that this partitioning

model is fully consistent with the well-rooted ecological

notions of alpha, beta, and gamma diversity, even

though Whittaker (1960, 1972), who introduced them,

initially referred to an analytical multiplicative relation-

ship (see Veech et al. 2002 for a recent review of the two

approaches). We will then demonstrate that this additive

framework based on well-mastered techniques of var-

iance/covariance decomposition is also encompassing

the double variance-partitioning scheme with respect to

explanatory variables and principal components of the

canonical analysis advocated by both LBP and TR in

their second-level raw-data approach. Finally, we will

show how, based on a rewriting of the beta component

as a measure of dissimilarity, the concept of variogram

leads to a direct distance-based additive apportionment

of beta diversity, which doesn’t require the invocation of

a third level of abstraction nor of a Mantel tests

approach. We shall finally discuss the goals of potential

methods for third-level analyses of the variance among

intersite dissimilarities, which is a variance of a variance

as correctly presented by LBP. Throughout the text, our

arguments are supported by specific references to and

commentaries of LBP and TR.

First level, within-community diversity

On the argumentation that basically in ecology ‘‘the

raw-data tables [. . .] consist of the observations of the

abundances of one or more species [. . .] in more than one

study site [. . .]’’, TR (p. 2698) defined community

composition as first-level data. By that, they diverged

from the proposition of LBP (p. 436) that a first-level

analysis consists in ‘‘studying variation in species

identity of individuals at a given site [which] is studying

alpha diversity,’’ an idea brought from genetics to

ecology by Lande (1996). This opposition is all the more

surprising given that TR say a little farther (p. 2702) ‘‘it

is important to notice that species composition is not an

entity that has ecological behavior of its own, but it is a

result of how individuals belonging to different species

behave.’’ Indeed, from this last statement, which has our

full support, the basic response variable of diversity

analyses appears unambiguously to be the taxonomic
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identities of the n individual organisms recorded

according to a reference nomenclature during a given

field survey, i.e., a taxonomic relevé, considered as
representative of a given study area or region. For the

purpose of data analysis, a straightforward translation

of such a list is a binary random variable, say Yij, which
indicates whether an arbitrary individual (1 � i � n)

belongs to a particular species (1 � j � s). This can be

written in matrix form as follows:

Y½yij� ¼
1 if the ith observation belongs to species j

0 otherwise
:

(

Matrix Y (n 3 s) is called an individual 3 species-

occurrence table, from Gimaret-Carpentier et al. (1998).

When the list is comprised of individuals encountered in
a set of m sampling sites (but this is, from our

perspective, already and blatantly a second-level prob-

lem; see next section), summing per site the individual
rows of Y yields a usual site3 species abundance matrix,

say A[akj] with size (m 3 s), which is a ‘‘shrunken’’

version of Y (n 3 s). From either Y or A table, the
relative frequency of species j in the taxonomic relevé is

given as

pþj ¼
1

n

Xn

i¼1

yij ¼
1

n

Xm

k¼1

akj ð1Þ

and its (uncorrected) variance (Lande 1996) as

SVj ¼
1

n

Xn

i¼1

ðyij � pþjÞ2 ¼ pþjð1� pþjÞ: ð2Þ

Furthermore, the most popular diversity indices can be

directly computed as a weighted sum of the SVj values
over the s observed number of species:

TD ¼
Xs

j¼1

wjSVj: ð3Þ

Indeed, taking the weighting function wj equal to one,

whatever the species, means quantifying the total

diversity of the taxonomic relevé via the Simpson index,
whereas taking wj ¼ 1/pþj or wj ¼ log(1/pþj)/(1 � pþj)

means relying on total species richness (minus 1, i.e., s –

1) or on the Shannon index, respectively (Pélissier et al.
2003). In the following discussion we refer to these three

measures of species diversity as the usual diversity

metrics, while additional metrics are thinkable from
other definitions of wj.

Lessons learned.—(1) Contrary to TR, but in accor-

dance with LBP, we believe that a first-level analysis
consists in characterizing the within-site/community

diversity, regardless at this point whether there is or

not overlap in species composition (i.e., shared species)
between different sites or communities. (2) A simple

general expression of the within-community diversity,

which encompasses the most popular diversity indices, is

the generalized, multivariate variance given by TD (Eq.

3). (3) When the taxonomic relevé is limited to a single

sampling site, TD measures alpha diversity of that site;

when the taxonomic relevé is comprised of individuals

encountered in a set of sampling sites distributed over an

ecological region, TD measures gamma diversity.

Second level, explaining among-communities variation

Can the spatial variation in the abundance of a given

species or the variation in community composition, i.e.,

in the abundances of all the species that form a

community at a time, be explained by variation in

environmental characteristics and/or geographical loca-

tion? These ecological questions raised by TR (pp. 2698–

2699) are, with respect to both theirs and LBP

nomenclature, level-two questions to be addressed via

the raw-data approach, i.e., using canonical analysis

sensu Legendre and Legendre (1998). While we fully

agree with this idea, we have to remember that canonical

analysis is a two-step process, which involves a multiple

linear regression, followed by principal component

decomposition (Legendre and Legendre 1998). Hence,

the above ecological questions are first and foremost

specified as a general multivariate linear model equation

(the first step of the canonical analysis [Pélissier et al.

2003, Pélissier and Couteron 2007]), for which we

believe that our first-level individual 3 species-occur-

rence matrix, Y, introduced in the previous section, is a

much more appropriate ‘‘response variable’’ than the

classical site 3 species abundance matrix, A, as in TR

and LBP. Associated to any form of linear model is of

course an additive scheme of variance partitioning

(Lebart et al. 1997:228), advocated in a spatially explicit

context by LBP (pp. 440–441).

Taking matrix Y (n 3 s) as the response variable and

introducing X (n 3 q) a matrix of dummy variables

coding for habitat types as the ‘‘explanatory variable,’’ it

can be demonstrated that TD, the total variance in

species identity among the n individuals of the commu-

nity (Eq. 3) partitions into an explained or among-

habitat component (TDA) and an unexplained residual

or within-habitat component (TDW) (Couteron and

Pélissier 2004), so that our first-step linear model enters

within the additive diversity partitioning framework

proposed by Lande (1996). This establishes a clear

analytical relationship between our first and second

levels of abstractions, which is holding for any usual

diversity metric provided that the appropriate choice of

the weighting function wj is made:

TD ¼ TDWþ TDA ¼
Xs

j¼1

wjSVWj þ
Xs

j¼1

wjSVAj: ð4Þ

To be more specific, we can denote by nk the number of

observations in habitat k, with
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n ¼
Xm

k¼1

nk

and by pkj ¼ akj/nk the relative frequency of species j in

habitat k, akj being as above the abundance of species j

in habitat k. The approximation of Y by multiple linear

regression on the variables contained in X is ŷij(k)¼ pkj
(Pélissier et al. 2003), from which we can derive explicit

formulas for SVWj, the contribution of a given species j

to TDW, the mean within-habitat diversity (or alpha

diversity as defined in the previous section), and for

SVAj, which is the contribution of j to TDA, the among-

habitat diversity (or ‘‘between-habitat’’ diversity, an

expression used as a synonymous for beta diversity by

Whittaker [1972:230]). Namely

SVWj ¼
Xm

k¼1

nk

n
� pkjð1� pkjÞ ð5Þ

SVAj ¼
Xm

k¼1

nk

n
� ðpkj � pþjÞ2: ð6Þ

Couteron and Pélissier (2004) also provided explicit

formulas for SVWj and SVAj for nested partitions (i.e.,

for subsequent partitions of SVAj among habitat types

and sampling locations), as well as guidelines on the

nonparametric testing of statistical significance based on

randomization procedures. The decomposition frame-

work lends itself to tests based on random shifting

procedures (as introduced by Harms et al. 2001), which

upon availability of fully mapped or regularly sampled

data are preferable for distinguishing between habitat

effects and clumping effects unrelated to habitat.

Moreover, in this well-established framework, which is

encompassed by multivariate analysis of variance

(MANOVA sensu Anderson 2001), multilevel hierarchi-

cal analyses are more straightforward than the approach

proposed by Crist et al. (2003). MANOVA is indeed

very general and applies either to questions about

individual species’ habitat preferences (testable via SVj)

or to variation in community composition (analyzable

through TD).

Lessons learned.—(1) Contrary to TR statement, a

direct relationship between alpha and beta diversity can

be expressed through a simple general linear model that

leads from the first to the second level of abstraction;

consequently, it is only when gamma diversity is ignored

that alpha diversity tells nothing about beta diversity. (2)

The complementary nature of alpha and beta compo-

nents of diversity established by Whittaker’s work has

long been hidden because authors have quantified alpha

diversity by indices (e.g., Fisher’s alpha, Shannon and

Simpson indices) that have no direct connection with

dissimilarity measures used to quantify beta diversity

(e.g., Jaccard, Sorensen, and Steinhaus indices). (3) Our

model is closely related to the linear model that underlies

classical canonical analysis; but using as the response

variable, the individual species-occurrence matrix, Y, in

lieu of the site species abundance matrix, A, is the only

way to relate the raw-data approach to gamma diversity,

via its natural, additive apportionment into a part

explained (beta diversity) and a part unexplained (alpha

diversity) by variation in environmental conditions

(second level of abstraction). (3) Standard routines

derived from MANOVA as well as nonparametric tests

of statistical significance, which can be based either on

randomization or random shifting procedures, are

available to conduct these analyses.

Second level, the ‘‘raw-data’’ approach

In the previous section, we focused on the variance

(diversity) partitioning scheme associated to the gener-

alized linear models. We now turn to the one associated

to the principal component decomposition, which is the

core subject of multivariate analysis, including the

canonical raw-data approach as referred to by LBP

and TR. One can indeed recognize in

TDA ¼
Xs

j¼1

wj �
Xm

k¼1

nk

n
� ðpkj � pþjÞ2

(Eq. 4 and 6) an expression of the total inertia or total

variance (i.e., the sum of all eigenvalues) of the

correspondence analysis (CA; Legendre and Legendre

1998) of the site3 species abundance matrix A when wj¼
1/pþj, and non-symmetric correspondence analysis

(NSCA; Gimaret-Carpentier et al. 1998) of A when wj

¼ 1. Taking wj¼ log(1/pþj)/(1� pþj) also leads to a form

of column weighted correspondence analysis whose

inertia is consistent with Shannon diversity (see the

proofs in Pélissier et al. 2003). Total inertia demonstrat-

ed by the site3 species abundance matrix, A, is therefore

the part of total community diversity (TD) explained by

the dummy variables that partition the individual 3

species-occurrence matrix, Y, into sampling sites. This

quantifies between-site beta diversity, expressed consis-

tently with any of the three usual diversity metrics using

the species weighting function, wj.

It follows that two-table variants of ordination

methods such as CCA (canonical correspondence

analysis) or RDA (redundancy analysis), whose partic-

ular forms can be made compatible with the usual

diversity metrics (see Couteron and Ollier 2005), realize

a first-stage additive partition of TDA into ‘‘explained’’

and residual ‘‘unexplained’’ portions by a set of

environmental descriptors, before permitting a subse-

quent additive decomposition of either the explained or

the residual fraction into canonical ordination axes

(constrained vs. unconstrained ordinations, respective-

ly).

Lessons learned.—(1) The so-called ‘‘raw-data ap-

proach’’ is directly related to the additive partitioning
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framework of species diversity proposed by Lande

(1996), a fact which is completely absent in LBP and

TR. (2) It follows that ordination techniques provide

subsequent apportionment of TDA according to princi-

pal axes, in a way that can be made consistent with the

usual diversity metrics. (3) Thus, canonical partitioning

in the classical sense of Legendre and Legendre (1998)

refers to total inertia (or variance) of the site 3 species

abundance table, A, i.e., to the among-site beta diversity

(TDA), which is the only part of community total

diversity, TD, accounted for by the sampling design. (4)

Explained or unexplained portions of TDA relative to a

set of environmental descriptors can subsequently be

additively partitioned into canonical vs. partial canon-

ical ordination axes.

From the ‘‘raw-data’’ approach to distance-based analyses

According to TR (p. 2697, 2703, 2705), the fact that

beta diversity can be viewed as a distance (or more

generally a dissimilarity) is the main justification for

using the Mantel approach and to move from second to

third level of abstraction, where the response variable is

a dissimilarity matrix between pairs of sites. That beta

diversity is usually quantified via dissimilarity indices, is

used however to instill the misleading idea that it is not

conceivable to consider ‘‘the variation in community

composition, i.e. beta diversity’’ in the light of the

geographic locations of the sites or of the inter-site

distances. Though it is not blatantly stated as such, this

idea is conveyed in many places of the paper, by rhetoric

tricks or omissions. For instance, in Fig. 2, it is as if an

analysis of inter-community or inter-site geographic

distance, could not be used to explain variation in

community composition. Why should using the inter-

site geographic distance as an explanatory variable

automatically mean skipping to an analysis of the

variation in variation in community composition, i.e.,

to a third-level question? There is absolutely no

compelling reason to do so, since several alternatives

are possible.

In fact, TDA, which is a variance according to our

definition, can be rewritten as a sum of intersite

dissimilarities, and directly broken down into additive

portions relating to classes of inter-site distance. Indeed,

a classical result of variance decomposition (in its

broader meaning) is that averaging squared departures

around a mean value is equivalent to averaging squared

differences (i.e., distances) between individual observa-

tions (see for instance Anderson 2001). It follows that

the contribution of species j to the among-site beta

diversity, SVAj (Eq. 6), can be rewritten as

SVAj ¼
Xm

k¼1

Xm

k 0¼1

SVAjðk; k 0Þ ¼ 1

2n2

Xm

k¼1

Xm

k 0¼1

nknk 0ðpkj � pk 0jÞ2:

ð7Þ

At the multispecies level,

SVAðk; k 0Þ ¼
Xs

j¼1

wjSVAjðk; k 0Þ

is a measure of dissimilarity between composition in

sites k and k0 (it is in fact a mathematical distance),

which may be made fully consistent, through wj, with
any of the three usual diversity indices. Summing

SVA(k, k0) values for all (k, k0) pairs of sites yields the

among-site beta diversity:

TDA ¼
Xm

k¼1

Xm

k 0¼1

SVAðk; k 0Þ:

A distance-dependent partition of TDA follows from

the dissimilarity measure defined above. As soon as a set
fHhg of nonoverlapping distance classes is defined, the

portion of the total among-site beta diversity relating to

a given distance class centered on h is

TDAðhÞ ¼
X

dðk;k 0Þ2Hh

SVAðk; k 0Þ

¼
X

dðk;k 0Þ2Hh

Xs

j¼1

wjSVAjðk; k 0Þ: ð8Þ

When the union of Hh contains the range of intersample

distances, we logically derive the following from the

above expression:

TDA ¼
X

h

TDAðhÞ:

Alternatively, standardizing TDA(h) for the number of

plots and individuals (see Couteron and Pélissier [2004]

for details) in each distance class provides a dissimilarity
variogram or, equivalently, a generalized, multivariate

variogram, which can be plotted as a function of the

intersite geographical distance and tested against the
null hypothesis of an absence of spatial structure by

randomly reallocating the taxonomic compositions

among the sampling sites (Wagner 2004).

