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T h e  M u l t i v a r i a t e  ( C o ) V a r i o g r a m  as a S p a t i a l  
W e i g h t i n g  F u n c t i o n  in C l a s s i f i c a t i o n  M e t h o d s  1 

Gilles Bourgault, z Denis Marcotte, z and Pierre Legendre 3 

The multivariate variogram and the multivariate covariogram are used as spatial weighting functions 
for forming spatially homogeneous groups automatically. The groups are created after either de- 
flating similarities between distant samples with the multivariate covariogram or by inflating dis- 
similarities between distant samples with the multivariate variogram. These approaches can be seen 
as generalization o f  the Oliver and Webster proposal. Two data sets show the efficiency of  the two 
weighting functions when compared to the classical approach which does not take spatial infor- 
mation into account. In one case study, the weighting of  similarities by the multivariate covariogram 
showed more interpretable results than the weighting of  dissimilarities by the multivariate vario- 
gram. 
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INTRODUCTION 

Several authors have recognized the importance of taking spatial information 
into account in cluster analysis for geographically referenced samples. Oliver 
and Webster (1989) reviewed the most important work that had been carried 
out on this subject and proposed an original solution to the problem of forming 
spatially homogeneous groups. Their solution was to weight the dissimilarities 
between samples by means of the variogram: 

v (h) 
d* = d~ (C + Co) (i) 

where 3' (h) = variogram model fitted to the experimental  variogram 3'* (h), (C 
+ Co) = var iogram's  sill (note that since C + C o is a constant, it has no 
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influence on the resulting classification), d/j = original dissimilarity between 
samples i and j ,  d* = modified dissimilarity between samples i and j ,  and 

1 
= - -  ~ ( z ( x l )  - z ( x j ) ) 2  (2 )  23'* (h) N h (i,j)rOh 

where z(xi) = sample's value at location xl, h = geographical displacement 
vector, D h = collection of sample pairs for which Ilxl - xj II ~ [llh + ah l l ] ,  
and Nh = cardinality of Dh. 

For all monotonic increasing variograms, the closer the samples are spa- 
tially, the more the dissimilarities decline. With bounded models with finite 
range, a, there is no modification for samples spaced at a geographic distance 
equal to or greater than the range. One result of this is to downweight the large 
dissimilarities that occur between close neighbors. The main difficulty of this 
approach lies in the choice of a variogram model, which is a univariate spatial 
function, to represent spatial structure of the dissimilarities (which are generally 
a multivariate measure). To take into account the multivariate character of dis- 
similarities, Oliver and Webster (1989) proposed using the variogram of the 
first principal component of the PCA, or to use a variogram that is a compromise 
between the variograms of the first few principal components. 

We propose either to use the multivariate covariogram as a weighting func- 
tion to decrease (relatively) similarities of distant samples or to use the multi- 
variate variogram as a weighting function to increase (relatively) dissimilarities 
between distant samples. In addition, we propose calculating the multivariate 
(co)variogram in the same metric used to calculate the (dis)similarities in order 
to obtain a multivariate function which describe the spatial variation of 
(dis)similarities. Examples using the various approaches are presented for com- 
parison. 

The method presented in this paper is also an alternative to the clustering 
methods that impose a strict spatial contiguity constraint, as proposed by many 
authors (among others, Ray and Berry, 1966; Lebart, 1978; Monestiez, 1978; 
Lefkovitch, 1980; Legendre and Legendre, 1984; Legendre, 1987). The differ- 
ence between these and our method is briefly discussed below. 

M U L T I V A R I A T E  V A R I O G R A M  

Mackas (1984), Young (1987), and Harff and Davis (1990) have already pro- 
posed the use of multivariate variograms in different ways. Mackas (1984) com- 
puted a multivariate variogram, based upon chord metric, to describe multivar- 
iate spatial structure of a planktonic community. Harff and Davis (1990) suggest 
a multivariate variogram, based upon the Mahalanobis metric, to krige a vector 
of regionalized variables. This makes it possible to obtain a regular grid where 
p variables are estimated at each node without having to resort to a cokriging 
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system. These authors then proceed with a Bayesian-type classification of the 
nodes on the grid, and define geographically compact groups. 

