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We have recently proposed to use partial canonical ordinations to partition the variation of species abundance
data into four additive components: environmental at a local scale, the spatial component of the environ-
mental influence, pure spatial, and an undetermined fraction. By means of an example, we show how to
use the information contained in these fractions to provide better insight into the data. In particular, the inter-
pretation is assisted by separately mapping the various canonical axes and relating them to possible generating
processes. We derive a general framework for the causal interpretation of the various fractions of this
partition, which includes the environmental and the biotic control models, as well as historical dynamics.
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1. Introduction

In the ecological literature, the causes of community structuring are generally related to two
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classical models (May, 1984): the environmental control model (Whittaker, 1956; Bray and Curtis,
1957; Hutchinson, 1957) and the biotic control model (Lindeman, 1942; Southwood, 1987). Often
considered as mutually exclusive (May, 1984), these two classes of influence factors could in fact be
responsible for complementary aspects of community structure (Quinn and Dunham, 1983),
together with other factors like historical events, inputs of auxiliary energy, or disturbances of
various kinds.

Due to the diverse (and often partly unknown) nature of these structuring causes, assessment of
their relative contribution is quite difficult. While it is often possible to obtain measures of the
main abiotic site descriptors, biotic interactions like predation, competition and so on, or past
(historical) events like fires or human alterations, cannot be directly measured. This is one reason
for the increasing interest, shown by ecologists, in quantifying the spatial structure of biotic or
abiotic variables: the spatial structure can be considered as evidence for the various processes that
have generated it, and can therefore be used as a synthetic, indirect descriptor of these processes.
Models integrating space as a predictive variable, based on Mantel (1967) and partial Mantel
testing (Smouse et al., 1986), have been used for this purpose by Legendre and Troussellier
(1988), Legendre and Fortin (1989), and Leduc et al. (1992). Borcard et al. (1992) describe a
method of variation partitioning, based on canonical ordinations, that allows quantification of
the main classes of influence (environment and ‘space’ alone, and combination) acting on a species
assemblage.

In the present paper, we want to show that this modeling method, combined with contouring of
the various fractions of the variation, is a useful tool in ecological and environmental science. It
allows testing the hypotheses that motivated the study and also generating new hypotheses to
account for unexplained but spatially structured components of the variation. This extension of
classical linear modeling is part of a general causal framework, presented in the Discussion and
Conclusions section, incorporating the various types of models and effects that may be associated
with the various fractions of variation.

The method was applied to an Oribatid mite community data set sampled through space.
Environmental factors such as humidity, soil type and vegetation have been recognized as
significant determinants of Oribatid community structure (West, 1984; Wauthy er al., 1989;
Borcard, 1991). We will discuss how much of our mite community spatial variation can be
explained by these factors. Food resources such as microorganisms also seem to have great
importance (Cancela da Fonseca and Poinsot-Balaguer, 1983), but their abundance and
availability for the mites is difficult to measure directly. Among the biotic factors, predation
seems to be a major structuring process, as suggested by Lebrun et al. (1991). Other biotic
interactions such as competition have never been clearly shown to act significantly, so that
some authors suggest that soil mite communities could often be in a state of non-
equilibrium in the sense of Wiens (1984) (Wauthy et al., 1989). Other authors propose alterna-
tives to the classical but somewhat rigid competitive exclusion principle, in the form of time-
dependent exploitation of alternate resources (Ponge, quoted by Vannier, 1985). Another class of
factors has been advocated as a structuring influence on soil communities, namely human
alterations; for instance, trampling has a profound effect on the numerical balance of
communities, and (somewhat less) on species composition (Garay and Nataf, 1982; Borcard,
1988). .

No complete and standard analytical procedure is available to discriminate between these
various sources of influence. We propose to scrutinize independent fractions of the variation of
a soil mite community after mapping of these fractions. The method of Borcard er al. (1992),
referred to above, achieves a partition of the spatial variation of species data in two mappable
components: (i) the local (fraction a) and spatially structured (fraction b) covariation between
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the mite community and the measured environmental features, and (ii) the community spatial
structure that is independent of these environmental variables (fraction ¢).

2. Sampling site and methods

The study site is located on the southern shore of a small Laurentide lake, Lake Geai, located on
the territory of the Station de Biologie des Laurentides (74°W, 46°N). According to Harper and
Cloutier (1985), the main characteristics of the lake are as follows: small (0.92ha) dystrophic,
dimictic lake, with acidic water (mean pH of 6.0, after Plinski and Magnin, 1979). The water is
heavily coloured, with a high content of organic matter (mean value of total organic C: 10 mg L™,
but weakly mineralized (mean conductivity: 26mScm™'). The surrounding forest of Betula
papyrifera, which developed after a fire around 1920, harbors some Acer saccharum and, in the
immediate vicinity of the lake, coniferous species such as Picea mariana, Abies balsamea and
Thuja occidentalis. '

In June 1989, we delineated a 10 x 2.6m transect on the partially floating vegetation mat
surrounding the lake and extending from the forest border to the free water, and mapped the
main environmental features of the site (Figure 1). In order to get an accurate representation of
all the elements of the vegetation mosaic, the following sampling strategy was used: a grid with
20 x 20cm mesh was defined over the area; stratified sampling was performed, in which the seven
substratum classes acted as strata (see next paragraph and Figure 2; notice that the interface
between Sphagnum patches is one of those strata). Within each stratum, we applied a systematic
sampling design, with sampling effort proportional to the square root of the surface area of the
stratum estimated by means of the grid. This procedure allowed the sampling to be spread over
most of the delimited area and to be weighted in proportion to site heterogeneity. A total of 70
cores, each Scm in diameter and 7 cm in depth, were obtained by means of a sampler described by
Borcard (1986); extraction of the mite fauna was performed with a multiple extractor of the type
described in the same paper.

