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The space-time clustering procedure of Mantel was originally designed to relate a
matrix of spatial distance measures and a matrix of temporal distance measures in a gen-
eralized regression approach. The procedure, known as the Mantel test in the biological
and environmental scicnces, includes any analysis relating two distance matrices or, more
generally, two proximity matrices. In this paper, we discuss the cxtent to which a Mantel
typc of analysis between two proximity matrices agrees with Pearson's correlation analysis
when both methods arc applicabie (i.c., the raw data used to calculate proximitics arc avail-
able). First, we demonstrate that the Mantcl test and Pearson's correlation analysis should
Icad to a similar decision regarding their respective null hypothesis when squared Euclidean
distances are used in the Mantel test and the raw bivariate data are normally distributed.
Then we use fish and zooplankton biomass data from Lake Ere (North American Great
Lakes} (o show that Pearson’s correlation stalistic may be nonsignificant while the Mantel
statistic calculated on nonsquared Buclidean distances is significant. After small-size artifi-
cial examples, seven bivariate distributional models are tried (0 simulate data reproducing
the difference beiween analyses, among which three do reproduce il. These resulls and
some extensions are discussed. In conclusion, particular attention must be paid whenever
relations established between proximities are backtransposed to raw data, especially when
these may display patterns described in the body of this paper.

Key Words:  Bivanate distributions; Correlation analysis with raw data; Mantel (est with
proximily matrices; Paramelric and permutational methods.

1. INTRODUCTION

Two statistical tools commonly used for investigating relationships among variables

in biological or environmental data sets are (1) the parametric linear correlation analysis
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based on Pearson’s r-statistic and performed on raw data between two variables of obscr-
vation (e.g., Sokal and Rohlf 1995) and (2) a permutational testing procedure initiated by
Mantel (1967) and further developed in Mantel and Valand (1970}, which judges whether
closcness in one set of variables is relaled to closeness in another set of variables. Mantel
(1967) called his procedure generalized regression because it was performed between two
matrices of distance measures. Since then, the procedure has become known as the Mantel
test in the biological and environmental sciences. It is also referred to as Mantel and Va-
land’s nonparametric MANOVA technique in the statistical sciences, being a special case
of multiresponse permutation procedures (Mielke 1988).

Both the Mantel test and Pearson's correlation analysis can be used when the raw
data are available so that the Euclidean distance or any proximity meuasure between two
observational units can be derived from them. Naturally, a question then arises: Do the two
methods of analysis always agree by leading to similar decisions regarding their respec-
tive null hypotheses? In other words, is a (non)significant Pearson’s r-statistic calculated
between two n-vectors of observations for variables X and Y always accompanied by a
(non)significant Mantel’s statistic between the two derived n x » distance matrices Dx
and Dy ? The question is critical because, if the answer is no, conclusions drawn in the
space of proximilics cannot always be validly backtransposed into the space of raw data.
The question is all the more critical because the Mantel test has been increasingly used
since 1967, especially after the development of derived forms (e.g., Dow and Cheverud
1985; Manly 1986; Oden and Sokal 1986; Smouse, Long, and Sokal 1986; Sokal 1936,
Clarke 1993; Legendre, Lapointe, and Casgrain 1994} and the promotion of the method in
the biological and environmental sciences {Legendre and Fortin 1989; Fortin and Gurevitch
1993; Manly 1997; Legendre and Legendre 1998).

Despite the increasing number of its applications, the Mantel test may not have disclosed
all of its secrets to users. In particular, it has never been demonstrated that the null hypothesis
of no linear relationship between two vectors of observations should be rejected (accepted)
whenever the null hypothesis of no linear relationship between the derived distance matrices
isrejected (accepted). Such a demonstration or, alternatively, the finding of counterexamples
to the previous statement motivated the present study.

The objective of this paper is threefold: first, observing that Pearson’s r-statistic calcu-
lated between the X and Y sample data (from which D x and Iy are derived) can be close
to zero (and hence nonsignificant) when the Mantel test indicates a significant (positive or
negative) relationship between the distance matrices £y and Dy ; second, understanding
when such differences between analyses arise; and finally, assessing our understanding of
these differences by being able to reproduce them.

Accordingly, we proceed in three steps. Step 1: We analyze seven data sets of plankiivo-
rous fish biomass and zooplankton biomass that were collected along transects in Lake Erie
(Stockwell 1996). Step 2: Using results for the Lake Erie data, we study small-size artificial
examples for which Pearson’s r is 0.0 in relation with the corresponding Manlel statistic for
different point densities in the biplot of raw data. Step 3: Following the small-size artificial
examples of step 2, we iTy seven bivariate distributional modcls to simulate data reproduc-



MANTEL TEST AND PEARSON'S CORRELATION ANALYSIS 133

ing the differences observed between the Mantel test and Pearson’s correlation analysis on
Lake Eric data.

