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Surveying ecological communities often means the tedious work of collecting detailed information on each species within 
each sampling unit (e.g. trap, transect, quadrat). In this paper, we first argue that presence–absence and abundance data are 
the two extremes of a spectrum of data formats. By counting individuals of each species within a sampling unit until either 
a predefined (user-defined) number of individuals is reached or all individuals of the species are counted, all intermediate 
cases can be generated. By independently correlating each intermediate case with the complete abundance data, we show 
that it is not necessary to count all individuals to recover the patterns of variation characterizing a community data table. 
When the same procedure is applied in combination with different distance coefficients such as the Hellinger, chord, c2, 
percentage difference or modified Gower, or the distance between species profiles, an even lower number of individuals 
per species need to be counted within a sampling unit for the patterns of variation defining a community to be recovered. 
By applying the same counting procedure to data collected during a pilot study, we show that the maximum number of 
individuals that need to be counted within a sampling unit for a species can be estimated from a pilot study containing as 
little as 3% of randomly selected sampling units throughout the complete survey area. An example of how to apply this 
new counting method is presented, using data from a boreal forest Carabidae community sampled in northwestern Alberta, 
Canada.

Ecological data collected in the field or obtained from  
laboratory experiments are the window through which we 
look to describe the patterns found in nature and understand 
the processes that generate these patterns. Data collection is 
undoubtedly the most important step of any ecological study 
because if data acquisition is incorrectly carried out, data 
analysis cannot yield correct results. Deciding how ecologi-
cal data should be obtained is of crucial importance. There-
fore, the sampling must be properly designed to address the 
related ecological questions or hypotheses to be tested.

Community ecologists have proposed many different 
approaches to sample organisms (Anderson 1965, Martin 
1977). The resulting data are usually in the form of either 
presence–absence or abundance. There are pros and cons for 
the collection and analysis of either data type. It is usually 
more time- and cost-effective to obtain presence–absence 
data than abundance. However, accuracy (the detailed infor-
mation the data convey) is lost because the information is 
only about species occurrence. In contrast, abundance data 
may be tedious to obtain, but the data are more informative, 
and more knowledge about the ecological processes underly-
ing the community can be gained. As an additional concern, 
the cost of counting all individuals (abundances) in a com-
munity may be overwhelming, e.g. during insect outbreaks. 

It may also be unethical to count all individuals, for exam-
ple when species determination requires killing individuals 
belonging to endangered species.

A number of sampling techniques have been developed 
in the last century to efficiently collect the most informa-
tive data possible. In phytosociology, Braun-Blanquet 
(1928) proposed a classification system specially designed to  
study groups of species that are morphologically similar or 
taxonomically related. It classifies a plant species coverage 
percentage on a five-level scale (1:  5% coverage, 2: 5%–
25%, 3: 25%–50%; 4: 50%–75%, 5: 75%–100%). The scale 
of this classification has been refined (McLean and Ivimey-
Cook 1951) and modified to adapt it to succession study 
(Londo 1976). Ideas of new sampling procedures were also 
proposed for plankton research where samples of hundreds 
of thousands and even millions of individuals for a single 
species are common. Frontier and Ibanez (1974) proposed to 
use a geometric progression to handle these particular data. 
One issue with these classifications is that a large amount of 
data needs to be collected in order to make the classification. 
In this paper, we propose a sampling technique that does not 
divide abundance into classes; instead, we propose a way to 
find a threshold beyond which it becomes unnecessary to 
count individuals. Compared to the classification methods, 
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the main advantage of our approach is that it is more cost-
effective because large abundances of a species in a sampling 
unit do not need to be fully counted, thus reducing the time 
devoted to sampling.

Often, individuals of a species are clustered in space or 
through time. Aggregation of species in space may be the 
result of animal behaviour, dispersal limitation, or environ-
mental patchiness to which organisms respond (Legendre 
and Fortin 1989). Through time, species succession and 
reproductive cycles may also generate clustered patterns  
(Legendre and Legendre 2012, chapter 12). Clustered pat-
terns of species in space or time usually produce lower a- 
diversity, compared to species that are randomly or regularly 
distributed (He and Legendre 2002). If species are aggre-
gated, they are generally found in large abundances in some 
sampling units (SUs) if the size of a cluster is smaller than 
or equal to that of a SU. When highly aggregated species 
are sampled, many individuals are found only in one or a 
few SUs. In that instance, the information lost by record-
ing only presence–absence data can be very important. The 
ecological processes that control the abundance of a species 
may be quite different from the ones controlling its occur-
rence. As such, if only the presence–absence level is consid-
ered for a highly aggregated species, the information lost 
may be important to understand several ecological aspects 
of that species. This suggests that both presence–absence and 
abundance data are important to fully understand the factors 
influencing the distributions of species. A more complete 
debate of the importance of accounting for both presence– 
absence and abundance data in community studies is pre-
sented in Blanchet et al. (2014). In this paper, we propose a 
more cost-effective approach for collecting abundance data.

We first examined whether counting all individuals of 
a species in each SU is necessary to detect the distribution 
patterns characterizing a community. To that end, we stud-
ied how abundance distributions and aggregation influence 
the number of individuals of a species found in a SU. We 
then devised a method to determine a counting threshold, 
which is the maximum number of individuals per species 
that needs to be counted within a SU to extract sufficient 
information to correctly estimate the multivariate variation 
structure of the community as if all individuals had been 
counted. Regardless of the species considered, when the 
counting threshold is reached within a SU, the variation pat-
tern of a community should be similar to that obtained after 
complete counts.

We constructed an example explaining the counting  
procedure we are proposing. Table 1 (top) shows the  
complete abundance of five fictitious species in two SUs. 
All individuals were counted to obtain these data. Assum-
ing that the patterns defining this fictitious community are 
apparent if an arbitrary counting threshold of 8 individuals 
was used, the resulting community data would be the one 
presented in Table 1 (bottom). Whenever there are 8 or more 
individuals for a species in a SU, a count of 8 is recorded. For 
abundances smaller than 8, the total counted abundance is 
recorded. The counting threshold is thus applied for a species 
counted in a SU, which means for each cell of a community 
matrix.

The counting method proposed in this paper aims at 
finding a balance between presence–absence and abundance 

Table 1. Fictitious example illustrating the counting procedure  
proposed in this paper.