We note that TR (p. 2701) mention the variogram in a

way that seems to involve the computation of a variance
of intersite dissimilarity, i.e., in this case a variance of

variance, and thus a third-level object. But according to

the usual definition, the variogram expresses how
intersite dissimilarity changes with distance by directly

apportioning the overall variance of the response

variable with respect to distance classes and dividing

by the number of pairs of sites in each class. This does
not involve the computation of a variance of intersite

dissimilarity, and it is therefore not at all congruent with

their definition of third-level analysis.

The principle of multivariate variography (sensu
Wackernagel 1998) can be applied not only to TDA,

but also to any partition of TDA into principal/canon-

ical axes yielded by a given single- or two-table
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ordination method (see Couteron and Ollier 2005 for an

illustration). Hence, combining these different principles

constitutes a very rich and flexible yet largely unexplored

framework for comparing the effect of environmental

variables on the observed relationship between beta

diversity and intersite distance. Moreover, in our model,

the part of total community diversity explained by

external explanatory variables, ordination axes, or

distance classes is quantified in the same measurement

unit (one of the three usual diversity metrics, albeit this

is not an absolute restriction), so that their relative

proportions of explained total community diversity can

be directly compared. This ultimately allows one to

measure the respective influence of environment and

space on diversity variation.

Lessons learned.—(1) TR seems to have missed that

the among-site beta diversity can be seen as a sum of

dissimilarities between all pairs of sites; such dissimilar-

ities can be expressed in any of the three usual diversity

metrics. (2) TDA is therefore amenable to an additive

apportionment with respect to classes of intersite

geographical distance, which can be combined in many

ways using the potential of ordination methods, thereby

reviving the concept of multiscale ordination (MSO;

sensu Ver Hoef and Glenn-Lewin 1989, Wagner 2003,

2004); MSO is a straightforward extension of the raw-

data approach. (3) Statistical tests of significance for the

existence of nonrandom spatial structure exist and can

also be applied to residual patterns after factoring out

the effect of environmental descriptors; for instance, the

absence of any significant residual spatial pattern would

mean that dispersal limitation is probably not a

pervasive factor in the communities under study.

Third-level analyses: for what and how?

In the previous points, we have gradually shifted from

a raw-data to a distance-based analysis framework. The

transition has been smooth because both frameworks

rely on additive partitions of variance and covariance

(used here in their generalized meaning; see Couteron

and Ollier [2005]). Our method of carrying out distance-

based analyses nevertheless does not pertain to the third

level of abstraction as defined by TR.

We have not considered the variance among intersite

beta-diversity values, which is a variance of variance,

whereas TDA is simply a generalized variance that

allows weighting of either sites or species. Nor have we

tried to model individual intersite beta-diversity values

from either environmental or spatial variables, which is

the goal of multiple regression on distance matrices as

presented by Duivenvoorden et al. (2002) and Tuomisto

et al. (2003). This clearly demonstrates that reference to

third level analyses is not a prerequisite for investiga-

tions into how beta diversity may be influenced by

environment discrepancies and/or intersite distance.

There is thus no reason to share the opinion of TR

that distance-dependent ecological hypotheses, such as

the neutral theory of biodiversity, can only be tested

using the Mantel approach, although we agree that

canonical partitioning, which is the core of what is

usually meant by the raw-data approach, is by itself not

sufficient to address such hypotheses. In fact, the

framework for distance-based analyses, which we have

briefly summarized above, permits one to investigate

and test any distance-based ecological hypothesis,

including the neutral ones. For instance, based on

theoretical results borrowed from population genetics,

Chave and Leigh (2002) and Etienne (2005) featured

explicit predictions under neutrality with respect to

Simpson’s intersite beta diversity (or to the closely

related intersite similarity function), which may be used

in the near future to derive analytical expectations of the

multivariate variogram under neutral assumptions. It is

hence not yet established that reference to the third level

of abstraction will, by itself, permit more efficient testing

of distance-based ecological hypotheses than the frame-

work described in From the ‘‘raw-data’’ approach to

distance-based analyses.

The first level of abstraction basically computes alpha

diversity from a vector of species abundances. The

second level deals with variation in abundances observed

by a particular survey, which means comparing the

abundance vectors making the site 3 species table or,

equivalently, submitting this table to eigenanalysis

and/or canonical partitioning (the raw-data approach).

The objective of the third level should not be defined

only from comparison of distance matrices via a Mantel

test, since its broader objective is ultimately to compare

diversity patterns found in distinct surveys, hence to

compare the structures present in several site 3 species

tables. Indeed, if surveys share either sites (e.g.,

diachronic relevés) or species (at least most of them),

there are appealing alternatives to distance-matrix

comparisons (Dray et al. 2003, Thioulouse et al. 2004),

which probably use more of the available initial

information of the set of site 3 species tables. It is only

when surveys share neither sites nor species (e.g.,

different ecological regions) that comparisons of dis-

tance matrices and Mantel tests may justify themselves.

Compared to the broad panel of aims and data types

characterizing ecological investigations, these are in fact

far more restrictive circumstances for using the Mantel

approach than it may appear from reading TR.
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ANALYZING OR EXPLAINING BETA
DIVERSITY? COMMENT

Etienne Laliberté1

Tuomisto and Ruokolainen (2006; hereafter referred

to as TR) have recently argued that there has been

confusion about what statistical approaches, ‘‘raw data’’

or ‘‘distance,’’ are more appropriate when testing

hypotheses about the origin and maintenance of beta

diversity. They also argued that ‘‘inconsistencies and

errors in [the] recommendations’’ of Legendre et al.

(2005; hereafter referred to as LBP) gave way to more

confusion on this issue. Essentially, TR stated that both

the raw-data and distance approaches were appropriate,

but targeted different predictions and should therefore

be seen as complementary. However, TR’s method of

variation partitioning on distance matrices is based on

an inaccurate definition of spatial autocorrelation,

which makes the ‘‘spatial’’ fraction meaningless. Conse-

quently, that method is unable to quantify the relative

contribution of neutral processes to beta diversity. In

any case, TR have provided no answer to the doubts

expressed by LBP over the mathematical validity of

variation partitioning on distance matrices, and simply

claimed that as their method targeted a ‘‘different
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response variable’’ than the raw-data approach, its use

was justified. Finally, the recommendation of TR that

the distance approach is the only appropriate approach

for testing Hubbell’s (2001) neutral theory is incorrect.

Here I will discuss these issues in more detail.

What is spatial autocorrelation?

In their Ecological vs. statistical hypotheses section (p.

2703), TR describe the predictions of the neutral model

as follows:

Community composition is heterogeneous over the

landscape at all spatial scales as a result of the

cumulative effects of spatially autocorrelated random

walk in species abundances. This spatial structure is

entirely due to autocorrelation, and spatial dependence

on underlying environmental variables is not present.

While their description of the neutral model is accurate,

the statistical prediction they derive from it is that (p.

2703):

From [the neutral] hypothesis (. . .) it follows that two

nearby sites should share more species in more similar

abundances than two sites further apart.

That statistical prediction is inaccurate because spatial

autocorrelation is not defined as the tendency of two

nearby sites to be more similar than faraway sites (which

would imply a simple monotonic decrease of similarity

with increasing geographic distance), but is instead

defined as ‘‘the property of random variables taking

values, at pairs of locations a certain distance apart, that

are more similar (positive autocorrelation) or less similar

(negative autocorrelation) than expected for randomly

associated pairs of observations’’ (Legendre 1993). A

more formal and mathematically satisfying definition of

spatial autocorrelation is ‘‘the lack of independence [. . .]

among the error components of field data, due to

geographic proximity’’ (Legendre and Legendre 1998:9).

This distinction may appear trivial, yet it has

important implications in the present debate. Even

though random neutral processes may create spatial

autocorrelation in the vegetation data and lead to a

monotonic decrease in similarity (or conversely, to an

increase in dissimilarity) with increasing geographic

distance when there is species turnover (i.e., replace-

ment) across a sampled transect or surface, this is not

necessarily so, for instance, in the case of ubiquitous

species. Simply put, there is no clear and unambiguous

link between spatial autocorrelation and similarity decay

with distance. Consequently, regressing community

composition dissimilarity on geographical distances

(log-transformed or not) to quantify the contribution

(using R2) of neutral processes to variation of beta

diversity between pairs of sites, which is the goal of TR’s

method of variation partitioning on distance matrices, is

fundamentally incorrect. While such a regression is often

used in similarity decay plots to fit a particular model

(Nekola and White 1999), the coefficient of determina-

tion (R2) should be interpreted as nothing more than a

simple measure of the adjustment of that model to the

data.

It is important here to distinguish two research

questions: The objective of variation partitioning (either

in the raw-data approach or in TR’s variation parti-

tioning on distance matrices) is not to quantify the

strength of spatial autocorrelation in the data (which can

be calculated through Mantel correlograms), but to

quantify its relative contribution to the overall pattern.

There is no link between the strength of spatial

autocorrelation and its relative contribution to beta

diversity. For example, spatial autocorrelation can be

small (i.e., low Mantel r in an autocorrelogram) yet

explain most of the variation of community composition

if all of this variation is spatially structured and there is

no dependence on environmental variables. In any case,

the R2 of a logarithmic similarity-decay curve is neither

related to the strength or relative contribution of spatial

autocorrelation to beta diversity.

Neutral theory and similarity decay plots

TR’s statistical prediction to test the neutral model in

the context of variation partitioning on distance

matrices appears to stem from a direct, yet unfounded,

extension of Hubbell’s (2001) use of similarity decay

plots (Nekola and White 1999) to test neutral theory. In

chapter seven of his seminal monograph, Hubbell

predicted that under neutral ecological drift community

composition similarity across the landscape will decrease

logarithmically with geographical distance, because at

such scales dispersal limitation leads to clumped species

distributions, and therefore to high species turnover.

The similarity decay with distance is greatly influenced

by grain size (i.e., resolution) and spatial extent (i.e.,

area), with the best relationships observed with large

grain sizes and spatial extents (Nekola and White 1999).

Indeed, a decay of similarity will be detected only if the

variation due to grain size is smaller than the variation

due to spatial extent (Nekola and White 1999), a

condition rarely met from censuses conducted at local

scales. As such, Hubbell used similarity decay plots to

make predictions about the importance of neutrality on

beta diversity only at broad spatial scales (i.e., biogeo-

graphical scales), and these predictions are based on the

functional form of the decay curve, not through variation

partitioning between geographical and environmental

distances. Hubbell argued that, since neutral theory

predicts that similarity decay happens on environmen-

tally homogeneous landscapes, the decay curve should

be smooth (i.e., logarithmic) and only depend on the

fundamental biodiversity number h and dispersal rate m

(Hubbell 2001). On the other hand, under niche-

assembly theory, similarity decay results from species
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FIG. 1. Two cases of neutral communities. (A) Abundances of 10 species along a 100-m transect; only three species are shown
on the graph for clarity. Data for each species were generated from a series of random numbers (one every meter) between 0 and
100 taken from a standard normal distribution, to which spatial autocorrelation was added by computing moving averages
(window width¼ 5, i.e., the value plus the two neighbors on either side). (B) Abundances of 10 species along a 100-m transect; only
the first nine species are shown. Data for each species were generated the same way as in panel (A), with the exception that species
turnover along the transect was added by restricting the first nine species to limited but overlapping parts of the transect. (C)
Mantel correlogram associated with panel (A). Hellinger distance was used for calculating community composition dissimilarity.
Black squares indicate significant spatial autocorrelation after progressive Bonferroni correction (a ¼ 0.05, 999 permutations).
Positive Mantel r values express positive spatial autocorrelation. (D) Mantel correlogram associated with panel (B); see description
of panel (C) for explanation. (E) Relationship between community composition dissimilarity (Hellinger distance) and geographical
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turnover along environmental gradients or habitats; the

associated similarity decay will not be smooth because

habitats are typically patchy, recurrent, and have sharp

boundaries (Hubbell 2001).

This neutral prediction should be restricted to the

interpretation of broad-scale patterns in similarity decay

plots, yet TR erroneously extend it to all spatial scales

and use a matrix of log-transformed geographical

distances to quantify the contribution of neutral

processes in variation partitioning on distance matrices

from any sampling design, regardless of grain size and

spatial extent. Such a method, on top of being

mathematically doubtful, can greatly underestimate the

importance of neutral processes when many or all

species are ubiquitous, which can often happen at local

spatial scales or in species-poor systems. Again, this is

because there is no clear link between spatial autocor-

relation and distance decay of similarity. I will show this

through the simple following numerical example.

A simple numerical example

Let us imagine a transect where environmental

conditions are completely homogeneous throughout,

so that no variation in community composition can be

attributed to environmental control. Ten species are

found along the 100-m transect (note that it could very

well be 100 mm, cm, or km), but in two different

arrangements (Fig. 1A, B; for clarity, not all species are

shown on the graphs). In Fig. 1A, abundance data were

generated from a series a 100 random numbers between

0 and 100 taken from a standard normal distribution,

from which spatial autocorrelation was added by

computing moving averages (window width ¼ 5, i.e.,

the value plus the two neighbors on either side). In Fig.

1B, the exact same procedure was followed, with the

exception that species turnover was added by restricting

the first nine species to limited but overlapping parts of

the transect. Thus, in both cases, variation of commu-

nity composition is entirely due to random but spatially

autocorrelated walks in species abundances, a purely

neutral process. As it can be seen from Mantel correlo-

grams (Fig. 1C, D), there is significant spatial autocor-

relation in community composition at several distance

classes in both cases.

