
ELSEVTER Journal of Microbiological Methods 26 ( 1996) 225-236 

Journal 
ofMicrobiological 
Methods 

A graph-theory method to establish serological relationships within 
a bacterial taxon, with example from Porphyromonas gingivalis 

Philippe Casgraina,*, Pierre Legendre”, Jean-Louis Sixoub, Christian Mouton’ 

‘LkQmrtemetzt de Sciences Biologiques. Universite’ de Mm&&l, C.P. 6 128. succ. Cenrre-ville. Montr&l, Quibec. H.?C .?J7. Canada 
hI?q:quipe de Biologic Buccale, Universit& de Rennes- 1. ,?, pluce Pasteur. F-_3SOOO Rennes, France 

‘Groupe de Recherche en Ecologic Buccale, FacultP de mtfddecine dentaire, Uni\~ersit@ LavaI, Sainte-Fey. Quibec. GIK 7P4. Canadu 

Received 30 August 1994; revised 22 April 1996: accepted 22 April 1996 

Abstract 

This paper develops a rationale for transforming serological data obtained by indirect immunofluorescence (IF) into a 

meaningful character-state matrix, and uses this matrix for numerical phylogenetic analysis. Typically, immunofluorescence 
data come in square asymmetrical matrices; columns correspond to strains used for adsorption and rows to strains used in the 

IF test. Such matrices can be decomposed into a symmetric and a skew-symmetric part. We first show that all pertinent 

biological information needed to reconstruct a phylogeny lies in the skew-symmetric component. Then we show how to 

transform the skew-symmetric matrix into a character-state tree, and how to obtain a binary character-state matrix from it. 

The character-state matrices obtained for different hyperimmune serum antibodies are assembled into a total character-state 

matrix, on which phylogenetic analysis is conducted. The data that motivated this methodological development concern 

Porphyronzonas gingivalis, a major pathogen in adult periodontitis. Various proposals have been put forward in the literature, 
concerning the number of major serogroups found in this taxon. Six human and two animal strains of P. gin&As were 
subjected to serotyping and to the phylogenetic analysis described above. Using a test of statistical significance recently 
developed to compare independently-obtained phylogenetic trees, or to compare hypotheses to trees, we show that our results 

best fit the hypothesis that there are three groups of serotypes, one animal and two human. Alternate hypotheses are not, or 
less strongly supported by our data. The algorithms developed to implement the new phylogenetic analysis method are 

presented in appendices. 

Keywords: Graph theory: Immunofluorescence; Phylogenetic analysis; Po@zyromonas gingivalis; Serology; Triple-permuta- 
tion test (TPT) 

1. Introduction 

When doing serotyping studies, one is quickly 
submerged by the amount of collected data, since it 
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increases as the cube of the number of strains. For 

instance, the complete set of homologous and hetero- 
logous adsorptions for 8 strains contains 512 data 

points; 12 strains contains 1728 and 30 contains 

27 OOO! Therefore, extracting all the relevant in- 
formation from this massive data set becomes a 
daunting task, which few scientists are likely to 

complete. 
Porphyromonas gingivalis is considered a major 
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pathogen in adult periodontitis; for an up-to-date 

review see [l]. Among I? gingivaEis isolates, an- 

tigenic heterogeneity was demonstrated by several 

serotyping studies. The proposed numbers of serog- 

roups are two [2-51, three [6,7] or four [8,9]. Even if 

these studies show considerable disagreement, they 

did bring valuable information. One of them [5] 

formally recognized the basic separation of animal 

and human biotypes; others have recognized the 

distinction between strains of human origin that are 

virulent or non-virulent in an experimental model. 

Recent phenotypic [lo] and genotypic [ 11,121 

studies also recognized the human-animal dich- 

otomy. 

The purpose of the present paper is to develop a 

rationale for transforming indirect immunofluores- 

cence (IF) serological data into a meaningful charac- 

ter-state matrix, and to show that this matrix can be 

used as the basis for numerical phylogenetic studies. 
P. gingivalis will be our case study. 

Since the actual number of serogroups in P. 
gingivalis is still a subject of controversy, we will 

also show how different hypotheses found in the 

literature can be confronted to the results of our 

phylogenetic analysis, using a recently-developed 

statistical test for comparing additive trees 

(phylogenies). 

2. Materials and methods 

2.1. Biological protocol 

Eight strains, two of animal origin and six human 

isolates, were selected from our collection to en- 
compass a large biological and geographical diversi- 

ty. All strains were identified to species level using 
conventional physiologic and biochemical criteria, 

and the identification was confirmed through gas- 

liquid chromatography analysis of the cellular fatty 
acids [lo]. Hyperimmune serum to each strain was 
produced by intravenous injection of formalinized 

whole cells in rabbits, as described by [ 131 and 151. 
These aliquots of the hyperimmune sera were pro- 

cessed through homologous (same strain as injected 
to the rabbit) and heterologous (some other strain) 
adsorption. The number of reactions performed for 
heterologous adsorption was determined by the 
number of adsorptions needed to extinguish the 

reactivity by homologous adsorption. Adsorption of 

each serum on bacteria was performed by mixing a 

volume of serum, diluted 150, with an equal volume 

of bacterial suspension at 109 formalin-killed cells/ 

ml, followed by incubation for 60 min at 37”C, then 

12 h at 4°C. The samples were centrifuged at 5000 X 

g for 15 min, the pelleted bacteria were discarded, 

and the efficiency of the adsorption was evaluated by 

IF. 