Bourgault and Marcotte (1991) formalized the multivariate variogram as it 
applies to stationary random functions, demonstrating the relation that exists 
between the multivariate variogram and the multivariate autocovariance func- 
tion. This is precisely the same as the relation encountered in univariate geo- 
statistics. For a regionalized vector o fp  stationary variables and for every metric 
M, the multivariate covariogram and the multivariate variogram are defined as 
follow: 

multivariate covariogram 

K(h) = E[(Z(x) - ~t) M ( Z ( x  + h) - ~t)'] (3) 

multivariate variogram 

2G(h) = E[(Z(x) - Z(x  + h)) M(Z(x)  - Z(x  + h)) t] (4) 

where Z(x) = row vector o f p  second-order stationary random functions, la = 
E [ Z  (x)], and M --- a p × p positive-definite symmetric matrix used as metric 
in the calculation of (dis)similarities. (Examples of such metrics are: the identity 
matrix (Euclidean), the inverse of  the variance-covariance matrix (Mahalan- 
obis), a diagonal matrix with the inverse of the standard deviations, the chi- 
square metric, etc . . . .  The interested reader is referred to Sneath and Sokat 
(1973) for more details about metrics). Assuming second-order stationarity, the 
multivariate autocovariance function is related to the multivariate variogram by: 

K(h) = G ( ~ )  - G(h) (5) 

where G(oo) = sill of  the multivariate variogram. From Eq. (4), G(0) = 0, 
thus K(0) = G(oo). 

Joumel (1988) recognized the traditional univariate variogram (2) as a dis- 
tance squared measure, and its counterpart, the univariate covariogram, as a 
proximity (or similarity) measure. Thus, the multivariate variogram (Eq. 4) 
represents the mathematical expectation of a multivariate dissimilarity squared 
measure, and the multivariate autocovariance function (Eqs. 3 and 5) represents 
the mathematical expectation of a multivariate similarity measure. 

As in the Mackas (1984), the multivariate variogram is estimated by av- 
eraging multivariate dissimilarities (squared) in a similar way to the traditional 
variogram (Eq. 2): 

1 
= -  Z d~ (6) 2G* (h) Nh (i,j)~Dh 

where d 0. = dissimilarity between samples i andj  calculated with a given metric, 
and Nh and Dh are as defined previously. 
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We propose to modify the similarity measure between individuals (com- 
puted from the multivariate vectors of observations), based on the Oliver and 
Webster (1989) proposal, by means of the multivariate autocovariance function: 

,2 = S 2 K(h) (7) Sij 
Alternatively, one may modify the dissimilarities between individuals with 

the multivariate variogram function: 

,2 = d 2 G(h) (8) de 

Note that this latter approach is slightly more general since it allows for mul- 
tivariate variograms without sills. The spatial modifier defined by Eq. (7) is 
stronger in the sense that it favors formation of groups which are more spatially 
homogeneous. With a stationary model when samples are separated by a distance 
exceeding the range, a null similarity is computed from Eq. (7), whereas dis- 
similarities are simply multiplied by a constant in Eq. (8). Both methods perform 
correctly when a pure nugget effect is modeled. Spatial modifier (Eq. 7) will 
compute null similarities, and either leave unchanged the initial random partition 
formed by non-hierarchical (N-H) clustering algorithm or will not do any group- 
ing with the hierarchical algorithm. This is coherent with the meaning of the 
nugget effect: that the size of the spatial structures are smaller than the sampling 
mesh. Therefore, we cannot observe any groups within the data set. On the 
other hand, spatial modifier (Eq. 8) will modify all dissimilarities by a constant, 
the clustering will be identical to the one performed on original dissimilarities 
in the absence of any spatial information. 

The new (dis)similarity matrix can serve as a starting point for any hier- 
archical or non-hierarchical (N-H) clustering algorithm. We used a N-H clus- 
tering algorithm where the sample-group (dis)similarity is computed as the arith- 
metic average of the (dis)similarities between the sample and all the samples of 
the group considered. The N-H algorithm used is the following: 

Step 0: An initial random partition with k groups (provided by the user) is 
performed. 

Step 1: For each sample, the modified (with Eqs. 7 or 8) (dis)similarity is 
calculated with all the other samples; the average (dis)similarity is 
computed for each of the k groups. The sample is assigned to the 
group with the smallest average dissimilarity or greatest average 
similarity. 

