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a b s t r a c t

Distributions of species, animals or plants, terrestrial or aquatic, are influenced by numer-

ous factors such as physical and biogeographical gradients. Dominant wind and current

directions cause the appearance of gradients in physical conditions whereas biogeograph-

ical gradients can be the result of historical events (e.g. glaciations). No spatial modelling

technique has been developed to this day that considers the direction of an asymmetric

process controlling species distributions along a gradient or network. This paper presents

a new method that can model species spatial distributions generated by a hypothesized

asymmetric, directional physical process. This method is an eigenfunction-based spatial

filtering technique that offers as much flexibility as the Moran’s eigenvector maps (MEM)

framework; it is called asymmetric eigenvector maps (AEM) modelling. Information needed

to construct eigenfunctions through the AEM framework are the spatial coordinates of the

sampling or experimental sites, a connexion diagram linking the sites to one another, prior

information about the direction of the hypothesized asymmetric process influencing the
patial analysis

patial autocorrelation

patial model

response variable(s), and optionally, weights attached to the edges (links). To illustrate how

this new method works, AEM is compared to MEM analysis through simulations and in the

analysis of an ecological example where a known asymmetric forcing is present. The eco-

logical example reanalyses the dietary habits of brook trout (Salvelinus fontinalis) sampled in

42 lakes of the Mastigouche Reserve, Québec.

nificantly enhanced the proportion of variation explained by
. Introduction

t is well known that spatial distributions of species are influ-
nced by environmental gradients (Huston, 1996). Since the
rticle of Legendre and Fortin (1989), the importance of spa-
ial structures has been well understood by ecologists. This
as led to a number of methodological developments to study
patial patterns in ecology. Methods devised in other domains

ave also been applied to ecology. For example, geostatistical
ools have been, and still are, used to investigate spatial rela-
ionships in an ecological perspective; Peterson et al. (2007) is
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a recent example of the use of geostatistics in river modelling.
Legendre (1990) proposed to use polynomials of the geographic
coordinates of the sites to represent spatial relationships in
models aimed at explaining species variation. More recently,
the development of principal coordinates of neighbour matri-
ces (PCNM) (Borcard and Legendre, 2002; Borcard et al., 2004;
Legendre and Borcard, 2006) has provided a new and more
powerful way for studying spatial variation. It has also sig-
rsity of Alberta, 751 General Service Building, Edmonton, Alberta,

dre@umontreal.ca (P. Legendre), Daniel.Borcard@umontreal.ca

spatial models. Dray et al. (2006) developed the framework of
Moran’s eigenvector maps (MEM), which is a generalization of
the PCNM approach. Griffith and Peres-Neto (2006) unified the
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PCNM, MEM, and spatial filtering methods (Griffith, 2000) into
a family called eigenfunction-based spatial analysis. Borcard
et al. (1992) showed through variation partitioning that spa-
tial relationships and environment can explain both separate
and common variation of the distributions of species. To this
day, however, no methodological development has shown how
to model the influence of asymmetric, directional process on
species distributions or other response variables of interest.

At broad or fine scales, the spatial distribution of species is
often structured by abiotic and/or biotic gradient(s). We pro-
pose that gradients influencing species spatial distributions
can be studied via spatial variables (eigenfunctions) that rep-
resent directional spatial processes. Dray et al. (2006) deplored
the absence of methods capable of modelling asymmetric
directional spatial processes; the present paper fills that gap.
Here, a new framework is presented, which is also part of
the eigenfunction-based spatial filtering framework, with the
added feature that it considers space in an asymmetric way.
Variables created via this framework will be called asymmetric
eigenvector maps (AEM). This method was created for situa-
tions where a hypothesized asymmetric, directional spatial
process influences the species distribution at scales ranging
from fine to broad (e.g. the directional effects of a river net-
work, or of currents in a sea, river, stream, or fluvial lake,
on species distributions). Since the AEM framework creates
spatial variables corresponding to an asymmetric, directional
process, these variables can be used to model the spatial
structure of any set of response variables, e.g. single-species
population data, multi-species community, meta-population,
or meta-community, influenced by an asymmetric spatial pro-
cess. A process is a phenomenon organized along space and/or
time. We define a directional spatial process as a process
that can be represented by directional arrows in geographic
space. The structures resulting from directional processes are
asymmetric. To test the functioning and limits of the new
AEM method, simulations have been carried out in a two-
dimensional spatial context.

2. Method

The Dray et al. (2006) MEM method consists in the diagonal-
ization of a spatial weighting matrix (W). Matrix W is a resem-
blance matrix that can be constructed through the Hadamard
product between two previously computed resemblance
matrices: a connectivity matrix showing which sites are linked
to one another by connexions, and a weighting matrix which
gives the weight associated to each pair of sites. As developed
by Dray et al. (2006), no direction can be imposed on the cre-
ated MEM spatial variables because the framework is based on
resemblance matrices that do not account for asymmetry.