Eight matrices corresponding to the eight rabbit 

antisera were thus generated. In each one, the 

columns correspond to the strains used for the 
‘adsorbed sera’, while the rows represent strains 

tested by IF. The IF results were recoded as ‘0’ for a 

negative reaction, ‘1’ for a variable, weak reaction 

(inconsistently-reproducible results), and ‘2’ or ‘3’ 

for serological reactions of increasing intensity; this 

is a recoding of the reaction classes of [ 131. Our data 

matrices are presented in Table 1. 
In a serological study such as this one, the 

objective is to determine how closely the various 

strains are related to one another in terms of their 

surface antigens. The adsorption on homologous or 

heterologous bacteria removes the antibodies that 

have avidity to the bacterial strain originally used to 

produce the hyperimmune serum. After centrifuga- 
tion, there remains only, in the supernatant, those 

antibodies that do not have enough avidity for the 

surface antigens of the adsorbing strain to bind with 

it. The IF test shows the intensity of the serological 

reaction between the residual antibodies in the 

adsorbed serum and the test strains. 

If the laboratory procedure has been carefully 

carried out, it is expected that a serum processed 

through homologous adsorption should produce a 
negative IF reaction on the homologous strain. 

Moreover, none of the other strains tested by IF 
should react with this adsorbed serum. Therefore, 

each of our matrices should have zeroes in its 
diagonal and in one of its columns. The numerical 

analysis described below does not take the diagonal 
into account; it is merely used as a quality control. 

2.2. Biological information needed to construct the 
skew-symmetric matrix 

Assume that an antigen is characteristic of the 
surface of a given bacterial strain. A bacterial cell of 
that strain will bind the corresponding antibody in 
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Immunofluorescence data matrices. Matrix names refer to the hyperimmune sera (the criteria). Matrix columns correspond to the strains used 

for adsorption. and rows to strains in the IF test 

anti-ATCC 494 17 anti-ATCC 33217 

ABCDEFGH ABCDEFGH 

A00000000 A00022232 

BOOOOOOOO B30232333 

c00000000 C20132333 

DOOOOOOOO DO0002223 

EOOOOOOOO E30320323 

FOOOOOOOO F00000022 

GOOOOOOOO G20322222 

HOOOOOOOO H20122220 

anti- 17A3 

ABCDEFGH 

A13011132 

B20220222 

C21038322 

DO0802802 

E.32220233 

FOOOOOO22 

(332220282 

H22222300 

anti-W50 

ABCDEFGH 

A02101021 

BOO000022 

C22010033 

D22000022 

E22010022 

F333220.73 

G22220212 

H22000010 

anti- 16.1 

ABCDEFGH 

A02030322 

B20021233 

c33033333 

D13003332 

E32030333 

F02020022 

G2101 I102 

H23022321 

anti-T??* 

ABCDEFGH 

A02012203 

B00021802 

C22020303 

D22100202 

E22020203 

FOI 000000 

G22220202 

H33332313 

anti-A7A l-28 

ABCDEFGH 

A03202233 

BIOI 10022 

Cl 2002223 

D33303333 

E03200122 

Fl 0000020 

Gl 11 II 11 1 

H12101110 

anti-Wolf I. I* 

ABCDEFGH 

A01012200 

BOO020200 

C33032320 

D11001200 

E20020200 

FOOOOOOOO 

G2 I220200 

H33332330 

Letter codes: A. strain ATCC 49417; B, ATCC 33277; C, 16.1; D, A7Al 28; E, 17A3: F. W50; G, T22*: H, Wolf I. I*. Numerical codes for 

the serological reactions: 0, no reaction; I, faint; 2. some reaction, close to positive reaction threshold; 3, positive reaction; 8, missing data. 

All strains represent human P. gingivalis isolates, except f*) which are animal isolates: T22 from a cynomolgus monkey. and Wolf 1 .l from 

a wolf. 

the adsorption process. Centrifugation should pellet 

all bacterial cells and the bound antibodies to the 

bottom of the test tube and therefore deplete the 

hyperimmune serum of these specific antibodies, 
provided that bacterial cells are added in sufficient 

number. 

There are two cases where one should expect a 
negative IF reaction. The first one occurs when a 
strain is reacted with the serum previously processed 

through homologous adsorption; the corresponding 
data column will be filled with zeroes. 