Complete abundance

Species A Species B Species C Species D Species E

Sampling 
unit 1

0 2 10 100 900

Sampling 
unit 2

500 100 9 0 3

After reaching a counting threshold of  
8 individuals

Species A Species B Species C Species D Species E

Sampling 
unit 1

0 2 8 8 8

Sampling 
unit 2

8 8 8 0 3

data that maximizes cost-efficiency when surveying eco-
logical communities. The goal of this paper is to present a 
new, efficient way of obtaining data to study species com-
munities. Because abundance and aggregation patterns can 
vary in many ways, our aim is not to find a universal count-
ing threshold that applies to all communities. Rather, we  
propose the counting procedure presented in the previous 
paragraph, which can be used to determine the optimal 
counting threshold for any particular community of inter-
est. The proposed procedure is validated using simulations. 
To illustrate how this procedure can be applied to real eco-
logical data, we implemented it for a boreal forest Carabidae  
assemblage sampled in northwestern Alberta, Canada.

From presence–absence to abundance

Presence–absence and full abundance data are two extremes 
of a spectrum of data formats characterizing composition 
and distribution of communities. Intermediate cases can be 
found by counting individuals of each species within a SU 
until either a predefined (user-defined) counting threshold 
is reached or all individuals of a species within the SU are 
accounted for (see the example in Table 1). By sequentially 
increasing the counting threshold from one to the largest 
number of individuals for a species found within a SU, all 
intermediate cases can be studied from presence–absence to 
full abundance data. We will refer to the case where all indi-
viduals are counted as the ‘complete-abundance’ count while 
all cases with counts of fewer individuals will be referred to 
as ‘partial-abundance’ counts.

In this paper we consider that a species is abundant if 
it is found with high abundance in at least one SU. As a 
rule of thumb, we consider the abundance of a species to be 
high if there are more individuals than the number of SUs. 
Conversely, a scarcely distributed species (or scarce species) 
can potentially be found in many SUs but its abundance is 
low in all SUs. Given these definitions, modest variations 
in abundance do not generally influence the interpretation 
of the patterns of variation of the abundant species but can 
importantly impact on the interpretation of the scarce spe-
cies. Based on this premise, use of partial-abundance instead 
of complete-abundance counts can effectively produce  
information about scarce species while the associated loss 
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of information for common species may be largely incon-
sequential to understanding community variation patterns. 
Note that this does not mean that common species are not 
important in community ecology; it rather reflects the fact 
that variations in abundance affect common species much less 
than scarce ones. The challenge, therefore, is to find the low-
est counting threshold that efficiently and accurately allows 
the description of the variation patterns of a community.

Simulating ecological communities

Species-abundance distributions (SAD) and patterns of  
spatial or temporal aggregation of species vary among com-
munities. To evaluate how these two components influence 
the efficiency of partial-abundance data for characterizing 
patterns of variation in a community, we simulated commu-
nity matrices comprised of 100 SUs and 50 species. Sample 
size and species richness should not influence the counting 
threshold required for community patterns to be accurately 
characterized because these two components do not affect 
the spatial or temporal aggregation patterns of species or  
the positively skewed abundance distribution typical of  
ecological communities.

In our simulations, the species abundances in the commu-
nity ranged from 1 to 500 individuals (Fig. 1a). A probabil-
ity was given to each abundance value following a lognormal 
distribution (Preston 1948) with a standard deviation of 5; 
this was the smallest value for which a community could be 
generated where at least one individual of any species was 
found in all 100 SUs of the community matrix. Because c2-
based ordination methods commonly used in community 
ecology (e.g. principal component analysis after c2 transfor-
mation of the data and correspondence analysis) have trouble 
handling situations where SUs are found with no individuals 
for any species, we did not simulate these cases.

For each species of a simulated community, the spatial 
position of each individual was specified using a Matérn clus-
ter point process (Illian et al. 2008), which depends on 1) a 
homogeneous Poisson process that characterizes the number 
and position of cluster centres (black points in Fig. 1d), 2) 
the average number of individuals within each cluster, and 3) 
the radii of clusters in space. In our simulation, the intensity 
of the Poisson process was defined by random selection of 
an integer value between 1 and the species abundance previ-
ously obtained from the lognormal distribution (Fig. 1b–c). 
This allowed the species to present spatial patterns ranging 
from aggregated into one patch (when the intensity of the 
Poisson process was 1) to randomly dispersed where each 
individual forms a separate spatial cluster (when the inten-
sity of the Poisson process is the number of individuals in a 
species).

The average number of individuals within each cluster 
was obtained by dividing the abundance chosen from the 
lognormal distribution by the intensity of the Poisson pro-
cess, which on average was the number of clusters generated. 
Individuals within each spatial cluster were uniformly dis-
tributed (Fig. 1b–d).

Cluster radii were generated as described in the caption of 
Fig. 1. The radii of the spatial clusters were used as surrogates 
for aggregation levels because each radius define the zone of 
influence of a cluster. Because clusters can overlap, patches 

of individuals may have different shapes and sizes (Fig. 1d).  
A variety of spatial patterns can thus be generated, even if  
the radii of all clusters were the same, when individuals of 
a species are grouped into more than one cluster. Unlike 
the number of clusters and the species abundance, which 
are related to each other in the Matérn cluster process, the  
cluster radii are chosen independently.

Because the Matérn cluster process is a random process, 
the total number of individuals of a simulated species varied 
around the abundance value defined in the first step of the 
simulation procedure. We inspected the abundance patterns 
of all simulated communities to ensure that the random 
variations resulting from the Matérn cluster process did not 
make the resulting abundance distributions diverge mark-
edly from the reference lognormal SAD defined in the first 
step of the simulation. The random variations introduced 
by the Matérn cluster process only had minor influence on 
the abundance distributions, hence they did not affect the  
following steps of the simulations.

We generated a first set of communities where the range 
of aggregation was broad and another in which individuals 
were highly aggregated (Table 2). For all species in each set 
of communities, cluster radii were randomly sampled from 
a uniform distribution within the range of cluster radii.  
For each aggregation level, we simulated 1000 communities. 
The ‘spatstat’ package for statistical analysis of spatial point 
patterns (Baddeley and Turner 2005) in the R statistical  
language ( www.r-project.org ) was used to simulate 
these communities.

Simulations based on the same parameters were also  
performed using the broken-stick model (MacArthur 1957) 
as the reference SAD (Table 2). In the broken-stick model, 
the probability of finding a species with an abundance rang-
ing from 1 to 500 is defined by randomly cutting a concep-
tual stick of unit length at 499 random points. The broken 
stick pieces are then ordered from the longest to the shortest 
to define the probability of sampling a species with an abun-
dance of 1 through 500. Because the lengths of the pieces in 
the broken-stick model can vary among iterations, we used 
the expected stick piece length values to choose the abun-
dance of a species (Barton and Davis 1956). The lognormal 
distribution and the broken-stick model are commonly used 
to model SADs, making them relevant choices to define our 
simulated community abundances.