Besides the counts of adult Oribatid mites, we noted the spatial location of the samples, as well
as the following variables: substratum (seven nominal classes: Sphagnum magellanicum (with a
majority of Sphagnum rubellum), Sphagnum rubellum, Sphagnum nemoreum (with a minority of
Sphagnum angustifolium), Sphagnum rubellum + Sphagnum magellanicum (equal parts), ligneous
litter, bare peat, interface between Sphagnum species), microtopography of the substratum (2
qualitative classes: blanket (flat) or hummock (raised)), coverage density of the shrub cover
(3 semi-quantitative classes), water content in percent (quantitative), density of the substratum in
gL~! of dry uncompressed matter (quantitative). The four groups of Sphagnum mosses are called
‘group 1’ to ‘group 4’ in the Figures and Tables. The substratum type variable acts as a global
descriptor for features such as substratum-dependent types and quantity of food for the mites
(fungi, algae, bacteria), as well as microstructural characteristics that would be too laborious, or
even impossible, to measure directly, such as the arrangement of stems and leaves. Microtopo-
graphy of the substratum refers to the fact that some Sphagnum species (mostly S. magellanicum
in our case), instead of growing as a horizontal carpet, sometimes build more or less hemispherical
hummocks. These formations often appear in sites where the water table is low; since closed and
dense formations prevent evaporation (as in alpine plant cushions), these hummocks are con-
sidered to be reactions of the sphagna against desiccation (Matthey, 1965). Other types of
hummocks appear at the ‘waterfront’ of Sphagnum carpets, where the mosses grow their way into
the water. Although the hummocks recreate the same humidity conditions as those prevailing in
the normally wet flat blankets, we were interested in whether the mite community reacted to
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Figure 1. General map of the sampling area, showing the distribution of variables substratum, shrub

coverage and microtopography.

topographic modifications of their habitat. Shrub cover density was coarsely recorded (three semi-
quantitative classes: absent, present, abundant) to check whether the larger amount of ligneous
matter and the shade provided by these shrubs could explain the possible presence of forest species
in the mite community. The Sphagnum variables and the shrub cover are the only ones that
unambiguously (though not exclusively) characterize the trophic environment of the mites; the
other variables describe, to various extents, their physical environment.
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Figure 2. Map of the sampling area, showing the 20 x 20 cm sampling grid and the location of the
70 samples.
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3. Mathematical methods

We used canonical and partial canonical correspondence analysis (ter Braak, 1986, 1988a) for
gradient analysis and variation partitioning, as proposed by Borcard et al. (1992), and inverse
squared distance interpolation for gridding.

Canonical correspondence analysis (CCA) is a combination of ‘classical’ multivariate ordination
and mulitiple regression analysis; the species ordination axes are constrained to be linear com-
binations of the environmental variables, provided in a second matrix. This ensures that the
canonical ordination axes are optimally related to the supplied environmental descriptors. The
method provides two sets of sample scores: the sample scores that are weighted averages of the
species scores (as in classical correspondence analysis), and the sample scores that are linear combi-
nations of environmental variables (i.e., the scores that are predicted by the multiple regression
model). We call these two categories the ‘species-derived scores’ and the ‘model scores’, respec-
tively. The partial version of CCA allows removing, by multiple linear regression, the effect of
known or undesirable variables before computing the constrained ordination. All these proce-
dures are available in release 3.11 of the CANOCO™ program (ter Braak, 1988b, 1990). Further
explanations can be found in the author’s papers (ter Braak, 1986, 1987a, 1987b, 1988a, 1988b).
For examples of applications, see for instance Birks et al. (1990), Stevenson et al. (1989), Siepel
(1989) (calibration of indicator species), and Borcard e al. (1992) (community structure analysis).

Inverse squared distance weighting is a classical interpolation method for gridding data; it uses a
reasonable compromise between the hypotheses of a very large and that of a very weak influence of
remote neighbours; according to Isaaks and Srivastava (1989, p. 259), it represents the most
common choice. It uses the following equation:

E-( z(point;) )
‘\d*(node, point,) M
> ot o)
‘\d?*(node, point,)

Maps were produced with the MacGridzo™ program; the grid mesh width was set to 0.2m.

The CANOCO program can be obtained from Microcomputer Power, 111 Clover Lane,
Ithaca, NY 14850, USA, or Scientia Publishing, pf. 658, H-1365 Budapest, Hungary. MacGridzo
is a product of RockWare, Inc., 4251 Kipling St., Suite 595, Wheat Ridge, Colorado 80033,
USA.

z(node) =

4. General results

We captured a total of 9850 adult Oribatid mites, which represents a mean density of about 72 000
individuals per square metre. Forty-nine taxa were recognized as species, though many were not
given a species name, owing to the incomplete stage of systematic knowledge of the North
American Oribatid fauna. Fourteen taxa, involving only 50 individuals, were subsequently elimi-
nated, because their very poor representation introduced a large number of zeros in the data
matrix, a situation that could be troublesome in the data analysis, without providing relevant
information about the main trends of the community. Thus, the Oribatid data matrix to be
analyzed has a 70 (samples) x 35 (species) dimension.
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Table 1. Correlations between the four first species axes and the
environmental variables of the CCA ‘mites’ by ‘substratum variables’.

Axis 1 Axis 2 Axis 3 Axis 4
Sphagnum group 1 -0.135 0.183 —0.502 -0.186
Sphagnum group 2 0.346 -0.123 0.214 -0.015
Sphagnum group 3 -0.200 —-0.038 0.157 0.496
Sphagnum group 4 -0.082 -0.056 -0.164 0.060
Litter -0.233 0.040 0.479 -0.326
Bare peat 0.106 0.520 0.143 0.130
Interfaces 0.053 -0.178 0.148 0.123

5. Contribution of the substratum type to the mite
community variation

What follows is an example to show how maps of the results of a partial analysis can be exploited
to generate new ecological hypotheses. We have at our disposal a data base with all the variables
presented above. A normal descriptive run of analyses would consist in a first canonical corre-
spondence analysis using all environmental variables, followed by a variation partitioning after
Borcard et al. (1992) to check whether there remains an important fraction of unexplained spatial
variation. In other cases, one may wish to test more specific hypotheses, involving only a subset of
the explanatory variables. A subsequent examination of the remaining variation could then suggest
the addition of other variables to increase the explanatory power of the model.

Among the variables at our disposal, there are seven classes of substratum. Most of these classes
define Sphagnum species or decaying organic matter. So, this variable acts as a synthetic descriptor
both for the physical environment of the mites (morphology, available space) and, at least partly,
the food available. Oribatid mites mostly feed on mycelia, algae, bacteria or decaying organic
matter, all these varying with the substratum. Could this simple substratum variable be sufficient
to explain an important part of the mite community variation?

To test this hypothesis we performed a CCA of the mite data matrix, constrained by the seven
substratum classes. The result is poor: the substratum variables explain altogether 13.7% of the
mite community variation. The species-environment relationship is globally significant (p = 0.009
after 999 permutations), but the individual canonical axes are not. Correlations between the four
main canonical axes and the seven substratum variables are shown in Table 1.