Step 2: If no samples changed assignation in step 1, then the algorithm is 
stopped. Otherwise we go to step 1 for the next iteration. The 
algorithm can also be stopped after a fixed number of iterations or 
when the average sample-group (dis)similarity does not improve 
sufficiently. 
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(In the two cases studied below, the algorithm was stopped after no change in 
group membership was obtained over a full iteration). 

EXAMPLE 1: LAKEVIEW MOUNTAINS 

The data selected to illustrate the various approaches were taken from the 
study by Morton et al. (1969) of the batholite in the Lakeview Mountains region 
of California. These data result from the analysis of 147 rock samples for Na, 
Ms, A1, Si, K, Ca, and Fe. The samples were spread over a square grid 
(650 m x 650 m). Morton et al. (1969) observed that the geochemical variations 
revealed an aureole structure, which consists of a marie core bordered with 
felsite. David and Dagbert (1974) also obtained an aureole pattern for the first 
factor of a correspondence analysis performed on these data (Fig. 1). This factor 
sets Fe, Ms, and Ca opposite to Si and K: the center of the batholite is rich in 
Fe, Ms, and Ca, while the periphery is rich in Si and K. 

For clustering, the variables were standardized, and the similarities were 
calculated using: 

S~.= 2 " m a x  - -  (9 )  

where D 2. = Mahalanobis distance between samples i and j ,  

D/~ = ( z ( x i )  - z ( z j ) )  C - 1  ( z ( x i )  - z ( x j ) )  t ( 1 0 )  

D max2 = max (D~) with z (x i) = row vector of p variables observed at location 
xi, and C -1 = inverse of the experimental variance-covariance matrix. 

To facilitate the comparison between different clustering approaches, we 
fixed the partitioning to have six groups. Figure 2 shows the map obtained by 
a N-H clustering of the original dissimilarities, which reveals dispersed, non- 
contiguous groups. This map also indicates that there is a tendency to form a 
fairly homogeneous central group (#5). The arrangement of the groups suggests 
the presence of a concentric spatial structure, but the picture is far from clear. 

The multivariate spatial structure of the data is described by the omnidi- 
rectional experimental multivariate variogram shown as the plotted points in 
Fig. 3. This multivariate variogram is calculated according to Eq. (6) with M 
= C -1 (the Mahalanobis metric; C is the variance-covariance matrix). It is 
modeled as an isotropic spherical variogram with a range of nine units (1 unit 
= 650 m), a sill of 2.4 and a nugget effect of 5.0. This multivariate variogram 
was used to modify the Mahalanobis distances between samples using Eq. (8), 
whereas the multivariate covariogram was used to modify (using Eq. 7) the 
similarities (calculated with Eq. 9). 

Figure 4 shows the maps obtained by N-H clustering on the modified 
dissimilarities (4a) and the modified similarities (4b). We find that there are six 
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Fig. 1. Isarithmic map of the first factor of a correspondence analysis of the Lakeview 
Mountains data obtained by kriging (grid is 650 m × 650 m). 

compact groups, five of which are located toward the edges around a central 
group. The results for both maps are practically identical, but the central group 
obtained with the modified similarities is slightly smaller than the one obtained 
with the modified dissimilarities. The dendrogram in Fig. 5, constructed from 
a matrix of Mahalanobis distances between the vectors of averages representing 
the groups, indicates that the groups toward the periphery are more similar to 
each other than they are to the central group. These maps are a good represen- 
tation of the known aureole structure. 

EXAM P LE 2: S C H E F F E R V I L L E  

For this example, 448 samples of lake-floor sediment were taken from an 
area about 50 km north of Schefferville, Qu6bec. The samples were collected 
by the Ministate de l 'Energie et des Ressources du Qu6bec (Beaumier, 1987), 
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Fig. 2. Map of groups obtained by N-H clustering on original dissimilarities 
for the Lakeview Mountains data (coordinates are in grid units). 
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Fig. 3. Experimental multivariate variogram, calculated using Ma- 
halanobis metric, on the Lakeview Mountains data (1 unit on the 
abscissa = 650 m). 

and analyzed for 38 elements. Only A1, Fe, K, and Mg were used in this 
analysis, since they represent the most important lithological variation. Figure 
6 shows the general geology of the studied area. The main feature of the geo- 

logical pattern is a stratification oriented at N32°W; five geological formations 
may be identified. The formation at the extreme west of the map consists es- 
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Fig. 4. Maps of groups obtained by N-H clustering on dissimilarities modified 
by (a) ~e multivariate vafiogmm, and (b) on similarities modified by the as- 
sociated multivariate covafiogmm (cooNinates are in grid units). 