Finally, we generated a third set of communities where 
the total abundance of all species was 500, with either a 
broad range of aggregation of the individuals or highly aggre-
gated individuals, following the procedure described above 
(Table 2). As previously explained, because the Matérn clus-
ter process is a random process, the exact abundance of each 
species was not necessarily 500; it often diverged slightly 
from that value. We also produced communities where 
the locations of individuals in the unit-size sampling area 
was defined by drawing values at random from a uniform 
distribution (minimum  0, maximum  1) for the x- and 
y-coordinates (Table 2). This last set of communities differed 
from the other two in that the species were not clustered 
but randomly distributed in the sampling area. These three 
sets of communities were used to evaluate the importance of  
the abundance distribution and aggregation patterns in 
determining a counting threshold.
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Figure 1. Diagram illustrating the steps followed to generate the abundances for one species of a simulated data table. All simulated species 
were constructed following this general scheme. (a) First, a species abundance distribution was used as reference, which defines the proba-
bilities of a species to have particular numbers of individuals. Three species abundance distributions were used in all simulations (Table 2). 
(b) Second, a value was drawn from this species abundance distribution, defining the number of expected individuals n for the simulated 
species. (c) Third, we defined the number of spatial clusters p in which the species is distributed by randomly sampling a value between  
1 and n (uniform distribution). (d) Fourth, in a square map of unit size, we distributed the individuals of the species (open points) using a 
Mátern cluster point process; the locations of the cluster centres are shown as black points. Cluster radii r were generated to describe species 
showing a broad range or a high level of aggregation (Table 2). For example, to choose a cluster radius for a highly aggregated species, we 
sampled a uniform distribution with minimum  0.01 and maximum  0.02 (Table 2). A species only had one radius size. (e) Lastly, we 
divided the sampling area into 100 quadrats (grey lines in d), counted the number of individuals of the species per quadrat and recorded 
the values in a (sampling units  species) matrix.

Table 2. Components used in the simulation of ecological communities.

Species abundance  
distribution

Range of cluster radii for the Matérn 
cluster process

Log-normal distribution (sd  5)
(Preston 1948)

0.01–0.5 (broad range of aggregation)
0.01–0.02 (highly aggregated)

Broken stick model 0.01–0.5 (broad range of aggregation)
(Barton and Davis 1956,  

MacArthur 1957)
0.01–0.02 (highly aggregated)

500 individuals for all species 0.01–0.5 (broad range of aggregation)
0.01–0.02 (highly aggregated)
Individuals were uniformly distributed 

across the sampling area

The sampling area was divided into 100 non-overlapping 
SUs of equal size using a regular grid (Fig. 1d) and the num-
ber of individuals of each species in each SU was counted for 
all simulated communities (Fig. 1e). This count provided the 
complete-abundance community matrix. Although in these 
simulations the SUs completely covered the study area, this 
condition is not necessary for the counting approach we are 

proposing. In the ‘Ecological illustration’ section, we applied 
our procedure to an experimental research area where the 
SUs only covered a small fraction of the study area.

Correlation of all partial-abundance with the 
complete-abundance data

To evaluate how much information is included in the 
increasingly precise partial-abundance data, we used the 
RV coefficient (Escoufier 1973, Robert and Escoufier 1976)  
to correlate the partial-abundance community matrices  
with the complete-abundance community matrix. The RV 
coefficient is defined as:

RV
tr

tr tr

t t

t t
X Y

XX YY

XX YY
,( ) ( )

( )( ) ( )( )


2 2
 (1)

where X and Y are two column-centred matrices with the 
same number of rows, t is the transpose of a matrix, and tr() 
the trace of a matrix. RV measures the co-inertia between 
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Figure 2. Simulation results of the multivariate correlation (using RV coefficient) between increasingly precise partial-abundance commu-
nity data and the complete-abundance community data using raw data. The counting threshold (abscissa) is the maximum number of 
individuals counted for a species within a sampling unit. The ordinate represents the RV coefficients. Each panel presents the results of a set 
of simulated communities. In each panel, the leftmost result presents the RV coefficient associated to presence–absence data whereas  
the rightmost result shows the RV coefficient associated to the complete-abundance data. Light grey areas represent the 99% empirical 
confidence intervals of the simulation results (constructed using the 5th and 995th largest RV coefficients associated to each increasingly 
precise partial-abundance data, over 1000 simulations), the dark grey areas the 95% empirical confidence intervals (constructed using the 
25th and 975th largest RV coefficients associated to each increasingly precise partial-abundance data), and the black lines are the medians 
per count threshold value.

two data matrices (i.e. the sum of the squared covariances 
between the two sets of variables) normalized by the total 
inertia in each matrix, which produces a coefficient rang-
ing from 0 (no correlation) to 1 (perfect correlation). RV is 
the multivariate extension of the squared Pearson correlation 
coefficient. Note that although the relationships of a spe-
cies with other species and the environment may be highly 
non-linear, it does not prevent the RV coefficient, a statistics 
derived from linear algebra, to efficiently capture the rela-
tionships among partial and complete-abundances because 
this relationship is linear.

In this paper, we exclusively use the lower bound of the 
99% confidence interval to elaborate our conclusions. By 
using only these extreme scenarios of our simulation results, 
we minimize the impact of losing important information by 
counting too few individuals.

Figure 2 presents the correlation results between the 
increasingly accurate partial-abundance data (abscissa) and 
the complete-abundance data for the seven different sets of 
simulated communities. In this figure, the first four pan-
els (a-d) highlight the results obtained from the two SADs 
(lognormal distribution and broken-stick model) while the 
remaining three panels (e-g) present communities where spe-
cies are all abundant (∼500 individuals) and the aggregation 
patterns range from random to highly aggregated. The most 

striking result was that the stronger the aggregation of spe-
cies, the more individuals had to be counted to reach the 
same RV coefficient, compared to communities where spe-
cies had a wider range of aggregation or were randomly dis-
tributed; compare panels (a) and (b), (c) and (d), (f ) and (g) 
of Fig. 2. Another noteworthy observation was that in all 
simulated communities, including those in which individu-
als were randomly distributed in the study area (Fig. 2e), the 
number of individuals that needed to be counted to reach a 
high RV coefficient (e.g.  0.9) was much smaller than the 
maximum number of individuals per species per SU found 
in the complete-abundance data. In Fig. 2, this is illustrated 
by the long horizontal line showing an RV coefficient  1 
found for all sets of communities. The length of the line 
depends on the maximum number of individuals found for 
a single species at one SU in the complete-abundance data.