The second case is observed when the strain used 
in the IF test was also used for heterologous ad- 

sorption. The matrix diagonals should also be filled 
with zeroes. 

Four other, more informative cases can be de- 
scribed, considering two bacterial strains ‘A’ and 

‘B’, they are summarized in Table 2. 
In the first case, strain ‘A’ (columns of Table l), 

used to create the adsorbed serum (the ‘criterion’), 
shares a large set of antigens with the immunizing 
strain ‘B’, i.e. the two strains are closely antigenical- 
ly related. The heterologous adsorption therefore 

leaves little antibodies for the IF-tested strain B 

(rows of Table I) to react with. The expected IF 

reaction (Co1 A/Row B) is weak. Conversely, when 

B has little antigenic relatedness with A, there is 

plenty of antibodies left for the now IF-tested strain 

A to react with and the IF reaction (Co1 B/Row A) is 

strong. Both observations indicate that, from a 

serological point of view, A has more antigenic 
determinants than B; so one can express that rela- 

tionship using either set theory: A contains B, or 
directed graphs: A-+B. 

Reversing the names of the strains (B sharing a 

Table 2 

Expected IF reactions for various criterion (antibody) avidities. 

according to strain relatedness 

Case Relatedness with Expected IF reaction 
no. immunizing strain in matrix 

A B Co1 A/Row B Co1 B/Row A 

1 High Low Weak Strong 
2 Low High Strong Weak 
3 High High Weak Weak 
4 Low Low Weak Weak 
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large set of antigens with the criterion and A sharing 

little) corresponds to the second case, B+A, which 

is the opposrte of the first. 

The third and fourth cases are obtained when A 
and B both share either a large or very little set of 

antigens with the criterion. In these two cases, it is 

easy to show that the IF reaction should be weak at 

all times, either (a) because there is very little left to 
react with, or (b) because the strain used in the IF 

test has only a distant relationship with the criterion. 

We code A = B when one cannot say which of the 

two strains has the larger antigenic repertoire. 

2.3. The skew-symmetric matrix 

The square data matrices in Table 1 have the 
property that corresponding cells above and below 

the diagonal do not necessarily contain the same 
value; for that reason, they are called non-symmetric. 

Matrix algebra tells us that any non-symmetric 

matrix can be expressed as the sum of two derived 

matrices, one symmetric and one skew-symmetric, 

without loss of information [14]. Consider for in- 

stance the two numbers 0 and 3, found in opposite 

positions (1,2) and (2,l) of matrix anti-ATCC 33277 

of Table 1 and Fig. la, The symmetric part is 
obtained by averaging these two numbers: (0 + 3)/ 

2 = 1.5; the skew-symmetric part is obtained by 

subtracting one from the other and dividing by 2: 

(0 - 3)/2 = - 1.5 and (3 - 0)/2 = + 1.5. So, when 

the symmetric and skew-symmetric parts are added, 
the result is the original matrix: 1.5 - 1.5 = 0 for the 

upper original number, and 1.5 + 1.5 = 3 for the 

lower one. Using letters instead of numbers, one 

would obtain a simple algebraic proof of the additivi- 

ty of the symmetric and skew-symmetric compo- 
nents, so that we can write the matrix equation: 

M = ,,v,,M + .skenpM 

Consider matrix M to be our anti-ATCC 33277 
matrix (Fig. la) and construct the skew-symmetric 

matrix skewM (Fig. lb). The upper-triangular part of 
skewM contains all the information needed to com- 
pare strains: from Table 2, one can see that subtract- 
ing a strong IF reaction from a weak one can be 
expressed as a positive number, and corresponds to 
the case where the row-component of the matrix has 

greater complementarity to the criterion than the 
column, and vice versa with negative numbers. 

Alternatively, one can use either the negative num- 

bers in the whole matrix (as in the next paragraph), 

or the positive numbers only. 

One can represent the signs of the numbers in 
rkewM by a directed graph. If there is a negative 

number at the intercept of row A and column B, this 
can be interpreted as B+A. If that number is 

positive, it means that there is a negative number at 

the intercept of row B and column A and A+B. If it 

is zero, then A = B. 

This reasoning shows that the most important 
information in evolutionary terms is found in the 

asymmetry of the numbers in the original biological 
data matrix; this information is now concentrated in 

the skew-symmetric matrix, which we will analyze 

in more detail. 

2.4. Transformation of the skew-symmetric matrix 
into a path matrix (directed graph) 

Matrix skewM can be transformed into a path 

matrix ,at,,M, which is a binary matrix filled with 
only OS and Is, following this simple rule: put a ‘ 1’ 

at the intercept of row A and column B if and only if 
B+A, or in other words if there is a negative 

number in that position in skewM; otherwise put a ‘0’. 

The B+A (or A+B) information is read directly 

from ,r,,M. The path matrix extracted from skewM in 
Fig. lb is shown in Fig. lc. 

