
Ecological Monographs, 84(3), 2014, pp. 491–511
! 2014 by the Ecological Society of America

Consensus RDA across dissimilarity coefficients for canonical
ordination of community composition data

F. GUILLAUME BLANCHET,1,2,3,5 PIERRE LEGENDRE,4 J. A. COLIN BERGERON,3 AND FANGLIANG HE
3

1Department of Biology, Section of Ecology, University of Turku, Turku FIN-20014 Finland
2Mathematical Biology Group, Department of Biosciences, University of Helsinki, Helsinki FIN-00014 Finland

3Department of Renewable Resources, University of Alberta, 751 General Services Building, Edmonton, Alberta T6G2H1 Canada
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Abstract. Understanding how habitat structures species assemblages in a community is
one of the main goals of community ecology. To relate community patterns to particular
factors defining habitat conditions, ecologists often use canonical ordinations such as
canonical redundancy analysis (RDA). It is a common practice to use dissimilarity coefficients
to perform canonical ordinations through distance-based RDA (db-RDA) or transformation-
based RDA (tb-RDA). Dissimilarity coefficients are measures of resemblance where the
information about species communities is condensed into a symmetric square matrix of
dissimilarities among sites. In this study, we compared 16 of the most commonly used
dissimilarity coefficients to evaluate if the species-abundance distribution (SAD) of a
community can be used to select an appropriate coefficient. Of these, 11 are designed to be
used primarily with abundance data, although they can also be used with presence–absence
data, whereas five can only be applied to presence–absence data. Using simulations, we
compared the explained variance of RDAs differing only by their coefficients to evaluate how
the abundance patterns of communities influence coefficient choice. We found that coefficients
are largely equivalent, independently of the community SAD. In light of these findings, we
propose the consensus RDA method, a new canonical ordination procedure that performs a
consensus of RDAs across several coefficients. This new method focuses on the common
relations found by independent RDAs differing only by their dissimilarity coefficients; this
ensures the absence of a coefficient-related bias when interpreting the canonical ordination
result. Also, because in our simulations the presence–absence data were directly derived from
the abundance data, we were able to evaluate if the information in presence–absence data was
equivalent to that in abundance data. We found that although some information was lost by
converting abundance data into presence–absence, both data formats may be complementary.
When applying consensus RDA to abundance and presence–absence data independently, a
more complete understanding and interpretation of the ecological patterns is obtained. An
ecological example illustrating consensus RDA and the conclusions of our simulations is
presented, using Carabidae data collected at the Ecosystem Management Emulating Natural
Disturbances (EMEND) project in northwestern Alberta, Canada.

Key words: abundance data; canonical redundancy analysis (RDA); Carabidae; dissimilarity
coefficient; presence–absence data; species-abundance distribution (SAD); species-presence distribution
(SPD).

INTRODUCTION

The species composition of an ecological community
is heavily influenced by local variation in habitats. In
theory, this intimate species–habitat relationship is due
to evolutionary adaptations of the species to their
environment; because of these adaptations, species have
ecological niches (Hutchinson 1957), meaning that they
are found at locations where they encounter appropriate
living conditions. Whittaker (1967) illustrated this idea
using the concept of environmental gradients, where
different species use distinct sections of the same

gradient in a manner analogous to the dispersion of
niches envisioned under Hutchinson’s multivariate niche
concept.

Numerous studies have shown that most communities
that use a complex configuration of local habitats are
composed of a few common species, plus a large
proportion of less abundant or rare species. In contrast,
species-poor communities with no dominant species are
generally affected by only a few habitat gradients
(Loreau 2010: Chapter 2). Thus, we may suggest that
the complexity of species–habitat relationships influenc-
es the species-abundance structure of a community.

Variation in species abundance and the effects of
multi-habitat gradients on this variation have been
studied extensively. A common approach for depicting
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variation in species abundance is the species-abundance
distribution (SAD), which ranks species in terms of the
number of individuals of each species observed in
sampling units from a community. SADs were mathe-
matically described in the earlier ecological literature
(Fisher et al. 1943 and Preston 1948). McGill et al.
(2007) reviewed the various types of SADs and
explained the utilities of SADs in describing and
comparing communities.
At the community level, species–habitat relationships

are often described using ordinations. Unconstrained
ordinations such as principal component analysis (PCA;
Pearson 1901), correspondence analysis (CA; Roux and
Roux 1967), detrended CA (Hill and Gauch 1980),
nonmetric multidimensional scaling (Shepard 1962), and
principal coordinate analysis (PCoA; Gower 1966) have
been widely used to study associations between species
and habitat factors (Legendre and Legendre 2012:
Chapter 9). More recently, constrained ordinations such
as canonical redundancy analysis (RDA; Rao 1964) and
canonical correspondence analysis (CCA; ter Braak
1986, 1987) have been used to more directly evaluate
how specific habitat components affect species assem-
blages. It is well known that RDA is not well-suited to
the analysis of species-abundance data collected along
long gradients, which contain many zeros, because the
Euclidean distance preserved in RDA does not have the
property of being double-zero asymmetrical (Legendre
and Legendre 2012: Subsection 7.2.2). Two variants of
RDA have also been proposed to ecologists during the
last 15 years: distance-based RDA (db-RDA; Legendre
and Anderson 1999), which is a constrained version of
PCoA, and transformation-based RDA (tb-RDA;
Legendre and Gallagher 2001). Note that a PCA carried
out on transformed data (tb-PCA) is the unconstrained
version of tb-RDA. The transformations used in tb-
PCA and tb-RDA make these ordination methods
preserve one of the distances that is appropriate for
the analysis of community composition data (Legendre
and Legendre 2012: Sections 7.7, 9.1.10, and 11.1.5). In
contrast with earlier approaches where the dissimilarity
coefficient underlying the canonical ordination was
fixed, db-RDA and tb-RDA make it possible to use an
array of dissimilarity coefficients and data transforma-
tions to perform canonical ordinations, offering much
more flexibility for the analysis of community data. A
coefficient assesses the resemblance in species composi-
tion among sampled sites by condensing the community
data into a symmetric square matrix of resemblance
among sites. For example, the Euclidean distance (Table
1) computes Pythagoras’ formula between all pairs of
sites, which results in a symmetric square matrix where
the species information is compared between two sites
and condensed into a distance value.
Choosing a dissimilarity coefficient well-suited to

study specific communities and particular ecological
questions is a problem often faced by ecologists because
of the overwhelming number of coefficients available in

the literature. As an example, Legendre and Legendre
(2012: Chapter 7) describe 26 coefficients (distances and
[dis]similarities) designed specifically for studying species
assemblages. Although they propose theory-based
guidelines and decision keys to help choose among
coefficients (e.g., Legendre and Legendre 2012: Section
7.6), it often happens that more than one coefficient can
be used to answer a particular ecological question. When
such situations occur, Legendre and Gallagher (2001)
suggest selecting the coefficient that yields the highest
fraction of explained variance in canonical ordination;
in other words, let the data determine which coefficient
to use. Under this procedure, the abundance structure of
a community can influence the selection of a coefficient
used to describe it.
Although variation in SADs complicates coefficient

selection, little is known about how variations in SADs
affect the performance of coefficients. In this study, we
compare the performance of dissimilarity coefficients
commonly used in canonical-ordination and beta-
diversity studies of community composition data and
use simulations to evaluate the sensitivity of the
coefficients to varying SADs. The comparisons are
made for communities described either in terms of
abundance or presence–absence data. The analysis meets
two objectives. Firstly, by comparing the performance of
coefficients within data type, we show that the choice of
a coefficient based on the proportion of explained
variance may influence the resulting interpretation of the
species–habitat relationship. To solve this problem, we
propose a new technique that computes a consensus
among the canonical ordination results obtained from
several coefficients. Secondly, by comparing coefficients
between data types, we evaluate the extent to which
information in abundance data is preserved after
transformation to presence–absence data. We illustrate
these effects using ground beetle (Carabidae) data from
a boreal forest in northwestern Alberta, Canada.

DEFINING A COMMUNITY WITH A SAD

There are many ways to display a SAD. In this paper,
we use a variation of Preston’s (1948) graphs to describe
species-abundance distributions where the abundance
classes are arranged along the x-axis and increase
according to a geometric progression, such that their
lower bounds are 2k, where k represents the successive
integers from 0 and up. This approach was recommend-
ed by Gray et al. (2006) as the SAD construction that
most accurately represents the species-abundance pat-
tern of an ecological community. These graphs can be
compared visually, making them effective tools to
differentiate communities.
The 25 graphs shown in Fig. 1 present a range of

possible SADs, most of which can be found in nature.
All of them were employed to simulate site-by-species
abundance matrices. For all SADs, the number of
species was fixed at 20, but the total abundance varied
from 261 (the sum of the abundance classes’ lower limits
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TABLE 1. List of dissimilarity coefficients compared in the study.

Dissimilarity
coefficients Equation Reference Comment

Binary symmetrical

Simple-matching

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! aþ d

aþ bþ cþ d

r
Sokal and Michener

(1958)
Directly related to Euclidean (see

details in RDA and dissimilarity
coefficients).

Binary probabilistic

Raup-Crick 1 – p(ahi )! Raup and Crick
(1979)

McCoy et al. (1986)

Binary asymmetrical

Jaccard

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! a

aþ bþ c

r
Jaccard (1901) Binary equivalent of any variation

of the modified Gower
dissimilarity.

Sørensen

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! 2a

2aþ bþ c

r
Sørensen (1948) Binary equivalent of percentage

difference.

Ochiai
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! affiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðaþ bÞ þ ðaþ cÞ
p

r
Ochiai (1957)

Distance between
species profiles

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
bþ c

ðaþ bÞðaþ cÞ

r
Legendre and De

Cáceres (2013)
Binary equivalent of the chord and

Hellinger coefficient divided byffiffiffi
2
p

.

Abundance symmetrical

Euclidean

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

j¼1

ðy1j ! y2jÞ2
vuut Maor (2007)" Distance preserved in RDA.

Abundance asymmetrical

Chord

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Xp

j¼1

y1jffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

j¼1

y2
1j

vuut
!

y2j

Xp

j¼1

y2
2j

0

BBBBBB@

1

CCCCCCA

vuuuuuuuuut

2

Orlòci (1967) On presence–absence data chord

becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1! OchiaiÞ

p
:

Hellinger

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

j¼1

ffiffiffiffiffiffiffi
y1j

y1þ

r
!

ffiffiffiffiffiffiffi
y2j

y2þ

r" #2
vuut Rao (1995) On presence–absence data Hellinger

becomes
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1! OchiaiÞ

p
:

v2
ffiffiffiffiffiffiffiffi
yþþ
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

j¼1

1

yþj

y1j

y1þ
! y2j

y2þ

" #2
vuut Lebart and Fénelon

(1971)
Dissimilarity preserved in CCA.