Despite the weak correlation with the environmental variables, we present a map of the first
ordination axis (species-derived scores, p = 0.107) in Figure 3a. This map indicates that this axis
is essentially made of a longitudinal trend. The second one displays striking local peaks (Figure
3b), that are easy to associate with spots of bare peat and flooded zones where the Sphagnum carpet
is very thin.

6. Variation partitioning

At this step it is useful to introduce a matrix of spatial descriptors, in order to partition the mite
data variation as proposed by Borcard et al. (1992). The matrix is made of the x and y coordinates
of the samples, and some terms of a third-order trend surface regression equation; these terms have
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Figure 3. (a) Map of axis 1 of the ‘mites’ by ‘substratum variables’ CCA. (b) Map of axis 2 of the
‘mites’ by ‘substratum variables’ CCA. As in the following figures, no vertical scale is provided, since
the maps have been rescaled from different units to help visual comparison.

been selected by means of a forward selection procedure from among the nine terms of a full third-
order polynomial equation of the x and y coordinates. The partitioning will yield four fractions of
the mite data variation (Figure 4a): fraction a (local species variation, explained by the environ-
mental descriptors independently of any spatial structure), b (spatial structure in the species data
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Figure 4. Variation partitioning of the Oribatid mite data table. A Environmental matrix made of the
substratum variables. B Like A, with humidity added in the environmental matrix. C Complete
environmental matrix, as in Borcard et al. (1992).

that is shared by the environmental descriptors), ¢ (spatial patterns in the species data that are not
shared by the environmental variables), and d (unexplained variation).

The result of the variation partitioning shows that 37.0% of the mite data variation can be
explained significantly by the spatial matrix (fraction ¢, p = 0.001), after the effect of the
substratum variables has been removed. The a and b fractions are comparatively quite small,
reflecting the minor contribution of the substratum variables to the explanation of the species
variation. A map of the first axis of fraction a (Figure 5) is almost identical to that of Figure
3b, confirming the local character of the variation due to the spots of bare peat. Also to be
mentioned is that even complex data manipulations like those performed by CANOCO 1n these
two CCA and partial CCA runs do not alter the data structure in any critical manner. A map of the
first strictly spatial axis (fraction ¢, Figure 6) shows that there remains a strong, highly significant
(p = 0.001), longitudinal gradient in the data.

7. Contribution of humidity

Table 2a shows how the environmental variables that have not yet been included in the analysis
correlate with the first four strictly spatial canonical axes (fraction ¢). The variable most strongly
correlated is humidity (r = 0.696), which thus becomes a good candidate for inclusion in our
model. A new variation partitioning analysis including this variable produces results (Figure 4B)
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Figure 5. Map of axis 1 of the ‘mites’ by ‘substratum variables’ partial CCA, after removing the effect
of space. Compare with Figure 3b.

that look quite different from the previous one (Figure 4A). The proportion of explained variation
is now 31.2%, indicating that humidity has added 17.4% to the environmental explanation. Most
strikingly, 15.2% of the variation has moved from fraction ¢ (pure spatial) to b (spatially structured
environmental variation). The first axis is now mainly a ‘humidity axis’ and is highly significant
(p = 0.001). Fraction d (unexplained variation) has decreased only 2.1% to the profit of fraction a
(local environmental influences).

8. Adding more variables

There is still 21.7% of the spatial variation which remains unexplained. A map of the first spatial
axis (Figure 7a) displays a shape that is not a simple gradient any more. Correlating it with the
remaining environmental variables (Table 2b) shows that the next good candidate for inclusion in
the model would be substratum density (r = —0.506 with spatial axis 1), which was not correlated
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Table 2. Correlations between the four first spatial axes of the partial CCA
‘mites’ by ‘space’ and the environmental variables not yet included in the
model, (a) after removing the effect of the substratum variables, (b) after
removing the effect of the substratum variables and humidity.

(a) Axis 1 Axis 2 Axis 3 Axis 4
No shrubs 0.632 0.233 -0.062 -0.074
Few shrubs -0.124 —0.201 0.404 0.309
Many shrubs ~0.462 -0.004 -0.350 -0.243
Hummock —-0.535 0.139 -0.262 0.194
Substratum density -0.101 0.220 0.196 0.066
Humidity 0.696 0.297 0.058 0.088
(b) Axis 1 Axis 2 Axis 3 Axis 4
No shrubs 0.334 0.320 —-0.048 0.025
Few shrubs -0.110 -0.331 0.356 -0.255
Many shrubs —-0.199 0.037 -0.315 0.234
Hummock -0.359 0.095 -0.263 -0.208
Substratum density -0.506 —-0.082 0.141 0.084

with the spatial axes at all in the previous run (Table 2a). A map of the density itself (Figure 7b)
indeed resembiles that of the first spatial axis in many aspects.

Inclusion of all the remaining variables into the analysis gives the partitioning reported by
Borcard er al. (1992) and reproduced here (Figure 4C); the gain in explained variation from Figure
4B to 4C is only 4.1%, and this goes into fraction a; fraction ¢ drops to 12.2%, adding 9.5% to
fraction b. '

9. Non-environmental community spatial structure:
a clue to hidden processes?

In Figure 4C, 12.2% of the variation in the mite data matrix can still be explained using only the
spatial data matrix, independently of any reference to the environmental variables. The first three
ordination axes of fraction ¢, explaining together 11.8% of the mite community matrix variation
(i.e., most of the total of 12.2% for the spatial, non-environmental effects), are significantly related
to the spatial descriptors: p = 0.001, 0.001 and 0.014 respectively.

Is there some explanation for these results? On a general level, it is not surprising that the
available explanatory variables do not explain all the spatial structure of a living community data
set. First, some significant, spatially structured environmental variables which are important for
the mite species assemblage (physical or chemical characteristics, food resources, etc.) may have
been overlooked in the research project. Second, the community under study may have undergone
in the past various kinds of disturbances — resulting from human activity, for instance — that are
still reflected on its present spatial structure. Third, processes related to the population dynamics of
the species involved, such as social behaviour or predator—prey interactions, are very likely to
generate measurable spatial structures (biotic control model).
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Figure 6. Map of axis 1 of the ‘mites’ by ‘space’ partial CCA, after removing the effect of the
substratum variables.

10. Discussion and conclusions

The simple case of environmental modeling presented in this paper shows how a set of spatial
variables can be used to estimate the proportion of spatial variation remaining in a data set after
the first hypothesis has been tested, and, with good knowledge of the organisms under study, how
to generate new hypotheses regarding the causes of these remaining structures.