In Section 2, we review the principles of the two methods of analysis, describe the
Lake Erie example, and give the design of our simulation study. Theoretical results as
well as empirical results obtained on real data and in the simulation study are presented and
discussed in Section 3. The theoretical results specify situations in which both methods lead
to similar decisions regarding their respective null hypothesis, whereas empirical results
show situations in which differences between analyses arise. Closing remarks are given in
Section 4, where the bivariate distributional models found to produce differences between
analyses and some extensions of our results are discussed further.

2. MATERIALS AND METHODS

2.1 PEARSON'S CORRELATION ANALYSIS

To test whether p, the linear correlation between variables X and Y, is zero against a
given alternative hypothesis. the following product-moment statisiic was defined by Karl

Pearson:
S (X - Xy, - Y)
o i=1 , (2.1)
i(xi - X)? im - Y’)”]
i—1 i—1
where X1,...,X,..Y],...,Y,,and X and Y denote random samples of size n for variables

X and Y and the corresponding sample means, respectively. In the parameltric approach,
the calculation of the probability of significance for r is based on a ¢-test with n — 2 d.f.
(Sokal and Rohlf 1995, p. 575), i.e.,

tn—2) = r

12
n—2

The null hypothesis of no linear correlation between X and Y is not truc when the two

(2.2)

variables covary positively (i.e., p > 0} or negatively (i.e., p < 0). Recall that a small (large)
value of X is likely to be associated with a small (large} value of Y when p > (), whereas
a small (large) value of X is likely to be associated with a large (small) value of ¥ when
¢ < 0. In hypothesis testing, we consider both the case of a one-tailed alternative and that
of the two-tailed alternative. For the Lake Erie dala, parametric linear correlation analysis
was carried out with SAS procedure CORR (SAS Institute 1990a). In the simulation study,
it was incorporated in a computer program performing the permutational Mantel analysis
on the derived Euclidean distances.
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2.2 THE MANTEL TEST

If dx i;- and dy-;;- represent the distances between ohservational units ¢ and i/, as derived
from the observations for variables X and Y, let Dx = (dx ;;-) and £y = (dy ;) denote
the corresponding n x n distance matrices. In the Lake Erie example, X is planktivorous
fish biomass, whereas Y is zooplankton biomass; the observational units are sampling sites
and

along a transect; distances are Euclidean for both variables, so dx 4+ = |X; - Xy
dy . = |Y; — Yy

The normalized Mantel statistic, defined as the product-moment coefficient of lincar
correlation between distance matrices /2 x and Dy, 1s

Z Z(dx,ii’ —dx)dy 0 — dy)
\/{Z Z(d){,@‘.i' —dy )2] {Z Z(d‘,_”, _ J‘{,)z]

where © T denotes the double summation over  and ¢* with ¢ ranging from one to n and

; (2.3)

7 < i’ by symmetry of Dy and Dy, and dy and dy are the means of distances derived from
the X and Y raw dala, respectively. The null hypothesis of no linear relationship between
Dy and Dy is likely to be rejected when small (large) distances d x are associated with small
(large) distances dy- (positive relationship} or when points far apart along the Y -axis tend
to be close to each other along the X -axis and reversely (negative relationship). Following
Mantel and Valand’s (1970) terminology, statistic (2.3) judges whether closeness in one
variable or set of variables is related to closeness in another variable or set ol variables.
Significance of the normalized Mantel statistic was assessed by permutations in our
study by randomly reassigning labels i = 1, ..., n o X -obscrvations while keeping labels
of Y-observations fixed and by calculating the value of the normalized Mantel statistic for
cach permutation. The one-tailed significance probability was provided by the proportion
of permutations [or which the value of statistic (2.3) was greater (smaller) Lhan or equal to
the initial value when this was positive (negative); the two-tailed significance probability
was provided by the proportion of permutations for which the value of statistic (2.3) was
greater than or equal Lo the initial value in abselute value. Each significance probability
was calculated from 1,000 permutations, as recommended by Manly (1997), and the initial
labeling was included among the permutations, following Hope (1968). For the Lake Erie
data and in the simulation study, the permutational Mantel analysis was carried oul with
our own computer program written in the SAS/IML language (SAS Institute 1989).
Originally, the Mantel method is related to the analysis of n evenls, each cventinvolving
a time of occurrence and a location of vceurrence. For a pair of events, the temporal
separation between the two events and the spatial separalion belween them are of interest.
The Mantel (1967) approach was to consider the exact separation, suggesting the usc of
measures of closeness. This problem was initially addressed by Knox (1964), who had
considered whether, for each pair of events, both the temporal separation and the spatial
separation were of some limiled magnitude (Nathan Mantel, personal communication).
Mantel and Valand (1970) relaxed the restriction Lo spatial and temporal distance measures
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by considering any two matrices of distances. Accordingly, the Mantel statistic in this paper
1s a coclficient of lincar correlation between D x and £y-. However, the Mante! test here
does not include tests of a priori classifications or multiresponse permutation procedures
{Mielke, Berry, and Johnson 1976), although our results may have implications for other
forms of the Mantel test such as the Mantel correlogram (see Section 4.2).