The simplest form of data leading to AEM construction is
a tree-like structure, like a river network. The relationships
among the sampling sites can be written as described by
Legendre and Legendre (1998, section 1.5.7): for each site, the
river links (called “edges” hereafter, using the vocabulary of

graph theory) located upstream from that site in the river net-
work and considered to be influencing it receive the code “1”
in a sites-by-edges table E; all other edges receive the code “0”.
The new development to this coding method, proposed here,
2 1 5 ( 2 0 0 8 ) 325–336

is to transform table E into eigenfunctions. This can be done
in three computationally different but otherwise equivalent
ways:

1. Compute a principal component analysis (PCA) of table E
and use matrix F of the principal components as the new
matrix of explanatory variables. PCA scaling (type 1 or type
2) does not matter for the present application.

2. Alternately, compute a singular value decomposition (SVD)
of the column-centred table E, called Ec. Decompose Ec by
SVD into U D V′; U and V are column-orthonormal matrices
and V′ means V transposed. Use the left-hand column-
orthonormal matrix U, resulting from the decomposition,
as the new matrix of explanatory variables; U is linearly
related to matrix F containing the principal components
obtained by PCA and, for the present application, is equiv-
alent to it.

3. A third alternative is to compute an Euclidean distance
matrix among the rows of table E. A principal coordinate
analysis (PCoA) of that distance matrix produces the same
matrix F as obtained above by PCA.

Contrary to PCNM and MEM, AEM analysis produces no
negative eigenvalues because a covariance matrix is a positive
semidefinite matrix; hence, all PCA eigenvalues are positive
or null (Legendre and Legendre, 1998, p. 138). The construc-
tion of AEM is presented in more detail in the next paragraphs
and in Fig. 1. AEM eigenfunctions can be constructed from a
river network (example developed above) or from other types
of directional connexion networks. An ecological example
presented later in this article to illustrate the use of AEM,
will start from a set of lakes in a single hydrographic net-
work. The analysis will attempt to explain the variation in
brook trout (Salvelinus fontinalis) gut contents in 42 lakes of the
Mastigouche Reserve, Québec.

AEM are based on a directional connexion network.
Connexion networks can be constructed to correspond to
hydrological (example above; Fig. 5) or other dynamic infor-
mation available about the sampling units. In the absence of a
precise dynamic model, they can be constructed using graph
theory (e.g. Berge, 1958; Barthélemy and Guénoche, 1988).

A general type of connexion network for a regular sam-
pling grid is shown in Fig. 1b. To impose directionality on the
diagram and create asymmetric spatial variables, an imagi-
nary site (site 0 in Fig. 1b) is added upstream of the sampling
area. This fictitious site is connected to the uppermost true
site(s) if, as in this example, the process influence is assumed
to come from upstream. It is connected to the lowermost sites
if the influence is hypothesized to come from downstream;
that will be the case in the lake example presented later in this
paper. In Fig. 1b, there are five sites that are equal in being the
most upstream ones; site 0 is thus connected to all these sites
(dashed lines). To quantify the connexions (edges) between the
sites and construct matrix E, a method originally proposed for
phylogenetic reconstruction by Kludge and Farris (1969: binary
coding of a transformation series) will be used. Sites (rows

of table E) and edges (columns) are numbered; alternatively,
they can be given names. In the fictitious example, which
involves a downstream process, each site is characterized by
all the upstream edges connecting the site of interest to site 0,
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Fig. 1 – Schematic representation of AEM analysis using a fictive example. (a) Data values are represented by bubbles
(empty = negative, full = positive values). (b) Sites are linked by a connexion diagram, which in turn will be used to construct
the sites-by-edges matrix E (c). Weights can be attributed to the edges (columns) of this matrix, representing the difficulty of
effect transmission between nodes (vector underneath the sites-by-edges matrix). (d) Descriptors (AEM variables, matrix X)
are obtained by calculating the left-hand matrix of eigenvectors of SVD, or the matrix of principal components (site scores)
o gh th
t lysi

d
0
e
s
b
l

f PCA. AEM variables (matrix X) can also be obtained throu
he computation of eigenvectors via principal coordinate ana

irectly or indirectly. The sites-by-edges table E is filled with
’s and 1’s representing the absence or presence of the various

dges linking each site to site 0 (Fig. 1c). It is to be noted that
ite 0 is not present in this matrix because it is not influenced
y any edge; if present, this site would add an unnecessary
ine to the matrix giving no additional information.
e calculation of an Euclidean distance matrix followed by
s (PCoA).