Can also be used with presence–
absence data.

Distance between
species profiles

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xp

j¼1

y1j

y1þ
! y2j

y2þ

" #2
vuut Legendre and

Gallagher (2001)
Abundances standardized by

division by row sums.

Percentage difference

Xp

j¼1

jy1j ! y2j j

Xp

j¼1

ðy1j þ y2jÞ
Odum (1950) This dissimilarity is often

wrongfully referred to as the
Bray-Curtis index.§

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Percentage difference
p

Xp

j¼1

j ffiffiffiffiffiffiy1j
p ! ffiffiffiffiffiffi

y2j
p j

Xp

j¼1

ð ffiffiffiffiffiffiy1j
p þ ffiffiffiffiffiffi

y2j
p Þ

Clarke and Green
(1988)

Taking the square root of the raw
data prior to calculating
percentage difference is often
used when there is marked
variation in abundance between
species.
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for all species of the community depicted by Fig. 1a) to
20 460 (the sum of the abundance classes’ upper limits
for all species of the community depicted in Fig. 1j).
Therefore, the SADs of Fig. 1 represent a huge variation
of species-abundance distributions, as would typically be
observed in real communities (see Dewdney [2000] for a
comparison of 50 SADs constructed from many
different species communities). SADs were selected to
represent a broad range of species-abundance patterns
found in natural communities.
Fig. 1a, b present communities with many rare species

and no common species. Note that communities with a
similar SAD structure but with a larger number of rare
species are often found in nature; however, because the
SADs in Fig. 1 were used to define the abundance of
species in simulated communities, the SADs in Fig. 1a, b
are the most extreme cases that would not generate
empty sites in the site-by-species table.

Ecologists sometimes remove species with low abun-
dances because the many zeros introduced by including
these rare species can be troublesome for data analysis,
especially with methods based on Euclidean distances, as
explained by Legendre and Legendre (2012: Subsection

7.4.1). For example, in the classical oribatid mite study
of Borcard et al. (1992), 14 poorly represented species
which, together, summed to 50 individuals, were
removed from the data matrix before analysis by
CCA. Depending on the group of organisms studied,
removing rare species can yield SADs similar to what is
found in Fig. 1c–g, m–o, u–v.

In a recent paper, Gaston (2010) emphasized the
importance of studying common instead of rare species.
In light of that work, we included a few SADs (Fig. 1h–
j, w–y) corresponding to communities composed mainly
of common species. Other SADs have been found to well
characterize certain groups of organisms. For example,
boreal carabid communities often present bimodal
SADs (Niemelä 1993) such as those in Fig. 1k, l. Finally,
the SADs presented in Fig. 1p–t, are mainly theoretical
and unlikely to be found in nature. We included them
because analysis of such extreme cases may lead to a
better understanding of dissimilarity coefficients.

RDA AND DISSIMILARITY COEFFICIENTS

In this study, we used the RDA framework to compare
commonly used dissimilarity coefficients (Table 1), all of

TABLE 1. Continued.

Dissimilarity
coefficients Equation Reference Comment

Abundance asymmetricalffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Percentage difference4
p

Xp

j¼1

j ffiffiffiffiffiffiy1j
4
p ! ffiffiffiffiffiffi

y2j
4
p j

Xp

j¼1

ð ffiffiffiffiffiffiy1j
4
p þ ffiffiffiffiffiffi

y2j
4
p Þ

Clarke and Green
(1988)

As in the previous row, but using a
fourth root.

Modified Gower log2

Xp

j¼1

wjjlg2ðy1jÞ ! lg2ðy2jÞj

Xp

j¼1

wj

¶

Anderson et al. (2006) Different log bases are often used
when there is marked variation in
abundance between species. A
high log base will generally
reduce the emphasis of very
abundant species more than a
smaller one

Modified Gower log5

Xp

j¼1

wjjlg5ðy1jÞ ! lg5ðy2jÞj

Xp

j¼1

wj

¶

Anderson et al. (2006) See modified Gower log2.

Modified Gower log10

Xp

j¼1

wjjlg10ðy1jÞ ! lg10ðy2jÞj

Xp

j¼1

wj

¶

Anderson et al. (2006) See modified Gower log2.

Notes: All binary dissimilarities are presented in the form: D¼
ffiffiffiffiffiffiffiffiffiffiffi
1! S
p

, where S is a similarity. The variables a, b, c, and d are
defined in Table 2. yþþ is the total sum of table Y, yþ j is the abundance of species j, and y iþ is the sum of all abundance of site i. wj is
used to exclude double zeroes by setting wj¼0 whenever y1j¼0 and wj¼1 elsewhere. All coefficients are presented in a dissimilarity
(distance) format.

! The variables h and i define two different sites.
" The Euclidean distance was first defined in Mesopotamia (;1800 BC), see Maor (2007) for details.
§ Bray and Curtis (1957) did not design this coefficient nor was it their purpose. They used a transformed version of Steinhaus

coefficient (Motyka 1947) in their paper, which is equivalent to Odum’s (1950) percentage difference. Their transformed coefficient
is actually Whittaker’s index described in Legendre and DeCáceres (2013).

} The function lg(yij) ¼ log(yij)þ 1 when yij . 0, otherwise lg(yij) ¼ 0.
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which can be used within db-RDA. Although most
models were constructed through db-RDA, the chord, v2,
Hellinger, Ochiai, and distance-between-species-profiles
coefficients were applied in tb-RDA because it is
computationally more efficient. These five coefficients
are mathematically equivalent in tb-RDA and db-RDA
(Legendre and Legendre 2012: Section 7.7).
For presence–absence data, the Euclidean distance is

equal to the square root of the complement of the simple-

matching coefficient (Table 1) multiplied by the number
of species p:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð1! simple-matching coefficientÞ

p
; the

formula reduces to
ffiffiffiffiffiffiffiffiffiffiffi
bþ c
p

(see Table 2 for the meaning
of b and c). This relationship was shown by Gower
(1966) when he described PCA based on binary
descriptors. A PCA based on binary data produces the
same ordination as the principal coordinate analysis of a
matrix of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! simple-matching coefficient
p

; between the
two ordinations, the coordinates are strictly proportion-

TABLE 2. Contingency table describing the similarity between two sites where species presence or
absence were observed.

Site 1

Site 2

1 (species present) 0 (species absent)

1 (species present) a ¼
Xp

j¼1

y1jy2j b ¼
Xp

j¼1

y1j !
Xp

j¼1

y1jy2j

0 (species absent) c ¼
Xp

j¼1

y2j !
Xp

j¼1

y1jy2j d ¼ p – a – b – c

Notes: The variable a is the number of species present at sites 1 and 2, b is the number of species
present at site 1 but absent at site 2, c is the number of species found at site 2 but not at site 1, and d
is the number of species absent at both sites. The formulas for binary data in Table 1 describe how
to combine the values a, b, c, and d to obtain the coefficients.

FIG. 1. Species-abundance distributions (SADs) used in the simulations. These SADs are presented using Preston (1948)
graphs, where the abundance classes along the x-axis increase according to a geometric progression. The lower bound of the
progression is made of the values 2k, with k being the successive integers from 0 and up. The y-axis displays the number of species in
each abundance class. These SADs were used as a basis for the simulations to generate a site-by-species data table. Each SAD
represents a community of 20 species, and was constructed to encompass a wide range of variation in abundance patterns.
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al and differ by a constant factor of
ffiffiffi
p
p

. The same
relationship holds when binary descriptors are used in an
RDA, because it is the canonical extension of PCA. As a
consequence, RDA based on binary data is equivalent to
db-RDA of a matrix of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! simple-matching coefficient
p

and no data transformation is required.
By using the RDA framework for all coefficients, we

were able to compare our simulation results directly. In
particular, we used the v2 distance through the tb-RDA
approach instead of calculating CCAs. In practice, tb-
RDA with the v2 distance coefficient and CCA yield
very similar, although not identical, ordination results
(Legendre and Gallagher 2001).
An RDA is computed by regressing the community

matrix Y, composed of p species, on a matrix of m
explanatory variables X observed at the same n sites.
This is carried out by a sum of squares minimization,
leading to

B ¼ ðXtXÞ!1XtY

Ŷ ¼ XB ð1Þ

where t indicates the transpose and !1 the inverse of a
matrix. Xmust either be centered by columns, or contain
a column of 1’s to estimate the regression intercepts. In
Eq. 1, B is the matrix of regression coefficients of all
species in Y on the explanatory variables X. The
residuals of the models are obtained through Eq. 2

Yres ¼ Y! Ŷ: ð2Þ

By performing a PCA on Ŷ, a matrix of eigenvectors
U defining the species scores and a diagonal matrix of
eigenvalues K are obtained. The site scores can then be
computed using X (Eq. 3) or Y (Eq. 4).

Z ¼ XBU ¼ ŶU ð3Þ

F ¼ YU ð4Þ

If required, the canonical coefficients can be calculat-
ed following Eq. 5:

C ¼ BU: ð5Þ

A more detailed description of the RDA algebra is
available in Legendre and Legendre (2012: Section 11.1).
These calculations are exactly the same for tb-RDA,

with the exception that the community matrix Y is pre-
transformed before calculating an RDA, using any of
the transformations proposed by Legendre and Gal-
lagher (2001). In db-RDA, a dissimilarity coefficient is
applied to a community matrix, yielding a dissimilarity
matrix. A PCoA is then calculated on this dissimilarity
matrix and all the eigenvectors given by the PCoA are
used as the Y matrix in an RDA (Legendre and
Anderson 1999). In db-RDA, the sites scores (Eqs. 3
and 4) and canonical coefficients (Eq. 5) are readily
obtained. However, the species scores need to be

calculated a posteriori. We used the procedure proposed
in the vegan package (Oksanen et al. 2013) to calculate
the species scores