2.3 THE LAKE ERIE DATA

Seven data sets of planktivorous fish and zooplankton biomass were collected
simultaneously at night along transects in Lake Erie (North American Great Lakes) during
May and September 1994 (Stockwell and Sprules 1995; Stockwell 1996). An optical
plankton counter (Model OPC-1 T, Focal Technologies, Inc., Dartmouth, Canada) mounted
on a hydrodynamic V-fin (Endeco/YSI, Inc., Marion, USA) was uscd to sample zooplankton
biomass along each transect. The V-fin was deployed in an undulating fashion to profile
the waler column as the ship traversed cach transect. Zooplankton biomass estimates were
recorded at 1-second intervals along the towpath. These estimates were collapsed into one
dimension by vertically integrating the data. Integration was accomplished by taking the
mean of all biomass estimates for each pair of nonoverlapping ascents and descents of
the V-fin towpath (Stockwell 1996). Fish biomass was measured along each transect with
a Biosonics model 102 dual beam echosounder operating at 120 kHz. Calibration of the
acoustic system was done following Foote and MacEcennan (1983). Only fish with lengths
of 12-200 mm were vsed to estimate biomass because fish in this size range in Lake Erie are
predominantly planktivores. Mass of individual targets was calculated using length—mass
relationships from trawl| data. Biomass was estimated by summing individual masses and
dividing by sampling volume over 1-m depth intervals. These data were spatially aligned
with the V-fin towpath, and water column means were calculated over the corresponding
horizontal and vertical distances to match the integrated zooplankton hiomass data collected
from the optical plankton counter.

The resulting data sets are coded Erie 1-7. They consist of mean waler column estimales
of paired planktivorous fish biomass (X)) (fresh g/m™*) and zooplankton biomass (Y) (fresh
jigfl)y spatially distributed along a transect. The sample size » ranges from 35 to 94,
depending on the data set. For each data set, the » sample data for X were transformed to
an n x r, matrix of Euclidean distances Dy, and so were the n sample data for Y7, with Dy
as the outcome. The presence of outliers in two of the initial scven data sets led to further
analyses after removal of the outlier(s), providing a total of nine data sets analyzed; the two
additional data sets are coded Erie 27 and Erie 7. Results are reported for six data sets.
The Lake Erie data analyzed in this paper arc available from the second author on request.

For each data set, the raw data were submitted to parametric linear correlation analysis
bascd on Pearson’s r-statistic (Scction 2.1), whereas the matrices of Euclidean distances
were submitted to the Mantel test {Section 2.2). For use in the discussion, Geary’s ¢ spatial
correlograms and Spearman’s rank correlation coefficient were calculated on the raw data
using the R package (Legendre and Vaudor 1991) and SAS procedure CORR (SAS Institute
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1990a). respectively. For the same reason, the Mantel correlogram {Oden and Scokal 1986;
Sokal 19863 was computed on the Euclidean distances dy versus dy and the Mantel test
was performed on 7 X n matrices of ranks corresponding to the distance classes in which
Euclidean distances oy and v fall, given a number of defined classes; the R package was
used in both cases. Equal-frequency distance classes were defined following Dutilleul and
Legendre (1993).

2.4 DESIGN OF THE SIMULA'TTON STUDY

Following the Lake Erie example in which a nonsignificant Pearson’s r is obhserved
while the Mantel statistic is significant for some transects (sce Section 3.2), we focused
on the p = 0 case in our simulations. In practice, this situation may have more serious
implications than the reverse (i.e., significant Pearson’s r for a nonsignificant Mantel
statistic). In fact, when the raw data are not available, erroncously concluding there is a
lincar correlation between X and Y when the Mantel statistic is significant may have more
severe consequences than erroneously concluding there is no linear correlation between X
and Y because the Mantel lest indicates no relationship between D'x and Dh-. Moreover,
a perfect linear relationship between raw data (i.e., ¥; = a+ bX, with b = p(ey /ox ) and
p # 0) automatically implies a perfect linear relationship without intercept for the derived
= |b||X; — Xi| = |bldx ) or squared

Euclidean distances (i.e., dy;r = ¥, — Yy
Euclidean distances (i.e., dy ,; = b*d5,,/)-
After experimenting with small-size artificial examples, we consider seven
distributional models for the random couple (X, Y") (Table 1). The first three models (i.e.,
arrow 1, arrow 2, arrow 3) are unimodal in V. They differ in the point density along the
X -axis, which is higher on the left for arrow 1, in the middle for arrow 2, and on the right
for arrow 3. Arrow 1 is directly inspired from the pattern of some data sets in the Lake
Erie example. The fourth model (i.e., U transposed) is bimodal in Y. This model originates
from the quadratic relationship ¥ = X2, for which » = 0.0 over a symmetric range of
negative and positive values for X. Here the U, whichextends to 0.0 <Y < X 2 has been