Weights can be added to the sites-by-edges matrix by mul-
tiplying a vector of weights to table E′ (Fig. 1c) (Ronquist,

1996). Weights can be given based on various types of known
information, e.g. the lengths of the edges, which represent dis-
tance, or more generally the difficulty of transfer of the process
effect between nodes of the network.
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The eigenfunctions created with this method are orthogo-
nal variables, as is the case for the eigenfunctions created by
the PCNM and MEM methods. This is because they are eigen-
vectors of a symmetric matrix. Computation through the cal-
culation of a distance matrix followed by principal coordinate
analysis (computation method 3 above), as well as the possi-
bility to add weights to the links, show the closeness of the
AEM (the present paper) and MEM methods (Dray et al., 2006).

The AEM framework sometimes generates eigenfunctions
that have the same weight (i.e., two or more eigenvectors have
the same eigenvalue). This can also occur in the MEM frame-
work. This will need further investigation to better understand
under what circumstances these are generated and how to
handle and interpret them.
3. Simulation study

We carried out a range of simulations to better understand
the behaviour of AEM eigenfunctions in different situations.

Fig. 2 – Type I error of AEM analysis (b, d) for sampling points an
were used in (a), whereas the inverses of the distances were use
of the asymmetric process considered in (a) and (c). Response va
different distributions. Each run consisted of 5000 independent s
confidence intervals on the rejection levels.
2 1 5 ( 2 0 0 8 ) 325–336

AEM eigenfunctions were first tested for type I error. For power
evaluation, they were compared to MEM eigenfunctions in the
presence of asymmetric generating processes, for different
types of spatial structures, using the proportions of variance
explained as criterion.

Simulations were first used to estimate the type I error of
AEM analysis. Two sets of simulations with a hundred points
were produced, representing opposite extremes of the AEM
framework: (1) the points were regularly distributed on a ten-
by-ten grid (see Fig. 2a for the connexion network), no weights
were attached to the edges; (2) the points were irregularly dis-
tributed on the map (see Fig. 2c for the connexion network)
and the edges were weighted by the inverse of the distances.
Following Manly (1997) and Anderson and Legendre (1999), the
response variables contained values drawn at random from
four distributions: normal, uniform, exponential, and expo-

nential cubed. The relationship between the random response
variables and the AEM eigenfunctions was tested at the 5% sig-
nificance level. Because there are n − 1 eigenfunctions created
by the AEM procedure, where n is the number of points, one

d connexion diagrams shown in (a) and (c). No weights
d as weights in (c). The large arrow represents the direction
lues were randomly selected for each point from four
imulations. The errors bars in (b) and (d) represent 95%
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annot carry out a test of significance using all eigenfunctions.
ollowing Blanchet et al. (in press), the AEM eigenfunctions
ere divided in two groups depending on the value of the
ssociated Moran’s I coefficients. The Moran’s I coefficients
ere computed using only the direct links between sites. The
rst group contained the eigenfunctions with Moran’s I val-
es higher than the expected value; these were positively
utocorrelated. The second group, which contained the eigen-
unctions with Moran’s I values lower then the expected value,
ere negatively autocorrelated. The two sets of eigenfunctions
ere tested separately for significance (permutation test, 999

andom permutations). Since two p-values were calculated,
hey were subjected to a Sidak (1967) correction. If at least
ne of the two p-values was significant after correction, the
elationship was considered to be significant. Fig. 2b and d
resent the results for the two series of simulations. Each
eported value is the result of 5000 independent simulations.
n all cases, the number of significant results was very close
o the 5% significance level. These results show that the AEM

ethod has a correct level of type I error in the two examined
ituations, and this for the four types of error distributions.

For the power analysis, simulations were carried out to see
ow well various subsets of the AEM eigenfunctions react in
he presence of gradients, when compared to MEM eigenfunc-
ions. These simulations were done on a ten-by-ten regular
rid (Fig. 3a); thus n = 100. Eight different structures were used
o generate the data in these simulations (Fig. 3b). The eight
tructures were generated in such a way that in each pair of
tructures (S1–S2, S3–S4, S5–S6, and S7–S8), one represents a
ymmetric gradient from row 1 to row 10 whereas the other is
n asymmetric gradient. The odd-numbered structures are the
symmetric gradients. These structures were each tested with

hree univariate and one multivariate response data sets. In
he three univariate situations, a random normal error with a

ean of 0 and standard deviation (S.D.) of 1, 2 and 3 was added
o the structure. Standard deviations larger than 3 were not

ig. 3 – (a) Connexion diagram used to create AEM and MEM eige
ites on each other; these directions were taken into account dur
EM eigenfunctions. The rows of data points are numbered. (b) E

he response variables. The numbers are the values added to all
dding random normal noise.
5 ( 2 0 0 8 ) 325–336 329

considered because in all situations except S1 and S2, the basic
structure of the data did not have “steps” higher than 3. For the
multivariate situation, 10 response variables were generated,
5 containing structure and noise (random error) and 5 contain-
ing noise only. The error values were drawn at random from a
normal distribution with mean 0; the standard deviation was
randomly drawn, for each simulation, from a uniform distribu-
tion between 1 and 3. For each set, one thousand simulations
were carried out.