This path matrix can be used to create a graphical 
representation of the matrix as a directed graph 

where each edge corresponds to a ‘ 1’ in the matrix. 

2.5. Elimination of non-independent information 

One problem posed by path matrices is that they 
contain redundant information. Consider the pathM 
matrix in Fig. lc: one can clearly see that B+C and 
C-+A. Following the directed graph equivalent, it 

follows that B+ A. Thus, the information B+ A is 
redundant, or non-independent; it can be deduced 
from the data at hand. However, the B-+A in- 
formation is present in the pathM matrix. Therefore, 
our next task is to remove the non-independent 

information from pathM. 
This is accomplished through a two-step algo- 
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ABCDBFGH r 
A 00022232 
B 30232333 
C 20132333 

(a)M=D 00002223 

E 30320323 
F 00000022 
G 20322222 
H ,20122220, 

0.0 -15 -1.0 1.0 -0.5 1.0 0.5 0.0 
1.5 0.0 1.0 15 1.0 1.5 1.5 1.5 
1.0 -1.0 0.0 15 -05 1.5 0.0 0.0 

(b)sk&f= -1.0 -1.5 -1.5 0.0 0.0 1.0 0.0 0.5 
0.5 -1.0 05 0.0 0.0 15 0.0 05 

-1.0 -15 -15 -1.0 -15 0.0 a0 0.0 
-0.5 -1.5 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 -15 0.0 -05 -05 _ 0.0 0.0 0.0, 

01101000 

i I 00000000 
01001000 

(c) P&M = I 11100000 
01000000 
11111000 

I J 11000000 
01011000 

Cd) prrtsM = 

00100000 
00000000 
00001000 
10000000 
01000000 

00010000 
10000000 

_00010000 

A 
B 

0 D” 
E 

F 
G 
H 

H 

(e) B~E--+C---+cA 
c 

< F 
G 

0010111 
1 1 1 1 1 1 1 
1010111 
0000101 
1110111 
0000000 
0000000 
0000000 

Fig. 1. (a) Example of an immunofluorescence matrix and (b) the associated skew-symmetric matrix. (c) Path matrix derived from the 

skew-symmetric matrix. (d) Path matrix trimmed of redundant information, and (e) associated directed graph. (f) Character-state matrix, as 

read from the directed graph. There are as many rows as there are strains, and as many columns as there are edges (arrows) in the graph (e). 

rithm, detailed in Appendix A. Briefly, step 1 creates 

a ‘fat’ path matrix copy of rathM, containing all the 
possibly redundant information it can find: if B-K 
and C+A then B+A; add this to the fat path matrix 
if it is not already there. Step 2 compares this copy 
to pathM to remove the non-independent information, 
including the one that was present before the algo- 

rithm started. What is left is a path matrix trimmed of 

all redundant information. It is shown in Fig. Id, 

along with its associated directed graph (Fig. le); 
each ‘ 1’ in the trimmed matrix pathM translates into 
an arrow of the graph. The arrow C+A, for in- 
stance, is drawn to mean that C has a larger antigenic 
repertoire than A. 
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Why is it important to remove the redundant 

information? Biologically, this is easy to understand. 

If B has more antigenic determinants than C, and C 

has more than A, then of course B has more than A; 

the antigenic order is transitive. Also, from a statisti- 

cal point of view, if one keeps the B+A relationship 

(the ‘1’ in row B, column A) in the path matrix, one 

adds an extra edge to the directed graph that one is 

trying to construct, to serve as a summary of all the 

relationships described by the path matrix. Since, in 

the following section, we will use the directed graph 

edges as character states (one strain either ‘has’ or 

‘does not have’ the character, which is a certain level 

of antigenic relatedness, depending on whether it is 

located upstream or downstream from the directed 

edge), we should be careful not to over-represent 

some relationships with extra edges which would 

only add meaningless characters. These extra charac- 

ters would serve no purpose since they are encapsu- 
lated in the other, non-redundant edges of the 

directed graph. Therefore, they should be removed 
from the character matrix so that their presence does 

not impede the subsequent numerical analysis. 

2.6. Translating arrows into a binary character 
state matrix 

Each edge of the directed graph, or ‘arrow’, can be 

construed as a character. Any strain located upstream 

from the arrow possesses that character, since it has 

more antigenic determinants than those downstream. 

Presumably, every upstream strain has either the 
character itself, like the strain from which the arrow 

originates, or a superset of that character (more 

determinants, including those defined by the charac- 
ter). One can therefore build a binary character-state 

matrix that has as many rows as there are strains and 

as many columns as there are arrows (Fig. If). For 
each arrow (column), a strain either ‘has’ (state 1, 

upstream from the arrow) or ‘does not have’ (state 0) 

the corresponding character. 
One such matrix is built for every criterion, The 

final matrix that will be used for phylogenetic 
analysis is simply a column-wise concatenation of all 

these matrices (Fig. 2). 
To avoid the potential problem of manually draw- 

ing a directed graph and reading on it which strain is 
upstream or downstream from each edge, which 

would possibly generate coding errors, a recursive 
procedure has been developed (Appendix B. This 

algorithm reads a path matrix and achieves that goal 
effortlessly. 