Upost ¼
YtZK!1=2

ffiffiffiffiffiffiffiffiffiffiffi
n! 1
p : ð6Þ

All binary similarity coefficients with the exception of
the Raup-Crick coefficient were transformed into
dissimilarities using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1! coefficient
p

because Gower
and Legendre (1986) have shown that this transforma-
tion makes them metric as well as Euclidean. This is
important, because a PCoA of these transformed
coefficients does not produce negative eigenvalues that
would have to be corrected for before performing the
RDA. Thus, this transformation facilitates the calcula-
tions. In contrast, the probabilistic nature of the Raup-
Crick coefficient makes it special; on the one hand, its P
value behaves like a dissimilarity, increasing as sites
become more different in species composition; on the
other hand, two sites with exactly the same species will
not necessarily result in a dissimilarity of 0 for this
coefficient; neither will two sites with completely
different species automatically lead to a dissimilarity of
1. We decided to include it in our analyses because the
probabilistic nature of the Raup-Crick coefficients may
offer a solution to the double-zero problem.
The double-zero problem stems from the difficulty of

relating two sites where a species has not been found
(Legendre and Legendre 2012: Subsection 7.2.2). Dou-
ble-zero asymmetrical dissimilarity coefficients are
designed to ignore double zeroes altogether whereas
double-x (where x . 0) reduces the dissimilarity; for
binary dissimilarity coefficients, this amounts to ignor-
ing the value d (Table 2) in the calculation of the
coefficients. Conversely, double-zero symmetrical coef-
ficients treat double zeroes as any other double-x value,
which reduces the dissimilarity. For example, for the
simple-matching coefficient, which is double-zero sym-
metrical, double zeroes (value d in Table 2) are
considered as an indication of similarity in the same
way as double presences (value a). Double-zero sym-
metrical coefficients should be used only when the goal
of a study is to evaluate total changes in a community,
for instance under the influence of pollution. Studies
focusing on the impact of predation or disturbances may
also find symmetrical coefficients interesting because the
absence of a species at two sites is ecologically
meaningful and should be considered (Anderson et al.
2011). For studies focusing on the variation in commu-
nity composition among sites (i.e., beta diversity),
double-zero asymmetrical coefficients should be pre-
ferred (Legendre and De Cáceres 2013).
In the present study, we performed simulations that

reflected species variation in undisturbed communities
where predation was not considered. The Euclidean and
simple-matching coefficients are ill-adapted to these
types of ecological problems because they are double-
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zero symmetrical (Legendre and Legendre 2012: Sub-
section 7.4.1). We decided to include them when
comparing coefficients within data types because both
coefficients have been used, perhaps wrongfully, to
study ecological communities through the use of RDA
on abundance or presence–absence data (ter Braak and
Verdonschot 1995).
The Jaccard, Sørensen, and simple-matching coeffi-

cients were computed with the ade4 package (Dray and
Dufour 2007). All other calculations were performed
with the vegan package (Oksanen et al. 2013) with the
exception of the Raup-Crick coefficient, which was
programmed independently using the McCoy et al.
(1986) permutation procedure. We used the McCoy et
al. (1986) permutation approach because Legendre and
Legendre (2012: Subsection 7.3.5) found that it was
better at recognizing significant site associations, com-
pared to the original permutation procedure of Raup
and Crick (1979). All analyses were carried out using the
R statistical language (R Development Core Team
2012).

SIMULATING COMMUNITIES WITH VARYING

SPECIES ABUNDANCES

In our simulations, we constructed eight explanatory
variables at 49 sites structured as a regular grid
comprising 7 3 7 sites, using the RsimSSDCOMPAS
package (M.-H. Ouellette, personal communication)
within the R statistical language. The RsimSSDCOM-
PAS package is a wrapper for SimSSD4, a FORTRAN
program used to simulate species, environment, and
geographic coordinates. SimSSD4 is available in ESA’s
Ecological Archives M075-017-S1, a supplement to the
Legendre et al. (2005) paper. These explanatory
variables (matrix X) define linear gradients, waves, large
patches, or random patterns. They are presented in Fig.
A1 of Appendix A with a detailed description of how
they were constructed. The same eight descriptors were
used for all simulations.
In a simulated community, each of the 20 species had

a different underlying structure constructed by combin-
ing pairs of the eight explanatory variables presented
above. This structure remained constant for all simulat-
ed communities. The reference structure yref of a species
was constructed following Eq. 7, where x is a weight, xi
and xj are two of the eight explanatory variables, and e
is an error vector of standard normal deviates

yref ¼ xðxi þ xjÞ þ e: ð7Þ

The weight x acts as a regression coefficient to
influence the abundance of each species in the commu-
nity, which is directly related to the size of the absolute
value of x (i.e., jxj). A value of x was predefined for each
species. A large jxj generates species with larger
abundances. Half of the species were constructed with
positive weights and the other half with negative weights.
Ten species were characterized by strong links (x¼ 2

or !2) with the explanatory variables defining them. In

ecological terms, a large absolute weight represents a
species that has a strong relationship with the measured
environmental variables. The other 10 simulated species
had smaller weights representing medium (two species
with x ¼ 1 or !1), weak (four species with x ¼ 0.5 or
!0.5), or very weak (four species with x ¼ 0.1 or !0.1)
relationships between a species and the descriptors
controlling it.

As will be explained at the end of this section,
additional sets of communities were simulated where
the error e was smaller, giving more importance to species
with lower absolute weights. Note that Eq. 7 without the
error term e represents the true pattern defining a species.
The reference structure of each species was determined
following a predefined combination of x, xi, and xj
(Appendix A: Table A1). Also, the explanatory variables
used to construct each species were carefully selected in
such a way that each one was independently used to
create five different species, making all explanatory
variables equally important in the simulated community.

To construct a species, we transformed yref for it to
range from 0 to 1 in order to use the information it
encompasses as a probability distribution. Eq. 8 was
used if x was positive and Eq. 9 if x was negative. In
these two equations, jyrefj is the absolute value of yref
and yprob defines the probabilities of sampling a species
at each of the 49 sites in the sampling area

yprob ¼
jyref jX
jyref j

ð8Þ

yprob ¼
1

jyref j
3

1
X
jyref j

: ð9Þ

Eq. 8 defines the probability of sampling a species
directly related to the patterns in yref, whereas Eq. 9
defines the probability of sampling a species inversely
related to the patterns in yref. If the probability of
sampling a species is high for a site in proportion to the
other sites, it is more likely for at least one individual of
that species to be found at the site.

As explained in Defining a community with a SAD, the
abundance pattern of each simulated community
(defined as a group of species living in heterogeneous
environment) followed one of the predefined SADs
presented in Fig. 1. The SAD is a commonly used tool to
rank species, based on the abundance of each species
sampled from a community (McGill et al. 2007). The
structures of these SADs were unaffected by the other
steps of the simulation; SADs remained constant
throughout the simulations. Each species was assigned
to a bin of the SAD in order for the abundance
distribution of the community to be reproduced when
summing the number of individuals for each species in
the site-by-species table. To define the exact abundance
of a species in a simulated community, we randomly
sampled the number of individuals of that species within
its SAD bin boundary. Each number of individuals had
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the same probability of being selected within a particular
bin boundary. To allocate these individuals to specific
sites, we sampled the sites (with replacement), using the
species probability distribution yprob. Because yprob is
constructed from yref, which has an underlying normal
error, yprob also follows a normal distribution.
By repeating this procedure for the 20 species, we

obtained a site-by-species table representing one simu-
lated community. We constructed 1000 communities for
each of the 25 SADs in Fig. 1. Four other sets of 25 000
communities were also constructed where the error
terms e in Eq. 7 were standard normal deviates with
standard deviations of 0.001, 0.250, 0.500, and 2.000. In
all, we simulated 125 000 communities describing the
abundance of species at each site.
To create site-by-species presence–absence tables, we

transformed all abundances larger than 0 to 1s for all
species-abundance community data generated above.

COMPARING DISSIMILARITY COEFFICIENTS USING

EXPLAINED VARIANCE

The amount of explained variance in canonical
ordinations was estimated with the coefficient of
determination (R2) and the comparison of dissimilarity
coefficients was carried out following the procedure
proposed by Legendre and Gallagher (2001). Coeffi-
cients of determination were calculated by dividing the
total variance in Ŷ (which, incidentally, is also the sum
of the canonical eigenvalues) by the total variance in Y
(which is also the sum of all eigenvalues, canonical and
non-canonical). Note that Ŷ was constructed following
Eq. 1, where X is a matrix of explanatory variables, each
of which are shown in Appendix A: Fig. A1. R2 values
range from 0 to 1. For example, if a model yields an R2

of 0.2, it should be understood that this model explains
20% of the variance of the response.
In the present study, only the canonical eigenvalues

associated with significant canonical axes (P & 0.05 after
999 random permutations) were considered in the
calculation of R2. Fig. 2 compares the performance of
RDAs for different dissimilarity coefficients for each of
the 25 SADs presented in Fig. 1. The RDAs were carried
out on the simulated species abundances constructed
with the smallest error (normal distribution with a
standard deviation of 0.001). Results of simulations with
larger error are presented in Appendix B: Figs. B1–B4.
All simulations yielded the same conclusions (see next
paragraph) regardless of the error size. The only
difference between the sets of simulations is that larger
error when constructing species is associated with lower
R2. The inverse relation between error term and variance
explained, which is consistent for all coefficients
compared, suggests that the amount of error does not
favor (or disfavor) any coefficient. Note that if all
canonical eigenvalues are used to calculate the R2

instead of using only the significant eigenvalues, the
conclusions are unchanged, because the fractions of the
explained variance corresponding to the nonsignificant

canonical axes are too small to markedly affect the
results. The variance explained by all the nonsignificant
canonical axes considered together is above 0.1 only in
extreme cases, and is usually around 0.06. The variance
explained by a single nonsignificant canonical axis is
usually less than 0.025.
In the simulation results presented in Fig. 2, the most

striking feature is that the confidence intervals for all
double-zero asymmetrical coefficients overlap consider-
ably. Moreover, detailed inspection of the results shows
that independent of the SAD structures, a community
having a high R2 for one coefficient generally also has
high R2 for other coefficients.
The R2 values for the Euclidean distance differ most

from the other coefficients, although its confidence
intervals still overlap with the other coefficients (Fig.
2, top panel). This is because the Euclidean distance is a
double-zero symmetrical coefficient. For the same
reason, the confidence intervals are much wider for the
Euclidean distance than for any other coefficient. At
sites with the same environmental conditions, one
should expect to find the same species, but species
abundances usually vary. Although these variations in
abundance may have important implications when
species are rare, they should have only negligible effects
on the results when species are common. In that
instance, the Euclidean distance considers common
and rare species similarly. The results associated with
the Euclidean distance suggest that double-zero sym-
metrical coefficients should only be used to address
ecological questions where double zeroes are ecological-
ly meaningful, as suggested by Anderson et al. (2011).
Ecologists should also be careful in using the distance

between species profiles, especially in the presence of
many common species, because it seems to lose
explanatory power in these circumstances (Fig. 1h–
j, w–y). Legendre and De Cáceres (2013) have shown
that the distance between species profiles lacks some of
the important properties necessary for coefficients that
are used to assess beta diversity. For this reason, the
distance between species profiles suffers from the same
problem as the Euclidean distance in the presence of
common species, but to a lesser extent.
When comparing dissimilarity coefficients with simu-

lated presence–absence data, the R2 coefficients are very
similar between coefficients across the different SADs
(Fig. 3). Results for the Raup-Crick coefficient were the
only exception, although its confidence intervals still
overlap importantly with the others. It yields a
somewhat lower R2 when there are many common
species (Fig. 3, central panel). Because a high R2 for the
Raup-Crick coefficient is generally associated with a
high R2 of the other coefficients, it may be that the
Raup-Crick coefficient does not as effectively capture
patterns as the other coefficients when many common
species are sampled (Fig. 1h–j, y). These results are
consistent with Legendre and Legendre (2012: Subsec-
tion 7.3.5), who showed that the statistical power of the
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Raup-Crick coefficient to detect significant association
between pairs of sites is low even when McCoy et al.’s
(1986) permutation procedure is used.