These results confirm our hypothesis that the effort 
placed on counting all individuals is not necessary to recon-
struct and analyse the variance of communities. Regardless 
of the SAD used, one does not have to count all individuals 
to identify the variation patterns defining a community. We 
want to stress that this result has major implications because 
it means that all studies where the interest is to understand 
how species in a community vary across the sampling units 
(generally either in space or through time) can be carried 
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Currently, community data are almost always analysed 
with tools that use distances other than the Euclidean to 
extract ecological patterns. A typical example is the wide-
spread use of correspondence analysis (CA, Greenacre 
2007) and its canonical counterpart CCA (ter Braak 1986), 
which involves the c2-distance. It is important to note that 
the c2-distance artificially gives high weights to rare species 
occurring only at SUs where few or no other species occur 
(Greenacre 2013). For this reason, prior to choosing an  
analysis that relies on the c2-distance (e.g. CA and CCA), 
it is important to check the data to make sure this situation 
does not occur.

Aside from the c2-distance, other distances are com-
monly used to analyse the variation of community composi-
tion data. In these instances, it becomes relevant to study 
how partial-abundance counts can accurately characterize 
the community patterns defined by complete-abundance 
data using distances other than the Euclidean. We can then 
evaluate if by using different distances the information in 
the complete-abundance data can be recovered by counting 
a smaller number of individuals of each species.

Six distances commonly used with community composi-
tion data were considered: the Hellinger (Rao 1995), chord 
(Orlóci 1967), species profiles (Legendre and Gallagher 
2001), c2 (Lebart and Fénelon 1971), percentage difference 
(Odum 1950), and modified Gower using base 2 logarithms 
(Anderson et al. 2006). All these distances are well adapted 
to the analysis of community composition data (Legendre 
and Legendre 2012, chapter 7). The c2-distance is widely 
used in ecology because it is the basis for CA and CCA. The 
percentage difference (also known as the Odum or, incor-
rectly, the Bray–Curtis distance) has been shown by Faith 
et al. (1987) to be well adapted to extract ecological pat-
terns. Anderson et al. (2006) applied their transformation 
to the asymmetrical form of the Gower distance coefficient 
and called the combination the modified Gower dissimi-
larity (or distance). Anderson et al. (2006) transformed all 
abundances in a community matrix using 1  (logarithm 
of the abundance), with the exception of 0s, which remain 
unchanged. When calculating the modified Gower distance, 
an increase in the base of the logarithm decreases the empha-
sis on abundances. For this reason, we chose the modified 
Gower using base 2 logarithms because any larger base of 
logarithm would give less importance to abundant species 
and thus make it easier to find a higher correlation between 
partial and complete-abundance data.

It is also possible to transform a community matrix in 
such a way that a distance other than the Euclidean is pre-
served in principal component ordinations. Two different 
approaches were followed to transform the community data 
(partial and complete), depending on the distance used.  
1) Legendre and Gallagher (2001) have shown that the  
Hellinger, chord, species profiles, and c2-transformations  
can be applied directly to a community matrix using  
pre-transformations, without calculating a distance. A  
pre-transformation is a transformation applied to a com-
munity matrix before any analyses are carried out; the 
transformation changes the distance preserved between 
SUs in analyses involving linear models, such as principal 
component analysis (PCA), redundancy analysis (RDA), or 
K-means partitioning. Calculating the Euclidean distance 

out just as efficiently with a fraction of the data. This is an 
important observation because it implies that the counting 
approach we are proposing is not limited to community 
data, it can be applied to virtually any type of multivariate 
count data. In more statistical terms, all analyses of multi-
variate data currently carried out using simple or canonical 
ordinations can be performed using a reduced amount of 
information, with as much resolution as if all the data were 
used. For the remainder of this paper we will continue to 
present our results and interpretation in terms of ecological 
communities, species, and sampling units.

If we assume that the minimum RV coefficient required 
between partial and complete-abundance count should be at 
least 0.9 to give an acceptable representation of the commu-
nity patterns, we can evaluate the cost of counting partial-
abundance data with a good level of accuracy. Note that an 
RV coefficient of 0.9 is way above the 0.05 threshold com-
monly used to evaluate the level of significance of a model. 
Although the 0.9 RV coefficient threshold is arbitrary, it 
describes a very strong correlation between partial and com-
plete-abundance data. In the most optimistic case, where all 
species are composed of 500 individuals uniformly distrib-
uted over the sampling area (Fig. 2e), an RV coefficient of 
0.9 is reached with a counting threshold of 7 individuals, an 
RV coefficient of 0.95 is attained with a counting threshold 
of 8 individuals, and a 0.99 RV coefficient requires a count-
ing threshold of 11 individuals. These results are interesting 
because they show that with randomly distributed individu-
als in space or time, it is possible to be very cost-effective 
when counting individuals.

At the other end of our simulation spectrum, when  
species are all abundant (i.e. composed of ∼500 individuals) 
but highly aggregated (Fig. 2g), to reach a 0.9, 0.95 and 0.99 
RV coefficient between partial and complete-abundance 
data, counting thresholds of 293, 343 and 430 individuals 
are needed, respectively (lower bounds of the 99% confi-
dence intervals).

The results presented in Fig. 2 show that for the ecological 
situation we simulated, aggregation is the dominant factor 
increasing the number of individuals that need to be counted 
to reach a predefined RV coefficient. Thus, because species 
are known to aggregate in space and time, we must ask: Is 
this procedure applicable to natural community data?

Correlating partial to complete-abundance data 
using ecologically meaningful distances