Table 1. Bivariate DRistributional Models Used in the Simulation Study

Name Description
Arrow 1 X=exp+10,V¥Viz= norm/as2
Arrow 2 X=norm+3.0,Y |z= 1101'111/:1:2
Arrow 3 X=40—exp, Y |z = norm/:r:2
U wransposed X =exp+1.0,Y | z = unil/z? if uni2 > 0.5 and

2.0 — unil/z* otherwise

Gircle 1 (uniform) X = 2.0{unil — 0.5), ¥ | z = 2.0(uni2 — 0.5){1 — z%)'/*
Circle 2 {(cencentric) X = unil cos(27uni2), ¥ | & = unil sin(27runi2)
Square X =unil, Y | z = uni2

Exp, exponential distribution with parameter A = 1.0; norm, normal distribution with zero mean
and unit variance; uni1 and uni2, two independent uniform distributions over the [0, 1] interval; ¥ | =z,
conditional distribution of ¥ given .
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transposed and moved in order to ensure positive values for both X and Y. The last three
models {i.e., circle 1, circle 2, square) are more classical. The two circular models differ
in the point density within the circle, which is uniform for circle 1 and concentric for
cirele 2,

The RANEXP, RANNOR, and RANUNI functions of SAS (SAS Institute 1990b) were
used to simulate data. One thousand samples of size 100 were generated for each model,;
we tried different sample sizes (e.g., 50, 100, 150) but present resulits only for n = 100. We
used our own computer program wrillen in the SAS/IML language (SAS Institute 1989)
to simulate data and perform the parametric correlation analysis on the raw data and the
permutational Mantel analysis on the Euclidean distances. Empirical significance levels
represent mean rates of rejection of the null hypothesis over 1,000 samples of size 100 for
a 0.05 theoretical level,

3. RESULTS AND DISCUSSION

3.1 SITUATIONS OF AGREEMENT

Our primary effort here is to delineate the situations in which the Mantel (est and
Pearson’s correlation analysis lead to similar decisions regarding their respective null
hypothesis (i.e., situations of agreement). We also want to go beyond the perfect linear
relationship ¥ = a+bX mentioned in Section 2.4. Therefore, consider sample data (X, Y;)
(# = L,...,n) from a bivartate distribution so that E[Y; | X|] == a + bX,. Let B[X,] = pux
andE[Y;] = py fori = 1,..., nand Xz, Xy denote the autocovariance matrices associated
with the n x 1 random vectors & = (X,..., X,) andy = (¥1,...,Y,), where " is the
transpose operator. The multivariate normal model for (z’, %'} may then be written as

tx 1y by = .
Nap [(LYLL) ; (E:y Ez,y )J ) {3.1)
where 1, denotes the n = 1 vector of ones and gy is the matrix of cross-covariances
cov{z,y).

To benefit from the properties of quadratic forms in the normal vectlor {¢.g., Scarle
1971} and because dy.,» = |bldx .. is equivalent to &5, = b*d% .., we work below
with squared Euclidean distances and calculate cov(d% .., dy ;) for any pair (7, 4") under
model (3.1). Any squared Euclidean distance d3 ;;, can be written as a quadratic form in
x, defined by a given n < n matrix A, ;. This matrix is full of zeros except entries (1,1)
and (i', 1), which are equal to 1.0, and entries (4,¢") and (¢', ¢}, which are equal to —1.0.
The same applies to d. .. with random vector y and the same matrix A; ;. The calculation
of cov(d% s, d5-,,+) then becomes the calculation of cov(z’ A, »-@,y' A; -y}, which can
he rewritten as the covariance between two quadratic forms in the 2n x 1 random vector
(x’,y'). Matrix A, ; simply needs to be completed by three n x n matrices of zeros (the
completion of A, ;+ differs depending on whether it is for d% ;. or d3. ;). which finally
provides twa 2n x 2n matrices By and By, that define the quadratic forms in (2, y')’ that
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arc equivalent to &' A, ;-x and ¥’ A; ;- y. The second-order properties of quadratic forms in
the normal vector (Searle 1971, p. 66), combined with the assumed constancy of E[X;] and
E[Y;] fori = 1,...,n, then provide that cov{d%, .., d-,.,) is equal to 0.0 or not, depending
on whether cov(z, %) = 0 or not, whatever the autocovariance structure of random vectors
x and y.

More precisely, under a spherical variance—covariance structure for x and y (ie.,
¥ = 6% 1, and Ty = o} I,,). it can be proven that

corr(dy ;;, di- ) = p° (3.2)

if Xpy = pI. On the other hand, if & and y follow two processes with autocovariances

’

. - . + - 4 dx,
inversely proportional to the distance between points [i.e., cov(X:, Xy) = axpy " and

cov(¥:, Yy} = Jf-piy “ with px and py the autocorrelation parameters], then
P

(1= p)(T—py)

We verified equality (3.2) empirically. At the same time, we also investigated the relationship

o .
(:()rr(d}.'l.l" 1 di‘,ﬂ") =

(3.3)

between corr(dy ;ir, dy ;) and p empirically since the second-order properties of quadratic
forms in the normal vector are not applicablc in that case. The numerical results reported in
Table 2 confirm the correctaess of equality (3.2). In comparison, corr{dx .7, dy.i+) tends
to be lower than corr(d% ., dy ;) by about 10%. For smaller sample sizes, equality (3.2)
may be approximale due to some underestimation of p by r (results not reported).