2.7. Phylogenetic analysis of the character-state 
matrix 

Such a matrix is typical of those used in cladistic 

analysis [ 151. We used program Mir from the 

PHYLZP package [ 161 to create a cladogram repre- 
senting the phylogenetic relationships among bacteri- 

al strains. The Camin-Sokal rooting criterion [17], 

available in that program, was used to root the tree. 

This criterion specifies that once state ‘1’ of a 

character has been attained, it is highly unlikely that 

the character would revert to state ‘0’. Therefore, it 

is legitimate to speculate that a hypothetical ancestor 
to all Operational Taxonomic Units (OTUs), in our 

case ?‘. gingivalis strains, should have state ‘0’ for all 

characters. This effectively roots the phylogenetic 
tree and one no longer looks at an undirected 

evolutionary network, but at a directed tree. The Mix 

program implements a parsimony analysis method 

and tries to find the tree requiring the smaller number 

of mutations from state 0 to state 1 to reach the 

character states effectively observed in the OTUs. 

This method was chosen here because it seems a 

sensible one in the present case. Note, however, that 

the coding procedure for IF data described in the 

previous paragraphs is in no way linked to that 

decision. 

2.8. The Triple-Permutation Test (TPT) 

There is a way to test the goodness-of-fit between 
a hypothesis and an actual cladogram. This is the 

Triple-Permutation Test (TPT), developed by [ 181. 

The hypotheses to be tested in the present study are 
the proposals of the various authors, mentioned in 

Section 1, as to the appropriate division of P. 
gingivalis isolates into serogroups. TPT evaluates the 
null hypothesis that the additive trees (cladograms) 
under comparison - here, an actual parsimony 

analysis result on the one hand, and a tree depicting 
a hypothesis on the other - are no more similar than 
random additive trees with random topology, ran- 
domized labels, and randomized branch lengths. The 



P. Casgrain et al. I Journal of Microbiological Methods 26 (1996) 225-236 231 

goodness-of-fit index used in the present study is the 

squared correlation coefficient (r’), and the associ- 

ated permutational probability, computed between 

the matrices representing these two trees, is obtained 
by the permutational method detailed in [ 191. In each 

test, the tree representing the theoretical model was 

kept fixed, while the parsimony analysis tree was 

permuted. TPT was computed using program Per- 

mute! 3.0 written by P.C. and available from the 

corresponding author. 

3. Results 

The directed graphs obtained through the pro- 

cedure described above are presented in matrix form 

in Fig. 2: we have shown above that these matrices 

are equivalent to series of directed graphs. Strain 

names refer to the eight directed graphs that were 

extracted from the eight antiserum matrices. The 
phylogeny derived from the character-state coding 

table (Fig. 2), using the Mix parsimony program, is 

shown in Fig. 3. 
This tree reveals three clades, one animal and two 

human. The animal clade is 8 mutations away from 

the root - the animal strains have 8 mutations in 

common - and thus the animal clade appears more 

homogeneous than the two human clades, which are 

respectively distant by 3 and 6 mutations from the 

root. The 3 mutations common to W50 and A7Al-28 
are due exclusively to the anti-W50 antiserum. 

Comparison of these results to a two-serogroup 

(human, animal) division using the TPT method 

yielded an r2 of 0.0252 (P = 0.456). while com- 
parison to a three-serogroup (human-A ‘virulent’, 

human-B ‘non-virulent’, animal) [6] model produced 
an P’ of 0.2340 (P = 0.0051). We could not compare 

our results to the four-group model of [8,9], since the 

fourth group was comprised of strains not present in 

our study. Of the three remaining groups, however. 

[S] and ]I] tended to place ATCC 33277 into the 

W50-A7Al-28 cluster. In that case, comparison of 

that three-group classification to our phylogeny 

produced an Y’ of 0.200 (P = 0.008). 

4. Discussion 

The phylogenetic tree in Fig. 3 shows that the P. 

gingivalis taxon is heterogeneous. It confirms the 

previously proposed separation between animal and 

human isolates [5]. It reveals that group human-A 

consists of two strains (W50 and A7Al-28) that 

have been associated with induction of pathogenic 
reactions in animal models [20-221, the so-called 

‘virulent’ strains. We cannot state that group human- 

B represents ‘non-virulent’ strains, since ATCC 

49417 is a known virulent strain (strain RB22Dl in 

[22]). Whether this illustrates the heterogeneity of the 

P. gingivalis taxon or a flaw in the method is not 

known at the moment. 