When weights are placed on the edges, both the AEM and
MEM frameworks can create an infinite number of different
spatial variables for a set of sites. We decided to include
21 different combinations of functions and weights in our
comparisons; thus 21 different sets of spatial variables (eigen-
functions) were created for each framework. The connexion
diagram used was the same in all situations to allow appro-
priate comparisons (Fig. 3a). Note that not all edges have the
same meaning in the AEM network. The horizontal edges rep-
resent the lateral influence of a site on its nearest neighbours,
while the vertical and oblique edges represent the hypoth-
esized asymmetric process. Because of this difference, each
set of edges was considered independently. When the sites-
by-edges matrix was constructed for the connexion diagram
illustrated in Fig. 3a, all these edges became the columns of
the sites-by-edges matrix E of Fig. 1c. In the creation of this
sites-by-edges matrix, the horizontal edges did not influence
the construction of the columns that were built from the ver-
tical or oblique edges, and vice versa. Weights were given to
the edges based on the concave-down (f1 = 1 − dij/max(dij)˛)
and concave-up (f2 = 1/d˛

ij
) distance functions, as in Dray et

al. (2006). Ten different values of the exponent ˛, from 1 to 10,
were used for each function. For both the AEM and MEM frame-

works, combination 21 consisted in a series of spatial variables
constructed with uniform weights of 1 for all edges; this com-
bination never came out in the results as the one producing
the highest explained variance. Each weighted sites-by-edges

nfunctions. Arrows represent directions of influence of
ing the construction of AEM eigenfunctions, but not for
ight basic structures (S1 to S8, columns) used to generate

points on each line (1–10) of the diagram in (a), prior to
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Table 1 – Weighting function (f1, f2) and exponent ˛ giving the highest explained variance when modelling each structure
in each set of simulations, with AEM or MEM

Response Structure (S1 to S8) AEM MEM

Weighting function Exponent ˛ Weighting function Exponent ˛

Univariate S.D. = 1 1 f1 4 f2 9
2 f1 3 f2 5
3 f2 8 f2 8
4 f1 4 f2 5
5 f1 10 f2 10
6 f1 5 f2 2
7 f1 10 f2 9
8 f2 6 f2 5

Univariate S.D. = 2 1 f1 10 f2 8
2 f2 2 f2 5
3 f2 3 f2 9
4 f2 3 f2 5
5 f1 9 f2 9
6 f1 2 f2 2
7 f2 9 f2 9
8 f1 4 f2 7

Univariate S.D. = 3 1 f2 8 f2 9
2 f1 4 f2 8
3 f2 5 f2 9
4 f1 6 f2 5
5 f1 9 f2 10
6 f1 4 f2 4
7 f2 4 f2 9
8 f2 6 f2 6

Multivariate 1 f1 2 f2 8
2 f1 8 f2 7
3 f2 3 f2 10
4 f2 3 f2 8
5 f1 7 f2 10
6 f2 7 f2 3
7 f1 1 f2 10
8 f2 10 f2 5

ach c
e use
The chosen combination of weighting function and exponent, in e
produced the highest value of (R2

a). The same response variables wer

matrix was then used as the table of explanatory variables
for the simulated data. Because there are always (n − 1) AEM
variables and often also (n − 1) MEM variables, the same pro-
cedure used to test the type I error of the AEM eigenfunctions
was used here to test the significance of each set of spatial
variables. The eigenfunctions were divided in two groups, pos-
itively and negatively autocorrelated, using the eigenvalues
associated with the eigenfunctions; Dray et al. (2006) have
shown that there is a direct correlation between Moran’s I
and the eigenvalues produced in the MEM framework. The test
used for the univariate simulations is a parametric test in mul-
tiple regression; that test was appropriate because the error
was normally distributed by construction. In the multivari-
ate simulations, the generated response data were analyzed
as a function of the AEM and MEM eigenfunctions by canoni-
cal redundancy analysis (RDA), followed by a permutation test
produced by the “anova.cca” function of the “vegan” pack-

age (Oksanen et al., 2007) in the R statistical language (R
Development Core Team, 2007). That procedure allows the
function to propose a statistical decision (reject H0 or not) after
99 to 499 random permutations by steps of 100. For each partic-
ase (2 weighting functions and 10 exponents ˛), was the one that
d in the AEM and MEM simulations. S.D. = standard deviation.

ular type of data structure (S1 to S8), the AEM and MEM results
that are compared (1000 simulations) are those correspond-
ing to the eigenfunctions, obtained from a given weighting
function (f1, f2) and exponent, that explained, on average, the
largest amount of variance (R2

a) of the response data, while
still being significant at the 5% level. These choices are listed
in Table 1. The results for the univariate and multivariate sim-
ulations are presented in Fig. 4.