We were surprised that the simple-matching coeffi-
cient produced results equivalent to other coefficients
(Fig. 3, central panel). We expected it to be burdened by
the same problems as the Euclidean distance because the
simple-matching coefficient is the presence–absence
equivalent of the Euclidean distance, making it a

double-zero symmetrical coefficient. However, it seems
that when abundances are considered, the importance of
double zeroes increases. If a single species is sampled in
large abundances at two sites, the Euclidean distance
between these sites for that particular species is likely to
be somewhat far from 0, even though it is clear that
these sites are quite similar. The Euclidean distance thus
overemphasizes the differences between two sites where
a species is found in large but unequal abundances, a

FIG. 2. Comparison of explained variance (R2) for 11 dissimilarity coefficients calculated from simulated communities
following different SADs using abundance data. Only the significant (P & 0.05 after 999 permutations) canonical axes were
conserved to calculate R2. Points are R2 means of all simulations, and error bars represent 95% confidence intervals. Coefficients
are presented in different panels strictly for visual clarity; scale remains consistent throughout. SADs under comparison are the
same as those presented in Fig. 1, and share the same letter identification. A line was drawn along the R2 results of each coefficient
to facilitate comparisons between coefficients. Results are based on species simulated with an error term sampled from a normal
distribution (mean¼ 0, standard deviation¼ 0.001). A thousand simulations were run for each SAD.
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problem that does not exist for the simple-matching
coefficient because the species will be recorded as present
(or 1) for both sites, yielding a distance of exactly 0.
Another aspect of our simulations is the increase in

explained variance with the number of common species
(progression of R2 from SAD a to j in Fig. 1). This trend
is consistent for all coefficients compared (with the
exception of the Euclidean, species profile, and Raup-
Crick coefficients, discussed earlier in this section), in
abundance and presence–absence data alike, although it is
weaker for presence–absence data (Appendix B: Figs. B5–
B8). Similar conclusions were found with communities
simulated with larger error (Appendix B: Figs. B1–B8).

A NEW WAY TO PERFORM CANONICAL ORDINATIONS

The previous simulations have shown that within data
types, double-zero asymmetrical coefficients yield simi-
lar values of R2, for each SAD compared (Figs. 2 and 3
and Appendix B: Figs. B1–B8). This is shown by the
substantial overlap between confidence intervals of all
coefficients calculated for any particular SAD. Each
coefficient has particularities making it more appropri-
ate for specific ecological situations or research ques-
tions, and less so for others. With the wealth of

coefficients available in the ecological literature, it is
common for more than one coefficient to be appropriate
for a particular ecological study. In that context, the
question ‘‘which dissimilarity coefficient should be
used?’’ remains incompletely answered.
Here, we propose a three-step procedure to handle

this problem. Even though most of the information
highlighted by the different coefficients is often quite
similar, the mathematical properties of each coefficient
emphasize certain characteristics in the data that other
coefficients do not, and vice versa.
In that respect, the first step is to compare coefficients

and evaluate how much the information they explain
diverges. This is accomplished by comparing all aspects
of the canonical ordination models (i.e., the sites, the
species, and the canonical coefficients), not only the
variance explained. Secondly, a selection may be carried
out among the coefficients, if necessary. The RDA
models constructed using coefficients that differ mark-
edly from the others should be considered separately, or
their use should be revaluated. The differences between
RDA models can be in the ordination of the sites, the
site–species relationships, and/or the relationships be-
tween canonical coefficients and the sites and species. In

FIG. 3. Comparison of explained variance (R2) for seven dissimilarity coefficients calculated from simulated communities
following different SADs using presence–absence data. Details are as in Fig. 2.
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a nutshell, potential differences among RDA models
should be sought in all aspects of the models.
Comparison and selection of coefficients is recommend-
ed, because if a coefficient is markedly different from the
others, its inclusion in the following consensus step may
blur ecological relationships that could appear if this
coefficient was removed. Thirdly, the information
common to RDA models that only differ by their
dissimilarity coefficients should be synthesized. It is
important to focus only on the information shared by
the different RDA models to ensure that no misguided
ecological interpretations are made. Because it is
difficult to extract common information by an exami-
nation of independent canonical ordination triplots, we
propose a new method that computes a consensus
among canonical ordinations that differ only by the
coefficients used to construct them. The consensus
focuses on the patterns found by all RDA models,
leaving out the information extracted by only one or a
few coefficients. We call this new approach ‘‘consensus
RDA.’’ A detailed explanation of how these three steps
are carried out is presented in the next sections.
Comparison of RDA models.—To compare RDA

models that only differ by their coefficients, the first step
is to isolate the significant components found in each Z
matrix (site scores calculated using the explanatory
variables, Eq. 3), e.g., the axes with a P value &0.05.
Model comparisons rely on the Zmatrices, which contain
the canonical ordination coordinates of the sites; the
variance of each canonical axis in Z is equal to its
associated eigenvalue when the distances among sites are
preserved in the ordination results (RDA scaling 1). In
the RDA framework, the canonical eigenvalues measure
the variance explained by the canonical axes.
We correlated the significant canonical axes of the Z

matrix obtained for each dissimilarity index to those
obtained with the other indices using RV coefficients
(Escoufier 1973, Robert and Escoufier 1976). The RV
coefficient is a multivariate generalization of the squared
Pearson correlation that correlates two matrices with
corresponding rows (sites). It produces values that range
between 0 (no correlation) and 1 (perfect correlation).
The RV coefficients for all pairs of dissimilarity indices
were assembled in a matrix of pairwise RV coefficients.
Using this matrix, we drew a minimum spanning tree
(MST; Legendre and Legendre 2012: Section 8.2) to
compare dissimilarity indices. This required the matrix
of RV coefficients to be transformed into a dissimilarity
matrix. We used (1 ! RV) to perform the transforma-
tion because it ensured that the correlation information
brought by the RV coefficients was conserved. These
dissimilarities ranged from 0 to 1.
Selection of RDA models.—After examination of the

MST, a selection of concordant dissimilarity indices can
be made. We leave it at the discretion of users to decide
how dissimilarity indices should be selected. For
example, the dissimilarity indices linked by the longest
MST branches can be removed if these branches are

much longer than the average branch. If the longest
branch in the MST links two groups of dissimilarity
indices, it may be interesting to calculate two consensus
RDAs, one for each group of indices.

Consensus RDA.—To calculate a consensus RDA, the
significant components of the Z matrices selected to
compare RDA models are used again (Fig. 4b). Of
course, only the Z matrices from coefficients that have
been selected in the previous step should be considered.
In consensus RDA, all significant components are
grouped in a large matrix (Fig. 4c). Using this large
matrix as a response in an RDA where the matrix of
explanatory variables is X (Fig. 4c), compute the
consensus RDA site scores Z* and the consensus
RDA canonical coefficients C*. This RDA also yields
eigenvalues (K*), which express the amount of variance
represented by each Z* component, and more generally
by each axis of the consensus RDA. These eigenvalues
can be used to measure the strength of the consensus.
The consensus RDA species scores U* need to be
calculated following Eq. 6. In other words, U* is
obtained following the same procedure as in db-RDA.

When performing an RDA, the results can be
presented in either a distance (scaling 1) or a correlation
(scaling 2) triplot. Scaling can also be used in consensus
RDA. All the calculations presented above are carried
out using the scaling 1 matrices Z because, as explained
in Comparison of RDA models, the consensus method
relies on a property of Z that is only present in scaling 1.
To obtain a consensus result in scaling 2, the consensus
site scores (matrices Z*) need to be rescaled following
Z*(K*)!1/2. A similar procedure is used to apply scaling
2 on the species scores consensus (U*(K*)!1/2).

An interesting aspect of this new method is that as long
as the dissimilarity indices represent the only aspect that
differs between the different RDAs, a consensus RDA
can be computed. This also includes partial RDAs.

All calculations necessary to obtain a consensus RDA
rely on the Z matrices of the different RDA models
constructed with a group of relevant dissimilarity
indices. The components in these Z matrices contain
the fitted site scores for the RDAs; they do not include
the residuals components of Y, which are part of the F
matrices (ter Braak 1994, Legendre and Legendre 2012:
Subsection 11.1.3). Because it is often more interesting
to study an RDA triplot in a projection where residuals
are not included, a consensus of F matrices was not
incorporated in our description of consensus RDA.

The explanations of how to perform consensus RDA
indicate that any number of axes can be used for any of
the RDAs that are considered in the calculation of the
consensus. However, it is not clear whether all, or only
the significant canonical axes, should be used in a
consensus RDA to obtain the model that best explains
the community data. To evaluate which approach
should be used, the simulated site-by-species tables
presented in Simulating communities with varying species
abundances were used. Each site-by-species table was
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correlated with Z* (consensus site scores), which was
calculated using all canonical axes, using the RV
coefficient. We then compared these RV coefficients
with RV coefficients correlating the site-by-species tables
with the consensus site scores calculated using only the
significant axes. The comparisons were carried out using
both abundance and presence–absence simulated data.
All dissimilarity coefficients discussed were used in the
construction of the consensus site scores.