Thus, under the multivariate normal distribution model, the direct measurement of
association on raw data is equivalent to the indirect measurement of association on squared
Euclidean distances in that corr(ds, ;;,, dy-,,,) = 0.0 forany (2,7") if and only if Xgy = 0,
whatever 5 and X, When p > 0.0, the correlation for the raw data and the correlation
for the derived squared Euclidean distances agree in sign, with autocorrelation decreasing

Table 2. Theoretical Values of Correlation for the Raw Data and the Derived Squared Euclidean
Distances Versus Empirical Mean Values of Correlation for the Raw Data and the Derived
Euciidean Distances and Squared Euclidean Distances From 1,000 Samples of Bivariate Raw
Data of Size 100

Theoretical Empirical mean of Empirical mean of
correlation Empirical Mantel statistic® Mantel statistic®
Theoretical between squared mean between between squared
I Euclidean distances of p Euclidean distances Euclidean distances
0.0 0.00 —0.0033 0.0011 0.0017
0.1 0.01 0.0961 0.0093 0.0107
0.2 0.04 0.1956 0.0346 0.0391
0.3 0.09 0.2952 0.6777 0.0872
0.4 0.16 0.3951 0.1380 0.1551
0.5 0.25 0.4951 0.2194 0.2432
0.6 0.36 0.5954 0.3202 0.3519
0.7 0.49 0.6961 0.4437 0.4815
0.8 0.64 0.7971 0.5930 0.6323

0.9 0.81 0.8984 0.7732 0.8050

& The normalized version of the statistic is reported. See Section 3.1 for details.
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Table 3. Parametric Linear Correlation Analysis on Raw Data and Permutational Mantel Analysis on
Derived Euclidean Distances far Six Sets of Lake Erie Biomass Data

Pearson’s correlation analysis Mantel test

Data sef' Statistic  One-tailed p°  Two-tailed p¥  Statistic®  One-tailed p®  Two-tailed he

Erie 1

(n = 54) 0.072 0.302 0.605 --0.081 0.125 0.264
Erie 2

(n =87 0.084 0.219 0.437 0.030 0.238 0.674
Erie 2*

{n = 86) 0.057 0.302 0.604 0.065 0.155 0.292
Erie 5

{n = 38) —0.058 0.364 0.727 —0.144 0.026 0.116
Erie 7

{n =063) -—0.023 0.429 0.857 —0.091 0.005 0.137
Erie 7"

{(n = 61) —0.064 .313 0.626 —-0.110 0.018 0.069

* Data sets Erie 2* and Erie 7" were obtained from Erie 2 and Erie 7 by removing the outlier(s) on
the right-hand side of the ¥" versus X scattergram in Figure 1(b) and (d}.

The one-tailed significance probability was calculated as the probabillity of having a statistic value
greater than the one observed when this was positive and as 1.0 minus that probability when the
observed value of the statistic was negative. A t-distribution with n — 2 d.f. was used in Pearson's
correlation analysis, whereas 1,000 permutations were used in the Mantel test. This explains why the
one-tailed p is equal to 0.5 times the two-tailed p for Pearson’s correlation analysis but not for the Mantel
test. The one-tailed p is reported for both methods of analysis to facilitate the comparison between
results.

¢ The normalized version of the statistic is reported.

or increasing corr(d%; .., dy,,,) with respect to p*. When p < 0.0, corr(d% ../, d},,.)
differs from 0.0 but is positive. In other words, under the multivariatc normal distribution
model, when the mean of Y varies in relation with the mean of X (strictly speaking, the
conditional expectation of ¥ given 2 depends on x), so do the corresponding varances
or between-individual dispersion (proximity) measures provided by squared Euclidean
distances, with a disagreement in sign between correlations when p << 0.0, The theoretical
approach followed here is not readily available for mixtures of normal and exponential
distributions as in the arrow 1-3 and U-transposed models of Section 3.4, which justifies
the empirical approach followed there. Moreover, we shall see that, outside the multivariale
normal distribution model, Mantel statistic values can be significantly different from 0.0,
while Pearson's r-values equal 0.0.