Due to the inherent structure of the simulated data, we
were expecting to obtain better results with AEM only when
the structure of the gradient was asymmetric (odd-numbered
structures). Actually, the AEM variables turned out to reject
the null hypothesis and identify a significant structure more
often than MEM eigenfunctions in all situations, except for
S1, S3 and S7 when S.D. was large (Fig. 4c), meaning that a lot
of random noise was present in the data; then, the amount
of explained variance (R2) was roughly the same for AEM
a

and MEM, the confidence intervals being superposed. This
result surprised us because it showed that the AEM frame-
work, though it creates variables that represent asymmetric
processes by construction, is not only better suited than MEM
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Fig. 4 – Variance explained (R2
a) for the best set of AEM (full lines) and MEM (dashed lines) variables for each of the 8

structures described in Fig. 3b. Panels (a–c) present results of univariate simulations where the error term values were
randomly drawn from a normal distribution with standard deviations of 1, 2, and 3, respectively. Panel (d) presents results
of multivariate simulations where the error term values were randomly chosen from a normal distribution whose standard
deviation was selected at random from a uniform distribution with a minimum of 1 and a maximum of 3. Vertical error bars
represent 95% confident intervals on the rejection rates. Each run consists of 1000 independent simulations. Lines linking
e ults
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rror bars were plotted to prevent confusion between the res

or asymmetric data, it is also equally or more appropriate
han MEM variables in all gradient situations. AEM variables
roduced results roughly equivalent to those of MEM analy-
is only in the presence of abrupt changes in the gradient.
7 is a good example of such a situation. In more continu-
us cases, AEM analysis always performed better than MEM
t identifying the gradient.

The weighting functions (f1, f2) that best modelled the sim-
lated data were very different between the two frameworks.
EM variables created with function f2 were always the best

nes, but this was not always the case in AEM analysis. These
esults show that the difference in construction between the
wo methods can result in “best models” having very differ-
nt weights. For real ecological data, if weights derived from
he concave-down or concave-up functions are added to the
dges, the interpretation given a posteriori to the weights can
ary widely depending on the modelling framework (AEM or
EM). It is thus not advisable to add weights to the edges
hen the added weights do not come from some sort of
rior hypothesis about the process having generated the data,
espite the fact that adding weights can improve the empiri-
al modelling ability of AEM eigenfunctions, as was shown by
ray et al. (2006) for MEM eigenfunctions.

When comparing the three sets of univariate simulations,
he best MEM models were quite consistent between sets of
imulations for each particular structure (S1 to S8): the corre-
ation coefficients among the three sets of ˛ parameter values

re all near 0.90. This is not the case for AEM analysis, where
he weighting function (f1, f2) and the ˛ parameter value for
he best model may change between sets of simulations. To
eepen the investigation, we compared the variance explained
of the AEM and MEM analyses.

by AEM models (R2
a), on average, across each set of 1000 simu-

lations. The means of the R2
a statistics were very similar for

different weights ˛; often the best and second-best results
diverged by less than 0.1%. Table 1 would thus be likely to
be different after another series of simulation; the amounts of
explained variance presented in Fig. 4 would, however, not be
different. This is related to the construction of AEM variables
when weights are added. The way weights are considered
in the AEM framework makes the variables less sensitive to
the differences among weights, compared to MEM analysis.
The weights used in these simulations do not favour the AEM
framework: the results show that different weights create spa-
tial variables explaining almost identical amounts of variation
in AEM analysis; this is not the case for MEM eigenfunctions.

4. Ecological illustration

To illustrate the application of AEM analysis to real ecolog-
ical situations, we used data collected on 42 lakes of the
Mastigouche Reserve, Québec, Canada (46◦40′N, 73◦20′W) and
analyzed by Magnan et al. (1994). The dependent data matrix
describes brook trout (Salvelinus fontinalis) diet composition
in those lakes. In each lake, 20 stomachs were sampled dur-
ing daytime by anglers in June 1989. Mean percent wet mass
was recorded for nine functional prey categories: zoobenthos,
amphipods, zooplankton, dipteran pupae, aquatic insects,

terrestrial insects, prey-fish, leeches, and other prey. More
detailed accounts of the data are presented in Lacasse and
Magnan (1992) and Magnan et al. (1994). Fig. 5 presents a
schematic map of the river network in the study area.
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che R
e site
Fig. 5 – Schematic map of the river network in the Mastigou
L-20. Edges are numbered e-1 to e-65; they are written to th