Multivariate analyses of communities are rarely carried out 
on raw count data because using raw count data is equivalent 
to performing an ordination (or a clustering) analysis based 
on Euclidean distances among SUs. Euclidean distance 
is appropriate to answer ecological questions focusing on 
phenomena that cause changes in total abundances, such as 
disturbances or predation, but it is ill-adapted for other types 
of ecological questions such as b-diversity assessment (Anderson 
et al. 2011, Legendre and De Cáceres 2013). Numerous other 
distances have been proposed to study patterns in com-
munity data resulting from habitat variation among SUs. 
Legendre and Legendre (2012, chapter 7) described many 
distances specifically designed for modelling a variety of  
ecological data.
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of a pre-transformed community matrix yields a symmetric 
distance matrix where the distance between each pair of SUs 
is the distance corresponding to the pre-transformation. For 
example, the Euclidean distance of chord-transformed data 
yields the chord distance matrix. We thus pre-transformed 
all partial-abundance community data and correlated them 
to the pre-transformed complete-abundance community 
matrix using the RV coefficient. 2) The percentage difference 
and modified Gower distance using base 2 logarithms can-
not be obtained by pre-transforming a community matrix. 
To compare partial and complete-abundance for these two 
distances, we first calculated the distance matrices for all 
partial-abundance community matrices and the complete-
abundance community matrix. We then performed a princi-
pal coordinate analysis (PCoA, Gower 1966) independently 
on each distance matrix (partial and complete). We used 
all the eigenvectors of each partial-abundance community 
data and correlated them with all the eigenvectors from 
the complete-abundance data using RV coefficients. PCoA 
is not used here as a dimension reduction tool, it is used 
to transform a distance matrix into a matrix with the same  
format as the original community matrix but where the spe-
cies (columns of the community matrix) are replaced by 
eigenvectors. Performing a PCoA on percentage difference 
matrices, which are non-Euclidean, may generate complex 
eigenvectors (Legendre and Legendre 2012, section 9.3.4), 
which are difficult to handle. To ensure that no complex 
eigenvectors would be generated, we square-rooted all per-
centage difference distance matrices; after this transforma-
tion, the matrices are metric and Euclidean (Legendre and 
Legendre 2012, section 7.4.2), which ensures that no com-
plex eigenvectors are generated in PCoA. Applying a square-
root transformation to a modified Gower distance matrix, 
however, may not make it Euclidean. For this reason, we 
added a constant equal to the largest positive eigenvalue to 
all values of each modified Gower distance matrix to ensure 
that it becomes Euclidean and that no complex eigenvec-
tors were generated in PCoA (Gower and Legendre 1986,  
Legendre and Legendre 2012, section 9.3.4). This procedure 
is known as the Cailliez correction (Cailliez 1983). All of the 
calculations presented in this paragraph were performed with 
the vegan package (Oksanen et al. 2015), with the exception 
of the PCoA, which was carried out with the stats package 
( www.r-project.org ). All calculations were performed 
within the R statistical language.

To compare the different distances, we focused on  
simulated communities where the abundances of all spe-
cies were large (∼500 individuals) and species were highly 
aggregated (Fig. 2g). We focused on this set of communities 
instead of any other because it required the most individuals 
to reach high RV coefficients between partial and complete-
abundance data when raw count data were used.

The results in Fig. 3 show that regardless of the transfor-
mation used, the 0.9, 0.95 and 0.99 RV coefficients between 
partial and complete-abundance were reached with much 
fewer individuals than when raw community data were 
used. Of the distances compared, the distance between spe-
cies profiles (Fig. 3, green) required the largest number of 
individuals to reach the same RV coefficients between partial 
and complete-abundance, compared to the other distances. 
To reach a 0.99 RV coefficient, a counting threshold of at 
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Figure 3. Simulation results of the multivariate correlation (using 
RV coefficient) between increasingly precise partial-abundance 
community data and the complete-abundance community data. 
All species in the simulated communities were composed of ∼500 
individuals and species were highly aggregated in the sampling area. 
The leftmost result presents the RV coefficient associated to pres-
ence–absence data for each distance whereas the rightmost result 
shows the RV coefficient associated to the complete-abundance 
data. The counting threshold (abscissa) is the maximum number of 
individuals counted for a species within a sampling unit. The ordi-
nate represents the RV coefficients. The curves represent the lower 
bound of the 99% empirical confidence intervals of the simulation 
results, constructed using the 5th largest RV coefficients associated 
to each increasingly precise partial-abundance data.

least 350 individuals was needed. Although it is the worst 
result among the compared distances, it is still more efficient 
than using raw count data (compare to Fig. 2g) where count-
ing 430 individuals was required.

The c2 (Fig. 3, orange) and Hellinger (Fig. 3, black)  
distances also required many individuals to reach a pre-
defined RV coefficient. To attain the 0.99 RV coefficient,  
a counting threshold of 224 individuals was needed for 
the c2-distance and of 207 for the Hellinger distance. The  
percentage difference (Fig. 3, blue) and chord (Fig. 3, red) 
distances were more efficient, requiring counting thresholds 
of 160 and 102 individuals, respectively, to reach a 0.99 RV 
coefficient between partial and complete-abundance data. 
For these simulated data, the best result was obtained from the 
modified Gower distance (Fig. 3, purple): a counting thresh-
old of merely 9 individuals was needed to reach a 0.99 RV 
coefficient. The counting thresholds were calculated by refer-
ring to the lower bounds of the 99% confidence interval.

The results found with the other sets of simulated  
communities are presented in the Supplementary material 
Appendix 1. They yield the same conclusion as discussed 
in the two previous paragraphs, although a lower count-
ing threshold was needed when any of the other six sets of  
simulated communities was used.

The results that stem from Fig. 2 and 3 clearly show that 
few individuals need to be counted in a community for the 
variation patterns to be identified. However, these results are 
not helpful when planning a survey because they do not sug-
gest a counting threshold before all sites have been sampled.

Pilot study: the basis for a new sampling procedure

The generality of the results presented in Fig. 2 and 3  
makes it possible to apply the same procedure to a reduced 
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the survey-wide RV coefficient calculated between partial 
and complete-abundance data was exceeded. This ensured 
that the survey-wide RV coefficients between partial and 
complete-abundance were reached even in the most difficult 
scenarios.

Figure 4 presents the worst scenarios we simulated for 
the different distances compared. For the Hellinger, chord, 
c2 and percentage difference distances, these results were 
obtained from the set of communities where the abundance 
of each species was large (∼500 individuals for each species) 
and species had a broad range of aggregation levels. For 
the distances between species profiles and modified Gower  
distance calculated with base 2 logarithms, the worst sce-
nario was obtained with the set of communities where the 
abundance of each species was large (∼500 individuals for 
each species) and species were highly aggregated. Focusing 
on the worst cases makes our interpretation of these results 
more conservative and makes these simulation results appli-
cable to a broader range of studies. From these results, the 
modified Gower distance shows a clear advantage over the 
other dissimilarities. It is the only distance where by using a 
pilot study that includes only 3% of the SUs, the survey-wide 
0.95 RV coefficient calculated between partial and complete-
abundances can be attained. The RV coefficient calculated 
between partial and complete abundances within the pilot 
study data needs to be at least 0.9999 for the survey-wide 
0.95 RV coefficient to be reached when using the modified 
Gower distance. To reach a survey-wide 0.99 RV coefficient, 
a pilot study covering at least 15% of the study area needed 
to be surveyed with a pilot study where a 0.999 RV coeffi-
cient was used as a reference. If a survey-wide RV coefficient 
above 0.999 is required, the modified Gower is the only dis-
tance that is worth using because it is the only dissimilarity 
that makes it possible to reach this very high level of accuracy 
with a pilot study.