This simple numerical example shows that when

spatial autocorrelation leads to gradual species turnover

(Fig. 1B), which is frequently observed at broader

spatial scales, a good relationship between community

composition dissimilarity and geographical distance (the

inverse of a similarity decay plot) can be found (Fig. 1F).

Conversely, when species are ubiquitous (Fig. 1A), such

a relationship is very much weaker (Fig. 1E).

By extending this to the context of variation

partitioning, as TR suggest, one would partition the

variation of beta diversity between pairs of sites (i.e., the

response matrix) between a matrix of environmental

distances (representing the environmental control mod-

el) and a matrix of log-transformed geographical

distances (representing the neutral model). I must stress

that I do not support the use of this method given that

serious doubts have been expressed over its mathemat-

ical validity. Indeed, perhaps the main problem with

variation partitioning on distances matrices is that the

isolated fractions are not additive. Surprisingly, TR

appear to be aware of this fact, as they mention (p. 2707)

that in this method, ‘‘R2 values will change depending on

[. . .] whether all environmental variables are combined

into a single distance matrix or used in separate

matrices.’’ This seriously undermines the credibility of

the method itself, as it is very much unclear how the R2

coefficients should be interpreted if the fractions

themselves are not additive. Another problem concerns

the potential, albeit unknown, effects of the lack of

independence among the distances on the coefficients

themselves (Legendre et al. 2005:442). Still, I will assume

here that the method is valid (which clearly remains to

be shown) and use it nonetheless to illustrate that on top

of being doubtful, this method also greatly underesti-

mates the contribution of neutral processes.

In that numerical example, environmental conditions

are identical throughout the transect, so the environ-

mental matrix would be filled with constant values and

would explain none of the variation of beta diversity.

Therefore, the contribution of neutral processes to

variation of beta diversity, as suggested by TR, would

then simply be expressed by the coefficients of determi-

nation of the logarithmic relationships shown in Fig.

1E, F. This would lead one to conclude that in Fig. 1A,

,5% (taken from the R2 of the logarithmic model) of the

observed pattern was due to neutrality, whereas in Fig.

1B, ;77% of the pattern would be attributed to neutral

processes. Such conclusions are obviously inaccurate

given that, in both cases, patterns were entirely due to

random, spatially autocorrelated walks in abundances, a

purely neutral process. Here it is clear that using a

matrix of log-transformed geographical distances to

quantify the contribution of neutral processes can

greatly underestimate their actual importance, particu-

larly when most or all species are ubiquitous (e.g., Fig.

1A). Again, this is because spatial autocorrelation does

not necessarily imply, for multi-species data, that two

 
distance (i.e., inverse of a similarity-decay plot) from the data of panel (A). The curve shows the logarithmic relationship with its R2

value. (F) Relationship between community composition dissimilarity (Hellinger distance) and geographical distance from the data
of panel (B); see description of panel (E) for explanation.
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nearby sites will be more similar (multivariate similarity)

than two faraway sites, as suggested by TR’s statistical

prediction. In other words, TR use an inaccurate

statistical prediction to quantify the contribution of

neutral processes to variation of beta diversity, and to

test that prediction they propose and use a doubtful and

unvalidated statistical method.

Variation of beta diversity between pairs

of sites vs. between regions

TR argued that the distance approach targeted

different kinds of questions about beta diversity than

the raw-data approach, which they referred to as

different ‘‘levels of abstraction.’’ LBP had also used this

‘‘level of abstraction’’ concept and mentioned that one

could either be interested in studying the variation of

community composition among sites within a given

region (i.e., beta diversity), or in studying the variation

of beta diversity among groups of sites or regions.

However, variation partitioning on distance matrices, as

proposed by TR, focuses strictly on the variation of

dissimilarities between pairs of sites. Individual pairs of

dissimilarities taken alone do not give a measure of beta

diversity of a large area (Anderson et al. 2006).

Therefore, this method could not answer such questions

as: ‘‘Does beta diversity differ between different groups

of sites (i.e., that contain more than two sites) or

regions?’’ And, more importantly, ‘‘Why does beta

diversity vary between these groups of sites or regions?’’

Hence, even if variation partitioning on distance

matrices could accurately quantify the contribution of

spatial autocorrelation to the variation of beta diversity

among pairs of sites (which, as I have shown earlier, is

not the case), and even if its mathematical validity were

demonstrated (which remains to be done), it would still

be of limited practical use: Indeed, most ecologists that

are truly interested in studying the variation of beta

diversity among groups of sites or regions would likely

want to compare regions in which more than two sites

have been observed. A more appropriate way of

answering questions related to the variation of beta

diversity among groups of sites or regions would be to

use multivariate dispersion on distance matrices, a

method described by Anderson et al. (2006) to

specifically answer such questions.

Testing neutral theory: raw data or distances?

One of the main conclusions of TR was that Hubbell’s

(2001) neutral theory can only be tested using the

distance approach since its testable predictions are

stated in terms of distances and not raw data. Their

main argument against the use of the raw-data approach

to test neutral theory was that the detection of a

particular spatial pattern in community composition

through spatial modeling techniques such as principal

coordinate analysis of neighbor matrices (PCNM;

Borcard and Legendre 2002) does not support neutral

theory because neutral theory does not predict that this

was the expected spatial pattern, and that any specific

spatial pattern is just as much in accordance with the

neutral model as long as the degree of spatial

autocorrelation is similar. I see no contradiction here.

I argue that the detection of a significant residual spatial

structure (i.e., after controlling for variation due to the

environmental variables) provides support for the

theory. This detection is quite easy using the raw-data

approach, unless TR can demonstrate that the neutral

model specifies a type of spatial autocorrelation that

cannot be modelled by PCNM analysis. Given that

previous simulation work has shown that PCNM

analysis could accurately model a wide range of spatial

structures, including spatially autocorrelated data (Bor-

card and Legendre 2002), such a demonstration appears

unlikely.

The PCNM approach is closely related to spatial

autocorrelation structure functions, and essentially

consists in extracting from a predetermined spatial

matrix the eigenvectors that maximize Moran’s index

of spatial autocorrelation (I ); the resulting eigenvectors

describe global to local spatial structures and can thus

be used in regression to model spatial structures at all

spatial scales (Dray et al. 2006). Therefore, the raw-data

approach with PCNM uses explanatory variables that

can model spatially autocorrelated patterns across a

range of scales, and thus allows an accurate quantitative

assessment of the contribution of spatial autocorrelation

to variation in community composition. This is the exact

opposite conclusion of TR, who argued that ‘‘the raw-

data approach fails to address the neutral model in a

relevant way, and is unable either to falsify the neutral

hypothesis or to quantify its relative contribution to the

observed spatial pattern’’ (p. 2704).

Although both the raw-data and the distance ap-

proach can be used to test neutral theory, they both have

their respective domains of application. The raw-data

approach with PCNM has promising applications, since

it allows one to dissect the spatial structures of

community composition at different scales (Borcard

and Legendre 2002) and estimate the relative influence

of niche and neutral processes at each of these scales.

Such tests offer great opportunities for future tests of

neutral theory (McGill et al. 2006), especially consider-

ing that spatial scale has been suggested as a way to

reconcile empirical ecology with neutral models (Holy-

oak and Loreau 2006).

Still, as TR pointed out, a drawback of the raw-data

approach is that it can sometimes be hard to distinguish

between the relative importance of niche and neutral

processes on community patterns because spatial and

environmental variables often covary. The resulting

‘‘space-environment’’ fraction can either be interpreted

as a spatially structured environmental influence con-
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trolling abundance patterns or as neutral processes
acting within a heterogeneous environment (Bell et al.

2006). One way of minimizing that problem is to use a
sampling design that decouples the environmental and
geographical distances (Gilbert and Lechowicz 2004).

The ‘‘pure spatial’’ fraction may often be due to some
spatially structured unmeasured environmental vari-
ables, which can then lead to an overestimation of the

contribution of neutral processes. Hence, to use the raw-
data approach to test neutral theory, one must have
access to relevant, extensive, and accurately quantified

environmental data.
As for the distance approach, the use of similarity

decay plots is appropriate for identifying the best
functional form of a decay curve in a similarity-decay

plot: A smooth similarity-decay curve provides greater
support for neutral theory, whereas a ‘‘bumpy’’ curve
suggests that the environment exerts stronger control

over beta diversity (Hubbell 2001). A drawback of this
approach is that it only allows a qualitative assessment
of the dominant process (i.e., niche or neutrality), yet

does not allow one to quantify their relative importance.
Still, as this method does not require environmental
data, it can be particularly interesting when these are not

available.

Conclusion

Research on the origin and maintenance of beta

diversity has regained great attention since the publica-
tion of Hubbell’s theory. Much theoretical and empirical
work is currently under way to assess the relative

importance of niche and neutral processes on commu-
nity patterns. On the applied side, understanding the
origin and maintenance of beta diversity has important

implications for ecosystem management, such as the
design of nature reserves. Therefore, it is crucial that
researchers master the concepts and methods required
for testing hypotheses about how beta diversity is

maintained in ecosystems.
Throughout this comment I have stressed that an

abusive interpretation of the relationship between the

decay of similarity and spatial autocorrelation, as well as
an unfounded use of Mantel R2 values in the context of
variation partitioning, both proposed by TR, should be

avoided. Variation partitioning on distance matrices, in
addition to being mathematically doubtful and yet
unvalidated, is based on an inaccurate statistical

prediction to quantify the contribution of neutral
processes to variation of beta diversity.
The distance approach is appropriate for identifying

the best functional form of the similarity decay curve in

similarity decay plots. The raw-data approach, on the

other hand, is appropriate to partition the variation of

community composition between environmental and

spatial factors and can accurately quantify the contri-

bution of spatial autocorrelation to variation of

community composition among sites. In summary,

contrary to TR, who argued that only the distance

approach could be used to test neutral theory, both the

raw-data and the distance approaches are useful in

testing different neutral predictions about the origin and

maintenance of beta diversity. Yet, they both have their

domains of application and can thus be seen as

complementary.

Acknowledgments

Thanks to A. Paquette for comments on a previous version
of the manuscript. This work was supported by an Interna-
tional Doctoral Scholarship from University of Canterbury and
a Ph.D. Research Scholarship from the Fonds Québécois de la
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In 2005, we published a paper (Legendre et al. 2005;
hereafter referred to as LBP) explaining the ecological

and statistical basis for the analysis of the variation in
species composition among sites (this is one operational

definition of beta diversity), a subject of great impor-
tance for the understanding of the generation and
maintenance of beta diversity and the establishment of

ecologically sound ecosystem conservation policies.
Tuomisto and Ruokolainen (2006) (hereafter referred

to as TR) pointed out several issues in our 2005 paper.
As a response, this note seeks to clarify the issues behind
this contention.

Our major point of disagreement concerns the links
between (1) the ecological predictions derived from

neutral theories of beta diversity, (2) the statistical
hypotheses derived from these predictions, and (3) the
statistical methods used to test these hypotheses. In

LBP, TR, and the present Comment, distance-based
methods refer to statistical methods where the geo-

graphic relationships among sites are represented by a
distance matrix. These methods include the Mantel test
and the derived method of regression on distance

matrices. The raw-data approach refers to multiple
regression and canonical analysis, where the spatial

relationships among sites are represented by a rectan-
gular table containing geographic coordinates, a poly-
nomial of the geographic coordinates, principal

coordinates of a neighbor matrix (PCNM) (Borcard
and Legendre 2002), or derived forms.
The purpose of this Comment is to show that (1) some

predictions of Hubbell’s neutral theory, especially the
presence of positive autocorrelation, can be stated and

tested using the raw-data approach, (2) the distance
approach as proposed by TR (partitioning on distance
matrices) is statistically flawed, and (3) when a raw-data

hypothesis is translated into distances, the correspond-
ing statistical test lacks power; therefore, whenever a

hypothesis can be formulated in terms of raw data

instead of distances, it should be tested using the raw-

data approach.

TR (p. 2698) devoted a large section to three levels of

abstraction that were proposed and defined in LBP (pp.

437–438). Level-1 questions concern alpha diversity, or

the variation in the species identity of organisms at

individual sites. For example: What are the soil

conditions associated with the presence and identity of

10 tree species in a 1-ha plot of temperate mixed-wood

forest? Level-1 questions are irrelevant for the present

Comment. For levels 2 and 3, which are the concern of

LBP and TR, the questions asked are the same in the

two papers. Level 2 concerns the variation in community

composition among sites in a region of interest, which is

beta diversity (community composition encompasses

species composition and species abundances); canonical

variation partitioning is adequate to address questions

pertaining to that level (LBP, p. 438; and TR, p. 2705).

For example: Is the variation in community composition

among sites due to variation in environmental condi-

tions or to neutral community dynamics? Level-3

questions concern the variation in beta diversity among

groups of sites; questions related to that level may be

addressed by the distance-based approach (LBP, p. 438;

and TR, p. 2705), provided that the technical and

statistical uncertainties raised below are settled; see also

point 2 in the section Other points. Note that TR restrict

the level-3 questions to pairs of sites, whereas LBP use

level-3 questions to investigate the differences among

larger groups of sites; for example, adjacent geographic

regions with several sites in each. For example: The

public garden in town A is surrounded by identical

flower beds, each one containing seven species. The beta

diversity (variation in species composition among beds)

in that garden is zero. In town B, the public garden was

designed with flower beds that are all different in species

compositions. Beta diversity is high among the flower

beds. One may wonder why there is such a big difference

in flower bed composition between the two towns. Is it

cultural? Financial? Or is it due to the limited

availability of suitable flowers in town A due to soil or

climate? This question does not focus on the identities of

the flower species, but on the variance in community

composition between the two towns: Are the multispe-

cies dispersion matrices homogeneous when comparing

the two towns, and if not, why? This would be a level-3

question.

Spatial autocorrelation in community composition data

‘‘We argue that S. P. Hubbell’s neutral theory can

only be tested using the distance approach, because its

testable predictions are stated in terms of distances, not

in terms of raw data’’ (TR, Abstract: details on p. 2703).