We compared AEM modelling to 6 other spatial modelling
methods. The methods can be divided into three classes: those
based on (1) lake geographic coordinates, (2) nodes of the river
network, and (3) edges of the river network. Two analyses

were done for type (1) data, a canonical correspondent anal-
ysis (CCA, ter Braak, 1986) using as explanatory variables a
third-degree polynomial, and a canonical redundancy analy-
sis (RDA, Rao, 1964) using principal coordinates of neighbour

Table 2 – Comparison of spatial models of brook trout diet in 42

Modelling methods No. spatial variables in full set

Method based on lake geographic coordinates
CCA, 3rd deg. polynomial 9
RDA, PCNM analysis 24

Methods based on nodes of river network
CCA, nodes 25
RDA, nodes 25

Methods based on edges of river network
RDA, edges 65
RDA, MEM analysis 41
RDA, AEM analysis 41

Forward selection was carried out using a cutoff level of ˛ = 0.05.
a Selected monomials: X, Y, Y2, X3.
b Selected PCNM variables computed from coordinates: 3, 4, 17.
c Selected nodes: 2, 9, 10, 12, 14. The nodes are shown in Fig. 1 of Magnan
d Selected nodes: 10, 12, 14, 25.
e Selected edges: 21, 24, 27, 38, 46, 50, 52, 54, 58. Edges are shown in Fig. 5
f Selected MEM variables computed from edges: 1, 3, 4, 6, 16, 17, 18, 20, 22
g Selected AEM variables computed from edges: 1, 2, 3, 4, 6, 16, 18, 19, 22,
eserve. Lakes are numbered L-1 to L-43; there is no lake
s-by-edges table E. Adapted from Magnan et al. (1994).

matrices (PCNM, Borcard and Legendre, 2002; Borcard et al.,
2004). A CCA and an RDA, both based on nodes, were the meth-
ods used for type (2) data. The nodes used for the analyses are
presented in Fig. 1 of the Magnan et al. (1994) paper. For type

(3) data, we computed an RDA based on edges, an RDA based
on Moran’s eigenvector maps (MEM, Dray et al., 2006), and an
RDA based on AEM spatial variables. Edges are labelled in Fig. 5.
For each situation, a forward selection of spatial variables was

lakes, obtained from 7 different modelling methods

No. selected spatial variables R2 R2
a

4a 0.225 –
3b 0.257 0.199

5c 0.356 –
4d 0.342 0.271

9e 0.625 0.520
11f 0.669 0.562
13g 0.751 0.636

et al. (1994).

.
, 27, 32.
24, 25, 27, 29.
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arried out using a cutoff level of ˛ = 0.05. For polynomial and
ode modelling, CCA was used instead of RDA to allow com-
arison with the results of Magnan et al. (1994); these authors
sed CCA on a subset of 37 lakes for which full environmental
ata were available. They used a cutoff level of ˛ = 0.10 in their
orward selection in CCA. We used the full set of 42 lakes to
btain the results presented in Table 2. PCNM variables were
onstructed with a truncation distance equal to the smallest
istance linking all lakes in a minimum spanning tree; this

s a standard method in PCNM analysis. MEM variables were
reated from a patristic distance matrix (Cain and Harrison,
960) along the river network, all edges having equal lengths
f 1. In the same spirit, AEM variables were constructed with
ll edges having equal weights.

The adjusted coefficient of determination (R2
a) corrects for

he number of explanatory variables in the model and for the
umber of observations. It provides an unbiased estimate, in
DA, of the real contributions of the independent variables
o the explanation of a response data table (Peres-Neto et al.,
006). This statistic was used in Table 2 to compare the results
f the five RDA models. R2

a values are not given for CCA because
anonical analysis packages (e.g., Canoco, or the ‘vegan’ R-

anguage library) do not produce them yet due to its recent
iscovery (Peres-Neto et al., 2006) and the complexity of its
alculation. The ordinary R2 statistic was used to compare CCA
esults to those of the other modelling techniques, with the

ig. 6 – RDA triplot (axes 1 and 2) showing the 42 lakes (open squ
rrows; the other 4 were very short and contributed little to the o
nly significant axes were 1 and 2.
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understanding that R2 is biased and produces higher values
when the number of explanatory variables is larger.