This method reflects the way ecologists actually work with data, testing simple models first, and
then refining them using more data. In studies based upon previously assembled data bases, it is
easy, as in the example above, to return to the files for additional data corresponding to the new
hypotheses that are generated by examination of the maps. In hypothesis-driven studies, contem-
plation of the maps of the unexplained spatial fraction may lead to new hypotheses that may be
included in the design of new field programs.

" 'We mention two real-case studies. The first one concerns the structure displayed by 28 tree
species in a S0ha plot in southwestern Québec. This data set had been analyzed by Borcard
et al. (1992); the variation was partitioned as described above, and it was found that fraction d
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Table 3. Theoretical causal relationships between environmental variables (representing processes) and
community structure. Fractions (a), (b), (c) and (d) of the community data variation refer to Figure 4.

- Fraction Causal factor Process Effect
(a) Environmental factor ECM - Community structure
(a)* Non-spatially structured factor ECM ~ Env. variable in the analysis
not included in the analysis - Non-spatial community var.
Historical events without spatial HD - Env. variable in the analysis
structure at the study scale ~ Non-spatial community var.
(b) Env. factor with spatial structure ECM —~ Community spatial structure
(b)* Spatially structured env. factor not ECM — Env. variable in the analysis
included in the analysis — Community spatial structure
Spatially structured historical events HD - Env. variable in the analysis
— Community spatial structure
(c)* Spatially structured factors not ECM — Community spatial structure
included in the analysis
Spatially structured historical events HD ~ Community spatial structure
Predation, competition, etc. BCM — Community spatial structure
(d)* Factor not included in the analysis, ECM - Non-explained community
not spatially structured (at study scale) variation
Biotic control factors not spatially BCM — Non-explained community
structured (at study scale) variation
Random variation, sampling error, Noise - Non-explained community
etc. variation

ECM = Environmental control model. BCM = Biotic control model. HD = Historical dynamics. Asterisks (*)
indicate factors not explicitly spelled out in the model. '

(unexplained variation) contained 63.3% of the variation. This led to another piece of research
(Leduc et al., 1992, using partial Mantel testing instead of partial canonical analysis), where addi-
tional community dynamics hypotheses were tested, dealing especially with the relationship
between trees of the various species, their saplings, and the environmental variables; it was
found, in particular, that species associated with hydric or mesic conditions respond differently
in the models. In another study, Legendre and Troussellier (1993) investigated models to explain
the spatial variations of abundance of phytoplankton and of two categories of heterotrophic
bacteria in a brackish lagoon. Classical regression modeling, using only environmental descriptors
as independent variables, left 42% to 100% of the spatial variation unexplained; mapping
(Legendre et al., 1989) as well as Borcard et al. (1992) variation partitioning of these variables,
gave the clue that in many cases, spatial structuring played an important role; using a water circu-
lation model among the predictive variables helped reduce considerably the amount of unexplained
variation in most models.

As in any causal analysis, causality resides in our hypotheses, and the objective is to verify how
much of the variation can be explained by a consistent body of hypotheses (i.e., without incom-
patibilities). One has to be aware, however, of the problem that may be created by causal factors
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that are not explicitly spelied out in the model. Not only can they contribute to the unexplained
variation; they can also produce false correlations, if they are causally anterior to both the vari-
ables to be explained and some of the variables hypothesized as explanatory in the model. In
community analysis, furthermore, we are faced with a multiplicity of potential causal agents for
the observed structures, acting at different spatial and temporal scales. Three main sources of
causal variation were mentioned in the Introduction. These relate to the environmental control
model (ECM), the biotic control model (BCM), and to other factors such as historical events
(anthropogenic: agriculture, logging, constructions of various sizes, etc.; or natural: isolation by
geographic barriers, etc.) or disturbances of various kinds (storms, forest fires, volcanic eruptions,
landfalis, etc.), that can collectively be referred to as historical dynamics (HD). Table 3 lists the
various cause-to-effect relations that can be contained in each of fractions a to d. First, the effect ‘in
the model’ is listed for each fraction, followed by other possible causes and effects not explicitly
spelled out in the model (*). As an illustration of the use of this table, we propose some examples of
hidden causes for the Oribatid mite example (the examples are presented in the same order as the
general mechanisms in Table 3).

(a)* Local, unmeasured variations in substratum chemistry are likely to affect both the mites
and the vegetation in which they live, a case that would lead to covariation between them.
Imagine that, one month before the sampling, a flock of birds has spent a few hours on the
sampling site. Their randomly distributed faeces could have altered the vegetation and thus

. affected soil animals.

(b)* Suppose that some years ago a tree fell across our sampling site and rotted away. By now it
would have disappeared under the sphagna, but these mosses would have been affected by
it, and the mite community would certainly reflect the presence of wood residues, for
instance by an increase in the density of the Phthiracarids. Consequently a part of the
vegetation-mite covariation would be caused by this past event.

(c)* Let us take again our example of the fallen tree. Had we not noted the vegetation patterns,
the effect of the wood on the mite community would not have covaried with an explicit
environmental factor, and consequently would have been displayed in fraction ¢ of the
spatial variation of unknown origin.

Partitioning the variation of the community structure into its components and mapping them
has allowed, not only finding interesting correlations that support preconceived models, but quan-
tifying and mapping where the hypotheses fall short of the reality. Ecologists can undoubtedly use
such insights to go back to the field with better models in mind.

References

Birks, H.J.B., Juggins, S. and Line, J.M. (1990). Lake surface-water chemistry reconstructions from
palaeclimnological data. In: The Surface Waters Acidification Programme (B.J. Mason, ed.) Cambridge
University Press, pp. 301-13.

Borcard, D. (1986). Une sonde et un extracteur destinés & la récolte d’Acariens (Acari) dans les sphaignes
(Sphagnum spp.). Bull. Soc. Entomol. Suisse, 59, 283-8.

Borcard, D. (1988). Les Acariens Oribates des sphaignes de quelques tourbiéres du Haut-Jura suisse. PhD
Thesis, Université de Neuchdatel, Switzerland.

Borcard, D. (1991). Les Oribates des tourbiéres du Jura suisse (Acari, Oribatei): écologie. II. Les relations
Oribates — environnement a la lumiére du test de Mantel. Rev. d’Ecol. Biol. Sol, 28, 323-39.

Borcard, D., Legendre, P. and Drapeau, P. (1992). Partialling out the spatial component of ecological
variation. Ecology, 73, 1045-55.



52 Borcard and Legendre

Bray, R.J. and Curtis, J.T. (1957). An ordination of the upland forest communities of southern Wisconsin.
Ecol. Monographs, 27, 325-49.