The results in Fig. 5 were obtained using abundance
data where the error was the largest (e in Eq. 7 followed
a normal distribution with mean ¼ 0 and standard
deviation¼2), which yielded the largest variation in the
comparisons made. In Fig. 5 (note the narrow range of
the y-axis), the differences between the RV coefficients
calculated using all canonical axes and the RV
coefficients computed using only significant axes ranges
almost always between 0.05 and !0.02. Although, for

FIG. 4. Schematic representation of consensus redundancy analysis (RDA). (a) The first step of the procedure is to perform a
series of RDAs (transformation-based RDA [tb-RDA] or distance-based RDA [db-RDA]) to model the community data Y using
explanatory variables X. Each RDA is computed with a different dissimilarity coefficient using scaling type 1 (distance triplot, Z
matrices). In the figure, K different dissimilarity coefficients are used. (b) For each of the K dissimilarity coefficients, the significant
axes within each Z matrix are grouped in a large matrix. (c) An RDA is then performed on this large matrix using X as the
explanatory variables. (d) This RDA yields the site scores consensus matrix Z*, a diagonal matrix of eigenvalues K*, and the
consensus canonical coefficients C*. (e) Eq. 6 is then used to obtain the consensus species scores U*. (f ) Z*, U*, and C* can be used
to draw a consensus RDA triplot; the eigenvalues in K* show the importance of each axis in the consensus triplot.

F. GUILLAUME BLANCHET ET AL.502 Ecological Monographs
Vol. 84, No. 3



certain extreme cases, slightly more information can be
obtained using all canonical axes, in the majority of
situations very little information is gained (or some-
times lost) from using all canonical axes instead of only
the significant ones. Results from the simulations where
communities were generated with smaller error terms
are presented in Appendix C. In these simulations,
presence–absence and abundance data were considered.
For abundance data, the results yield the same
conclusions as the one presented in Fig. 5. For
presence–absence data, it is slightly better to use all
canonical axes; however, the information gain is
minimal. In doubtful cases, the best solution is found
by comparing a consensus RDA obtained using all
canonical axes with a consensus RDA constructed with
only the significant axes and choosing the solution that
yields the largest RV coefficient. This approach ensures
that the result of the consensus RDA always represents
the largest amount of information from the community
data.
A comparison of dissimilarity indices and a consensus

RDA are presented in Ecological illustration, for
abundance and presence–absence data.

SHOULD WE USE PRESENCE–ABSENCE DATA?

Modeling presence–absence data is more challenging
than abundance data because information on species
abundances is missing. The results of our simulations
confirm this statement; the R2 values are consistently
higher for abundance (Fig. 2, Appendix B: Figs. B1–B4)

than for presence–absence data (Fig. 3, Appendix B:
Figs. B5–B8). This result is not surprising, because one
would expect to obtain better species–environment
linear models when using more informative data. This
finding remains the same irrespective of the error level in
the data (Fig. 2, Appendix B: Figs. B1–B8). However,
comparison between presence–absence and abundance
data using R2 does not reflect how well the true species
structure is modeled. To compare the canonical ordina-
tion results of abundance and presence–absence data, we
first need to measure how much information from the
true species (Eq. 7 without the error term) structure is
extracted by the canonical analyses. As explained at the
end of RDA and dissimilarity coefficients, the Euclidean
and simple-matching coefficients are double-zero sym-
metrical; they are designed to answer ecological ques-
tions where double zeroes are ecologically meaningful.
In our simulations, double zeroes do not necessarily
reflect a strong similarity between sites. For this reason,
double-zero symmetrical coefficients were not included
in the comparison between abundance and presence–
absence data. For both data types, we calculated RV
coefficients between the true species structure (Eq. 7
without the error term) and the significant canonical
axes.

We regrouped all RV coefficient results within data
type and compared the grouped abundance to the
grouped presence–absence results (Fig. 6). According to
the results obtained by comparing dissimilarity coeffi-
cients within data type (Figs. 2, 3, Appendix B: Figs.

FIG. 5. Comparison of consensus RDAs across SADs (same as in Fig. 1), constructed using all canonical axes with consensus
RDAs using only the significant canonical axes. The Z* matrices calculated from the abundance data were used in the comparison.
The y-axis presents the difference between RV coefficients calculated using all canonical axes and RV coefficients calculated using
only the significant axes; all difference values were in the interval [–0.03, 0.09]. The RV coefficient is a multivariate generalization of
the squared Pearson correlation that correlates two matrices with corresponding rows (sites). The results are presented as boxplots.
The upper and lower sections of the box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the
box is the median (50%). The lower whiskers describe the 1.5 interquartile range of the first quartile, the upper whisker stands for
the 1.5 interquartile range of the third quartile, and the points indicate outliers. Results are based on species simulated with an error
term sampled from a normal distribution (mean¼ 0, standard deviation ¼ 2). A thousand simulations were run for each SAD.
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B1–B8), it is valid to group dissimilarity coefficients used
on the same data type because no dissimilarity
coefficient dominates over the others for any SAD.
Fig. 6 illustrates the grouped results for simulations
where the error is the smallest (standard deviation ¼
0.001). What is striking about these results is that when
there are many common species (Fig. 1i, j, y), the
amount of information extracted by canonical ordina-
tions is much less for presence–absence than for
abundance data. These conclusions can be extended to
situations where there are at least as many common as
there are rare species (Fig. 6, SADs g, h, l, and t) because
the overlap between confidence intervals is small in these
situations. This suggests that for communities with at
least as many common as rare species, the information
lost in canonical ordinations on occurrences should not
be interpreted in the same way as results obtained from
canonical ordinations on abundance data. Similar
results were obtained for data simulated with larger
errors (Appendix D: Figs. D1–D4). We will show in
Ecological illustration how these findings apply to real
ecological data.

ECOLOGICAL ILLUSTRATION:
CARABIDAE OF NORTHWESTERN ALBERTA

To show how the previous findings may be applied in
real ecological situations, we extend the analysis to a
data set about ground beetles (Carabidae) sampled at
192 sites in a never-harvested mature boreal mixedwood
forest (see Bergeron et al. 2011, Blanchet et al. 2013). In
this illustration, we aim at finding how trees influence
the ground beetle community in the boreal forest. This
question has already been approached with the same
data by Bergeron et al. (2011). The difference here is that
we used consensus RDA based on several dissimilarity
indices detailed later in this section, for abundance and
presence–absence data. Bergeron et al. (2011) performed
all their analyses using a single dissimilarity calculated
on abundance data.
The sites, which formed a near-regular grid in an area

of 70 km2, were located in the Ecosystem Management

Emulating Natural Disturbances (EMEND) experimen-
tal area in northwestern Alberta, Canada. Each site
contained three pitfall traps (Spence and Niemelä 1994)
located on the perimeter of a 15 m radius circle. From
the center of the circle, a trap points due north while the
other two are separated by 120 degrees. The community
data are composed of 37 ground beetle species sampled
throughout the summer of 2003. Beetle abundances were
divided by the number of days each trap was active to
remove the effect of trap disturbance and of non-
demonic intrusions (Hurlbert 1984). Presence–absence
data for each site were obtained by transforming all
abundances larger than 0 to 1.
As explanatory variables, the relative basal areas of

the 25 trees closest to the center of each site were used.
Eight tree species were present in the experimental area
and the relative basal area of each species was used as an
explanatory variable. Further analysis of this data set
may be found in Blanchet et al. (2013) and in Bergeron
et al. (2011, 2012). The Hellinger distance was used by
Blanchet et al. (2013) and Bergeron et al. (2012), and the
percentage difference distance was employed by Berger-
on et al. (2011). Note that Bergeron et al. (2011) used
nonmetric multidimensional scaling (Legendre and
Legendre 2012: Section 9.4) to study carabids, unlike
Blanchet et al. (2013) and Bergeron et al. (2012), who
used tb-RDAs.
In this ecological illustration, we compare canonical

ordinations calculated on abundance and presence–
absence data, considering results from all dissimilarity
coefficients used in our simulations, with the exception of
the double-zero symmetrical coefficients. We did not use
double-zero symmetrical coefficients because they con-
sider double zeroes (the absence of a species at two sites)
as informative, which may lead to wrongful interpreta-
tions. The carabid data set used in this illustration was
sampled to study how habitat variation influenced the
ground beetle community. Blanchet et al. (2013) have
shown that this community is mostly unaffected by
anthropogenic disturbances. In this context, Anderson et
al. (2011) explained that double zeroes are not necessarily

FIG. 6. Comparison between abundance and presence–absence data by SADs (as in Fig. 1), showing how much of the true
species structure (Eq. 7 without the error term) is modeled by the canonical ordination models. For each data type (abundance and
presence–absence), the significant canonical axes computed using all dissimilarity coefficients (excluding the double-zero
symmetrical coefficients) were grouped. RV coefficients were then used to correlate the true species structure with the grouped
significant canonical axes. Error bars represent 95% confidence intervals. A line was drawn along the R2 results of each dissimilarity
coefficient to facilitate comparison between the two data types. Results are based on species simulated with an error term sampled
from a normal distribution (mean¼ 0, standard deviation¼ 0.001). A thousand simulations were run for each SAD.
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ecologically meaningful, making the use of double-zero
symmetrical coefficients inappropriate for studying this
particular carabid community.
An RV comparison of the RDA models constructed

with different dissimilarity coefficients is presented using
MSTs in Fig. 7b for abundance data and Fig. 7e for
presence–absence data. Each MST was constructed from
a dissimilarity matrix of RV coefficients correlating all
pairs of RDA models obtained from the different
coefficients following the procedure presented in A new
way to perform canonical ordinations. As a reference, we
included in Table 3 the amount of variance explained
(R2) by the full db-RDA or tb-RDA models based upon
the different dissimilarity coefficients. We used the full
RDA models because the final consensus RDA results
were more informative than when only the significant
axes were used. This was true for abundance and
presence–absence data.
We found that for both abundance and presence–

absence data, the RDA model constructed using the v2

distance was the most different from the others (Fig.
7b, e). This is likely due to Notiophilus directus, a rare
species found with low abundance at three sites where
Pterostichus punctatissimus and Miscodera arctica (one
site), or only Pterostichus punctatissimus (two sites),
were encountered. Legendre and Legendre (2012:
Subsection 7.4.1) and Greenacre (2013) explained that
the v2 distance gives higher weights to species repre-
sented by only a few individuals at sites where only a few
other species are found. Legendre and De Cáceres (2013)
also found that the v2 distance lacked an important
property for analysis of community composition data.
Because we did not want to give undue importance to
rare species, we did not further consider the v2 distance
in the analyses of this carabid community.
Using the remaining coefficients, we constructed a

consensus RDA. We plotted as many species as we could
in the consensus RDA triplots without losing overall
interpretability. The species not presented on the
diagrams were consistently near the center of the
consensus triplots, which made it impossible to interpret
the ecological relationships of these species with respect
to the tree basal areas. The first two axes of the
consensus RDA represent 88.4% of the variance for
abundance data and 85.2% for presence–absence data,
and thus represent well the information in the different
RDA models. The third consensus axis explained less
than 7% of the variance, for abundance as well as
presence–absence data, making the information present-
ed by any subsequent axes too small to justify their use.
Note that the R2 in consensus RDA represents the
strength of the consensus, i.e., how much of the variation
is joint (or consensual), not the strength of the individual
model, as it is the case for traditional RDA.
Although the amount of information explained by the

first two axes of the consensus RDAs based on
abundance (Fig. 7c) and presence–absence data (Fig.
7f ) is similar, the underlying information is different.