The section Can we test Hubbell’s neutral theory using the

raw-data approach? will show that spatial autocorrela-

tion can and should be tested using the raw-data
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approach. Several other aspects and predictions of

neutral theory can also be tested without recourse to

distance matrices; see McGill et al. (2006) for a recent

review. Here are a few examples. First, spatial variance

can be used to test neutrality: Under random walk in

species abundances (‘‘ecological drift’’ sensu Hubbell

2001), variance is expected to increase with time (Clark

and McLachlan 2003). Second, the compensatory

dynamics hypothesis of neutral theory can be tested by

assessing the statistical hypothesis that species covary

negatively within communities; Houlahan et al. (2007)

tested this hypothesis on 41 natural communities. Third,

neutrality can be tested by an evolutionary approach, by

studying extinction rates and the ages of species

(Ricklefs 2006). Finally, the relative importance of

environmental control and neutrality can be tested using

variation partitioning by canonical analysis, as shown in

LBP.

Tests of autocorrelation in the distance world.—Hub-

bell’s neutral theory predicts the presence of positive

autocorrelation in community composition due to

dispersal limitation. In this section and the next, we will

show that spatial autocorrelation can be tested both in

the distance and raw-data worlds, but that the raw-data

approach is more powerful and has better-known

statistical properties. Let us review the distance ap-

proach first.

The procedure proposed by Nekola and White (1999),

and used by Hubbell (2001) to detect spatial autocor-

relation, is to plot ecological similarity as a function of

geographic distance. Tuomisto et al. (2003) developed

this idea further by log-transforming the geographic

distances to make the relationship linear, and measured

the fit using a squared matrix correlation (R2
M), which is

the square of the Mantel correlation between distance

matrices. We agree with them that this is one way of

describing the relationship in this simplified form of

correlogram, and we mentioned it in LBP (Abstract and

p. 442). The squared matrix correlation is then

interpreted as an overall coefficient of spatial autocor-

relation.

A Mantel correlogram is another form of analysis

based on distance matrices (Legendre and Legendre

1998: section 13.1.5). It provides a more detailed

analysis than an overall Mantel correlation. A critical

point of logic is that a significant value for a distance

class in a Mantel correlogram does not mean that spatial

autocorrelation is present in the response data; it only

means that there is a significant spatial structure in the

data. Users of both raw-data and distance methods

should be aware of that and be cautious about the

interpretation of the results of correlogram analysis. A

spatial structure can have different origins (Fortin and

Dale 2005: chapter 5): It may indicate spatial depen-

dence induced by the environmental factors, or spatial

autocorrelation resulting from the stochastic demo-

graphic processes described by Hubbell (2001). The

algebraic equation describing the spatial variation of a

variable y at sampling locations i is: yi¼ f (Xi)þ SAiþ ei
(Legendre et al. 2002). Because of their spatial struc-

tures, the environmental variables in table X may induce

spatial dependence in the response y; that effect is

separate from spatial autocorrelation proper (SA) which

results from the spatial dynamics of y; ei is the ‘‘local

innovation,’’ or error term, at location i. For example, if

there is an environmental effect in the species data and

the forcing environmental variable has a broad-scale

spatial structure, this will cause similarity decay plots to

show monotonically decreasing similarity as geographic

distance increases. A significant negative relationship

(RM) in a similarity decay plot or a significant value in a

Mantel correlogram does not allow one to conclude

about neutrality because it may be due to unmeasured

environmental variables that are spatially autocorrelated

and that influence the species distributions; it can be

interpreted in terms of neutrality only if other factors

were logically excluded or partialed out.

Can we test Hubbell’s neutral theory using the raw-data

approach?—In this section, we will show by simulations

that the raw-data approach is the method that should be

used to test hypotheses about positive spatial autocor-

relation in neutral communities, one of Hubbell’s

predictions. We conducted a new Monte Carlo study

akin to the one in our original publication (LBP). In that

paper, canonical variation partitioning had proved to be

the most powerful method to detect spatial autocorre-

lation in simulated community composition data, when

compared to Mantel tests, whatever the method used to

represent the spatial relationships in the two forms of

analysis (see LBP: Table 1, columns with headings [b þ
c]). This was especially true when the spatial structure

was modeled using PCNM variables, which are directly

related to spatial autocorrelation functions (Dray et al.

2006). In the new study reported here, we simulated

spatially patterned communities along a transect fol-

lowing Hubbell’s neutral model with migration. Our

Monte Carlo study was based on the following steps: (1)

Generate a neutral metacommunity distribution of

relative species abundances using Hubbell’s algorithm

(Hubbell 2001: Fig. 9.1, p. 291). The algorithm is based

on two parameters: Jm is the number of individuals in

the metacommunity, and h is the fundamental biodiver-

sity number. The metacommunity starts with a single

individual ( j¼ 1) of a single species and individuals are

added until the metacommunity reaches Jm individuals.

As each individual is added to the metacommunity, the

individual is assigned to either an already existent

species or to a new species (which is then added to the

metacommunity). The probability of the jth individual

being assigned to a new species is h/(hþ j� 1). If the jth

individual was not assigned to a new species, then it was

added to a previously existent species with a probability
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equal to the species’ proportion of individuals in the

metacommunity. (2) Once the neutral metacommunity

was created, we randomly populated lc local communi-

ties with individuals from the metacommunity. Each

local community was populated with the exact same

number of individuals J (i.e., J ¼ Jm/lc), randomly

sampled with replacement from the metacommunity.

Again, each species was sampled according to the

species’ proportion of its individuals in the metacom-

munity. (3) We then set out a death and immigration

process, following McGill (2003), in a simulation based

on 10 000 time steps as follows: First, local communities

in step 2 were spatially distributed along a transect.

Then, the simulation started, and at each time step, a

randomly chosen individual from each local community

was killed (deleted). Next, a random uniform number

was generated: If smaller than m (migration rate), a

randomly chosen individual was copied (i.e., birth with

migration) from one of the two nearest-neighbor local

communities along the transect, with equal chances, to

replace the deleted individual; if larger than m, an

individual from the local community was randomly

chosen and duplicated (i.e., birth without migration).

The probability of an individual belonging to a

particular species was equal to the species’ proportion

of individuals in the local community (without migra-

tion) or in the chosen adjacent local community (with

migration). (4) When the migration dynamics was

completed after 10 000 time steps, we tested whether

the community distribution was spatially structured

using both the raw-data and distance approaches.

The two analytical approaches were identical to those

followed in LBP. The raw-data analyses used canonical

redundancy analysis (RDA) of the Hellinger-trans-

formed response species table by a table of principal

coordinates of neighbor matrices (PCNM). For simplic-

ity, n/2 PCNM variables with positive eigenvalues were

used (i.e., no selection of the best PCNMs), providing a

conservative test since a large number of degrees of

freedoms are lost to the PCNMs. The PCNMs used in

the tests only modeled patterns related to positive spatial

autocorrelation, which was the kind predicted by

Hubbell’s theory. The distance approach was based on

a Mantel test of the correlation between a Hellinger

distance matrix among sites, representing the species

data, and a geographic distance matrix D(XY ) comput-

ed from the X and Y geographic coordinates (i.e.,

positions along the transect); this is the way spatial

relationships are represented in most instances in Mantel

tests. Significance tests were based on 999 random

permutations. Using combinations of h, J, lc, and m, we

generated 1000 metacommunities for each combination,

and each was tested using the raw-data and distance

approaches. Results are presented in Table 1; they

clearly show that the raw-data approach is a far more

powerful method than the distance approach for

detecting spatial autocorrelation in neutral communi-

ties.

In the last paragraph of page 2703, TR argued that

An existing spatial pattern in community composition

can be described a posteriori, especially by such

powerful methods as PCNM [. . .]. However, doing so

does not test the neutral model, because the neutral

model did not predict that this was the particular spatial

pattern that was expected to emerge in this particular

case. Any specific spatial pattern in community

composition is just as much in accordance with the

neutral model as any other, as long as the degree of

spatial autocorrelation is similar.

The last statement is true for distance as well as raw-

data methods and does by no means invalidate the latter

in favor of the former. This is why we issued a warning

about the various origins of spatial structure in the

section Tests of autocorrelation in the distance world

above. This being said, if other sources of variation have

been logically or technically excluded, PCNM analysis

(which is closely related to autocorrelation functions;

Dray et al. 2006) is far more powerful at detecting raw-

data structures emerging as a consequence of autocor-

relation, than the distance approach is at detecting

distance patterns emerging from autocorrelation. There-

fore, we advocate the raw distance (PCNM) approach.

TR argued on page 2705 that, because Hubbell’s

neutral theory’s ‘‘testable predictions are stated in terms

TABLE 1. Rates of rejection of H0 at significance level a¼ 0.05
for the raw-data and distance approaches, each based on
1000 simulations, for detecting spatial structures due to
migration in simulated neutral communities.

h m lc

J ¼ 1000 J ¼ 10 000

Raw data Distance Raw data Distance

10 0.1 20 0.940 0.215 0.137 0.069
10 0.1 30 0.992 0.201 0.200 0.043
10 0.1 50 1.000 0.170 0.194 0.053
10 0.2 20 1.000 0.450 0.277 0.077
10 0.2 30 1.000 0.430 0.401 0.077
10 0.2 50 1.000 0.397 0.545 0.066
20 0.1 20 0.998 0.286 0.165 0.055
20 0.1 30 0.999 0.276 0.228 0.066
20 0.1 50 1.000 0.221 0.296 0.047
20 0.2 20 1.000 0.652 0.424 0.101
20 0.2 30 1.000 0.620 0.571 0.094
20 0.2 50 1.000 0.544 0.776 0.088
30 0.1 20 1.000 0.385 0.196 0.075
30 0.1 30 1.000 0.332 0.306 0.065
30 0.1 50 1.000 0.311 0.412 0.057
30 0.2 20 1.000 0.759 0.541 0.088
30 0.2 30 1.000 0.759 0.725 0.101
30 0.2 50 1.000 0.674 0.902 0.099

Note: Here, h is the fundamental biodiversity number; m is
the migration rate; lc is the number of local communities; and J
is the number of individuals in the local community.
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of distances, not in terms of raw data,’’ only a method

involving distances would be valid for testing the theory.

They went on and wrote that ‘‘attempting to test this

ecological hypothesis using the raw-data approach may

give quite misleading results.’’ Contrary to the simula-

tions reported by LBP, autocorrelation in all commu-

nities analyzed in the present simulations was strictly

generated under Hubbell’s neutral model. Table 1 shows

that the distance decay method was not nearly as

powerful as the raw-data approach in detecting spatial

autocorrelation in the data. Our new simulations show,

therefore, that the raw-data approach is actually the

most appropriate for testing this aspect of the theory.

Partitioning on distance matrices

Tuomisto et al. (2003) proposed to partition the

variation of the ecological resemblance matrix using

multiple regression on distance matrices: ‘‘More recent-

ly, variation partitioning has been extended to the

distance approach by using multiple regression on

distance matrices (Duivenvoorden et al. 2002, Tuomisto

et al. 2003)’’ (TR, p. 2698). We developed that regression

method for phylogenetic analysis (Legendre et al. 1994)

and implemented it in the computer program (Casgrain

2001) that was used by Duivenvoorden et al. (2002),

Tuomisto et al. (2003), and other authors who followed

in their footsteps. A technical problem arises with the

extension that they proposed. They combined by

subtraction the coefficients of determination of three

matrix regressions (R2
M) to compute linearly independent

fractions of variation allegedly corresponding to: (a) the

nonspatially structured variation explained by the

environmental distance matrix, (b) the spatially struc-

tured species variation explained by the environmental

distance matrix, and (c) the spatially structured species

variation not explained by the environmental distance

matrix. We argue that variation partitioning cannot be

computed in that way from distance matrices even if the

ecological hypotheses are stated in the distance world.

The problem here is not ecological in nature but

mathematical (application of variation partitioning to

distance matrices) and statistical (low power of the

distance approach when compared to the raw-data

approach). These points are discussed below.

TR have indeed proposed to carry out variation

partitioning using distance-based R2
M, but for this

method to be demonstrated to be valid, one should first

show (1) that it produces approximately correct

estimates of the fractions of variation; (2) that the

fractions of variation thus isolated are additive; (3)

whether families of variables (e.g., environment) should

be represented by a single synthetic distance matrix or

by one matrix per variable, two procedures which lead

to very different results; and (4) how the R2
M coefficients

and the fractions of variation should be interpreted. The

rationale presented by TR for their methodological

extension of variation partitioning solely relies on the

Legendre et al. (1994) paper. This is insufficient: The

validity of multiple regression on phylogenetic distance

matrices does not warrant the extension to variation

partitioning on ecological distance matrices. TR would

provide an extremely constructive element to this debate

by producing simulations giving clear answers to the

four questions above.

Assuming that TR could answer the four questions

about their partitioning method, the question of power

remains acutely important. It motivated our compara-

tive simulation study of the two partitioning methods. In

both LBP and the present paper (previous section), we

showed that the Mantel test had extremely low power in

spatially explicit simulations. This means that it was

unlikely to detect a species–environment relationship or

a spatial structure when such an effect was present in the

data. Considering the high cost of good ecological data,

we felt it was our responsibility to explain to ecologists,

who sought variation partitioning results to support

their theories, what the most appropriate statistical

method was to achieve their aims.

There are several statistical reasons for the low power

of the Mantel test. The reasons revolve around (1) the

fact that the R2
M statistic is inappropriate for questions

about variation of community composition among sites

in a region of interest (level-2 questions in LBP, TR, and

in the section Other points below); (2) the difficulty of

computing an adjusted form of R2
M; and (3) the lack of

additivity of R2
M, which is crucial for variation parti-

tioning.

Incorrect statistic.—The recent literature shows that

many researchers still use the distance approach to solve

level-2 questions, which is incorrect. LBP and TR agree

on this point (TR: Fig. 2). Some examples are listed in

LBP (pp. 438–439). It is thus urgent to warn researchers

against this confusion. The technical reason is that the

quantity which is partitioned in partitioning on distance

matrices is the sum-of-squares of the distances, SS(D),

and this quantity is not equivalent and cannot be

reduced to the total sum-of-squares of the response data

matrix SS(Y) (LBP: Eq. 2). Hence, the Mantel statistic

R2
M is not equivalent to the canonical R2. The simulation

results reported in LBP were crucial in showing that this

makes a big difference for interpretation of the results.