Cancela da Fonseca, J.P. and Poinsot-Balaguer, N. (1983). Les régimes alimentaires des Microarthropodes
du sol en relation avec la décomposition de la matiére organique. Bull. Soc. Zool. France, 108, 371-88.

Garay, 1. and Nataf, L. (1982). Microarthropods as indicators of human trampling in sub-urban forests. In:
Urban Ecology (R. Bornkamm, J.A. Lee and M.R.D. Seaward, eds) Blackwell, Oxford. pp. 201-207.

Harper, P.-P. and Cloutier, L. (1985). Composition et phénologie de communautés d’insectes du lac Geai, lac
dystrophe des Laurentides (Québec). Natur. Canadien ( Revue d "Ecol. Systém.), 112, 405-15.

Hutchinson, G.E. (1957). Concluding remarks. Cold Spring Harbor Symp. Quant. Biol., 22, 415-21.

Isaaks, E.H. and Srivastava, R.M. (1989). Applied Geostatistics. Oxford University Press, New York.

Lebrun, P., van Impe, G., de Saint Georges-Gridelet, D., Wauthy G. and André, H.M. (1991). The life
strategies of mites. In: The Acari. Reproduction, Development and Life-history Strategies (R. Schuster and
P.W. Murphy, eds) Chapman & Hall, London.

Leduc, A., Drapeau, P., Bergeron, Y. and Legendre, P. (1992). Study of spatial components of forest cover
using partial Mantel tests and path analysis. J. Veg. Sci., 3, 69-78.

Legendre, P. and Fortin, M.-J. (1989). Spatial pattern and ecological analysis. Vegetatio, 80, 107-38.

Legendre, P. and Troussellier, M. (1988). Aquatic heterotrophic bacteria: modeling in the presence of spatial
autocorrelation. Limnol. Oceanogr., 33, 1055-67.

Legendre, P., Troussellier, M., Jarry, V. and Fortin, M.-J. (1989). Design for simultaneous sampling of
ecological variables: from concepts to numerical solutions. Oikos, 55, 30-42.

Legendre, P. and Troussellier, M. (1993). Origin of spatial structures in aquatic bacterial communities: From
hypotheses to numerical solutions. In: Trends in Microbial Ecology (R. Guerrero and C. Pedros-Alid,
eds) Proceedings of the Sixth International Symposium on Microbial Ecology (ISME-6), Barcelona, 6-
11 September 1992. pp. 353-8.

Lindeman, R.L. (1942). The trophic-dynamic aspect of ecology. Ecology, 23, 399-418.

Mantel, N. (1967). The detection of disease clustering and a generalized regression approach. Cancer Res., 27,
209-20.

Matthey, W. (1965). Signification de la butte a sphaignes dans I'évolution de la haute tourbiére. Comptes
Rendus Soc. Biogéog., 371-2, 119-30.

May, R.M. (1984). An overview: real and apparent patterns in community structure. In: Ecological
Communities: Conceptual Issues and the Evidence (D.R. Strong Jr, D. Simberloff, L.G. Abele and A.B.
Thistle, eds) Princeton University Press. pp. 3-16.

Plinski, M. and Magnin, E. (1979). Analyse écologique du phytoplancton de trois lacs des Laurenudes
{Québec, Canada). Canadian J. Bot., 57, 2791-9.

Quinn, J.F. and Dunham, A.E. (1983). On hypothesis testing in ecology and evolution. Am. Naturalist, 122,
602-17. '

Siepel, H. (1989). Objective selection of indicator species for nature management. Comptes—rendus du
Symposium ‘Invertébrés de Belgique’, pp. 415-18. ‘

Smouse, P.E., Long, J.C. and Sokal, R.R. (1986). Multiple regression and correlation extensions of the Mantel
test of matrix correspondence. System. Zool. 35, 627-32.

Southwood, T.R.E. (1987). The concept and nature of the community. In: Organization of Communities: Past
and Present (J.H.R. Gee and P.S. Giller, eds) Blackwell Scientific Publications, Oxford. pp. 3-27.
Stevenson, A.C., Birks, H.J.B., Flower, R.]. and Battarbee, R.W. (1989). Diatom-based pH reconstruction of

lake acidification using canonical correspondence analysis. 4mbio, 18, 228-33.

ter Braak, C.J.F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate
direct gradient analysis. Ecology, 67, 1167-79.

ter Braak, C.J.F. (1987a). The analysis of vegetation-environment relatlonshxps by canonical correspondence
analysis. Vegetatio, 69, 69-717.

ter Braak, C.J.F. (1987b). Ordination. In: Data Analysis in Community and Landscape Ecology (R.H.G.
Jongman, C.J.F. ter Braak and O.F.R. van Tongeren, eds) PUDOC, Wageningen. pp. 91-173.

ter Braak, C.J.F. (1988a). Partial canonical correspondence analysis. In: Classification and Related Methods of
Data Analysis (H.H. Block, ed.) North Holland Press, Amsterdam. pp. 551-8.



Environmental control and spatial structure 53

ter Braak, C.J.F. (1988b). CANOCO - an extension of DECORANA to analyze species-environment
relationships. Vegetatio, 75, 159-60.

ter Braak, C.J.F. (1990). Update notes: CANOCO version 3.10. Agricultural Mathematics Group,
Wageningen, The Netherlands.

Vannier, G. (1985). Mode d'exploitation et de partage des ressources alimentaires dans le systéme
saphrophage par les microarthropodes du sol. Bull. d’Ecol., 16, 19-34.

Wauthy, G., Noti, M.-I. and Dufréne, M. (1989). Geographic ecology of soil oribatid mites in deciduous
forests. Pedobiologia, 33, 399-416.

West, C.C. (1984). Micro-arthroped and plant species associations in two subantarctic terrestrial
communities. Qikos, 42, 66-73.

Wiens, J.A. (1984). On understanding a non-equilibrium world: Myth and reality in community patterns and
processes. In: Ecological Communities: Conceptual Issues and the Evidence (D.R. Strong Jr, D.
Simberloff, L.G. Abele and A.B. Thistle, eds) Princeton University Press. pp. 439-57.

Whittaker, R.H. (1956). Vegetation of the Great Smoky Mountains. Ecol. Monographs, 26, 1-80.