The percentage difference is the next best choice of  
distance after the modified Gower distance. We can expect 
that by using 35% of the study area it is possible to reach a 
survey-wide 0.95 RV coefficient if we refer to the pilot study 
0.9999 RV coefficient.

The chord distance is also interesting because with a pilot 
study that includes 75% of the survey area, a survey-wide  
0.99 RV coefficient can be obtained when referring to  
the 0.9999 RV coefficient calculated from the pilot study. 
The Hellinger- and c2-distances and the distance between 
species profiles required that a pilot study included, respec-
tively, 65%, 75% and 85% of the SUs to reach a survey-
wide 0.95 RV coefficient using the 0.9999 RV coefficient 
obtained from the pilot study data.

As for the Euclidean distances, if one needs to use it to 
extract community patterns, it is preferable to use a pilot 
study that is at least as large as the surveyed area. For exam-
ple, using data collected in the same study area during a pre-
vious year on the same group of organisms could serve as a 
reference pilot study. In the ‘Ecological illustration’ section, 
we show how data from a previous year can be used as a pilot 
study to estimate a counting threshold.

The results discussed above represent the worst-case 
scenarios of our simulations. Because species abundance 
distributions are always positively skewed for ecological 
communities, one can refer to the results obtained from  

number of randomly selected sampling units, in a pilot 
study, to estimate the counting threshold required for a sam-
ple that provides a good representation of the actual commu-
nity. Pilot studies have been used to evaluate the cost in time 
and money to perform a survey or an experiment. In this 
paper, a pilot study is a study used as a reference to estimate a 
counting threshold. It can result from data collected during a 
previous sampling year, or it can include SUs selected at ran-
dom among the possible sampling sites (e.g. using a random 
number generator to identify geographical coordinates to 
locate the pilot SUs within the study area), or in a systematic 
design in the sampling area of an on going study.

The size of the pilot study is important to infer a  
meaningful counting threshold. A pilot study that includes 
two SUs is unlikely to yield the same counting threshold as 
one that comprises ten SUs. From the results in Fig. 2 and 3, 
we know that it is possible to estimate community patterns 
by counting a fraction of all individuals. In this section, our 
goal is to evaluate the minimum number of SUs that need 
to be randomly sampled in a pilot study to ensure that the 
counting threshold associated to a particular RV coefficient 
can be reached.

To ensure that our simulation results can be used as  
a reference for studies on real communities, we estimated 
the counting threshold of the pilot study data by construct-
ing a 99% empirical confidence interval from the RV coeffi-
cient correlating partial and complete-abundance of the full  
survey data. We consistently used the lower bound of the 
confidence interval. In other words, we referred to extreme 
cases where the number of individuals to count is large. Also, 
the choice of the SUs in the pilot study may considerably 
influence the estimation of the counting threshold, especially 
when the number of SUs included in a pilot study is small.

For our simulation results to be applicable to a wide range 
of studies, we randomly sampled SUs to be included in the 
pilot study 100 times. Using the communities previously 
simulated, we randomly generated pilot studies that included 
3% of the SUs. Referring to the lower bound of the 99% 
confidence interval of the randomly sampled pilot studies, 
we correlated the increasingly accurate partial-abundance 
data with the complete-abundance data using RV coeffi-
cients. This is the same procedure as in the previous sections 
but using only information from randomly sampled pilot 
data. Note that the number of species in a pilot study will 
not affect the estimation of the counting threshold because 
the procedure we propose focuses on variation at the individ-
ual level. We then compared the 0.9, 0.95 0.99, 0.999 and 
0.9999 RV coefficients calculated from the pilot data with 
the 0.9, 0.95, 0.99, 0.999 and 0.9999 RV coefficients com-
puted from the full-survey data. We repeated the procedure 
using pilot studies that included 5%, 10%, 15%, …, up to 
95% of the SUs. This procedure was carried out for each set 
of simulated communities and using all distances considered 
in the previous section.

In our simulations, we know the abundance and aggrega-
tion patterns of the sampled species because these parameters 
formed the basis of our artificial communities. However, such 
patterns are difficult to evaluate using only data obtained 
from a pilot study. For this reason, in our interpretation of 
Fig. 4 and Supplementary material Appendix 2 Fig. A2.1–
A2.7, we consistently selected the number of SUs where 
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Figure 4. Percentage of the sites required in a pilot study (abscissa) to accurately estimate the number of individuals that need to be consid-
ered when sampling partial abundances. In this figure, we focus on six distances and show the number of individuals (ordinate) needed to 
meet RV coefficients of 0.9, 0.95, 0.99, 0.999 and 0.9999 calculated between partial and complete-abundance data. The ordinates were 
log-transformed for visual clarity. The species in the simulated communities were all composed of ~500 individuals and the range of their 
spatial aggregation level was broad for the Hellinger (a), chord (b), c2 (d) and percentage difference distances (e) while the spatial aggrega-
tion level was high for the distance between species profile (c) and modified Gower distance with base 2 logarithms (f ). The survey-wide 
RV coefficients are represented by dotted lines; they are the lower bounds of the 99% confidence intervals of the simulations results pre-
sented in Fig. 3 and Supplementary material Appendix 1. The full lines represent the RV coefficients between partial and complete-abun-
dance calculated using the pilot study data. TTo obtain the pilot study RV coefficient, the number of sampling units associated to the 
percentage (%) of sites to be included in the pilot study was randomly sampled 100 times. From this sample, the lower bound of the 99% 
confidence interval was used to obtain the pilot study RV coefficient. This procedure was carried out for pilot studies that included 3%, 
5%, 10%, ..., to 95% of the study area.”

simulated communities where the species abundance  
distributions follow a lognormal distribution or a bro-
ken-stick model (Supplementary material Appendix 2  
Fig. A2.1–A2.7). However, these simulations should only 
be used as references if all species sampled in a commu-
nity are used. In any case, it is preferable to refer to the 
scenario where the number of SUs to sample is the largest, 
as we did in this section.

Ecological illustrations – boreal forest ground beetles 
(Carabidae)

To illustrate how this new method can be applied to real 
ecological data, we used data about boreal Carabidae. In that 
study, 196 sites were sampled using pitfall traps (Spence and 
Niemelä 1994) in a near-regular grid of 70 km2 of mature 
boreal forest at the Ecosystem Management Emulating  
Natural Disturbances (EMEND) research site in north-
western Alberta, Canada (Bergeron et al. 2011, 2012, 
Blanchet et al. 2013). The data include 9869 individuals  
pertaining to 45 carabid species. Calathus advena was the 
most abundant at any single site with 128 individuals.