For example, segregation of beetle species niches
between coniferous (Abies balsamea [Ab], Larix laricina
[Ll], Picea mariana [Pm], and Picea glauca [Pg]) and
deciduous forest (Betula papyrifera [Bp], Populus trem-
uloides [Pt], and Populus balsamifera [Pb]) on the
positive side of the x-axis is better achieved using the
consensus RDA based on abundance data. Because
these beetle and tree species are all characteristic of
upland mixedwood forest (Bergeron et al. 2011), the
comparison between abundance (Fig. 7c) and presence–
absence (Fig. 7f ) consensus triplots suggests that beetle
species occur all along the deciduous–coniferous forest
gradient, but it is their abundance that varies according
to habitat. Also, relationships between beetle and tree
species were not always consistent between the two
consensus ordinations. For example, Calathus advena
(Calaadve) is more closely related to P. glauca in the
abundance ordination (Fig. 7f ) than it is in the
presence–absence ordination (Fig. 7c).

The results about Agonum gratiosum (Agongrat),
Carabus chamissonis (Caracham), Platynus mannerheimii
(Platmann), and Pterostichus brevicornis (Pterbrev) are
impossible to interpret in the consensus RDA computed
using species abundance because they are too close to
the triplot center. However, in the presence–absence
consensus triplot, these species are interpretable. This
may relate to the fact that presence–absence data give
more weight to less abundant species than relative
abundance data (Anderson et al. 2011, 2006). In this
beetle assemblage, P. mannerheimii is of special ecolog-
ical interest even if it is not a common species, because it
has a narrow habitat requirement that is locally
restricted to old wet and productive forest (Bergeron
et al. 2011). This species, as well as A. gratiosum, is only
found at sites dominated by P. mariana and L. laricina,
even if their abundance at these sites is not as high as
that of the more common species. In that instance, it
makes sense that the consensus RDA on presence–
absence data makes these two species stand out. Such
results show that performing community analyses on
both abundance and presence–absence data concurrent-
ly makes it possible to extract interesting information
out of the data.

The SAD (Fig. 7a) of this beetle community depicts
many rare and many common species, which is typical
for carabid communities (Niemelä 1993). The species-
presence distribution that describes species occurrence
for these data highlights more sharply the two groups of
species in the carabid data (Fig. 7d). Our simulations
suggest that a community composed of many rare and
many abundant species (Fig. 1l, t) does not preserve well
community patterns after having been transformed into
presence–absence (Fig. 6, SADs l and t). This is reflected
in the ecological analysis, where abundance-based
ordination achieves a better segregation of the beetle
ecological niches. Although this may suggest that
presence–absence ordinations are not useful on their
own, differences between the abundance and the
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FIG. 7. Comparison of (a) SAD and (d) species-presence distributions (SPD), and consensus RDA results for (c) abundance
and (f ) presence–absence data, using Carabidae data sampled at the Ecosystem Management Emulating Natural Disturbances
(EMEND) experimental area in Alberta, Canada. The minimum spanning trees (MST) comparing coefficients (b) for abundance
data and (e) for presence–absence data show that the v2 distance produced RDAs very different from the other coefficients. For
both data types, the v2 distance was the only coefficient not used to compute the consensus RDA in panels c and f. The SAD and
SPD were constructed in the same way, with the exception that for SPD, it is the occurrence of species that is considered to
construct bins, not their abundance. The (a) SAD and (d) SPD were used as references to relate the results presented in this figure to
the simulation results presented in Figs. 2, 3, and 6. The consensus RDA triplots (scaling 2, correlation triplots [c, f ]) describe the
relationship between ground beetle species (arrows) and the relative basal area of trees by species (lines) using all coefficients except
the double-zero symmetrical coefficients and the v2 distance. The species codes for the Carabidae and trees are provided in
Appendix E: Tables E1 and E2. In panels b and e, MG stands for modified Gower and PD for percentage difference; the names of
all other coefficients are written out fully.
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presence–absence ordinations may have an ecological
foundation. It may be that differences between ordina-
tions based on abundance and presence–absence data
reflect the spatial aggregation of carabid species. It is
also possible that the consensus RDA calculated on
abundance data brings complementary information to
the consensus RDA results obtained from presence–
absence data. To know if the differences between the
two consensus RDAs are determined by ecological
processes, a detailed study of this carabid community
needs to be carried out contrasting presence–absence
and abundance data at multiple scales using other
variables characterizing the habitat of Carabidae, in
addition to the tree basal areas.
In this carabid example, consensus RDA gives strong

confidence in the ecological associations discovered
between ground beetles and trees. Here are a few
examples of discoveries made by Bergeron et al. (2012)
that hold true in consensus RDA (Fig. 7c). Agonum
retractum (Agonretr) and Platynus decentis (Platdece)
prefer forest containing P. balsamifera, P. tremuloides,
and to a lesser extent B. papyrifera, which are all upland
deciduous trees. Stereocerus haematopus (Sterhaem) and
Calathus advena (Calaadve) were commonly found in
coniferous forest dominated by P. glauca and A.
balsamea. Calathus ingratus (Calaingr) and Pterostichus
adstrictus (Pteadst) typically occurred in both deciduous
and coniferous upland forest where P. mariana and L.
laricina are usually absent. Pterostichus punctatissimus
(Pterpunc) and P. mariana present a strong ecological
association. Because consensus RDA is based on many
dissimilarity coefficients, the ecological associations
discovered between trees and ground beetle species of
the mixedwood boreal forest should be ecologically
more meaningful and reliable, and not biased by the
dissimilarity coefficient used in the calculation of the
consensus ordination.
It is not the goal of this study to present a detailed

ecological study of northwestern Alberta boreal cara-
bids. However, by comparing the consensus RDA
calculated on the carabid abundance data (Fig. 7c) with
the canonical ordination results from Bergeron et al.
(2012, Fig. 4) who also studied the relationship between
carabids and tree relative basal area with the same data
using RDA, differences can be found that are solely
attributed to the dissimilarity coefficient used. For
example, in our results, S. haematopus is more closely
related to P. glauca than it is in Bergeron et al. (2012).
These authors based the canonical ordination on the
Hellinger transformation of the beetle abundance data,
which emphasizes the composition nature of the data
rather than raw abundance (Anderson et al. 2011). The
consensus RDA of Fig. 7c, which uses a variety of
coefficients along the composition–abundance gradient,
indicates that the abundance pattern of S. haematopus is
more closely associated with P. glauca than previously
discovered by Bergeron et al. (2012). To prevent a biased
interpretation resulting from the use of a specific

dissimilarity coefficient, as was the case for S. haema-
topus, consensus RDA is a better option.

DISCUSSION

This study presents a new approach to performing
canonical ordination using a group of dissimilarity
coefficients and proposes a new framework to analyze
species communities using abundance and presence–
absence data together.

A surprising result of this study is that the SAD of a
community is not an important criterion for choosing a
coefficient (Figs. 2, 3, and 6; Appendix B: Figs. B1–B8
and Appendix D: Figs. D1–D4) in canonical ordina-
tions. This is what prompted us to develop consensus
RDA. These results may also bring insight into the
comparison of SADs, an important line of research
(McGill et al. 2007). Using the results in Fig. 6 (and also
Appendix D: Figs. D1–D4) obtained from abundance
data, we can compare SADs, because the communities
simulated with different SADs were correlated with the
same true underlying structure of the data (Eq. 7
without the error term). The true underlying structure
of the data serves as a reference to know how well a
SAD determines the raw community structure because it
is the basic information from which all species are
constructed in the simulation. From the discussion in
McGill et al. (2007) on SAD comparison, it can be
expected that SADs defining notably different abun-
dance patterns (e.g., Fig. 1b, l, m, q, u) would correlate
differently with the true underlying structure of the data.

TABLE 3. Variance explained (R2) by RDA models construct-
ed independently with each dissimilarity coefficient using
data from the ecological illustration, where the tree relative
basal area was used to model a ground beetle (Carabidae)
assemblage.

Dissimilarity coefficient R2

Abundance data

Species profiles 0.303
Chord 0.321
Hellinger 0.340
v2 0.094
Percentage difference 0.203
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Percentage difference
p

0.238ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Percentage difference4
p

0.249

Modified Gower log2 0.297
Modified Gower log5 0.304
Modified Gower log10 0.302

Presence–absence

Species profiles 0.225
Ochiai 0.244
Raup-Crick 0.190
v2 0.048
Jaccard 0.188
Sørensen 0.244

Notes: The abundance data are the abundances of carabids
divided by the number of days the traps were active at each
sites, while the presence–absence data are the occurrence of
species at each site. Results are given for all but the double-zero
symmetrical coefficients. The coefficients are described in
Table 1.
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However, in Fig. 6 they all correlate equally well with
the true underlying structure of the simulated commu-
nities. Moreover, the fairly broad range of the RV
coefficient 95% confidence intervals for any one of the 25
SADs indicates that the variations in the raw multivar-
iate community data can be surprisingly important, even
if species have the same abundance structure. Such
results may suggest that the SAD of a community may
present only a small fraction of the information that
characterizes a community matrix. However, further
research is still needed to confirm the findings we made
that the information lost when constructing SADs may
make it difficult to develop a valuable approach to
compare communities using SADs.
Our study shows that the choice of dissimilarity

coefficients in canonical ordinations should primarily be
based on the ecological knowledge available for the
community under study. The ecological questions and
the data type should guide the choice of one or a group
of coefficients. Legendre and Legendre (2012, Table 7.4)
offer a decision key designed to help ecologists select
coefficients for community composition data based on
data types (presence–absence or abundance) and type of
information to be extracted. If a canonical analysis is
performed using only one coefficient when more than
one can potentially be used, Legendre and Gallagher
(2001) would select the coefficient that explains the
largest amount of variance. However, the properties of
the selected coefficient may influence the interpretation.
If more than one coefficient is chosen, it is important