sentiaUy of  igneous mafic rock (basalt and gabbro). The formation to the east 
o f  the map is also composed of  igneous mafic rock, and contains a band of  
ultramafic rock (periodotite). The central formation is composed of  igneous 
mafic rock, too, but it has been covered by considerable glacial deposits along 
the length of  the stratigraphy. The igneous mafic rock formations are separated 
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Fig, 6. General geology of the Schefferville area (coordinates are in 
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by sedimentary formations (sandstone, greywacke,  conglomerate) (Dimroth, 
1978). 

We have used standardized logarithms o f  the elements A1, Fe, K, and Mg 
to calculate the dissimilarities. The original similarities were calculated using: 
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S~= 2 dma x - -  d E (11 )  

where d U = distance (in the variable space) between samples i and j with the 
identity metric, and dma x = max (d/j). The partitioning was fixed at five groups, 
which corresponds to the number of geological formations (Fig. 6). 

Figure 7 shows the map of the groups obtained by N-H clustering without 
modifying the dissimilarities. These groups are dispersed and intermingled. The 
map is a poor representation of the geology described in Fig. 6. 

Figure 8 shows the experimental multivariate variograms calculated for two 
orthogonal directions, using the identity metric. A spherical variogram model 
with geometric anisotropy is adopted. Largest range (15000 m) and shortest 
range (9000 m) respectively occur along (N32W) and across (N58E) the stra- 
tigraphy. 

Figure 9 shows the map obtained by modifying the dissimilarities using the 
multivariate variogram anisotropic model. Groups 1, 3, and 4 are spatially more 
homogeneous than they were before; however, the link with the known geology 
remains uncertain. 

Figure 10 shows the map obtained by modifying the similarities using the 
multivariate covariogram anisotropic model. This time, the groups are kept well 
apart from one another, and they reflect the anisotropy of the geological pattern 
very well. This is the map that compares best with the geological map. The 
boundary between the two formations to the west of the map is well defined by 
the classification (5-3, Fig. 10); the other boundaries, however, do not corre- 
spond exactly to those of the geological map. The formation to the east of the 
map is divided into two groups (1 and 4), which is probably caused by the 
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Fig. 7. Map of groups obtained by N-H clustering from the original 
dissimilarities of the Schefferville area (coordinates are in kilometers). 
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influence of  the band of ultramafic rock contained in that formation. The ultra- 
mafic rocks are associated with group 1. The group 1 samples in the southern 
part of the sedimentary formation in the eastemmost section of  the map come 
from a lake that is fed by a river that cuts through the ultramafic band. The 
central formation contains groups 2 and 3. The lakes in this formation have 
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Fig. 10. Map of the groups obtained by N-H clustering on the sim- 
ilarities modified using the anisotropic multivariate covariogram of 
the Schefferville area (coordinates are in kilometers). 

probably received sediments from many different sources, such as igneous mafic 
rocks and glacial deposits, which makes it difficult to classify them spatially. 

In the absence of a perfect geological image, the map of the groups modified 
by the multivariate covariogram is the one which leads to the best geological 
analysis. In knowing that there are two major geological families in this region, 
igneous mafic rocks and sedimentary rocks, a second N-H clustering with only 
two groups was performed. 

Figure l la shows the map obtained after the dissimilarities had been 
weighted by the multivariate variogram, and Fig. 1 lb shows the map obtained 
after the similarities had been modified by the multivariate covariogram. A 
comparison of these two maps reveals, once again, that the groups obtained 
from the weighted similarities are more spatially homogeneous. In Fig. 1 la, 
group 1 combines more readily with the igneous rock, and group 2 with the 
sedimentary rock and with the zone of glacial deposits. The groups in the map 
of Fig. 1 lb delimit very well the boundaries between the igneous mafic rocks 
and the sedimentary formations to the east and to the west of the map. The 
igneous formation at the center of the map does not appear, but is combined 
with the two sedimentary formations (group 1), possibly because of the influence 
of the glacial deposits. It should be noted here that the weighting of similarities 
by the multivariate does not preclude that samples which are very far apart 
geographically be joined together (group 2), even if the distance between these 
samples is greater than the range (the western part of group 2 is located more 
than three times the range from its eastern part). This is possible because the 
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Fig. l l .  Maps of the groups obtained by N-H clustering, for two 
partitions only: (a) on dissimilarities modified using the anisotropic 
multivariate variogram, and (b) on similarities modified using the 
anisotropic multivariate covariogram of the Schefferville area (coor- 
dinates are in kilometers). 