Discussion

DONALD E. MYERS

Department of Mathematics, University of Arizona

1. Overview

Spatial structure, spatial correlation, spatial dependence, spatial heterogeneity and spatial variabil-
ity are all terms that are used to denote some form of known or presumed relationship between a
variate of interest and geographical positioning. That is, the data is spatially located in one of
several possible senses. In some instances the variable represents a value for a region and in others
it may represent a measure at a point or small area/volume. If the variable of interest is additive
then these two perspectives can be merged. It will make some difference whether the variable(s) are
categorical, nominative or continuous. In most cases the objective is to quantify the spatial struc-
ture or spatial variability. Spatial structure is also related to interpolation methods. Because both
of these aspects are central to this paper it is useful to consider other methods for quantifying
spatial structure and alternative interpolation methods.

There are at least two ways to characterize spatial structure, one of which is to explicitly
incorporate spatial coordinates in the quantification of the spatial correlation. The authors have
used a second approach, implicit quantification by a multivariate analysis technique, canonical
correspondence analysis (CCA). While CCA does not specifically relate geographical position or
distance to correlations it has the potential for identifying factors contributing to the spatial varia-
bility. This is especially useful when those factors are not directly observable or measurable.
Similar or related techniques include principal components analysis, factor analysis and corre-
spondence analysis. Ordinary, i.e., non-canonical, correspondence analysis was first introduced
for categorical variables but has been extended and applied to continuous environmental data
by a number of authors. These are all data driven techniques in that there is no model assumed
a priori in order to perform the analysis. One disadvantage is that the method does not incorporate
an adjustment for the support of the sample; in this particular application the support would
correspond to the shape and volume of the cores. In general, variability will decrease as the
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support is increased especially in relationship to the geographical extent of the area sampled.
Another disadvantage is that the multivariate characterization of spatial structure does not
incorporate directional dependence.

2. Variograms

Alternatively, spatial correlation can be quantified by the use of a (spatial) autocorrelation func-
tion. The variogram, first introduced in the context of ore reserve estimation problems in mining,
has certain advantages over the autocorrelation function but is essentially comparable. The vario-
gram explicitly relates spatial correlation of a variable to itself in terms of the separation vector
between sample locations; it is also adaptable to changes in sample support. A further advantage is
that the variogram can then be used in the spatial interpolation stage. Estimation and modeling of
variograms is described in a number of standard references on geostatistics. The variogram also
can incorporate directional dependence.

3. Inverse distance weighting

Contour maps, using irregularly spaced data, are produced in two stages. First the data is inter-
polated to a regular grid and then the contouring algorithm produces the contour lines from the
gridded data. There are a variety of techniques that can be used to interpolate from irregularly
spaced data (locations) to a grid. Inverse distance weighting, IWD, was used by the authors. While
it is common to use the square of the distance in determining the weights, there is no intrinsic
reason for doing so. As was shown in Kane et al. (1982) the results may or may not be sensitive
to the choice of the exponent. IWD has a number of disadvantages. First of all it only incorporates
the spatial correlation between individual sample locations and the location to be interpolated.
Secondly IWD only incorporates distance and not direction in assigning weights to sample data.
It does not incorporate non-punctual sample support and does not provide for direct estimation of
spatial averages. Finally it is not an exact interpolator. It does have the advantage of not requiring
any model assumptions. While the geostatistical interpolator (kriging) does require some model
assumptions it does not have the disadvantages noted for IWD. For an overview of geostatistical
methods and available public domain software see Myers (1991).

4. Interpolation and contouring

Interpolation methods nearly always result in smoothing the data and hence reduce the variability.
In appraising the goodness of a contour map one may be tempted to assume smoothness is a
desirable characteristic but this may also be misleading. Some measures of the interpolation errors
would provide a better gauge of the goodness of a contour map. In particular when the data
locations are irregularly spaced the contour map will not be equally reliable in all parts. Unfor-
tunately IWD does not incorporate any measure of the interpolation errors and hence does not
provide a measure of goodness for the resulting contour maps. When contour maps are produced
from irregularly spaced data the reliability of any portion of a map is directly related to the density
of the data locations used in producing the map as well as the interpolation method. Geostatistical
techniques have the advantage of providing a measure of the variability of the interpolation errors;
other well-known techniques such as thin-plate splines are incorporated as special cases of the
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geostatistical interpolators. Geostatistical techniques have been extended to muitivariate data and
incorporate intervariable as well as spatial correlations.
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Discussion

H.J.B. BIRKS

Botanical Institute, University of Bergen

As an ecologist, I was particularly pleased to read Borcard and Legendre (1994) (hereafter B&L)
for several reasons. First, it provides a novel and exciting way of identifying and exploring, for the
purposes of hypothesis-generation, possible causes of ecological variation operative at a variety of
spatial scales. Second, it brings some ecological and geographical life into the display of ordination
results, so frequently presented in ecological papers as rather lifeless two-dimensional scatter piots
of site scores on axes 1 and 2, etc. Third, it shows that ordination and contour mapping, commonly
regarded by many ecologists as totally separate activities (but see, for example, MacDonald
and Waters, 1988) can be usefully combined to provide new, effective, and revealing displays of
ecological patterns. Fourth, B&L is a fine example of empirical environmental modelling in
community ecology. It starts with a simple ecological species-substrate model and progressively
improves on this by incorporating further explanatory variables to generate new and increasingly
more precise and realistic ecological hypotheses. It is thus a clear example of ‘the method of
successive approximation’ in statistical ecology.

The idea of using constrained ordination techniques such as canonical correspondence analysis
or redundancy analysis to detect spatial gradients in ecological data was first presented by ter
Braak (1987) and developed by Legendre (1990) and Hill (1991) with the use of quadratic or cubic
terms of the basic geographical coordinates. Borcard et al. (1992) exploited this type of analysis,
along with ter Braak’s (1988) partial constrained ordination techniques, to decompose the variance
in species-abundance data into four independent, additive components — a purely environmental
component (fraction a in Figure 4 of B&L), a spatially covarying environmental component (frac-
tion b), a purely spatial component (fraction ¢), and an unexplained component (fraction d). This
general variance-partitioning procedure for multivariate ecological ‘response variable-type’ data
has wide potential applicability in statistical ecology (Legendre, 1993). For example, it has now
been used to decompose the variance of plant abundances over a 10-year-period into spatial and
temporal components (ter Braak and Wiertz, 1993), the variation in late-glacial-polien strati-
graphical data from several sequences into within-sequence temporal and between-sequence



56 Borcard and Legendre

spatial components (Ammann et al., 1993), the variances in different biostratigraphical data-sets
into long-term and short-term temporal fractions (Lotter and Birks, 1994), and the total variation
in plant-distributional data into modern ecological and historical components (Birks, 1994).