3.2 THE LAKE ER1E EXAMPLE

Numerical results are reported in Table 3. On the basis of the two-tailed significance
probability p > |r|, nonc of the nine data sets analyzed showed a linear correlation between
planktivorous fish biomass (X)) and zooplankton biomass (Y) thal was significant at the
0.05 level. However, for three data sets (i.e., Erie 5, Erie 7, Erie 7%), the normalized Mantel
statistic calculated between Euclidean distances (dx and dy-) was negative and significant
at the (.05 level, based on the left-hand one-tailed p. This disagreement is illustrated in
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(a) (b)

~
»
-

(c) (d)

1125 15 1.75 2 2.25 2.5
X

4ay
2
2

0 .25 .5 .75 1 L251.51.75 2 2.252.5
dx

Figure 1. (a)—(d) Scattergrams of the Lake Erie Raw Data, Y Versus X With Y = Zooplankton
Biomass and X = Planktivorous Fish Biomass, and of the Derived Euclidean Distances, dy
Versus dy , for Four of the Nine Data Sets Analyzed, Coded as (a) Brie 1, (b) Erie 2, (¢) Erie 5,
and (d) Erie 7. The solid lines represent the regression line of Y on X and of dy ondx. (e} (h)
Spatial correlograms based on Geary’s c-statistic for the Erie 1, Erie 2, Erie 5, and Erie 7 data
sets, respectively. In each panel, the upper correlogram is for variable X and the lower one for
variable Y. The dashed horizontal line represents the 1.0 reference value for Geary’s c-stalistic.
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(e) (f)
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Geary's c statistic

Spatial distance (km)

Figure 1. Continued.

Figure 1(c) and (d) for Erie 5 and Erie 7. Two data sets, which do not present the disagreement

(i.e., Erie 1 and Erie 2), are also presented [Fig. 1(a), (b)].
Data sets Erie 2 and Erie 7 are characterized by outliers on the right-hand side of the Y’
versus X scattergram, resulting from a high concentration of fish at a few sampling sites.
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The analyses tedone after removing the outlier of Eric 2 and the two outliers of Erie
7 provided similar results (see Erie 2% and Erie 7* in Table 3). Thus, the origin of the
agreement and disagreement between the Mantel test and Pearson’s correlation analysis
for Erie 2 and Erie 7 is not in the outliers. Tt is also not in the autocorrelation of the raw
data and its nuisance effects on the correlation analysis of spatial processcs. In fact, X
presents no spatial autocorrelation at small distance classes and Y is characterized by a
spatial structure of trend type for both data sets. The only differcnce is in the sign of spatial
autocorrelation at larger distance classes for an extent that is wider in Erie 2 than in Erie
7 [see Geary’s ¢ spatial correlograms of Fig. 1(f), (h)}. Furthermore, for the disagreement
between analyses to become an agreement in the case of Erie 7, Pearson’s r-statistic must
be declared significant, assuming the null hypothesis is correctly rejected in the Mantel test.
However, the modilied i-test recommended in the correlation analysis of spatial processes
cannot change to a significant correlation coefficient smaller than 0.1 in absolute value for
the sumple sizes considered, even though the modification may result in an increase of the
number of degrees of ircedom of the i-test {Dutilleul 1993). A similar argument applies to
the lack of normality of the raw data; this poinl is addressed in Section 4.

In this conlext, the usefulness of Geary's e-statislic is greater than that of Moran’s 7, for
example. In fact, although Geary’s ¢ is based on squared differences between observations
(i.c., squared Buclidean distances) while the Mantel test is applied to matrices of nonsquared
Euclidean distances here, the outcome of some Mantel Lests might be anticipated from the
spatial correlograms displayed in Figure 1{e)-(h). For instance, the nonsignificance of
the normalized Mantel statistic for Erie 1 can be predicted from the flathess of Geary’s
c-cotrelogram for X compared with the patchy type of corrclogram for Y. Similarly, a
negative normalized Mantel statistic can be expected for Erie 7 from the diverging Geary’s
c-correlograms for X and Y. The constancy of Geary’s ¢-statistic over the major portion of
the correlogram for X may also explain the lack of significance of the normalized Mantel
statistic for Erie 2. This reasoning does not apply to Erie 5 because it should lead to a positive
normalized Mantel statistic while it actually is significant but negative {Table 3). The plots
of the transect data of X and Y for Erie 5 (not reported here) resolve this question. In some
parts of the transect, X -values were relatively constant while there were jumps in Y~ at given
sampling sites so that small distances d x were associated with large distances dy-. In some
other parts of the transect, the reverse phenomenon was observed, i.e., jumps were in X
while ¥ -values were constant. Jumps were of intermediate magnitude, so the data points
were not outliers. Their number was not large enough to affect spatial autocorrelation at
small distance classes but was sufficient to provide a negative and significant normalized
Mantel statistic.

The comparison of the ¥ versus X scattergrams for Erie 1 and 2 to those for Erie 5 and
7 [Fig. 1(a)—(d)] leads to the following obscrvations: (1) Erie 1 displays a diffuse cloud of
points, whereas the other three data sets present arrow-shaped scattergrams characterized by
a higher concentration of points on the left-hand side of the X -axis; (2) the main difference
batween Eric 2 and Erie 5 and 7 is in the distribution of Y, which is symmetrical for
Frie 5 and 7 and skewcd toward the higher values for Erie 2. Actually, this is why we
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retained the arrow pattern of symmetrical type (arrow 1) as the basis for one of the
distributional models for (X,Y") in the simulation study. Moreover, we decided to base
the simulations of the arrow pattern on the exponential distribution for X instead of the
log-normal distribution, e.g., because of the rationale of the former in relation to Poisson
events (e.g., the presence of a bank of fish in the example); Poisson refers to the stochastic
process.