Adjusted coefficient of determination.—We now know

that in regression, the R2 statistic is a biased estimate

of the true population R2. Adjustments for this bias

exist: Ohtani (2000) showed that, under certain

assumptions, Ezekiel’s (1930) adjusted coefficient of

determination (R2
a) is an unbiased estimator of the

contribution of a set of explanatory variables X to the

explanation of the variance of a single response

variable y: R2
a ¼ 1 � a(1 � R2), where a ¼ (n � 1)/(n �

m� 1) for models with an intercept; n is the number of

observations, and m is the number of explanatory
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variables in the model. Peres-Neto et al. (2006) have

shown that the adjusted canonical R2
a , obtained by

applying Ezekiel’s correction to the canonical R2

obtained in RDA, also produces unbiased estimates

of the real contribution of the variables in X to the

explanation of a response matrix Y, and that it is these

values of R2
a that must be used to obtain unbiased

estimates of the fractions in variation partitioning.

This conclusion is important for variation partitioning

based upon distance matrices. No equation has been

proposed to compute an adjusted R-square (R2
Ma) in

Mantel-type regression. In Ezekiel’s equation, should

we use m ¼ 1 for a single explanatory matrix X in the

regression, or should we make m equal to the number

of original variables that were included in the

calculation of the distances leading to X? Should n be

the number of original objects (sites) or the number of

distances in half or the whole distance matrix? In any

case, the very idea of an adjusted R2 is suspicious in

matrix regression because R2
M should be interpreted as

a measure of fit of a model to pairwise distances and

not in terms of the proportion of variation of a

response matrix D1 explained by an explanatory

matrix D2.

Additivity.—One final point concerns the additivity of

the fractions resulting from variation partitioning. We

now know how to partition the variation of a response

matrix Y with respect to several explanatory matrices X

using RDA. In raw-data partitioning, an identical total

fraction of explained variation is obtained, whether all

explanatory variables are put in a single table X or they

are divided into any number of sub-tables (environmen-

tal, spatial, and so on). The effects of the explanatory

variables are thus additive. This is not the case in

partitioning on distance matrices: Different total

amounts of explained variation for the response Y are

obtained if one includes all explanatory variables in a

single distance matrix or if separate distance matrices are

computed for the various explanatory variables. This

clearly shows that variation partitioning based on

distances lacks the essential property of additivity,

which is the basis for interpretation of variation

partitioning results. TR are well aware of this fact, as

they mention that in the distance approach ‘‘R2 values

will change depending on [. . .] whether all environmental

variables are combined into a single distance matrix or

used in separate matrices’’ (p. 2707).

The debate about the R2 does not concern the

statistical tests themselves (Mantel test for two

matrices, or global test in a multiple regression on

distance matrices). It only concerns the use of the

squared Mantel coefficient, or the R2 of the multiple

regression on distance matrices R2
M, as a measure of the

fraction of explained variation, and following that as

the basis for computation of the fractions in variation

partitioning.

Question levels

We agree with TR that Mantel tests should be

restricted to level-3 questions, described in the Introduc-

tion, whereas canonical variation partitioning addresses

level-2 questions: We spelled that point out in LBP.

However, TR’s last paragraph of their section Testing

ecological hypothesis C (p. 2704) claims that the

hypothesis of environmental control of species distribu-

tions (a level-2 question) ‘‘is testable with the distance

approach.’’ They simply restate a level-2 question (the

effect of environmental variables on species distribu-

tions) in level-3 terms (correlation between environmen-

tal distances and community distances). TR’s

recommendation is thus in blatant contradiction to our

simulation results; distance-based methods must be

avoided for level-2 questions. The simulations reported

in Table 1 (sections B–E, column [a þ b]) of LBP have

clearly shown that Mantel tests were highly inefficient at

detecting species–environment relationships when such

relationships were present in data. It is therefore

counterproductive to restate a level-2 question in

distance terms.

Canonical variation partitioning is perfectly adequate

to test predictions under TR’s hypotheses A, B, and C

(p. 2703). The low power of the Mantel approach to

detect environmental relationships or spatial structures

in community composition data where these relation-

ships were present, as demonstrated by the simulations

of LBP (Table 1, A–C), is a sufficient reason to avoid the

distance approach to answer questions related to these

hypotheses. Neutral processes generate spatial autocor-

relation in community data, and PCNM analysis is very

efficient at detecting it. This is shown by the simulation

results reported in Borcard and Legendre (2002), in

LBP, and in Table 1 of the present paper. These

simulations also demonstrate that the Mantel test is very

inefficient at detecting spatial autocorrelation in data. In

all cases investigated here, the Mantel test is inadequate

for level-2 questions reformulated in terms of distances,

due to its extremely low statistical power; hence, the

ecological hypotheses related to level-2 questions must

be tested in the world of the raw data whenever that is

possible.

Other points

1) In their section The difference between ‘‘analyzing’’

and ‘‘explaining’’ beta diversity,’’ TR (p. 2701) propose

that any pairwise comparison of sites is a level-3

question. This is an incorrect statement: Pairwise

comparisons can be made in the raw-data as well as in

the distance world. It is therefore not surprising that,

from this incorrect premise, they derived the incorrect

conclusion that all the examples we cited as misuses of

the Mantel test were in fact legitimate.

2) TR agreed with LBP that level-3 questions concern

the variation in beta diversity among pairs or larger
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groups of sites. Let us concentrate on larger groups of

sites found in different sub-areas of the region under

study: Establishing that there is variation among sub-

areas can be translated into testing a hypothesis of

homogeneity/heterogeneity of dispersion matrices

among regions, each containing a group of sites. This

can be done by the classical test of homogeneity of

multivariate dispersion matrices (which compares the

full within-group multivariate variance-covariance ma-

trices; Kullback 1959), or the new test of homogeneity of

within-group dispersions (ANOVA of distances of

individual multivariate observations to their group

centroid) described by Anderson (2006). More than

two sites per group should be available for these

analyses in order to obtain reliable estimates of the

mean and variance parameters. The Mantel-based

approach should be compared, by numerical simula-

tions, to homogeneity analysis in order to determine

which of the two approaches is the most powerful to

detect heterogeneity in data.

Conclusion

The main argument presented by TR is that the

predictions of Hubbell’s model are formulated in terms

of distances; hence, tests of significance should be

conducted in the distance world. We have shown (1)

that the presence of autocorrelation predicted by the

neutral model is a level-2 question, which can and

should be tested by canonical analysis using raw-data

tables; (2) that the Mantel test should not be extended to

variation partitioning on distance matrices until the very

serious technical issues about that extension have been

settled; and (3) that important level-2 hypotheses, for

instance, those about environmental control determin-

ing community structure, should imperatively be tested

in the world of raw data due to the extremely low power

of the Mantel test.

The method of partitioning the variation of multivar-

iate community composition data tables between envi-

ronmental and spatial components (Borcard et al. 1992,

Borcard and Legendre 1994), based on RDA, has now

been generalized to several explanatory data matrices; a

statistical function is freely available in the R language

‘‘vegan’’ library (Oksanen et al. 2007) to compute the

results for up to four such matrices. Its domain of

application as a method for spatial analysis was greatly

improved by the development of PCNM analysis

(Borcard and Legendre 2002, Borcard et al. 2004). We

did the theoretical and the simulation work necessary to

demonstrate the statistical correctness and usefulness of

our method. Likewise, we developed regression on

distance matrices for phylogenetic studies (Legendre et

al. 1994), but we did not interpret R2
M as anything but the

adjustment of a model to data, for the reasons developed

in the section Partitioning on distance matrices above.

The proponents of partitioning on distance matrices are

invited to provide the same in-depth work to demon-

strate the soundness of their approach.
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ANALYZING OR EXPLAINING BETA
DIVERSITY? REPLY

Hanna Tuomisto1 and Kalle Ruokolainen1

The background

Before going into details with the issues raised by

Pélissier et al. (2008; hereafter referred to as PCD),

Laliberté (2008; hereafter Laliberté), and Legendre et al.

(2008; hereafter LBPb), we wish to restate the starting

points of Tuomisto and Ruokolainen (2006; hereafter

TR). Most importantly, TR focused on questions

related to beta diversity, and beta diversity was defined

as variation in community composition across sites, in

agreement with Legendre et al. (2005; hereafter LBPa).

With this focus, the obvious observation unit is a site,

and the raw data (community composition) are logically

presented as a sites 3 species table.

The raw-data table is a representation of the (within-

site) data that describe the study sites (e.g., species

abundances), so TR called it level-1 data (the first level

of abstraction). The dissimilarity matrix is derived from

the raw-data matrix and represents (among-site) varia-

tion in the raw data, so TR called it level-2 data (the

second level of abstraction). The third level of abstrac-

tion is derived from the level-2 data and represents

(among-site pair) variation in the dissimilarity data (see

‘‘The community composition path’’ in Fig. 1).

The most important topic in TR was to distinguish

level-2 questions from level-3 questions. Level-2 ques-

tions were defined as those where the response variable

is level-1 data, and the aim of the analysis is to explain

level-2 data (variation in level-1 data). Level-3 questions

were defined as those where the response variable is

level-2 data, and the aim of the analysis is to explain

level-3 data (variation in level-2 data). In either case, the

purpose of the analysis is to quantify the proportion of

the variation in the response variable that can be

explained by variation in the available explanatory

variables. Appropriate explanatory variables in beta

diversity related studies are site descriptors such as

environmental variables or site coordinates (in level-2

questions) or distance matrices derived from these (in

level-3 questions).

Although TR concentrated on Mantel-based methods

when discussing level-3 questions, this was simply

because these methods are well known, and because

we wanted to comment on some conclusions about the

Mantel test drawn by LBPa. Our intention was not to

claim that the dissimilarity matrix is the only possible

form of level-2 data, nor that the Mantel test is the only

possible analysis method for level-3 questions. The

purpose of TR was also not to provide a review of all

analysis methods that can be used in connection with

studies that involve beta diversity, especially not of such

methods that focus on different response variables than

those mentioned in the previous paragraph. Similarly,

TR limited the discussion on how to test Hubbell’s

neutral model (Hubbell 2001) to questions along the

community composition path, but our intention was not

to imply that other paths do not exist.

Questions related to beta diversity

As it happens, PCD wrote that they find the

‘‘individual 3 species-occurrence matrix [. . .] a much

more appropriate ‘response variable’ than the classical

site 3 species abundance matrix.’’ With this statement,

PCD revealed that the questions they were interested in

were not the same as those TR were interested in. In the

questions discussed by TR, the observation unit was the

site; in the questions discussed by PCD, the observation

unit was the individual. The individuals3 species table is

level-1 data just like the sites 3 species table, and either

kind of raw data can be used as a starting point to derive

level-2 data and level-3 data. When the raw data consist

of the individuals 3 species table, the level-2 data

quantify variation in species identity between individu-

als, i.e., gamma diversity (see ‘‘The species identity path’’

in Fig. 1).

The ecological questions targeted along the commu-

nity composition path concern to what degree regional

beta diversity (the overall variation in species composi-

tion among sites) can be explained by variation in site

properties (level-2 question), and to what degree the
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variation in differences in species composition between

sites can be explained by variation in differences in site

properties (level-3 question). In contrast, the ecological

questions targeted along the species identity path

concern to what degree the total variation in species

identity among individuals (index of gamma diversity)

can be explained by variation in the identity of the sites

(or habitat classes) in which the individuals occur (the

beta diversity component) and to what degree it is

unexplained by variation in site identity (the alpha

diversity component). This is a level-2 question. The

corresponding level-3 question would be: To what

degree can the variation in whether individuals belong

to the same species or not be explained by variation in

whether the individuals grew in the same site (or habitat

class) or not?

Although the questions of interest change when a

different raw-data table is used, the same levels of

abstraction apply to the community composition path

and the species identity path. Indeed, any observation

units 3 descriptors table can be used as the level-1 data

from which level-2 data and level-3 data are derived.

This was not explicitly stated in TR, because there we

were only interested in the distinction between level-2

questions and level-3 questions along the community

composition path.

In contrast, PCD were interested in level-2 questions

along the species identity path. This is an entirely valid

focus, but it is important to notice that the species

identity path explores different terrain than the com-

munity composition path (Fig. 1). Although beta

diversity appears in some questions along both paths,

FIG. 1. Different paths and levels of abstraction relevant to diversity studies. The raw data at the first level of abstraction
consist of observation units (sites s1–sm or individuals v1–vn) that are characterized by one or more descriptors (abundance a of
species A1–AS or alpha diversity z for sites, binary information y on whether individual belongs to species A1–AS for individuals). In
combination with an individuals 3 sites table, the individuals 3 species table can be used to derive the site-based raw-data tables.
The primary site-based raw data can be used to derive the secondary site-based raw data. Variation in any raw data table can be
represented at level 2 by a dissimilarity matrix, or summarized in a single value such as variance or the mean of the pairwise
dissimilarities (D). In turn, the variation in the dissimilarity matrix forms the third level of abstraction. Each raw-data table forms
the starting point for a different path, and the different kinds of diversity appear in different parts of these paths. Along the
community composition path, beta diversity is level-2 data; alpha diversity and gamma diversity are not present along this path.
Along the alpha diversity path, alpha diversity is level-1 data; beta diversity and gamma diversity are not present along this path.
Along the species identity path, the index values of all three diversities are level-2 data.
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it is in different roles in them. In the questions of the

community composition path, beta diversity is either the

response variable (level-3 questions) or the variance to

be explained (level-2 questions). In contrast, in the level-

2 questions of the species identity path, the variance to

be explained is an index of gamma diversity, and the

beta diversity index is that fraction of the gamma

diversity index that actually can be explained by

variation in the explanatory variables.

Where does alpha diversity belong?

Both PCD and LBPb maintain that the first level of

abstraction is alpha diversity, as in LBPa, rather than

community composition, as in TR. In fact, alpha

diversity is also level-1 data in the TR scheme. This is

because alpha diversity can be presented in a sites 3

alpha diversity table, which is an observation units 3

descriptors table, which in turn is the basic format of

level-1 data (Fig. 1). Alpha diversity can be considered

secondary raw data because it summarizes the species

abundance information from the primary raw data (sites

3 species table) through the computation of an alpha

diversity index, but it is still level-1 data.

Both alpha diversity and beta diversity can be derived

from the sites 3 species table, albeit via different

computation routes (Fig. 1). When we discussed level-1

data in TR, we chose to concentrate on the sites 3

species table, rather than the sites 3 alpha diversity

table, for two reasons.