In many fine-scale ecological investigations, such as the one presented by B&L, the purely
environmental fraction a may largely reflect local, site-scale ecological patterns determined by
local environmental factors. In contrast, the spatially covarying environment component b may
relate more to regional-scale ecological patterns influenced by environmental variables that covary
geographically when space is modelled as a linear, quadratic, or cubic trend-surface. It is less clear
what fraction ¢, the purely spatial fraction, might reflect ecologicaily.

It is not uncommon, as here, to find that a linear combination of geographical coordinates
‘explains’ the biological data remarkably well, without considering any specific direct or indirect
ecological variables (see also Hill, 1991; Birks, 1994). This suggests that species may share a
common spatial structuring with important explanatory environmental variables. This highlights
a major problem in the analysis of spatially-arranged ecological data (note that nearly all
ecological data are spatially arranged!), namely that spatial geographical and regional environ-
mental variables are often so highly correlated that they may be inseparable statistically (e.g.
Legendre and Fortin, 1989; Legendre and Troussellier, 1988). What is surprising in B&L's results
is that as much as 12.2% of the variance (fraction ¢) in their mite data is ‘explained’ by space
independent of ecological factors such as moisture, micro-topography, shade, or substrate type.
By comparison, local environmental variables independent of any spatial structure (fraction a)
only capture 13.7% whereas the spatially covarying regional environmental factors (fraction b)
explain 31% of the biological variance. A future task for community ecologists is thus to generate
(and subsequently test, if at all possible) hypotheses about the likely processes influencing the
12.2% pure spatial and, of course, the 43% unexplained fractions. B&L present in Table 3
possible rather generalised causal factors that could be invoked to explain the four variance
components. I found their possible causes for the 12% pure spatial and 43% unexplained variance
components under their general historical dynamics and environmental control and biotic models
vague and rather unconvincing, but that may simply reflect my total ignorance of oribatid mites
and their ecology! As a palaeo- and historical ecologist I was, however, comforted to see that
historical dynamics are included in their long list of possibilities. It is a constant source of surprise
to me how many ecologists persist in believing that ‘history is bunk!

The challenge is how to refine the interpretations of components (c) and (d). For this, further
exploration of B&L’s data is needed. I feel that additional contoured maps for the different com-
ponents (a, b, ¢) shown in Figures 4a, 4b, and 4c are needed to help explore the form of the spatial
patterns more fully. B&L and Legendre (1993) suggest that fraction ¢ might reflect spatial
population- or community-based processes, unmeasured abiotic environmental factors, or some
form of habitat disturbance in the past that is reflected today by the spatial structure of fraction
¢. I would like to see the spatial patterns of this fraction before evaluating these hypotheses.

I would also be fascinated to see contoured maps of the squared residual distance and the
percentage fit for individual sites on the first few ordination axes, one of the ordination diagnostics
optionally provided by ter Braak’s (1990) CANOCO 3.1x program. Perhaps not all samples are
equally well modelled in the (partial) constrained ordinations. It would certainly be important to
know and hopefully the readers’ mind could be reassured about the robustness of B&L’s results.

Turning to fraction d, the unexplained portion, why not map it too. If Borcard and Legendre did
a partial correspondence analysis ordination (partial the effects of the various environmental and
spatial variables as co-variables prior to an ordinary unconstrained ordination — see Bakker et al.
(1990) for an example of such a partial ordination), it would then be possible to map fraction d as
the site ordination scores, based on the residual variation in the mite data that is unexplained by
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the available spatial and environmental variables. Such maps might aid in suggesting ecological
hypotheses about the causes of the largest single component of the variance in B&L’s oribatid mite
data, namely the unexplained 43% fraction. Are there any coherent spatial patterns in this fraction
or are there seemingly random and/or spatially incoherent variations from site to site? Mapping the
spatial arrangement of this fraction might thus help to suggest whether it primarily represents
unmeasured but localised factors such as abiotic variables (e.g. silt content, nitrogen levels, redox
potential of the peat, etc.) and/or unmeasured (and unmeasurable!) biotic processes (e.g. behav-
ioural responses, predation, etc.) whose spatial structure cannot be modelled by a cubic trend-
surface, or whether it is largely stochastic variation.
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Rejoinder

PIERRE LEGENDRE and DANIEL BORCARD

Since we wrote the original paper (Borcard et al., 1992) describing the method for partitioning the
variance among spatial and environmental components, as well as the one published in the present
issue of the Journal of Environmental Statistics emphasizing various aspects of the interpretation of
the components and the need to look at maps to carry out this task in an intelligent way, the
method has been tried by us and by others on a variety of data sets and ecological situations;
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several new, exciting applications in papers that have just been submitted for publication are
brought to our attention for the first time in Professor Birks’ Discussion (above). Some of these
results were reported during the annual symposium of G.R.I.L. (Groupe de recherche interuniver-
sitaire en limnologie et en environnement aquatique) held on February 25 and 26, 1993, at the Station
de biologie des Laurentides of Université de Montréal. This meeting was the opportunity to raise
(Rasmussen, 1993) and discuss problems that may arise in the use of the method and to look for
solutions; some of these discussions cross-check with the points raised in Professor Myers’ and
Birks’ Discussions. » :

It is important to understand that the spatial polynomial, that we proposed as a method to
explicitly incorporate the spatial structure into our variance partitioning model, can capture only
the large-scale structures of the dependent variable under study if the polynomial of the geographic
co-ordinates (x and y) remains of low order, as it should. Indeed, this is but a multivariate appli-
cation of the old method of trend surface analysis first advocated by Student (1914)! When we first
thought of using this polynomial in the context of partial regression or partial canonical variance
partitioning, we were happy to have found at least one way of explicitly incorporating spatial
structures into ecological models. We never pretended that this method was appropriate for all
situations, being conscious of the fact that small-scale structures are not captured by this poly-
nomial. The method, however, seemed relevant to a whole category of problems that are of
concern to population and community ecologists, as shown by the examples that we analyzed in
the two above-mentioned papers.