By using data from all sites, we first estimated the  
counting threshold for future studies assuming that the only 
information available is the species abundance gathered from 
the 196 sites presented above. We then estimated the count-
ing threshold that would be needed to extract the patterns 
found in this carabid assemblage. We made both estimations 
using all distances considered previously.

When sampling is carried out using pitfall traps, it is 
common to correct for disturbances (e.g. flooding of traps) 
by dividing the abundance of each species by the number 
of days a trap was active. The procedure proposed in this 
paper is unaffected by such normalization because the time 
for which a trap was active remains constant regardless of the 
number of individuals of a species counted in a trap. In other 
words, the normalization does not affect the calculation of 
the counting threshold. For this reason, we can omit any 
normalizing procedure applied on the SUs when estimating 
the counting threshold.

Using all beetles sampled at the 196 sites as a pilot study, 
we estimated that with a counting threshold of 10 individu-
als, a 0.9 RV coefficient can be reached with all distances 
compared in this study except for the Euclidean distance 
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As can be logically expected, when more individuals are 
counted, a higher RV coefficient can be reached. For exam-
ple, with a counting threshold of 21 individuals, a 0.99 RV 
coefficient can be attained if the Hellinger and modified 
Gower (log base 2) distances are used.

These counting thresholds can be translated into  
cost-effectiveness by evaluating the number of individu-
als that would be counted in total to reach a predefined 
RV coefficient if the same 196 sites were sampled. For 
example, to reach a 0.9 RV coefficient with the modified 
Gower distance (log base 2), a total of 3513 individu-
als would have to be counted. This is 35.6% of all the 
individuals counted for the full survey. This evaluation of 
cost-effectiveness shows it is possible with real ecological 
data to be more efficient, by counting only a subset of all 
the individuals.

Assume now that we want to plan a survey where  
200 sites are sampled to study the carabid assemblage on the 
EMEND landscape, as was the original plan for the carabid 
study (Bergeron et al. 2011), but that no previous data is 
available to evaluate a counting threshold. To estimate the 
counting threshold, we first have to decide the particular 
distance measure with which all analyses will be performed. 
We chose the percentage difference distance for this example 
because Bergeron et al. (2011) used it to analyse the same 
data. Referring to the simulation results in Fig. 4e, we know 
that 20 randomly selected sites (10% of the sampling area)  
are required to estimate the counting threshold for a  
survey-wide 0.9 RV coefficient between partial and com-
plete-abundance data by referring to the pilot study 0.9999 
RV coefficient calculated between partial and complete- 
abundance data. Because the results in Fig. 4 present extreme 
cases, it is highly unlikely that the 20 sites chosen in the pilot 
study will not reach the minimum number of individuals 
required to reach a survey-wide 0.9 RV coefficient. In fact, it 
is likely that the pilot study will show numbers of individu-
als larger than the minimum required. As an example, if we 
randomly choose 20 sites in the study area 1000 times and 
evaluate the counting threshold by referring to a 0.9999 RV 
coefficient for all iterations, we can estimate that 70 would 
be the average number of individuals necessary as our count-
ing threshold. This counting threshold is much larger than 
the 9 individuals required when we have information from 
the whole data set (Table 3). It is comforting that the pilot 
study is proposing a number of individuals much larger than 
the minimum number required if the survey-wide data were 
considered.

Discussion

Counting partial-abundance data is a cost-effective approach 
for sampling ecological communities. Because of its flexibil-
ity, the approach proposed in this paper makes it possible 
for researchers to decide the accuracy they want to have in 
the data they collect and then to reduce (or increase) the 
sampling effort to achieve this accuracy. We would like to 
reemphasize here that an RV coefficient of at least 0.9 should 
be used to have a high enough level of accuracy and that 
although the 0.9 RV coefficient is an arbitrary threshold it 
describes very strong correlation.

(Table 3). This counting threshold of 10 individuals can be 
used for any future carabid study carried out on the EMEND 
landscape that includes up to 196 sites. However, when for 
example the Hellinger and modified Gower (log base 2)  
distances are used, an RV coefficient higher than 0.95 can  
be reached by counting up to 10 individuals per species. If 
the c2-distance is used, an RV coefficient of at least 0.99 
can be attained with a counting threshold of 10 individu-
als. Note that this result is an artefact of the c2-distance, 
which gives high weights to rare species occurring only at 
SUs where few or no other species occur, as explained in 
the ‘Correlating partial to complete-abundance data using 
ecologically meaningful distances’ section.

To illustrate the implication of the previous result for ecol-
ogists, we compared two PCAs carried out with the Hellinger 
pre-transformation using Procrustes analysis (Gower 1971). 
The first PCA was carried out on the complete-abundance 
data while the other was performed on partial-abundance 
data with a counting threshold of 10 individuals. The com-
parison of the first two PCA axes is presented in Fig. 5. In 
a nutshell, although there are some differences between the 
partial and complete-abundance data, the differences are 
minimal and would not influence in any way the interpreta-
tion of the results. This means that any ecological question 
where the variation in the data needs to be interpreted (e.g. 
using ordinations) can be answered with partial-abundance 
data, as it can with complete-abundance data, as long as 
the procedure described in this paper to choose a good RV 
threshold is followed. For this example, the RV coefficient 
was 0.967. With a counting threshold of 10 individuals, 
58.76% of the individuals were counted.
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Figure 5. Procrustes plot comparing the first two axes of a principal 
component analysis (PCA) carried out on the Hellinger trans-
formed data using complete-abundances as the target dataset (open 
circles) and the Hellinger transformed data using partial-abundance 
with a counting threshold of 10 individuals as the rotated dataset 
(black circles). Line segments show the differences in positions of 
SUs between the partial and complete-abundance data. The RV 
coefficient between the partial and complete abundance was 
0.967.
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Table 3. Counting threshold (top values of each table cell) and  
percentage of the whole data needed to reach a predefined RV  
coefficient (lower values of each table cell) for the ecological  
illustration on Carabidae.