First, clarifying the relationships between the levels of

abstraction is easier when each higher level consists of

the variation in the level below it. This made it possible

to use an analogy from physics, where level-1 data

consist of position, level-2 data of velocity, and level-3

data of acceleration. In mathematical terms, the level-2

data correspond to the first derivative and level-3 data to

the second derivative of the original level-1 variable.

Second, our main interest was in beta diversity, and

the sites 3 species table can be used to calculate beta

diversity, whereas the sites 3 alpha diversity table

cannot. Computing beta diversity requires knowledge

on species identities, and this information is lost when

the alpha diversity index is computed, so the sites 3

alpha diversity table cannot be used as a starting point

when one is interested in questions along the community

composition path (Fig. 1).

Just like one can derive level-2 data and level-3 data

from the sites 3 species table and the individuals 3

species table, one can do the same with the sites3 alpha

diversity table (see ‘‘The alpha diversity path’’ in Fig. 1).

Alpha diversity is at the same level of abstraction as

community composition (level 1), and variation in alpha

diversity is, hence, at the same level of abstraction as

variation in community composition (level 2). Conse-

quently, analyzing alpha diversity is a level-2 question

by our terminology, which contrasts with the view of

PCD, LBPa, and LBPb, who call it a level-1 analysis.

Definitions of beta diversity

Over the years, beta diversity has been defined in

different ways. Whittaker (1960) measured beta diversity

with dissimilarity indices computed between site pairs,

and later noted that the average of all such values for a

data set can be considered an expression of beta

differentiation (Whittaker 1972). Therefore, the individ-

ual cell values in the level-2 dissimilarity matrix along

the community composition path can be termed ‘‘pair-

wise beta diversity,’’ and the average of all off-diagonal

values in the dissimilarity matrix is one expression of

‘‘regional beta diversity.’’ Whittaker (1960) also defined

the terms gamma diversity and alpha diversity, and

related the three kinds of diversity to each other in a

multiplicative way, i.e., c ¼ a 3 b, from which follows

that b ¼ c/a (multiplicative beta diversity). The three

diversity measures have since then also been related in

an additive way, i.e., c¼aþb, from which follows that b
¼ c� a (additive beta diversity; e.g., Lande 1996, Veech

et al. 2002, PCD).

In both the multiplicative and the additive approach,

alpha and gamma diversities can be measured as the

number of species in a site and a larger region,

respectively. Multiplicative beta diversity then measures

how many times more species there are in an entire

region than in an average site within that region.

Additive beta diversity measures how many more species

the entire region has than an average site within that

region. Both are variants of ‘‘regional beta diversity.’’

For pairwise beta diversity, one can choose a

dissimilarity metric from a wide variety of available

indices, each one of which emphasizes different aspects

of the raw data. Some of these indices are ratios whereas

others are not. The classical beta diversity measures are

ratios and therefore conform with the concept of

multiplicative beta diversity. Examples include measures

based on the Jaccard, Sørensen, or Bray-Curtis indices,

which are often obtained by first subtracting two values

and then dividing the result by a third value (to indicate,

for example, what proportion of species found in two

sites are not shared between the two sites). When b¼c/a
is computed for site pairs, it equals 2 minus the Sørensen

index.

In contrast, dissimilarity indices such as the Euclidean

distance and the Manhattan distance are not ratios, but

have the same unit as the input data (e.g., number of

species) and therefore conform with the concept of

additive beta diversity. The Manhattan distance, when

computed using presence–absence data, indicates how

many species are found in one of the sites to be

compared but not both. This is obtained by subtraction,

and the value thus obtained is used without relating it to

the number of species that were found in both sites
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together. When b ¼ c � a is computed for site pairs, it

equals Manhattan distance divided by 2.

Even though the additive and multiplicative beta

diversities measure conceptually different things, either

approach can be applied to site pairs to obtain the

pairwise beta diversity values in the dissimilarity matrix

along the community composition path. However, the

additive beta diversity indices have properties that are

not desirable in this context (see Legendre and Legendre

1998 for details).

As discussed by PCD, alpha and gamma diversity can

also be measured using an index that takes into account

the relative abundances of species, such as the Shannon

index H0. If this is done, some extra thought is necessary

because beta diversity can no longer be interpreted in the

terms outlined above. Already Whittaker (1972) noticed

that the Shannon index should not be used in the

multiplicative diversity equation, because H0 involves

logarithms, and therefore H 0
a and H 0

c will necessarily

converge when alpha diversity increases. Instead,

diversities should be measured using expH0 which is

the number equivalent of H0 (the number of equally

abundant species needed to obtain the observed value of

H0). When this is done, the following happens:

c ¼ a 3 b, expH 0
c ¼ expH 0

a 3 expH 0
b

¼ expðH 0
a þ H 0

bÞ , H 0
c ¼ H 0

a þ H 0
b , c0 ¼ a0 þ b0:

With the Shannon index, applying the additive

diversity partitioning to the index therefore leads to

the same result as applying the multiplicative partition-

ing to its number equivalent, meaning that in both cases

the same index values and the same number equivalents

are obtained (see Jost 2007 for a more thorough

discussion involving also other diversity indices).

When the Simpson index is used, the equation c0 ¼ a0

þb0 can be interpreted in terms of variance in the species

identity of individuals, as done by PCD. The beta

diversity index derived in this way is incorporated in the

level-2 questions of the species identity path, namely as

the proportion of variation in the individuals 3 sites

table that can be explained by the categorical explana-

tory variables (site or habitat class). This was discussed

extensively by PCD. Unfortunately, when relating their

arguments to those of TR, PCD failed to notice that

they were discussing b0, whereas TR were discussing b.
The beta diversity index b0 is not in the same role along

the species identity path (the focus of PCD) as beta

diversity b is along the community composition path

(the focus of TR: Fig. 1).

Site groups in the distance approach

All three commentaries (PCD, Laliberté, and LBPb)

erroneously claimed that TR restricted the use of the

distance approach to site pairs rather than larger regions

with more than two sites each. When giving examples of

studies involving larger regions, PCD, Laliberté, and

LBPb also demonstrated that their concept of the three

levels of abstraction is not the same as that of TR. PCD

wrote: ‘‘The objective of the third level [. . .] is ultimately

to compare diversity patterns found in distinct surveys,

hence to compare the structures present in several site3

species tables.’’ Subsequently, PCD made the claim: ‘‘It

is only when surveys share neither sites nor species [. . .]

that comparisons of distance matrices and Mantel tests

may justify themselves.’’ This is a perplexing statement,

because a data set where none of the observation units

(surveys) share any species cannot yield informative

results in a Mantel test. This is because when

observation units share no species, all compositional

dissimilarities in the corresponding distance matrix are

identical (if a dissimilarity index consistent with

multiplicative beta diversity is used), and there is no

variation that could be related to the variation in a

second distance matrix.

Laliberté, in turn, wrote that the distance approach is

of limited ecological use, because ‘‘most ecologists that

are truly interested in studying the variation of beta

diversity among groups of sites or regions would likely

want to compare regions in which more than two sites

have been observed.’’ LBPb wrote along similar lines

that LBPa ‘‘use level-3 questions to investigate the

differences among larger groups of sites; for example,

adjacent geographic regions with several sites in each’’

and specified: ‘‘This question does not focus on the

identities of the flower species, but on the variance in

community composition between the two towns. (Are

the multispecies dispersion matrices homogeneous when

comparing the two towns, and if not, why?). This would

be a level-3 question.’’

In fact, all the above descriptions of proposed ‘‘level-3

questions’’ correspond to what TR consider level-2

questions. In addition, they differ from the questions

discussed by TR in using a different raw-data table: The

observation unit here is a region consisting of a group of

sites rather than a single site, and the descriptor is

within-region heterogeneity rather than community

composition.

As we said in TR, beta diversity can be computed for

any number of sites �2. We focused on the special case

where each observation unit consists of a single site, and

pairwise beta diversity is hence computed for pairs of

sites, because this simplifies the interpretation of analysis

results. The results from analyses where the observation

unit is a group consisting of�2 sites are affected by many

factors. If different groups contain different numbers of

sites, it has to be taken into account that both the number

of species and observed heterogeneity within a group

tend to increase with the number of sites. If a fixed

number of sites is used, how many sites should there be

per group? The groups are the data points in the

analyses, so if one allocates more sites to each, fewer
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data points can be obtained from the same amount of

data, and the power of statistical tests decreases.

Furthermore, it may not always be obvious which sites

should belong to the same group, and changing the limits

among groups may affect the results. All these problems

are avoided if the analyses are run such that each group

consists of a single site, and the beta diversity values are

hence computed for pairs of sites. Of course, if the

ecological question of interest is such that it can only be

answered through comparisons among groups of several

sites, then one has to compare groups of several sites.

If groups of �2 sites are used as the observation unit,

at least two different analytical paths become available.

Along the first path, the questions asked are similar to

those along the community composition path of Fig. 1,

except that the observation unit is now a region (or

survey, as in PCD) rather than a single site. The level-1

data consist of a regions 3 species table, where species

abundances for each region have been pooled over all

sampling units that belong to the region in question. In

the level-2 data, each region is compared with each other

region in turn to obtain a matrix of pairwise beta

diversity values between regions.

Along the second path, the observation unit is still the

region, but the variable that is used to describe the

region is its internal compositional heterogeneity, i.e.,

regional beta diversity. For each region, the regional

beta diversity needs to be quantified from a sites 3

species table that contains those sites that belong to the

region in question. Regional beta diversity can be

derived in one of several alternative ways. For example,

one can use the variance (or sum of squares) of the sites

3 species table (following LBPa), the average of the

pairwise beta diversity values in the dissimilarity matrix

derived from the sites3 species table (following TR), or

the mean distance to the regional centroid derived from

an ordination of the sites within each region (following

Anderson et al. 2006).

It is noteworthy that, although the variance of the

sites 3 species table and the mean pairwise dissimilarity

of the sites are level-2 data along the community

composition path (Fig. 1), they become level-1 data

along the regional beta diversity path (Fig. 2). The

FIG. 2. The regional beta diversity path. The observation units along this path are regions (r1–rq) consisting of �2 sites, and the
level-1 descriptor is within-region compositional heterogeneity (regional beta diversity B1–Bq). For each region, the regional beta
diversity value is obtained from the level-2 data of the community composition path (Fig. 1) where the sites3 species table contains
the sites belonging to the region in question.
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regions 3 regional beta diversity table contains level-1

data just like any other observation units 3 descriptors

table, and on the basis of this raw-data table, level-2

data and level-3 data can be derived. These, in turn, can

be used to formulate level-2 questions and level-3

questions of the regional beta diversity path (Fig. 2).

For example, a possible level-2 question would be: Is

within-region compositional heterogeneity correlated

with within-region environmental heterogeneity? A

related level-3 question would be: Is the between-region

difference in within-region compositional heterogeneity

correlated with the between-region difference in within-

region environmental heterogeneity?

Are we taking the same path?

All three commentaries (PCD, Laliberté, and LBPb)

criticized TR’s use of the Mantel test to address

questions related to beta diversity, and suggested

alternative analysis methods instead. PCD wrote that

‘‘the main purpose of our comment is to show that

spatially explicit, distance-based analyses of beta diver-

sity do not necessarily belong to the so-called third level

of abstraction [. . .] and can, moreover, be viewed as a

prolongation of the raw-data approach, in accordance

with the overall concept of variance partition.’’ Here it

should be remembered that when TR discussed ‘‘analysis

of beta diversity,’’ they referred to an analysis of the

community composition path where the response

variable is pairwise beta diversity, and since pairwise

beta diversity is level-2 data, this is a third-level question

by definition. But the questions discussed by PCD were

indeed level-2 questions, not level-3 questions; they

concerned the analysis of the individuals3 species table,

which is level-1 data. In these analyses, the beta diversity

index is not the response variable, but represents the

explained part of the variance of the response variable

(the response variable being the individuals 3 species

table, and the variance of the response variable being a

gamma diversity index).

Laliberté, in turn, wrote: ‘‘A more appropriate way of

answering questions related to the variation of beta

diversity among groups of sites or regions would be to

use multivariate dispersion on distance matrices, a

method described by Anderson et al. (2006).’’ Laliberté

also gave examples of such questions: ‘‘Does beta

diversity differ between different groups of sites (i.e.,

that contain more than two sites) or regions?’’ and ‘‘Why

does beta diversity vary between these groups of sites or

regions?’’ If one is interested in finding out whether the

regional beta diversity values observed within two

regions are statistically different, then the distance-based

test of homogeneity of multivariate dispersions (Ander-

son 2006, Anderson et al. 2006) is indeed appropriate,

but the Mantel test is not. The Mantel test quantifies

correlation between cell values in two distance matrices,

and since correlation is not affected by scaling param-

eters, the Mantel test cannot be used to find out whether

the average cell values in the two matrices differ. The

second question of Laliberté is a typical example of a

level-2 question of the regional beta diversity path, and

as such, it cannot be addressed by the Mantel test either

(this being a level-3 method). Along the regional beta

diversity path, the observation unit is the region, and in

level-2 questions of this path, regional beta diversity is in

the role of the response variable. This contrasts with the

situation along the community composition path (the

focus of TR), where the observation unit is a single site,

and in level-2 questions of this path, the regional beta

diversity is in the role of the variance to be explained

(the response variable being community composition).

LBPb wrote that ‘‘The Mantel-based approach should

be compared, by numerical simulations, to homogeneity

analysis in order to determine which of the two

approaches is the most powerful to detect heterogeneity

in data.’’ As explained in the previous paragraph, the

two methods do not target the same response variable,

and their null hypotheses are not linked in any way.

Simulations are neither necessary nor useful in deciding

which of the two methods is most powerful to detect

heterogeneity in data, because one of them answers this

question and the other one does not.

We agree that the analytical approaches promoted by

PCD are appropriate when one is interested in level-2

questions of the species identity path, and that

multivariate dispersion can be used as the response

variable when one is interested in level-2 questions of the

regional beta diversity path, as promoted by Laliberté.