to compare them using an MST based on dissimilarities
of pairwise RV coefficients to determine if any of them
present results markedly different from the others. This
comparison can be seen as a selection procedure for
coefficients. It evaluates the similarities between differ-
ent RDA models where coefficients are the only element
differentiating the models and finds which model(s)
differ(s) notably from the others. This comparison will
help decide if any coefficient(s) should be discarded.
Comparing RDA models constructed using different
coefficients through an MST is a first step in the analysis
of a community through more than one coefficient.
When more than one coefficient presents similar

information, a consensus RDA allows one to extract
the most information out of the data because it focuses
on the common information brought out by different
coefficients. Using only one coefficient may put too
much emphasis on a particular aspect of the data
because each coefficient was designed to highlight
different particularities of a community matrix. This
may lead to a suboptimal ecological interpretation.
Consensus RDA prevents this problem from occurring
by extracting only the common information generated
by a group of coefficients. In that respect, consensus
RDA indirectly solves the technical problem of choosing
a coefficient by using all the ones that can be suitable to
analyze the data. Also, because it diminishes the
importance of the information highlighted by one or a

few coefficients, it produces a result less influenced by
the mathematical properties of a coefficient. For this
reason, consensus RDA gives a more accurate repre-
sentation of a community and will help researchers
better understand the factors structuring the species in
the community they study.
Conceptually, the new canonical ordination procedure

proposed in this study has similarities with model
averaging (Burnham and Anderson 2004, Anderson
2008). In model averaging, the best models are given
more weight than the poor ones. This can be related to
the selection procedure we propose, where coefficients are
considered independently, discarded, or used to construct
a consensus model. In consensus RDA, the different
RDA models are weighted by the sum of the canonical
eigenvalues of their components included in the con-
struction of the consensus. In that respect, models
constructed with different dissimilarity coefficients have
different weights, which will influence the consensus; this
is another similarity with model averaging. However,
model averaging is more flexible because the choice of
variables may vary between models, whereas only
dissimilarity coefficients vary in consensus RDA.
As Økland (1996) pointed out, unconstrained ordi-

nation is a useful method to generate hypotheses when
no explanation of the community variation has been
proposed, whereas the main purpose of constrained
ordination is hypothesis testing. With the development
of constrained ordination methods, more complex
analyses have been proposed and used by ecologists.
For example, one may test a hypothesis by RDA using a
set of explanatory variables or experimental factors,
then examine the PCA ordination of the non-canonical
variation to generate new hypotheses about the origin of
the residual variation not explained by the explanatory
variables.
Using a different approach, Borcard and Legendre

(1994) showed that spatially constrained ordination of
community composition data can help ecologists gener-
ate hypotheses about the processes that produced the
spatial variation of the community. In their 1994 paper,
they used a polynomial of the geographic coordinates as
a constraining factor in CCA. In subsequent papers,
they developed spatial eigenfunction analysis based on
Moran’s eigenvector maps (MEM, originally called
PCNM; Borcard and Legendre 2002, Borcard et al.
2004, Dray et al. 2006); this is a much more powerful
method for modeling fine-scaled spatial variation.
Because ecological data are often spatially correlated
(Legendre 1993), inclusion of spatial variables such as
MEMs in canonical ordination is important to under-
stand and test the significance of species–environment
relationships. Dray et al. (2012) reviewed different ways
of considering space in community ecology and includ-
ing it in canonical ordinations.
Another aspect that researchers need to consider

when performing canonical ordinations such as CCA,
RDA, or consensus RDA is that these methods compute
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a linear model of the explanatory variables for each
species in the community. In the case of CCA, the
species data are chi-square transformed before comput-
ing multiple regressions, and the regression involves the
total abundances of the sites as weights (Legendre and
Legendre 2012: Section 11.2). Qualitative explanatory
variables (factors) can be included in these models, as is
also the case in multiple regression. Because the species–
environment relationships in nature are not necessarily
linear, it has been proposed to include polynomials of
the explanatory variables in the explanatory matrix,
instead of the explanatory variables only, to make it
possible to model nonlinear relationships between the
species and the explanatory variables (e.g., Legendre
and Legendre 2012: Ecological Application 14.1b). Note
that dissimilarity coefficients and data transformations
do not account by themselves for the nonlinearity of the
species–environment relationship. They were designed
to give more (or less) weight to common (or rare) species
and to account for the double-zero problem. This
approach can be applied to all canonical ordination
methods, including consensus RDA.
A problem that we have not approached but warrants

further investigation is selection of explanatory variables
in consensus RDA. Methods such as forward selection
(e.g., Blanchet et al. 2008) assume that an RDA is
performed using only one dissimilarity coefficient.
Consensus RDA requires all explanatory variables to
be the same and that only the coefficient differs between
RDAs. If an automatic variable selection procedure is
used independently for each RDA, it is likely that
different sets of variables will be selected. In this
situation, we propose three variable selection approach-
es. (1) A consensus analysis should employ the union of
all explanatory variables selected for the various
coefficients. That is, if for a coefficient, explanatory
variables A and B are selected, and with another
coefficient it is explanatory variables A and C that are
chosen, the union of the explanatory variables for the
consensus RDA would be variables A, B, and C. Using
this approach, one can at least eliminate the explanatory
variables that are totally useless. This idea of using the
union of the selected variables is inspired by the selection
method of Peres-Neto and Legendre (2010) for Moran’s
eigenvector maps eigenfunctions. (2) The variable
selection is carried out on the consensus RDA result
without any variable selection carried out on individual
RDAs. (3) Use the union of the selected variables on
individual RDAs, as explained in (1), and then carry out
a further selection for the consensus RDA. Further
studies will need to be carried out to evaluate which of
these three approaches yields the models that best define
a species community.
Species-abundance data contain more information

than presence–absence data and often lead to a better
understanding of community variations through RDA,
although community ecologists generally consider that
the single most important information about a species is

its presence. However, for certain organisms, abundance
data are not reliable. In palynology, for example,
presence–absence data are often favored because abun-
dance data are subject to large bias (Davis 2000).
Presence–absence data are also more suitable when
studying ant communities using pitfall traps because the
ants’ social behavior and propensity at creating foraging
trails has an enormous influence on abundance data
(Higgins and Lindgren 2012). Similarly, in studies of fish
biodiversity, variation in size of fish species living in the
same area demands that different instruments be used to
catch them, and thus the abundance data are not
comparable. The only way to consider all species of fish
together in a consistent analysis is by using presence–
absence data (biomass data can also be used for fish of
all sizes caught by electrofishing or recorded during
underwater visual census). This is likely to be true for
any communities where variations in size between
species require that different trapping methods be used
to catch enough species to have a representative fraction
of the studied species community.

When working with presence–absence data, we
suggest that one should first draw a species presence
distribution, as we did in Fig. 7d. The ratio between
common and rare species should serve as a general
guideline when drawing ecological conclusions. Al-
though it is possible that canonical ordinations per-
formed on presence–absence data show biased results, it
is more likely that such ordinations can be complemen-
tary to those computed for abundance data. Certain
environmental factors may be necessary for a species to
occur in an area (e.g., certain plant species are found
only in the presence of certain geological formations)
while other factors may make species abundances vary
(e.g., precipitation). Variation in abundance is efficient
in describing how a species is related to a gradient
(environmental, physical, or other). However, species
abundances may conceal the strict relationship a species
has with its habitat. This strict relationship is what
makes a species occur or not occur at a site. In that
respect, considering both abundance and presence–
absence data may be ecologically valuable to better
understand the factors structuring a community. The
idea to use both abundance and presence–absence data
to better understand an ecological system has been
proposed before (see e.g., Van Buskirk 2005). As
explained in the previous paragraphs, abundance data
may be unreliable when sampling certain groups of
organisms. However, for all communities where species
abundances can be sampled without diminishing the
value of the data, presence–absence data can be easily
obtained by transforming all abundances larger than 0
to 1s, allowing ecologists to get a more complete
understanding of the data they collected.

In this study we presented a new approach to perform
canonical ordination in community ecology research.
This approach has the potential to be used in other fields
of research where the structure of the data is similar to
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that of community ecology. Population and landscape
genetics are examples of research areas where consensus
RDA could potentially be useful.
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APPENDIX A 
 

Ecological Archives EXXX-XXX-A1 
 

EXPLANATION OF THE CONSTRUCTION OF THE EXPLANATORY VARIABLES AND HOW THEY WERE 
COMBINED FOR THE SIMULATION. ONE FIGURE (FIG. A1), ONE TABLE (TABLE A1) AND R CODE. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. A1. Eight variables used in the construction of the simulated species 

 

These variables were constructed using the RsimSSDCOMPAS package through the R statistical 
language using the following R code: 
 
variable1<-SimSSDR(7,7,1,10,range11=5,range12=5,range21=1,range22=1, 
                   nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=TRUE, 
                   SAR=FALSE)$E 
 
variable2<-SimSSDR(7,7,1,5,range11=1,range12=1,range21=1,range22=1, 
                   nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=TRUE, 
                   SAR=FALSE)$E 
 
variable3<-SimSSDR(7,7,0,range11=5,range12=5)$E 
 
variable4<-SimSSDR(7,7,2,10,range11=5,range12=5,range21=1,range22=1, 
                   nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=TRUE, 
                   SAR=FALSE)$E 



variable5<-SimSSDR(7,7,4,5,range11=2,range12=2,range21=1,range22=1, 
                   nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=FALSE, 
                   SAR=FALSE)$E 
 
variable6<-SimSSDR(7,7,3,10,range11=10,range12=10,range21=1,range22=1, 
                   nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=FALSE, 
                   SAR=FALSE,centroide=list(c(0,0)))$E 
 
variable7<-SimSSDR(7,7,3,10,range11=10,range12=10,range21=1,range22=1, 
                   nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=FALSE, 
                   SAR=FALSE,centroide=list(c(1,1)))$E 
 
variable8<-SimSSDR(7,7,3,10,range11=10,range12=10,range21=1,range22=1, 
                   nsp1=1,nsp2=1,varnor=list(rep(0,3)),SAE=FALSE, 
                   SAR=FALSE,centroide=list(c(10,0)))$E 
 
 
Table A1: Combinations of explanatory variables and weight (regression coefficient) used to 

construct each species. The number associated to each species is the order given in the 
site-by-species table 

 

Species Explanatory variables 
combined 

Weight given to 
(regression coefficient of) 

each species 
1 1 and 4 2 
2 1 and 5 0.1 
3 1 and 6 -2 
4 1 and 7 -0.1 
5 1 and 8 2 
6 2 and 3 0.5 
7 2 and 5 -2 
8 2 and 6 -0.5 
9 2 and 7 2 
10 2 and 8 1 
11 3 and 5 -2 
12 3 and 6 -1 
13 3 and 7 2 
14 3 and 8 0.5 
15 4 and 5 -2 
16 4 and 6 -0.5 
17 4 and 7 2 
18 4 and 8 0.1 
19 5 and 8 -2 
20 6 and 7 -0.1 

 



APPENDIX B 
 

Ecological Archives EXXX-XXX-A2 
 

COMPARISON OF ASSOCIATION COEFFICIENTS USING A COEFFICIENT OF DETERMINATION (R2). EIGHT 
FIGURES (FIGS. B1, B2, B3, B4, B5, B6, B7, AND B8) 



 
Fig. B1. Comparison of explained variance (R2) between 11 association coefficients calculated on 
abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes were 
conserved to calculate R2. Points are R2 means of all simulations and error bars represent 95% 
confidence intervals. Association coefficients are presented in different panels for visual clarity. 
Letters on the x-axis refer to the species-abundance distribution (SAD) presented in Fig. 1. A line 
was drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 0.25). A thousand simulations were run for each 
SAD.  