Results show that a larger proportion of the diet variation
(R2, R2

a) is explained by the AEM spatial model than by any of
the other models presented in Table 2. The AEM model, which
is constructed from the edges of the river network, accounts
for a very large portion (R2

a = 63.6%) of the variation in brook
trout diet composition among the lakes. That model may have
captured both geomorphological differences among portions
of the river network and differences among brook trout popu-
lations, which migrated from lake to lake along the network.
In 1994, Magnan et al. had mostly related the variation in
trout diet to environmental variables, including morpholog-
ical characteristics of the lakes, and a smaller fraction to the
spatial distribution of the lakes on the map of the Mastigouche
Reserve (through geographic polynomial analysis) or along the
river network (through CCA based on nodes). AEM modelling
presents a strong improvement over the modelling methods
that were available at the time.

Fig. 6 presents a triplot of the AEM model. This model
clearly shows 3 groups of lakes, with perhaps a few inter-
mediate ones: lakes with brook trout populations dominated

by zoobenthos eaters (lower right), by zooplankton eaters
(lower left), and by generalists whose diet includes benthos,
zooplankton, as well as prey-fish, aquatic insects, and ter-
restrial insects (upper central). Bourke et al. (1997) associated

ares labelled 1–43), 9 prey categories (five are shown by
rdination plane), and 13 AEM eigenfunctions (lines). The
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Fig. 7 – Bubble plot maps of the RDA fitted site scores for (a)
axis 1 and (b) axis 2; black square bubbles are positive,
white bubbles are negative; square size is proportional to
the absolute values represented. (c) Four-group K-means
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these three lake groups with three morphologically differen-
tiable forms of brook trout, which they called the benthic,
pelagic, and generalist individuals. The pelagic form is mor-
phologically distinguishable from the benthic and generalist
individuals. The RDA triplot (Fig. 6) also shows that AEM vari-
ables 16, 22, 24, 27, and 29 model the lakes dominated by
the pelagic form of brook trout (zooplankton eaters) whereas
AEM eigenfunctions 2, 3, 4 and 25 model lakes dominated by
benthic individuals (zoobenthos eaters). AEM variables 1 and
19 are more suited to model lakes dominated by generalists,
which have negative scores along these variables.

For the subset of 37 lakes, Lacasse and Magnan (1992) had
shown the same differences among brook trout populations
using biotic (presence of the creek chub Semotilus atromaculatus
and the white sucker Catostomus commersoni, and zooplankton
community structure) and abiotic variables (sampling date,
morphoedaphic index, importance of rock outcrops). They
emphasized the direct and indirect impacts of white suckers,
explaining that their presence selectively favours the pelagic
form of brook trout. This conclusion was strengthened by
Bourke et al. (1999) who found that creek chubs have the same
impact on the distribution of brook trout forms, although to
a lesser extent. These observations support the hypothesis
that polymorphism is promoted by relaxation of interspecific
competition.

AEM analysis lends itself to different types of graphical
representation. First, one can draw bubble-plot maps of the
significant, individual AEM variables (not shown). A more par-
simonious representation is obtained by plotting RDA fitted
site scores on maps; the fitted site scores of canonical axes 1
and 2 are plotted as bubble maps in Fig. 7a and b. Another,
more concise representation is obtained by partitioning the
lakes using their RDA fitted site scores (all axes) by K-means
(Fig. 7c). The partition was mapped for four groups. Each group
of lakes is a good representation of the different forms of brook
trout. Since this partition explains 63.6% (and not 100%) of the
variance of the brook trout diet composition, the three groups
of trout are not perfectly recognizable on that map.

A note has to be added regarding the way the selection of
spatial variables was done for this illustration. Contrary to the
method proposed in Blanchet et al. (in press), we used the
whole set of AEM eigenfunctions in the forward selection pro-
cedure. We decided to proceed in that way because we were
expecting both positive and negative autocorrelation to be of
importance in this example. The finest scale of the sampling
being a lake, two lakes that were geographically close could be
very different with regard to the dietary habits of brook trout.
The same theoretical consideration would also apply to MEM
eigenfunctions.

5. Discussion

The objective of spatial modelling using geographic eigen-
functions differs from that of standard canonical modelling
using only environmental variables as the explanatory table.

Magnan et al. (1994) did both types of modelling, acknowl-
edging the fact that the presence of spatial structures in
communities is of great interest: it indicates that some process
has been at work to create these structures. Ecologists now
partition of the lakes plotted on the river network map
using symbols.