Since our phylogenetic tree was rooted by a 

ATCC 49417 

ATCC 33277 

L 16.1 A7Al-28 17 A3 w50 T22* Wolf 1.1* - 

A 0 0010111 000010000 0101000 010101000 010000000000 010001000 000000010000 

B 0 1111111 000000000 0000000 000101000 000000000000 000000000 000000001000 

c 0 1010111 111111111 0000100 110101000 001000010100 110001000 101010111110 

D 0 0000101 010001000 1111111 000000000 110000000010 000000100 000000000100 

E 0 1110111 100010101 0100000 111111111 000100001001 001010110 000000000010 

F 0 0000000 000000000 0000000 000000000 111111111111 000000000 000000000000 

G 0 00000~0 000000000 0000000 000010101 000000000000 111111101 010001010100 
H 0 0000000 000000100 0000000 000000100 000000000000 001010100 111111111111 

Fig. 2. Directed-path matrices, that form together the character-state matrix used in the cladistic analysis program to reconstruct the 

phylogeny. Strain names above the sections refer to the directed graphs that were extracted from the eight antiserum matrices (Table 1). All 

strains represent human P. gingivalis isolates, except (*) which are animal isolates. 
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9 

8 

13 

L 

6 
I 

4 

Fig. 3. Additive tree representing the relationships among the 

eight bacterial strains. Total tree length: 106 mutations. Numbers 

on the branches indicate branch lengths, in numbers of mutations; 

branch lengths are drawn to be proportional to these numbers of 

mutations. All strains represent human P. gingivalis isolates, 

except (*) which are animal isolates. 

hypothetical ancestor with state ‘0’ for all characters, 
our results indicate that the three groups are equally 

distant from the common hypothetical ancestor, 

meaning that the two human groups are no more 

related to one another than they are to the animal 
group. 

Using the Triple Permutation Test of [ 181, we 
compared the patristic distance matrix (associated 
with the additive tree of Fig. 3) to a theoretical 

distance matrix representing a perfect trichotomy 

comprising one animal and two human groups. This 
trichotomy was deduced from [2]: 2 human groups, 

virulent and non-virulent; and [5]: an animal group 
distinct from the human strains. We found that there 

is a very low probability (0.0051, or 0.51%) that the 

observed tree of Fig. 3 does not match this perfectly 

trichotomous tree. (The variant model where strain 
ATCC 33277 is put in the human-virulent group 

agrees just as well with our derived phylogeny. To 

test this model properly, however, one should obtain 

serological data for the fourth Porphyromonns group, 

run the data in our analysis, and compare the 

experimental tree to the 4-group hypothesis). When 

we applied the same comparison to a simple animal- 

human dichotomy, as in [5], the probability rose to 

0.456 (or 45.6%), indicating that the data do not 

support this hypothesis. Therefore, the biological 

reasoning now has statistical support: there are at 

least two human serogroups, as outlined in [2]. 
Whether the human-B cluster can be segregated into 

two or more different groups remains to be seen. The 

data presented here is not conclusive on that matter, 
although a marked differentiation is observed be- 

tween (ATCC 49417-ATCC 33277) and ( 17A3- 

16.1). 
The Camin-Sokal parsimony method used to 

reconstruct our phylogenetic tree is one that has been 

widely used by phylogeneticists [15,17,23]. We used 
it here because we felt it was appropriate to the 

problem at hand, but needless to say, the asymmetric 

matrix analysis described in Fig. 1, which leads to 

the character-state matrix of Fig. 2, is independent of 

the choice of a particular phylogenetic-tree recon- 
struction method. It would be possible, for instance, 

to develop another reconstruction method that would 

account for the intensity of the directed graph’s 

relationships, instead of the simple dominance data 
that we used (A-+B or AtB). 

We will now try to ascertain the serological 

interest of the proposed reconstruction method. Its 

simplicity is appealing, but that in itself is no 
guarantee of success. The following facts indicate, 

however, that the method can be considered robust 
for this type of analysis. First, it was built spe- 
cifically for studying the serological characteristics 
of bacteria using antigen-antibody reaction. Both the 
directed graphs and the skew-symmetric matrices 

have been shown to retain all the pertinent phylo- 
genetic information contained in the original data 
matrices. Second, the decomposition of the graphs 
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into a series of binary vectors (characters) also stems 

from a biological observation: a bacteria either 

possesses, or not, a particular antigenic structure, 
allowing it to bind with an antibody. Third, this 

sequence of characters is ideal for cladistic recon- 

struction methods; for a complete review, see [ 151. 

Synthesizing the biological information into binary 

characters allows one to easily construct a phylo- 

genetic binary tree, much in the same way as one can 

build a binary identification key. 

This method is not based on empirical observa- 

tions nor on the skill of the observer, as were the 

classification methods used before the advent of 
numerical taxonomy. Instead, we used the biologist’s 

knowledge to build a mathematical tool that mimics 

the biological process of antigenic repertoire com- 

parison, increasing its understandability and demon- 

strability, unlike other methods used before [3-81. 