 

 
Fig. B2. Comparison of explained variance (R2) between 11 association coefficients calculated on 
abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes were 
conserved to calculate R2. Points are R2 means of all simulations and error bars represent 95% 
confidence intervals. Association coefficients are presented in different panels for visual clarity. 
Letters on the x-axis refer to the species-abundance distribution (SAD) presented in Fig. 1. A line 
was drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 0.5). A thousand simulations were run for each SAD.  



 

 
Fig. B3. Comparison of explained variance (R2) between 11 association coefficients calculated on 
abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes were 
conserved to calculate R2. Points are R2 means of all simulations and error bars represent 95% 
confidence intervals. Association coefficients are presented in different panels for visual clarity. 
Letters on the x-axis refer to the species-abundance distribution (SAD) presented in Fig. 1. A line 
was drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 1). A thousand simulations were run for each SAD. 



 
Fig. B4. Comparison of explained variance (R2) between 11 association coefficients calculated on 
abundance data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes were 
conserved to calculate R2. Points are R2 means of all simulations and error bars represent 95% 
confidence intervals. Association coefficients are presented in different panels for visual clarity. 
Letters on the x-axis refer to the species-abundance distribution (SAD) presented in Fig. 1. A line 
was drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 2). A thousand simulations were run for each SAD. 



 
 
Fig. B5. Comparison of explained variance (R2) between 6 association coefficients calculated on 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters on the x-axis refer to the species-abundance distribution (SAD) presented in 
Fig. 1. A line was drawn between each SAD of each association coefficient to ease comparisons 
between coefficients. Results are based on species simulated with an error term sampled from a 
Normal distribution (mean = 0, standard deviation = 0.25). A thousand simulations were run for 
each SAD. 
 



 
 
Fig. B6. Comparison of explained variance (R2) between 6 association coefficients calculated on 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters on the x-axis refer to the species-abundance distribution (SAD) presented in 
Fig. 1. A line was drawn between each SAD of each association coefficient to ease comparisons 
between coefficients. Results are based on species simulated with an error term sampled from a 
Normal distribution (mean = 0, standard deviation = 0.5). A thousand simulations were run for 
each SAD. 



 
 
Fig. B7. Comparison of explained variance (R2) between 6 association coefficients calculated on 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters on the x-axis refer to the species-abundance distribution (SAD) presented in 
Fig. 1. A line was drawn between each SAD of each association coefficient to ease comparisons 
between coefficients. Results are based on species simulated with an error term sampled from a 
Normal distribution (mean = 0, standard deviation = 1). A thousand simulations were run for 
each SAD. 



 
 
Fig. B8. Comparison of explained variance (R2) between 6 association coefficients calculated on 
presence-absence data. Only the significant (P ≤ 0.05 after 999 permutations) canonical axes 
were conserved to calculate R2. Points are R2 means of all simulations and error bars represent 
95% confidence intervals. Association coefficients are presented in different panels for visual 
clarity. Letters on the x-axis refer to the species-abundance distribution (SAD) presented in 
Fig. 1. A line was drawn between each SAD of each association coefficient to ease comparisons 
between coefficients. Results are based on species simulated with an error term sampled from a 
Normal distribution (mean = 0, standard deviation = 2). A thousand simulations were run for 
each SAD. 
 



APPENDIX C 
 

Ecological Archives EXXX-XXX-A3 
 

COMPARISON OF CONSENSUS RDA CONSTRUCTED USING ONLY SIGNIFICANT CANONICAL AXES 
WITH CONSENSUS RDA CONSTRUCTED WITH ALL CANONICAL AXES. NINE FIGURES (FIGS. C1, C2, 

C3, C4, C5, C6, C7, C8, AND C9) 



 

 
FIGURE C1. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.001). A thousand simulations were run 
for each SAD. 



 
 
FIGURE C2. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.25). A thousand simulations were run 
for each SAD. 



 
 
FIGURE C3. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.5). A thousand simulations were run for 
each SAD. 



 
 
FIGURE C4. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from abundance data 
were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 1). A thousand simulations were run for 
each SAD. 



 
 
FIGURE C5. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.001). A thousand simulations were run 
for each SAD. 



 
 
FIGURE C6. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.25). A thousand simulations were run 
for each SAD. 



 
 
FIGURE C7. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 0.5). A thousand simulations were run for 
each SAD. 



 
 
FIGURE C8. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 1). A thousand simulations were run for 
each SAD. 



 
 
FIGURE C9. Comparison of consensus RDAs constructed using all canonical axes with consensus 

RDAs using only significant canonical axes. The Z* matrices calculated from presence-absence 
data were used in the comparison. Letters along the abscissa refer to the species abundance 
distribution (SAD) as presented in Figure 3.1. The ordinate presents the difference between RV 
coefficients calculated using all canonical axes and RV coefficients calculated using only the 
significant axes. The results are presented using boxplots. The upper and lower sections of the 
box define the first (25%) and third (75%) quartiles of the data, and the line in the middle of the 
box the median (50%). The lower whiskers describe the 1.5 interquartile range of the first 
quartile, the upper whisker stands for the 1.5 interquartile range of the third quartile, and the 
points indicate outliers. Results are based on species simulated with an error term sampled from 
a Normal distribution (mean = 0, standard deviation = 2). A thousand simulations were run for 
each SAD. 
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COMPARISON OF CANONICAL ORDINATION MODELS FOR ABUNDANCE AND PRESENCE-ABSENCE 
DATA USING SIMULATIONS. FOUR FIGURES (FIGS. D1, D2, D3, AND D4) 

 

 

 
Fig. D1. RV coefficients (points) between canonical ordination model and the true species 
structure (equation 6 without the error term). For each data type (abundance and presence-
absence), the significant canonical axes for all association coefficients (with the exception of the 
symmetric coefficient) were grouped. Error bars represent 95% confidence intervals. Letters on 
the x-axis refer to the species-abundance distribution (SAD) presented in Fig. 1. A line was 
drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 0.25). A thousand simulations were run for each 
SAD. 

 



 
Fig. D2. RV coefficients (points) between canonical ordination model and the true species 
structure (equation 6 without the error term). For each data type (abundance and presence-
absence), the significant canonical axes for all association coefficients (with the exception of the 
symmetric coefficient) were grouped. Error bars represent 95% confidence intervals. Letters on 
the x-axis refer to the species-abundance distribution (SAD) presented in Fig. 1. A line was 
drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 0.5). A thousand simulations were run for each SAD. 



 
Fig. D3. RV coefficients (points) between canonical ordination model and the true species 
structure (equation 6 without the error term). For each data type (abundance and presence-
absence), the significant canonical axes for all association coefficients (with the exception of the 
symmetric coefficient) were grouped. Error bars represent 95% confidence intervals. Letters on 
the x-axis refer to the species-abundance distribution (SAD) presented in Fig. 1. A line was 
drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 1). A thousand simulations were run for each SAD. 



 
Fig. D4. RV coefficients (points) between canonical ordination model and the true species 
structure (equation 6 without the error term). For each data type (abundance and presence-
absence), the significant canonical axes for all association coefficients (with the exception of the 
symmetric coefficient) were grouped. Error bars represent 95% confidence intervals. Letters on 
the x-axis refer to the species-abundance distribution (SAD) presented in Fig. 1. A line was 
drawn between each SAD of each association coefficient to ease comparisons between 
coefficients. Results are based on species simulated with an error term sampled from a Normal 
distribution (mean = 0, standard deviation = 2). A thousand simulations were run for each SAD. 

 
 



APPENDIX E 
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SPECIES CODE AND NAMES FOR CARABIDAE AND TREES SPECIES TWO TABLES (TABLES E1 AND E2) 
 
Table D1: Species code and Latin name for Carabidae. 
 

Code Latin name 
Agongrat Agonum gratiosum 
Agonplac Agonum placidum 
Agonretr Agonum retractum 
Agonsord Agonum sordens 
Agonsupe Agonum superioris 
Amarlitt Amara littoralis 
Amarluni Amara lunicollis 
Badiobtu Badister obtusus 
Bembgrap Bembidion grapii 
Bembrupi Bembidion rupicola 
Calaadve Calathus advena 
Calaingr Calathus ingratus 
Calofrig Calosoma frigidum 
Caracham Carabus chamissonis 
Dichcogn Dicheirotrichus cognatus 
Elapamer Elaphrus americanus 
Elaplapp Elaphrus lapponicus 
Harpfulv Harpalus fulvilabris 
Loripili Loricera pilicornis 
Miscarct Miscodera arctica 
Nebrgyll Nebria gyllenhali 
Notibore Notiophilus borealis 
Notidire Notiophilus directus 
Patrfove Patrobus foveocollis 
Patrsept Patrobus septentrionis 
Platdece Platynus decentis 
Platmann Platynus mannerheimii 
Pteradst Pterostichus adstrictus 
Pterbrev Pterostichus brevicornis 
Pterpens Pterostichus pensylvanicus 
Pterpunc Pterostichus punctatissimus 
Pterripa Pterostichus riparius 
Seriquad Sericoda quadripunctata 
Sterhaem Stereocerus haematopus 
Synuimpu Synuchus impunctatus 
Trecapic Trechus apicalis 
Trecchal Trechus chalybeus 



Table D2: Species code, common and Latin name of trees species. 
 

Code Common name Latin name 
Pt Aspen Populus tremuloides 
Bp White birch Betula papyrifera 
Ab Balsam fir Abie balsamea 
Ll Tamarack Larix laricina 
Pb Balsam poplar Populus balsamifera 
Pc Lodgepole pine Pinus contorta 
Pm Black spruce Picea mariana 
Pg White spruce Picea glauca 

 