3.3 SMALL-SIZE ARTIFICIAL EXAMPLES

The first four configurations that we consider are directly inspired by the Lake Erie
example, with two triangular patterns as rough approximations of the arrow pattern of
symmetrical type (head to the right) and two configurations with extra points in the middle

Mantel < 0 Mantel =0
1 4 1 [
08 0.8
0.6 0.6
0.4 ° 0.4 bd
0.2 0.2
) 0
0 0.2 04 0.6 0.8 1 0 0.2 04 0.6 0.8 1
Mantel = 0 Mantel > 0
1 4 1 P
0.8 0.8
0.6 0.6
>~ 04 i ¢ 0.4 ® o
0.2 0.2
(4] (4]
1] 0.2 04 06 08 1 0 0.2 04 0.6 08 1
Mantel < 0 Mantel < 0
1 [ . 1 . .
0.8 0.8
0.6 0.6
0.4 0.4 1
0.2 0.2
0 0
Q 0.2 0.4 0.6 08 1 0 0.2 04 0.6 0.8 1
X

Figure 2. Artificial Small-Size Examples Used in the Development of the Arrow and U-Transposed
Bivariate Distributional Models for (X,Y). For all of them, Pearson’s r-statistic is equal to zero,
whereas the Mantel statistic may be negative, zero, or positive, depending on the pattern and the
density of points. A bigger point represents two superimposed observations. The scattergrams of
Euclidean distances are not plotted; only the sign of the Mantel statistic is reported.
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of the biplot, in which the arrow tends to appear more clearly {Fig. 2). The last two
configurations are a square and a U transposed, the latter following from the square by the
consideration of some intermediate points {Fig. 2). The presence of superimposed points
(sce the bigger points) allows a preassessment of point density effects on the sign of the
Mantel statistic.

While Pearson’s v is 0.0 for all six configurations, it can easily be shown that the Mante]
statistic calculated on the Euclidean distances is negative for three of the configurations,
zero for two, and positive for one (Fig. 2). Disagreement between analyses arises in the
triangular pattern (approximate arrow) with no superimposed points, the arrow pattern with
superimposed points on the right, the (emply) square, and the U transposed. Thus, not only
the configuration but also the density of points may have an effect on the outcome of the
Mantel test and ils agreement or disagreement with Pearson’s correlation analysis. The
density of points is not related to the sampling effort that would concentrate more on some
parts of the {X, Y") biplot but follows instead from the theoretical bivariate distribution of
(X,Y).

In practice, scattergrams of raw data displaying a symmetrical pattern ol the arrow or
U-transposed type would be indicative of potential differences between the two methods of
analysis, depending on the density of points. The small-size artificial examples presented
here are completed in the next section by filling the arrow, U-transformed, and square
configurations with simulations and by considering two circular configurations (Table 1).

3.4 THE SIMULATION STUDY

Simulation results are summarized in Table 4. For cach of the seven models, the mean
value of Pearson’s v was very close to 0.0. Also, the empirical 35% confidence interval
for p contained (.0 for all seven models. On the other hand, the one-tailed and two-tailed
empirical significance levels were largely above the (.05 theoretical level for two of the
models, namely arrow 2 and arrow 3. This result does not contradict the previous ones bul
simply reflects the uniform instcad of bell-shaped distribution of Pearson’s « for these two
models (histograms not shown). At the same time, the mean value of the Mantel statistic
was close to 0.0 and the empirical 95% confidence interval for corr(dy , dy-) contained the
0.0 value only for the circle 2 und square models. The two-tailed empirical significance level
was above 0.90 for models arrow 2, arrow 3, U transposed, and circle 1. The left-hand one-
tailed empirical significance level equaled 0.0 for arrow 2, arrow 3, and U transposed, while
the right-hand one (not reported in Table 4) was 0.984, 0.992, and ().920, respectively. These
values compare with the 0.992 feft-hand one-tailed empirical significance level of circle 1.
Arrow 1 was (he only model for which the left-hand one-tailed empirical significance level
was largely above the 0.05 theoretical level, while the two-lailed cmpirical significance
level was not.