5. Conclusion 

The results obtained using the new graph-theory 

method, proposed in this paper to establish serologi- 

cal relationships among bacterial strains, support the 
existence of at least two serogroups among the 

human Porphyromonas gingivalis strains, and stress 

the differentiation of the animal group. This tri- 

chotomy is inconsistent with the dichotomy of 

animal and human strains proposed by [5], but this 
could be due to the number of strains used in each 

study. The method was developed with specific 

biological objectives in mind, but it appears that the 
need for analysis of asymmetrical matrices is much 

greater than for bacterial classification alone. There- 

fore, this new method should appeal to the growing 
number of researchers who produce asymmetrical 

matrices but have so far been unable to analyze them 
adequately. 
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Appendix A 

The algorithms 

List of declarations 
const {Constants used in the program} 

MaxSpecies = 10; {The maximum number of 

OTUs that can be read by the program} 

MaxCharacters = 200; {For the output PHYLIP 

matrix) 
type {Definition of vectors and matrices} 

BinVector = array[l..MaxSpecies] of O..l; 

BinMatrix = array[ 1 ..MaxSpecies] of BinVector; 

BinRectMatrix = array[l..MaxSpecies, 1 ..MaxCh- 

aracters] of 0.. 1; 

var 
pathMatrix:BinMattix; {Data matrix as read from 

the skew-symmetric matrix} 

fatPathMatrix:BinMatrix; (Initially empty, see Ap- 

pendix A} 

characterStateMatrix:BinRectMatrix; {The output 

matrix, used for phylogenetics} 

numTax, numCharacters:Integer; {Actual number 

of OTUs and characters in the output} 

Simplifying the path matrix 
This procedure is an iterative, two-stage ‘trim- 

ming’ process that will eliminate ‘shortcuts’ in the 

directed graph from one label to the next. This 

simplification is necessary in order not to give too 

much weight to one character (antigenic relatedness) 

over the others. 

Example - Suppose one has the following in- 

formation: 

A-+B, A-X, A-+E, B+C, C+D, D+E 

Its matrix representation is: 

A B C D E 
A00000 
BlOOOO 
c11000 
DO0100 
El0010 

However, you will agree with me that the minimal 

path, or directed graph, needed to represent such 
information is in fact the following: 

A-+B-+C+D+E 
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Therefore, there is too much weight given to some 

relationship. Witness the simpler matrix needed to 

represent the above path: 

ABCDE 
A00000 
BlOOOO 
c01000 
DO0100 
EOOOlO 

There are two less paths: A+E and A-+C. They 

are not needed, because they are already included in 

the graph if one ‘follows the chain’. It is such a 

‘trimming’ that this procedure attempts. 

procedure SimplifyPathMatrix; 

var 

i, j, k, nbChanges:Integer; 

pathVector:BinVector; 

begin 
{Step 1. 

Take the Path Matrix and simplify it, i.e. eliminate 

redundant paths. But first, keep a copy of the Path 

Matrix!} 

fatPathMatrix: = pathMatrix; 
{This matrix will be ‘stuffed’ with all the ternary 

relationships (e.g. if A-+-B and B-K then A--+(Z) so 

that the simplifying procedure will not need a 

recursive part, that left some ‘orphans’.} 

repeat 
{One will repeat the ‘stuffing’ procedure until 

there are no longer any changes in the fat path 

matrix, that is, until one can no longer add a ternary 

relationship.} 

nbchanges : = 0; 
for i : = 1 to numTax do 
for j : = 1 to numTax do 
if pathMatrix[ij] = 0 then {There is no defined 

path... yet} 
begin 
{I. 1) Copy the current line in a path vector} 

pathvector : = pathMatrix[i]; 
(1.2) Read the path vector. If one of its elements 

contains a ‘ 1’. that is, a path, look at this element’s 
row in the current column to find if there is an 

alternative path. If there is, add it in the current 

column.} 
for k : = 1 to numTax do 

if pathVector[k] = 1 then 
if pathMatrix[k,j] = 1 then 
if fatPathMatrix[i,j] = 0 then 

begin 
fatPathMatrix[i,j] : = 1; 

nbchanges : = nbchanges + 1; 

end; {if fatPathMatrix[ij] = 0 then} 

end; {if pathMatrix[i,j] = 0 then} 

until nbchanges = 0; 

{Step 2. 