However, this has no bearing on the validity of our

conclusions in TR, because there we were not discussing

the species identity path or the regional beta diversity

path, and therefore none of our conclusions about beta

diversity were meant to be interpreted in the context of

these paths. All the questions discussed in TR were

along the community composition path, where the

response variable is either the sites 3 species table at

the beginning of the path, or the dissimilarity matrix

based on this table further up the path. If the

observation unit is not the site (as in TR), but the

individual (as in PCD) or the region (as in Laliberté),

then the questions addressed are fundamentally differ-

ent, and the analysis approaches may also be different.

Spatial autocorrelation and spatial dependence

Hubbell’s neutral hypothesis posits that species

abundances (and hence community composition) fluc-

tuate randomly, but are spatially autocorrelated due to

dispersal limitation (Hubbell 2001). In TR, we wrote

that, from this, it follows that two nearby sites are

expected to share more species in more similar

abundances than two sites further apart. Laliberté

claimed that this ‘‘statistical prediction is inaccurate

because spatial autocorrelation is not defined as the
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tendency of two nearby sites to be more similar than

faraway sites,’’ but as ‘‘the lack of independence [. . .]

among the error components of field data, due to

geographic proximity.’’ Following Legendre and Legen-

dre (1998:11), the value of the autocorrelated variable y

at site j can be calculated using the following equation:

yj ¼ ly þ
X

f ðyi � lyÞ þ ej ð1Þ

where ly is the overall mean of y. The rest of the

equation describes the error component, in which R f (yi
� ly) is the spatial autocorrelation term. This is a

weighted average over all points i of the deviation of yi
from the overall mean of y. The weights used in function

f are inversely related to the geographical distance

between points i and j. As a consequence, the closer to

each other the points i and j are spatially, the stronger

the influence of yi on yj, and the more similar, on

average, these values will be. As a result, nearby sites

tend to have more similar y values than faraway sites.

Along the community composition path, y stands for

community composition.

Laliberté claimed that spatial autocorrelation does not

necessarily lead to a monotonic decrease in similarity with

increasing geographic distance, but did not explain why.

We offer two possibilities: random noise and restricted

range. If the random error term ej in Eq. 1 is much larger

than the autocorrelation term, then the effect of spatial

autocorrelation is swamped by random noise. When

similarity in y is then regressed against distance, a lot of

scatter will be observed around the regression line, and its

slope might be statistically indistinguishable from zero. In

such a case, y would be considered weakly, or not at all,

autocorrelated spatially. This happens under the neutral

model when the probability of immigration from the

metacommunity to the local community is given a large

value (Hubbell 2001).

Even when the spatial autocorrelation term is large

when compared with random noise, spatial autocorrela-

tion may be of restricted range. Then yi has an effect on yj
only when the distance between points i and j is smaller

than the range, and at longer distances yj becomes

independent of yi. In this case, similarity in y would

decrease with distance at distances shorter than the range

but not at longer distances. Laliberté did not use this

argument, but instead wrote that only broad-scale

patterns in distance decay plots should be interpreted in

terms of the neutral model. However, Hubbell himself has

argued that spatial autocorrelation is present at all spatial

scales in neutral communities, and has shown examples of

distance decay plots where the geographical distances

range from a few meters to thousands of kilometers. At

local scales, spatial autocorrelation is caused by random

population dynamics and dispersal limitation, and at

broad scales by the cumulative effects of such dynamics

over long time periods, as well as random speciation

events (Hubbell 2001).

Laliberté wrote further: ‘‘Consequently, regressing

community composition dissimilarity on geographical

distances [. . .] to quantify the contribution (using R2) of

neutral processes to variation of beta diversity between

pairs of sites, which is the goal of TR’s method of
variation partitioning on distance matrices, is funda-

mentally incorrect’’ (Laliberté’s italics). Here Laliberté

misinterprets our analyses. TR did not claim that the

spatial component of variation partitioning as such is a

measure of the contribution of neutral processes. It

cannot be, because the neutral model also predicts
random noise, and because deterministic processes lead

to a similar distance decay pattern when community

composition is dependent on spatially autocorrelated

environmental variables (as explicitly stated in TR; see

also Tests of autocorrelation in the distance world in

LBPb, and Purpose of variation partitioning on distance

matrices, below).

When both spatial autocorrelation and dependence on

environmental variables are operating, the value of y can
be expressed using the following equation (note the

similarity with the equation presented by LBPb):

yj ¼ ly þ f ðenvironmental variablesÞ

þ
X

f ðyi � lyÞ þ ej:
ð2Þ

What happens when difference in y is quantified

between two sites j and k? If we are only interested in the

magnitude of the difference (and not in which site has

the larger value of y), the relevant equation is

Dj;ky ¼ jyj � ykj
¼ Dj;k f ðenvironmental variablesÞ

þ Dj;k

X
f ðyi � lyÞ þ Dj;ke: ð3Þ

The term ly is a constant and therefore gets eliminated

from Eq. 3. If environmental variables have an effect on
y, and f (environmental variables) is a monotonic func-

tion (which is a reasonable assumption when y is commu-

nity composition), then Dj,k f (environmental variables) is

smallest for sites where the values of the environmental

variables are most similar, and Dj,ky should hence be

positively correlated with difference in the environmental

variables. The term Dj,k R f (yi � ly) is by definition
smallest for sites that are surrounded by the same

neighbors, and similarity in the neighborhoods around j

and k logically decreases with increasing geographical

distance between them. As a consequence, Dj,ky will be

positively correlated with geographical distance. The

term ej is just random noise, and Dj, ke is therefore not
related to either environmental or geograpbical distance.

Purpose of variation partitioning on distance matrices

Our interest in variation partitioning on distance

matrices stems from its usefulness in quantifying the

unique and shared statistical contributions of variation
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in environmental vs. geographical distances to explain-

ing variation in community differences, because this

helps in separating environmental dependence from

spatial autocorrelation. When variation partitioning is

used in this framework, it partitions the variation in the

pairwise beta diversity values in the response dissimi-

larity matrix to four fractions: purely environmental

(explained by variation in environmental differences

only), purely spatial (explained by variation in geo-

graphical distances only), joint spatial–environmental

(explained jointly by variation in environmental and

geographical distances), and unexplained (not explained

by variation in any of the available explanatory distance

matrices).

When f (environmental variables) is a monotonic

function, it follows that the stronger the effect of

environmental variables on y, the less scatter there is

around the linear regression of Dy on differences in the

environmental variables, and the larger the R2 of this

regression. Similarly, the stronger the spatial autocorre-

lation of y, the less scatter there is around the linear

regression of Dy on geographical distances, and the

larger the R2 of this regression (unless the range of

spatial autocorrelation is much less than the extent of

the study). If all relevant environmental variables have

been measured, then the purely environmental fraction

corresponds to the effect of nonspatial environmental

dependence, i.e., the part of Dj,k f (environmental vari-

ables) that is not related with spatial autocorrelation in

the environmental variables. The purely spatial fraction

corresponds to the effect of spatial autocorrelation in y

itself, i.e., Dj,k R f (yi� ly), and the unexplained fraction

to the effect of random error Dj,ke. The joint spatial–

environmental fraction may represent either environ-

mental dependence of y on spatially autocorrelated

environmental variables, spatial autocorrelation in y

itself, or any combination of both, and the relative

contributions of Dj,k f (environmental variables) and Dj,k

R f (yi � ly) to this fraction cannot be separated.

According to Hubbell’s neutral model, there is no

environmental dependence, so f (environmental vari-

ables), and therefore Df (environmental variables),

should equal zero for all values of the environmental

variables. Consequently, community differences should

not be explainable by environmental differences. If it is

found that they are, an explicit prediction of the neutral

model has been falsified. The purely environmental

fraction therefore quantifies the proportion of variation

in community differences that logically cannot be due to

neutral processes. Whether the rest of the variation is

caused by neutral processes or not remains an open

question. It could be, because both spatial autocorrela-

tion and random noise are compatible with the neutral

model. However, because all relevant environmental

variables can never be measured, both the pure spatial

and the unexplained fraction are probably overestimated

in practical applications.

The neutral model also predicts that community

compositional differences should be positively correlated

with geographical distances, as explained above. If it is

found that the correlation is negative, it can be assumed

that other forces than spatially autocorrelated neutral

dynamics determine community composition in the

study region. A nonsignificant correlation is indecisive,

because it could be due to high migration rate, which

increases the effect of the random error Dj,ke.
Obviously, all ecological conclusions based on such

analyses are dependent on the sampling being adequate

for the purpose. Although Laliberté suggested other-

wise, we certainly do not advocate that conclusions on

the neutral theory are drawn from data with ‘‘any

sampling design, regardless of grain size and spatial

extent.’’ For example, a sampling setup that covers such

a small spatial extent that all species are ubiquitous (as

in the numerical example shown in Fig. 1A of Laliberté)

seems to us so restricted that it would be of limited

interest in this context.

Raw-data vs. distance approach

in testing the neutral model

Under Testing neutral theory: raw data or distances?

Laliberté overlooked some general principles of statis-

tical testing. Hubbell (2001) proposed the neutral model

as a null hypothesis, which is logical, because there is no

way to prove that observational data are the result of

purely random processes. Indeed, this is what is

generally assumed a priori, until analyses of the

observational data provide evidence to the contrary.

When testing a hypothesis, one needs to derive such

predictions about the observations whose falsification

serves as evidence against the hypothesis. The fact that

the neutral model gives a role for spatial autocorrela-

tion, but not for environmental dependence, is crucial in

formulating such predictions. If a pattern observed in

the data is in conflict with model predictions, it can be

concluded that the pattern was caused by some other

process than the one modeled. However, even when a

pattern observed in the data is in agreement with model

predictions, causality cannot automatically be assumed.

Furthermore, failure to reject a null hypothesis does not

prove that the null hypothesis is true. These general

principles apply no matter whether analyses are done

using the raw-data approach or the distance approach,

contrary to what Laliberté seemed to suggest.

Under Spatial autocorrelation and spatial dependence,

above, we explained how the neutral model leads to two

explicit predictions about the values of Dj,ky. Since Dj,ky

is level-2 data, predictions concerning variation in Dj,ky

need to be tested using a level-3 method, i.e., the

distance approach. PCD, Laliberté, and LBPb advocat-

ed testing the neutral model using the raw-data
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approach, which by definition concerns variation in y.

However, in this case, it is difficult to see how the

variables included in the regression models are related to

the neutral model they are supposed to represent.

The least ambiguous component is f (environmental

variables). Since the neutral model predicts f (environ-

mental variables) to be zero, finding that environmental

variables actually have an impact on y falsifies a

prediction of the neutral model. However, spatial

autocorrelation causes a problem here, both because it

might inflate the apparent contribution of the environ-

mental variables, and because it is capable of creating

spatial pattern. Therefore, neither the existence nor the

nonexistence of statistically significant spatial pattern

(whether environmentally correlated or not) in the raw

data serves as proof against the neutral model.

In the raw-data-based variation partitioning advocat-

ed by Laliberté and LBPb, the explanatory variables do

not include a real autocorrelation term R f (yi� ly), but
a model of spatial structure as represented by principal

coordinate analysis of neighbor matrices (PCNM)

variables. The autocorrelation term models the value

of y in a focal observation unit on the basis of the values

of y in neighboring units (whatever their spatial

coordinates), whereas the PCNM variables model the

value of y in a focal observation unit on the basis of its

spatial coordinates (whatever the values of y in

neighboring units). As stated in TR (p. 2703), PCNM

variables are very flexible, so they can efficiently model

many types of spatial structure. Some of these structures

may be compatible with the neutral model, whereas

others are not. Since PCNM variables are actually wave

functions, they are especially good at modeling patch-

iness that recurs with a regular periodicity over the

landscape. However, under neutral dynamics there is no

reason why recurring patchiness should arise. Even

though random fluctuations in species abundances easily

lead to patchy distribution, there is no reason for the

high-density patches of a given species to be of the same

size or at regular intervals. Furthermore, under the

neutral model there is no reason why the patches of

different species should coincide, so community compo-

sition (which integrates the abundances of all species) is

expected to vary smoothly over the landscape. Using the

existence of regular spatial patchiness at the community

level to support the neutral model is therefore unwar-

ranted.

Not all kinds of spatial structure that can be modeled

by PCNM variables involve monotonic decrease in

community similarity with increasing geographical

distance at all distances, which is what the neutral

model predicts. Fig. 3 shows one such example, where

community similarity of an artificial data set actually

increases with increasing geographical distance (RM ¼
0.19, P ¼ 0.015). Since this is the opposite of what the

neutral model predicts, both the graph and the Mantel

test result show that the data are in conflict with a level-3

prediction of the neutral model. When the same data set

is used in redundancy analysis (RDA; a level-2 method),

six PCNM variables can explain 42% of the variation in

community composition (P , 0.05). The neutral model

makes no predictions about the expected relationship

between species abundances and PCNM variables, so we

do not know if this RDA result is in agreement with the

neutral model or not. If significant spatial structure as

detected by PCNM variables is interpreted as support to

the neutral model (as advocated by Laliberté, LBPa, and

LBPb), then the level-3 results and the level-2 results

point to different conclusions about the agreement

between data and theory. We prefer to rely on the

level-3 results, because according to our logic, the

Mantel test addresses an explicit prediction of the

neutral model, but RDA fails to do so. If Laliberté

and LBPb disagree with our reasoning above, we would

like to see them specify which predictions of the neutral

model the level-2 methods actually test, and how they do

that.

Hubbell’s neutral theory can be compared with a

hypothesis that kites move at random in space and are

unaffected by wind or other external forces, but that

kites are not able to disapparate and instantly apparate

in another location, so kite position is temporally

autocorrelated. Two predictions can be derived from

this hypothesis. First, the velocity of the kite should not

be correlated with wind velocity. Second, the shorter the

time interval between kite observations, the smaller the

average difference in the corresponding kite positions

should be. Both predictions can be tested with the

FIG. 3. Similarity in species composition between site pairs
plotted against geographical distance, with linear regression
shown. The data come from an artificial transect with 23
equidistant plots and a total of 14 species.
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distance approach. In contrast, the random movement

hypothesis does not predict any specific pattern in kite

position that could be tested with the raw-data

approach. Of course, it is possible to model the realized

trajectory of the kite a posteriori. For example, raw-

data-based variation partitioning can be used to

quantify the proportions of the variation in kite position

that are uniquely and jointly explainable by variation in

the position of the air mass surrounding the kite and by

a chosen mathematical function that models how the

high and low coordinate values behave over time (e.g.,

PCNM variables). But how these tests are related to any

predictions of the random movement hypothesis is not

at all obvious, so in practice, the results shed no light on

what the relative roles of spatially autocorrelated

random movement and external forces have been in

shaping the observed kite trajectory.