The first analyses of a new data set should involve ‘structure functions’ and maps of various
kinds; Legendre and Fortin (1989) have summarized these approaches. Structure functions,
advocated by Professor Myers in his Discussion, include variograms and correlograms, univariate
or multivariate; this depends on whether one is looking at the spatial behavior of a single depen-
dent variable at a time, a single summary variable (principal axis, diversity measure, and so on), or
at the structure of the whole dependent multivariate data table of interest through multivariate
variograms (Bourgault and Marcotte, 1991) or multivariate Mantel correlograms (Sokal, 1986;
Legendre and Fortin, 1989). Structure functions allow to decompose spatial variability as a func-
tion of scale (distance classes) and to get an understanding of the scales at which important
variability occurs in the data set. In the same way, univariate maps of single variables may be
obtained by one of the contour mapping methods discussed by Professor Myers; maps of multi-
variate data may be obtained either through constrained clustering (see Legendre and Fortin, 1989,
for a review; also Bourgault et al., 1992), by co-kriging (Matheron, 1970; Myers, 1982, 1983) or
vector kriging (Young, 1987), or by separately mapping multivariate ordination axes. If these
preliminary studies show that variability is mostly large-scale, or if the hypothesis of interest
focuses on large scales (given the size of the study area), then the spatial polynomial may be useful
to express it in the model. (In other cases, the large-scale fraction of variability may be trivial and
the worker may have to extract it from the data in order to pursue the analysis on the residuals of
the trend-surface equation.) If it is found that small-scale autocorrelation is the fraction of interest
which ought to be included in the model, other ways should be found to take it into account in the
analysis (below).

Geometric anisotropy can easily be identified by computing directional variograms or correlo-
grams. Notice however that it does not affect the fraction of variability extracted by the spatial
polynomial. Proper identification of the various forms of anisotropy is important in contour
mapping by the geostatistical method of kriging, as well as for the proper understanding of the
spatial process having generated the observed structures.

The terms of the spatial polynomials originally proposed by Legendre (1990) are not indepen-
dent of one another. If the interpretation of the regression or canonical coefficients relating these
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terms to the community structure is of special interest, orthogonal polynomials should be used
instead of the classical polynomials. Orthogonal polynomials explain exactly the same amount
of variability as the classical polynomials from which they are built.

Small-scale spatial structures could be incorporated into models by various methods whose
development is now considered in P.L.’s laboratory; large-scale trends should have been extracted
from the data first. The first such method (Niyonsenga, 1993) consists of empirically estimating the
autocorrelation function and incorporating it as an explicit among-point (among-locality, p x p)
autocorrelation matrix in the computation of the regression or canonical analysis describing the
relation between the dependent and independent variables (Ripley, 1981; Haining, 1990).

In the second method that we have experimented with, the range of distances among the p points
is divided in distance classes. For each class, a locality-by-locality (p x p) weight matrix NM is
written, containing values (1/p;) for pairs of localities that are located within the given distance
class, and 0’s elsewhere; if p; is the number of first neighbours (or second neighbours, etc.) of object
i, then (1/p;) is the weight given to each of its neighbours under the assumption of equal contribu-
tion. Each such matrix can be called a Neighbourhood Matrix of order 1 (NM; for first-distance
neighbours), order 2 (NM, for second-distance neighbours), etc.; the large-distance neighbour
matrices, corresponding to distances that exceed the range of the variogram or correlogram, can
be discarded. Postmultiplying each such matrix by the vector y(p x 1) or matrix Y(p x n) of
observed values for the n dependent variable(s) produces a vector y'(p x 1) or matrix Y'(p x n)
giving the contribution, to each location, of the values of the dependent variable(s) from neigh-
bouring sites, according to the autocorrelation model: :

NM;-y =y, (1)
or
NM;-Y =Y] (2)

These vectors or matrices can now be used in a Borcard et al. (1992) partitioning as explicit expres-
sions of the effect of small-scale autocorrelation. Preliminary experimentation shows that, as
expected, the fraction of variability extracted using this method only partially overiaps the spatial
component extracted using the spatial polynomial and is thus complementary to it.

The need to map the various fractions of variation is emphasized in both Birks’ and Myers’
Discussions. Contour mapping is easily done for the spatially-structured fractions b and c. The
interpretation of fraction b is critical since it may involve two opposite processes, as explained
in Table 3 of the main paper: it may correspond either to a structuring of the dependent variable
which is due to the fact that the measured causal environmental variables are themselves spatially
structured, or to a structuring by other spatially-structured variables or processes, not included in
the analysis, which are causal to both the dependent and independent environmental variables.
Consider for example a river with a pollution gradient and a gradient in fish assemblages;
sampling has been carried out at various locations along the river. One is likely to find that a
large fraction of the community-pollution relationship will fall in fraction b. Is this a response
of the fish to the spatially-structured pollution gradient, or would we not find the same fish spatial
structure even without the poliution effect (in which case the structuring factor is the river con-
tinuum itself)? Professor Birks is right, of course, when he emphasizes the need for a thorough
analysis of the maps of the various components of fraction ¢. These maps are the first opportunity
for ecologists to examine a spatially structured, yet unexplained component of variation, and they
may be tremendously helpful in generating new ideas and hypotheses about the large-scale
phenomena that may have generated these structures. One should - not be surprised, however, to
find significant spatial variation remaining in the unexplained fraction c, given the limits of all field
ecological investigations.
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Mapping the non-spatially-structured fractions (a: non-spatially-structured environmental
variation) and (d: residual), is not an easy task: how can one map something which is not spatially
structured? We have argued quite a bit about that among ourselves over the past few months, and
with colleagues who were analyzing data using our method. We have come to the conclusion that
there is a need for such maps, but that these maps should not give a false impression of spatial
continuity. They could be drawn using either three-dimensional pin charts representing the values
measured at the sampling locations only, or influence (Thiessen, or Voronoi) polygon charts in
which all points closer to an actual sampling locality receive the same value as that locality, thus
creating surfaces with sharp discontinuities. But Professor Birks is right here: maps may help
identify important but unmeasured locally-operating environmental or historical factors that are
responsible for this residual variation.

In this short discussion, we have shown where the spatial polynomial stands in a general
process aimed at explicitly expressing spatial relationships in our ecological models. A preliminary
study of the data set is necessary to assess which part of the variability is small- or large-scale,
and whether the large-scale component is of interest to the ecological hypotheses under study, or
whether it is trivial and should be extracted from the data in order to allow modeling the
small-scale effects. Directions of research have been proposed in order to incorporate small-scale
spatial structures into models. The next step needed to turn this approach into a flexible statistical
tool for environmental modeling is to break the three-matrix ceiling (one dependent and two
independent matrices describing environmental and spatial components) and learn how to
combine the information from several independent variable matrices in such a model; typically
these matrices may represent several types of environmental components (biotic and abiotic, for
instance) as well as small- and large-scale spatial effects. At the present moment this requires
clumsy combinations of all matrices of interest into various triplets, with possible loss of precision
during the partitioning, since the method available is limited to the study of three matrices only at a
time.
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