average similarity remains large over all the samples o f  these two geological  
formations, in spite o f  the large number of  null similarities for the pairs of  
samples formed between these two formations. Weighting dissimilarities by the 
multivariate variogram can also lead to similar results although this was not 
observed here. 
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DISCUSSION AND CONCLUSIONS 

This work was triggered by a suggestion of Legendre (1987) to weight the 
dissimilarity matrix values by a linear function of the geographic distances among 
points before clustering. The proposal of Oliver and Webster (1989) is a more 
sophisticated way of reaching the goal. The present study describes another 
improvement of the same method, that integrates the multivariate nature of the 
data most often used for clustering. 

The multivariate variogram is a function of the spatial structure that has all 
the attributes sought by 0liver and Webster (1989). It is a function of the data, 
describing their regionalization while taking into account the spatial correlations 
among the variables, in accordance with the metric used. It is no longer nee- 
essary to perform a principal components analysis to find a compromise vario- 
gram, and the weighting conforms to the metric selected for calculating the 
(dis)similarities. 

The spatial constraint induced by the multivariate variogram is not always 
sufficient to produce a clear picture of the groups under study. In our case 
studies, the weighting of the similarities by the multivariate covariogram yields 
better results (more spatially contiguous and better related to the known geology) 
than those obtained by spatial weighting of dissimilarities with the multivariate 
variogram. 

There may be some concern that the spatial weighting introduced by the 
multivariate covariogram is so strong that it could impose spatially homogeneous 
groups even when this is inappropriate, since its chief effect is to downweight 
the similarities that occur between distant samples. This would be easy to detect, 
however, by varying the initial partitioning (N-H method) for a fixed number 
of groups; with non-spatially-organized data, one would expect significant dif- 
ferences between the groups obtained for each initial partitioning. Also, for such 
data, the nugget component of the multivariate variogram should be large. 

In the case studies presented, we obtained better results, i.e., more in 
agreement with known geology, with spatial modifier Eq. (7). It may be that in 
other contexts, or with different metrics or different clustering algorithms, spatial 
modifier Eq. (8) would prove more useful. The choice of one or the other may 
rest, in the end, on our perception of how much spatial homogeneity the groups 
should exhibit. If the groups are expected to be spatially very homogeneous or 
compacts, then Eq. (7) is more appropriate. If the groups are expected to be 
intermingled to a certain degree, then Eq. (8) is preferable. 

Compared to the clustering methods that impose a strict constraint of spatial 
contiguity and necessarily lead to the formation of geographically unique groups 
of observation points, our method of weighting similarities or dissimilarities 
possesses two advantages: first, it is computationally simpler, since the inclusion 
of the geographic information can be done as a pre-treatment, prior to the 
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clustering itself, which can then be obtained from standard, unmodified clus- 
tering programs; second, it may produce disconnected groups of  similar objects,  
as was the case in Fig. 1 lb  (this grouping was obtained three times out o f  ten, 
starting with different initial random partitions). 

When  only the intrinsic hypothesis can be used (i .e. ,  the multivariate co- 
var iogram does not exist),  the spatial weighting of  dissimilarit ies could be done 
with the multivariate variogram with Eq, (8). Pseudo-covariance models such 
as: constant-G(h)  are to be avoided since the classification results will depend 
on the choice o f  the arbitrary constant. When the intrinsic hypothesis is not 
fulfilled (i .e. ,  the multivariate variogram does not exist),  one may define a 
multivariate generalized covariogram in the same way as the multivariate 
variogram. However ,  it could be preferable to eliminate the effects o f  the phys- 
ical causes responsible for the trends before doing any classification. 

One o f  the referees pointed out that a good strategy to determine the number 
o f  groups could be to use a two-stage procedure. First use an N-H clustering 
with spatial modifier Eq. (7) or (8) and a large number of  groups to obtain 
spatially contiguous groups. Second, perform a second classification or a mul- 
tivariate analysis of  the mean vectors of  these groups without spatial weighting 
to cluster groups that are similar in the variable space but geographically distant. 
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