Here is the path matrix simplification procedure. 
One compares the actual paths (pathMatrix) to the 

complete paths (fatPathMatrix) to determine if there 

exist alternative paths that are shorter than the one 

currently studied. If there are, delete them (setting 

the value to ‘0’ in the pathMatrix) because they are 

redundant. Note: one does not have to choose which 
path is to be deleted; it is always the shorter one 

because the graph is directed.} 

for i : = 1 to numTax do 
for j : = 1 to numTax do 
if fatPathMatrix[ij] = 1 then 

begin 
(2.1) Copy the current row in a path vector} 
pathvector : = fatPathMatrix[i]; 

{excluding the current column (the one that has a 

‘1’ into it).} 

pathvectorlj] : = 0; 

{Why exclude it? Because one knows that the 

label on the current column is pointing towards the 

label on the current row. One does not want to know 

what points towards the column label, but towards 

the row label.} 
(2.2) Read the path vector. If one of its elements 

contains a ‘l’, that is, a path, look at this element’s 
row in the current column to find if there exists a 

longer path. If there is, remove the path in the 

current column (the simplified path)} 
for k : = 1 to numTax do 
if pathVector[k] = 1 then 
if fatPathMatrix[kj] = 1 then 
pathMatrix[i,j] : = 0; 
{Actually, one could break this loop and go a little 

faster, but since it would overcomplicate the code I 

will not do it.} 
end; {if fatPathMatrix[i,j] = l} 
end; {procedure SimplifyPathMatrix) 
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Appendix B 

Transforming a directed graph into a character- 
state matrix 

This procedure ‘reads’ a path matrix to create a 

‘character state’ matrix: each ‘arrow’ in the path 

state matrix is viewed as a character. Every label that 

(eventually) points to one arrow is said to ‘possess’ 

the character. Every other label does not. 
Example: take the following path (directed graph): 

+C--+D 

I 
A-+B+E 

Consider the arrow from A to B: only A is 

‘upstream’ of the arrow, therefore only A possesses 

the character represented by this arrow, Likewise, the 
arrow from C to D represents a character possessed 
by A, B and C but not D (which is ‘downstream’) 

nor E (which is completely out of this path anyway). 

The matrix representation of such a directed graph 

is, of course: 

ABCDE 
A00000 
BlOOOO 
c01000 
D00100 
EOlOOO 

This is the matrix that shall be analyzed by the 

‘CreateCharacterMatrix’ procedure. 

In layman’s terms, this procedure reads the path 
matrix and when it finds an arrow (a ‘l’), it follows 

the path ‘upstream’, creating a list of every label it 

encounters during that process. When this is done, 
this list is the binary vector that tells who has the ‘1’ 

state of the character and who has not. 
procedure CreateCharacterMatrix; 

var 
i. j, k:Integer; 

whoHasCurrentCharacter:BinVector; 
begin 
numcharacters : = 0; {Number of characters in 

character state matrix} 

{Initialize character state matrix: no label has state 

’ 1’ of any character.} 
for i : = 1 to numTax do 
for j : = 1 to MaxCharacters do 
characterStateMatrix[ij] : = 0; 
{Read the path matrix until a ’ 1’ (arrow, path...) is 

encountered.} 
for i : = 1 to numTax do 
for j : = 1 to numTax do 
if pathMatrix[i,j] = 1 then 
begin 
{When this happens, add one more character to the 

character matrix...} 

numcharacters : = numcharacters + 1; 
if numcharacters > MaxCharacters then (error> 

numcharacters : = MaxCharacters; 

{Initialize the ‘found’ vector, meaning the vector 

that will tell which label ‘possesses’ the character 

and which one does not. Initially, of course, no one 

possesses the character...} 

for k : = 1 to numTax do 
whoHasCurrentCharacter[k] : = 0; 
{...no one but the current column number label, to 

which the arrow points to} 

whoHasCurrentCharacterljl : = 1; 

{Then caI1 the recursive WhoPoints procedure to 

fill that binary search vector with the possession 

information.} 

WhoPoints(pathMatrixIjl, whoHasCurrentCharac- 

ter); 

{Note the ‘j’ and not ‘i’: one has to find what 

points on the row that is currently pointing, and not 
what points on the row one is now analyzing.} 

{Fill the character state matrix with the info from 

the binary search vector} 
for k : = 1 to numTax do 
characterStateMatrix[k, numCharacters] : = 

whoHasCurrentCharacter[k]; 
end; {if pathMatrix[i,j] = 1 then} 

end; {procedure CreateCharacterMatrix} 
{The following recursive procedure is used to find 

which label(s) ‘point to’, or are along a path to, a 
certain label. Simply put, when it finds that there is 

such an arrow, it calls itself to find out where the 
arrow came from. Its first argument is a path vector 
(a row of the path matrix), and its second argument, 

passed as ‘var’ because its value could be modified, 
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contains the information gathered so far regarding 

which labels were encountered during the path 

search.} 

procedure WhoPoints (rowVect:BinVector; var 

returnVect:BinVector); 

var 
m:Integer; 

recursVect:BinVector; 

begin 
for m : = 1 to numTax do 
if rowVect[m] = 1 then {There was an arrow from 

some label in column ‘m’} 

begin 
{The label in column ‘m’ ‘points to’ the character 

that interests us: set it to ‘1’) 

returnVect[m] : = 1; 
{Take the path vector in this label’s row} 

recursvect : = pathMatrix[m]; 

{and call the procedure again to find other arrows} 

WhoPoints(recursVect, retumvect); 

end; {if rowVect[m] = 1 then} 

end; {procedure WhoPoints} 
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