RV threshold

0.9 0.95 0.99 0.999 0.9999

Euclidean 49 66 96 116 124
95.26% 97.68% 99.30% 99.85% 99.96%

Hellinger 4 8 21 48 85
35.60% 52.80% 78.83% 95.02% 98.95%

Chord 9 15 35 74 102
55.91% 69.90% 90.14% 98.28% 99.48%

Distance between 
species profiles

10 16 37 78 105
58.76% 71.59% 91.13% 98.56% 99.57%

c2 3 5 8 16 34
29.49% 40.79% 52.80% 71.59% 89.61%

Percentage 
difference

9 16 34 68 101
55.91% 71.59% 89.61% 97.84% 99.45%

Modified Gower 
log2

4 5 13 28 46
35.60% 40.79% 65.97% 85.63% 94.51%

In our simulations, we showed that it was possible to 
estimate a counting threshold by using as few as 3% of the 
SUs. Although our results lead us to believe that, up to a 
certain extent, a larger pilot study points to a smaller count-
ing threshold, it is left at the discretion of the researcher to 
consider a larger number of SUs in the pilot study. However, 
for surveys where the number of SUs to be sampled is small, 
a pilot study should include a minimum of 5 SUs to ensure 
that the chance of sampling too few individuals is low.

Although we tried to make our simulations as general 
as possible, it was not possible to simulate all possible cases 
found in nature (Milligan 1996). Of the choices we made, 
we decided to simulate species communities so that it would 
never happen for an SU to be empty. Although it can be 
common for such SUs to occur, it is technically challenging 
to deal with these data because commonly used approaches 
in community ecology such as CA or CCA do not handle 
such data well. This problem is beyond the scope of the 
paper.

Pilot studies are at the core of the procedure we are 
proposing in this paper. If in the pilot study the counting 
threshold calculated seems too low, considering more SUs in 
the pilot study should improve the estimation of the count-
ing threshold. Because the information gained in the pilot 
study may be included in the full study, the cost of consider-
ing additional SUs in the pilot study is not as important as 
it would be if it were carried out independently from the 
survey-wide study. Moreover, if the SUs considered in the 
pilot study present a surprisingly low number of individuals, 
these SUs should be quick to count compared to SUs with 
larger abundances, making the effort to include new SUs in 
the pilot study less of a constraint.

Counting partial-abundance data in a pilot study may 
be easy or difficult depending on the survey design and the 
organisms sampled. For example, if individuals are collected 
in the field and brought to a laboratory for sorting, identi-
fication, and counting, it is easy to re-evaluate the counting 

threshold with a minimum of effort because all pilot study 
SUs are readily available. Insects, mites, and spiders are typi-
cal examples of organisms that allow such flexibility because 
they are usually sampled in traps, and when sorting is car-
ried out all trap contents are easily accessible. Conversely, 
if organisms need to be recorded in the field (e.g. trees or 
birds), a pilot study would need to be carried out before  
the full-scale survey begins. However, as explained in the 
previous paragraph, the time spent on the pilot study is not 
usually lost because the data collected while carrying out  
the pilot study can often be included in the final data set. 
Moreover, as we have shown, the pilot study will make it 
possible to be much more cost-effective when surveying.

We have also shown that the distance function used  
to analyse the data can have tremendous impact on the  
number of sites to consider in a pilot study. In that instance, 
it becomes important to choose the distance with which all 
analyses will be carried out before sampling the community. 
For simple and canonical ordinations, it is common for 
researcher to be ambivalent about the choice of dissimilarity 
to use. This confusion is justified at least for canonical ordi-
nations where the differences obtained by using one distance 
or another are usually minor (Blanchet et al. 2014).

Our recommendation to users is to first determine which 
distances one wants to consider. Then, using survey results 
from a pilot study, compute the counting thresholds corre-
sponding to the selected value of RV corresponding to the 
different distances in the selected set, and choose for the 
full-scale study the distance that provides the lowest count-
ing threshold. The detailed properties of the different dis-
tances, in terms of their ability to reproduce the variation 
of the complete data in statistical analyses of community 
variation, remain to be investigated in further simulation 
studies involving different types of communities. Statistical 
and other properties of dissimilarity coefficients that are of 
importance for the study of b-diversity have been described 
by Legendre and De Cáceres (2013).

It is likely that in the pilot study as well as for the entire 
survey, some species have been missed. The distances we 
compared in this paper are known not to be sensitive to 
rare species, so that if a species is absent from the sampling 
or only a few individuals were found, the counting thresh-
old will not be affected. The c2-distance is the only excep-
tion because it is known to give high weight to rare species  
(Legendre and Legendre 2012, p. 308), making the use of 
this distance conceptually problematic when estimating a 
counting threshold. This distance also lacks an important 
property for b-diversity assessment: with that distance, two 
sites without species in common do not necessarily have the 
largest dissimilarity.

In addition, because the counting procedure we proposed 
is carried out on individuals, species missed in the pilot study 
can be accounted for in the full survey without any associated 
counting problems. This also means that if the interest of a 
study is to estimate species richness, the counting approach 
proposed here does not prevent such undertaking.

Nowadays, studies in community ecology are focussing 
not only on species richness, but also on the processes of the 
variation from site to site. Ordinations allow ecologists to 
study the main axes of variation in community data. Canon-
ical ordinations and multivariate analysis of variance allow 
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a way to define how many individuals are enough to still gain 
unbiased knowledge about the variation among sampling  
units. Our counting procedure also accounts for the  
species that occur scarcely throughout the sampling area. Just 
knowing where these scarce species occur would likely lead 
to the same conclusions as knowing their abundance, simply 
because of their scarce distribution. Blanchet et al. (2014) 
discussed the importance of analysing presence–absence and 
abundance community data independently because it often 
produces a better understanding of the ecology of the species.

In this paper, we showed that using prior information 
from a pilot study to evaluate community patterns can be 
useful to increase cost-effectiveness while minimizing the 
loss of information. The proposed counting procedure has 
the potential to be applied to numerous types of studies 
within and outside the scope of ecology. In ecology, it can 
be valuable for large-scale monitoring studies such as the 
Alberta Biodiversity Monitoring Institute project (Boutin 
et al. 2009). Another interest of the method proposed in our 
paper is that governmental surveys could be carried out at 
lower costs, and thus could be made more extensive through 
space and time with the same budget constraints. In some 
studies involving organisms whose sizes differ greatly, bio-
mass data can be used instead of abundances, and it is pos-
sible to evaluate a counting threshold on biomass data using 
the approach described in this paper. Our approach is also 
applicable to landscape genetics where gene (or marker, etc.) 
frequencies in local populations are used instead of species 
frequencies. Since the lab work is costly in genetic studies, 
our approach could lead to important savings of technician 
time and materials. Although our counting approach has 
been presented mainly in the context of terrestrial surveys, it 
can be applied as well to aquatic communities (e.g. counts of 
landings in fisheries studies). Outside the scope of ecology, it 
can be applied to any situation where many count variables 
are describing a number of SUs.
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