understand that spatial structures can be produced by two dif-
ferent mechanisms (Legendre and Legendre, 1998, p. 11; Fortin
and Dale, 2005, pp. 214–216): they may be the result of spa-
tial dependence induced by environmental forcing variables
onto the community under study (niche-based processes);

they may also be the result of the dynamics of the commu-
nity itself (neutral processes). These two types of generating
processes can often be distinguished because they act at dif-
ferent spatial scales. Variation partitioning, mentioned in the
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rst paragraph of Section 1, further allows ecologists to deter-
ine how much of the community variation explained by the

nvironmental variables is also spatially structured.
The AEM framework allows researchers to construct with

reat flexibility spatial variables (eigenfunctions) correspond-
ng to hypothesized asymmetric generating processes. Three
ypes of information are needed to create AEM eigenfunctions.
1) The geographic coordinates of the sites under study. (2) A
onnexion diagram linking the sites together. How to obtain
hat information may be obvious when one considers a river
etwork, as in our ecological example. It may also be less
learly defined, especially when finer-scale phenomena are
nvestigated. We suggest using prior information, if at hand,
o construct the connexion diagram. Current velocity, water
epth, presence of water masses, geological and historical
vents, etc. could be of great interest to construct an asymmet-
ic connexion network well suited for a particular data set. (3)
ast and most important, a direction in which the asymmetri-
al process operates. With these three types of information, a
inary sites-by-edges table (E) can be constructed. This table,
ith or without weights added to the edges, can be directly
sed to construct AEM eigenfunctions.

The AEM framework is not limited to model systems
nfluenced by a single directional process. There are indeed
ituations where two opposite directional processes may be
t work. In a river or ocean current system for example, lar-
ae may come down with the current whereas predators may
e coming up. The resulting distribution of larvae may result
rom the combined action of these two processes. We could,
or example, construct a first set of AEM eigenfunctions corre-
ponding to the downstream process and a second set of AEM
igenfunctions corresponding to the upstream process. These
wo AEM tables could then be used in variation partitioning to
stimate their relative contributions to the explanation of the
ariation of the response data.

The combination of connexion diagrams and weighted
dges offers a broad range of possibilities to create AEM eigen-
unctions for a particular set of site coordinates. Ecological
heory or knowledge about the context of the study (i.e.,
he way processes are spreading among the sampling units)
hould prevail when choosing a particular set of weights. Note,
owever, that this approach does not a priori warrant that the
esults obtained from the AEM analysis are the best possible
n terms of variance explained, but the tradeoff is favourable
f the AEM have been built to represent prior knowledge as
losely as possible.

Variables known to be influenced by directional processes
ave been studied using various approaches. For example,
ustom-designed models may be developed after an exten-
ive study of a system; Abril and Abdel-Aal (2000) used this
pproach to model pollutant dispersion in the Suez Canal.
his approach gives good results; however, the model built
annot easily be generalized. Geostatistics have also been used
xtensively to model asymmetric spatial processes. Using var-
ograms in more than one direction to model anisotropic
rocesses is very common in that discipline (Isaaks and

rivastava, 1989; Cressie, 1993; Wackernagel, 2003). However,
his approach produces asymmetric but non-directional mod-
ls and it cannot be applied to multivariate situations. Recent
esearch in geostatistics has focused on the development of
5 ( 2 0 0 8 ) 325–336 335

spatial statistics specialized to model stream networks (Ver
Hoef et al., 2006; Peterson et al., 2007). These can also only
be applied to univariate situations. Also, the models are built
specifically for stream networks, whereas the AEM frame-
work can provide asymmetric spatial modelling variables for
any situation where there is evidence for the presence of an
asymmetric process influencing the spatial distribution of the
species under study.

In the last few years, numerous methodological develop-
ments have been proposed to model space more accurately. Up
to very recently, the trend in spatial modelling was to develop
and use methods that could model space for any ecological
situation. Trend surface, PCNM and MEM analyses are good
examples of those general methods. Presently, researchers
are developing new techniques that are specialized for mod-
elling the effects of particular generating processes. The AEM
method follows that trend. As was mentioned earlier, when
no directional process is involved, there is no point in con-
structing spatial variables through the AEM framework. The
core of this article is to show that AEM variables are more effi-
cient than MEM variables when a directional spatial process
is considered.

The particularities of AEM eigenfunctions make it possible
for this framework to be used in other fields of research. One
future direction would be to use this method to address phy-
logenetic research questions since it is well suited to model
tree-like structures, with and without reticulations.

6. Supplements

An R package called “AEM” is available online. It contains all
the functions used to perform the analyses presented in this
paper.
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Fig. 1 – Schematic representation of AEM analysis using a fictive example. (a) Data values are represented by bubbles
(empty = negative, full = positive values). (b) Sites are linked by a connexion diagram, which in turn will be used to construct
the sites-by-edges matrix E (c). Weights can be attributed to the edges (columns) of this matrix, representing the difficulty of
effect transmission between nodes (vector underneath the sites-by-edges matrix). (d) Descriptors (AEM variables, matrix X)
are obtained by calculating the left-hand matrix of eigenvectors of SVD, or the matrix of principal components (site scores)
of PCA. AEM variables (matrix X) can also be obtained through the calculation of an Euclidean distance matrix followed by
the computation of eigenvectors via principal coordinate analysis (PCoA).
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