Simulations

Laliberté and LBPb, just like LBPa, justified their

preference for the raw-data approach by referring to

simulation results. However, when choosing between

analysis methods, the selection criterion should not be

how well a given simulated data set conforms with the

method’s null hypothesis, but how well the null

hypothesis targets the ecological question at hand. TR

argued that the analysis of spatial autocorrelation is a

level-3 question by definition, and therefore it cannot be

analyzed using RDA, which is a level-2 method. Neither

LBPb nor Laliberté disproved this argument, because

they did not explain in what way spatial autocorrelation

is modeled in RDA.

LBPb wrote in reference to their simulation studies

that ‘‘PCNM analysis [. . .] is far more powerful at

detecting raw-data structures emerging as a consequence

of autocorrelation, than the distance approach is at

detecting distance patterns emerging from autocorrela-

tion.’’ This statement has no relation with the analysis

results that LBPb actually presented. What they did is to

subject simulated data sets to level-2 and level-3 analyses

and compare the rejection rates of the corresponding

null hypotheses. The simulation results can be interpret-

ed as follows.

1) The simulations produced such spatial structure in

the data that was well modeled by PCNM variables in

RDA (high rejection rate of H0: there is no spatial

structure related to the PCNM variables in the raw

data).

2) The simulations did not produce a monotonic

decrease in community similarity with geographical

distance in the data (rejection rate was low for H0:

Compositional dissimilarity between communities is not

linearly correlated with the geographical distance

between them). This is not entirely unexpected, given

that migration to a community was only allowed from

immediately neighboring communities, so the realized

range of spatial autocorrelation was probably rather

small in the simulated data.

LBPb compared the rejection rates of the two analysis

methods to draw conclusions about their relative

statistical power. The problem is that since H0(raw

data) is not the same as H0(distance), there is no reason

to expect the same rejection rate even if the power of

both analysis methods is identical. Differences in

rejection rates simply indicate that the simulated data

happened to conform better with one model than the

other, and drawing conclusions on the statistical

superiority of one analysis method over the other on

this basis is unjustified.

LBPb wrote that the Mantel test ‘‘was unlikely to

detect a species–environment relationship or a spatial

structure when such an effect was present in the data’’

without acknowledging that the Mantel test is not meant

to target such questions. The Mantel test is designed to

address questions like: Is dissimilarity in community

composition correlated with geographical distance? If

one is interested in more specific species–environment

relationships or in documenting such spatial structures

that are not adequately modeled by a linear correlation

between distance matrices, then one should use some

other method than the Mantel test. RDA is a possibility

here, but the reason for choosing RDA over the Mantel

test is not the low power of the Mantel test, but the fact

that one is interested in a question that the Mantel test

does not answer.

The difference between RDA and the Mantel test is

loosely comparable with the difference between a

measuring tape and a speedometer, respectively. If one

is interested in the geographical position of a kite but

not in its speed, a measuring tape is a useful tool,

whereas a speedometer is not, and vice versa. Even if the

measuring tape would give more accurate readings than

the speedometer, the measuring tape still does not

measure speed, and using it for that purpose is not an

option. Comparing the results of RDA and the Mantel

test as if they had answered the same statistical question

is just as wrong as comparing the readings of a

measuring tape and a speedometer as if they had

quantified the same physical variable.

Methodological issues with variation partitioning

on distance matrices

Under Partitioning on distance matrices, LBPb wrote

that before using multiple regression on distance

matrices ‘‘one should first show (1) that it produces

approximately correct estimates of the fractions of

variation; (2) that the fractions of variation thus isolated

are additive; (3) whether families of variables (e.g.,

environment) should be represented by a single synthetic

distance matrix or by one matrix per variable [. . .]; and

(4) how the R2
M coefficients and the fractions of variation

should be interpreted.’’
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The answer to points (1), (2), and (4) is already

available in the statistical literature. Multiple regression

on distance matrices was developed in the 1980s, and,

e.g., Smouse et al. (1986) and Legendre et al. (1994)

explicitly stated that it is mathematically similar to the

usual linear multiple regression in all respects but one:

The statistical significance of the partial regression

coefficients and R2 values have to be estimated using

permutations, because cell values in a distance matrix

are not independent of each other.

When Legendre et al. (1994) used multiple regression

on distance matrices, they interpreted the R2
M values just

like they would interpret the R2 values in any multiple

regression, namely in terms of the proportion of the

variation in the response variable that is explained by

the multiple regression model. Legendre et al. (1994)

were not concerned about possible biases in R2
M at all,

and the only methodological aspect they discussed at

length was how to obtain an appropriate permutation

test for different kinds of dissimilarity matrices.

Points (1), (2), and (4) were of no concern to Borcard

et al. (1992) when they proposed to obtain a variation

partitioning on the basis of multiple regression as

implemented in RDA and CCA. The possibility to

perform variation partitioning follows logically from

how multiple regression works, and the fractions of

variation thus obtained are additive by definition.

Therefore, the theoretical answer to these questions

was already known, and a computer program (Canoco)

was already available that had solved the practical

problem of running the computations.

When we started using multiple regression on distance

matrices for variation partitioning as proposed by

Duivenvoorden et al. (2002), we followed the same

logic: The theory of multiple regression analysis was

already known, and the computer program Permute!

was available to run the computations. In their

concluding paragraph, Legendre et al. (1994) had even

written: ‘‘This method may also be useful for other

problems, where several types of distance matrices are

simultaneously considered: [. . .] explanation of the

community, disease or behavior structure by different

types of biotic, abiotic and spatial variables.’’ We really

cannot understand why LBPb now write ‘‘the validity of

multiple regression on phylogenetic distance matrices

does not warrant the extension to variation partitioning

on ecological distance matrices.’’

As to point (3), of course one can combine all

environmental variables into one ‘‘environment’’ dissim-

ilarity matrix, just as one can combine all environmental

variables into one ‘‘environment’’ index in RDA or any

other (multiple) regression method. The reasons for

doing so or not doing so depend on the details of the

study no matter which method is used. In most cases,

combining explanatory variables just reduces the flexi-

bility of the regression model and leads to loss of

information. However, sometimes the questions asked

dictate that variables be combined. For example, if one

is interested in the effect of the straight-line geographical

distance between sites, a single distance matrix combin-

ing latitude and longitude needs to be used rather than

separate distance matrices for the east–west and north–

south directions. If there are many explanatory variables

and few sites, one may also wish to reduce the number of

explanatory variables included in the analysis by

combining some of the available variables into a

synthetic index. Obviously, results based on such an

index have to be interpreted in terms of the index and

not in terms of the original variables that were used to

derive the index. This is the case with both level-1 data

and level-2 data, so we cannot see why combined

variables should be a problem in multiple regression on

distance matrices but not in multiple regression on raw

data.

Both Laliberté and LBPb questioned the additivity of

the fractions resulting from variation partitioning on

distance matrices on the basis of similar arguments,

which LBPb formulated as follows: ‘‘different total

amounts of explained variation for the response Y are

obtained if one includes all explanatory variables in a

single distance matrix or if separate distance matrices are

computed for the various explanatory variables. This

clearly shows that variation partitioning based on

distances lacks the essential property of additivity.’’

The argument is based on a misrepresentation of

distance-based variation partitioning and has no rele-

vance to the property of additivity. This is because the

explanatory variables in distance-based variation parti-

tioning are distance matrices, not the original variables

on which the distance matrices are based.

For example, the explanatory variables in a variation

partitioning analysis could be D(A), D(B), D(C), and

D(G), where D(A), D(B), and D(C) are distances based

on the environmental variables A, B, and C, respective-

ly, and D(G) is geographical distance based on latitude

and longitude. Then distance-based variation partition-

ing involves comparing the R2 values from three

multiple regression analyses: one including only D(G);

one including D(A), D(B), and D(C); and one including

all four distance matrices. The fractions of variation

obtained on this basis are additive by definition.

Of course, one can also run a separate variation

partitioning analysis that uses the distance matrix

D(A,B,C), which combines information from all three

environmental variables into a single distance matrix, or

D(AþBþC), where the distances are based on the sum

of the original variables. The results of the three analyses

can be expected to differ because they use different

explanatory variables. The situation is similar in the

raw-data approach. One can run one variation parti-

tioning analysis using A, B, and C as three separate

explanatory variables, and another variation partition-
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ing analysis where the three environmental variables are

combined into a single explanatory variable such as Aþ
BþC. The results of the two analyses can be expected to

differ because they use different explanatory variables.

However, the fact that different analyses can combine

the available environmental variables in different ways

has no bearing on whether the fractions isolated in any

one analysis are additive or not.

LBPb claimed further that since it is not known how

to obtain adjusted coefficients of determination for

multiple regression on distance matrices, variation

partitioning cannot be based on this method. A formula

for calculating adjusted R2 values for multiple regression

on raw data has been available for a long time, but was

apparently only applied to RDA-based analyses in 2006

(Peres-Neto et al. 2006). CCA/RDA-based variation

partitioning is still commonly done with the unadjusted

R2 values. We see no reason why the distance approach

should be treated more stringently in this respect than

the raw-data approach.

We do agree that it would be useful to know how to

calculate adjusted R2 values for the distance approach,

and hope that someone does the necessary theoretical

work soon. LBPb mentioned several problems in this,

but these seem more imaginary than real. The purpose

of the adjusted R2 value is to take into account the

number of degrees of freedom in the model, and only

variables that are free to vary in relation to each other

within the model affect its degrees of freedom. There-

fore, when LBPb asked ‘‘Should we use m¼1 for a single

explanatory matrix X in the regression, or should we

make m equal to the number of original variables that

were included in the calculation of the distances leading

to X?’’, they actually ignored their own answer to this

question a few lines earlier: ‘‘m is the number of

explanatory variables in the model.’’ A synthetic index

used in RDA is one explanatory variable even if it was

originally derived from several kinds of measurements.

The same principle must be applied in the distance case:

Each distance matrix in the regression model counts as

one explanatory variable. Likewise, ‘‘Should n be the

number of original objects (sites) or the number of

distances in half or the whole distance matrix?’’ seems to

have the logical answer in what LBPb wrote a few lines

earlier: ‘‘n is the number of observations,’’ i.e., the

number of observation units, as this is what ultimately

constrains the number of degrees of freedom in the

model.

A final comment on levels of abstraction

Under Question levels, LBPb confuse ecological

hypotheses with statistical ones. The level-2 hypotheses

and level-3 hypotheses are statistical hypotheses, and

each of them is derived from the corresponding

ecological hypothesis directly and independently. We

tried to make this distinction clear in TR in the section

Ecological vs. statistical hypotheses, but apparently did

not succeed. The important point is that to derive a

statistical hypothesis of a certain level of abstraction, it

is sufficient to know what the corresponding ecological

hypothesis predicts for this level of abstraction, it is not

necessary to first formulate any statistical hypothesis at

another level of abstraction.

For example, the ecological hypothesis ‘‘soil N content

affects the occurrences of plant species’’ allows deriving

the prediction ‘‘sites with similar soil N contents should

have more similar species compositions than sites with

more different soil N contents.’’ This prediction can be

tested with the level-3 statistical hypothesis ‘‘similarity in

plant community composition is positively and linearly

correlated with similarity in soil N content.’’ The same

ecological prediction can also be tested with other level-3

statistical hypotheses, such as ‘‘similarity in plant

community composition is positively and linearly corre-

lated with similarity in the logarithm of soil N content.’’

Both level-3 statistical hypotheses can be derived without

reference to any level-2 statistical hypothesis. Possible

level-2 statistical hypotheses derived from the same

ecological hypothesis include ‘‘plant species abundances

are linearly related with soil N content,’’ ‘‘plant species

abundances are linearly related with the logarithm of soil

N content,’’ ‘‘plant species abundances have a symmetric

unimodal relationship with soil N content,’’ and ‘‘plant

species abundances have a symmetric unimodal relation-

ship with the logarithm of soil N content.’’ When

deriving a level-3 statistical hypothesis, one does not

need to worry about which of the four level-2 statistical

hypotheses would be most appropriate, because the level-

3 statistical hypotheses are not derived from any level-2

statistical hypothesis. Indeed, they cannot be, because

the level-2 statistical hypotheses concern how species

abundances vary in relation to soil N content, whereas

the level-3 statistical hypotheses concern how dissimilar-

ity in community composition varies with difference in

soil N content.

We cannot understand why LBPb categorically advise

researchers to avoid level-3 analyses. In our opinion, this

unnecessarily limits the scope of ecological questions

that can be addressed statistically. When researchers are

interested in beta diversity, they may legitimately

approach it using different paths and different levels of

abstraction. In TR, we were only concerned with the

community composition path. In that context, the level-

2 questions treat regional beta diversity as the variation

to be partitioned (or explained), and the response

variable is community composition; the level-3 questions

treat pairwise beta diversity as the response variable,

and its variation is what gets partitioned (or explained).

Although not discussed in TR, other paths are also

available. In the context of the regional beta diversity

path, the level-2 questions treat regional beta diversity as

the response variable, and its variation is what gets
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partitioned (or explained). In the context of the species

identity path, level-2 questions treat a beta diversity

index as that part of the regional diversity index that can

be explained by categorical explanatory variables.

The most important questions that researchers should

ask themselves when choosing a statistical analysis

method are: (1) Does the analysis target the response

variable of interest? (2) Does the statistical null

hypothesis of the analysis relate the response and

explanatory variables to each other in a way that is

relevant to the ecological question at hand? Since both

the response variables and the formulation of the

possible null hypotheses differ between level-2 analyses

and level-3 analyses, the answers to these two questions

should be sufficient to justify a choice between the raw-

data and distance approaches.

Conclusions

One of the main purposes of TR was to draw

attention to the fact that analyses focusing on different

response variables address different questions, and one

may miss one’s target question if one uses an analysis

method that focuses on the wrong response variable.

The commentaries of PCD, Laliberté, and LBPb

highlight this even more: It is of utmost importance

that researchers are aware of what the response variables

in their analyses are. One can miss one’s target in several

ways, for example, by advancing too far or not far

enough along the right path, or by taking the wrong

path to start with.
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