Thus, there are three models in seven for which there is some or much evidence for a
correlation between Euclidean distances while there is none for the raw data. These threc
models are arrow 1, U transposed, and circle 1. For the arrow 2 and arrow 3 models with
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Table 4. Parametric Linear Correlation Analysis on Raw Dala and Permutational Mantel Analysis on
Derived Euclidean Distances for 1,000 Samples of Size 100 Simulated Under Each of Seven
Bivariate Distributional Modets for {X,Y")

Pearson’s correlation analysis® Mante! test?®
One-tafled Two-tailed One-failed Two-tailed
empirical empitical empirical empirical
Mean value significance significance Mean value  significance  significance
Model® of statistic feve! level of statistic level level
Arrow 1 —0.002 0.029 0.026 —0.077 0.339 0.015
[—0.170, 0.163] [—0.122, —0.013]
Arrow 2 0.003 0.294 0.521 0.300 0.000 0.982
[—0.351, 0.361] {0.128, 0.444]
Arrow 3 —0.006 0.402 0.737 0.404 0.000 0.992
[—0.485, 0.450] [0.213, 0.644]
U transposed 0.003 0.067 0.080 0.059 0.000 0.918
[—0.204, 0.230] [0.028, 0.103]
Circle 1 0.000 0.018 0.010 —0.095 0.992 0.975
[ 0.157, 0.144] [ 0.130, 0.052]
Circle 2 0.000 0.036 0.038 —0.006 0.028 0.018
{—0.182, 0.187] [—0.072, 0.076]
Square 0.003 0.037 0.041 —0.001 0.050 .041
[—0.183, 0.193] [—0.045, 0.050]

&For each method of analysis, a mean value of the statistic was calculated over the 1,000 samples
for each model; the normalized version of the Mantel statistic was used. Each mean vaiue of a statistic
is followed, below in brackets, by the corresponding empirical 95% confidence interval. The empirical
significance ievels represent mean rates of rejection of the null hypethesis over 1,000 samples of size
100 for a 0.05 theoretical level. One-tailed empirical significance levels are left-hand thoroughly. See
text for further details.

See Table 1 for the description of models.

higher density of points in the middle and on the head of the arrow, Pearson’s r is equal to
0.0 on average and the Mantel statistic is likely to be strictly positive, although the Pearson
and Manlel analyses provide a high proportion ol significant results in hypothesis testing.
For models circle 2 and square, both analyses agree on nonsignificant results.

As the density of points increased from left to right in the arrow pattern (head o the
right), the Mantel statistic changed its sign from negative to positive [Fig. 3(a)—(c)]. This
phenomenon is mainly due to an increase in the proportion of small dx and dy- distances
from arrow | to arrow 3, combined with the formation of a cloud of larger distances. A
similar observation can be made for circle 1 (negative and highly significant Mantel statistic)
and circle 2 (negative but nonsignificant Mantel statistic).

The arrow | model {Fig. 3(a}] mimics very well the pattern displayed by the Frie 5 data
set of the example [Fig. 1{c)]. In arrow 1, variable X follows an exponential distribution
+1.0, while the conditional distribution of Y given x is normal with & variance equal to
I/x* (Table 1).
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Figure 3. An lllustrative Ezample of the Scattergrams of Raw Data and Derived Euclidean
Distances for One Simulation Replicate From Each of the Seven Models Listed in Table 1 With
n = 100: (a)-(c) Arrows 1-3, (d) U transposed, (e)—(f) circles 1-2, and (g) square. Only the zero
value is represented on the azes, when justified. The dotted lines represent symmetry azes, when
existing, whereas the solid lines represent the regression line of Y on X and of dy on dx.



MANTEL TEST AND PEARSON'S CORRELATION ANALYSIS 147

(e) ()

4y

> ”»

“ v, e e T wu
" -

e st Nt e
[

..... _,‘;__,L_.\,_f.__
> 3 R B

" . . % L :

A gt o,

PR | “ ,

o E

Figure 3. Continued.

4. CLOSING REMARKS

The Mantel test and Pearson’s correlation analysis are likely to disagree when the
values of variable X vary independently of those of variable Y, while the variation in X as
measured by the distances dy is related, positively or negatively, to the variation in Y as
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measured by the distances oy . Our analyses of the Lake Eric data showed this can indecd
occur with real data, as three of the nine data sets analyzed presented such a disagreement,
We also reported three bivariate distributional models for (X.Y) that reproduced this
disagreement, of which one (i.c., arrow 1) mimicked the Erie 5 and Erie 7 data sets. The
density of points in the raw data space seems to be of crucial importance to the outcome
of the Mantel test, as shown by the change in sign of the Mantetl statistic from the arrow 1
(high density on the left of the head) to the arrow 3 (high density on the right}) model. For
only one of the nine Lake Erie data sets analyzed (i.e., Erie 6) was the right-hand one-tailed
significance probability of Pearson’s r below the 0.05 level (i.e, r = 0.197, p — 0.028),
while the 0.045 value of the normalized Mantel statistic was not significant at the 0.05 level,
whatever the alternative hypothesis. This disagreement was not investigated in our study
because of its low frequency of observation in the Luake Erie cxample.

Our findings concerning disagreement were obtained by using Euclidean distances in
the Mantel test. In the one-dimensional case, they extend to any distance derived from a
norm of the Minkowski family (e.g., Manhattan, supremum) because all the Minkowski
norms are cquivalent in that case. Our results also seem to extend to the nonparametric
versions of both methods of analysis. For examnple, the Erie 7 data set provided a Spearman’s
rank correlation coefficient of 0.080 (p = 0.263), while the normalized rank-based Mantel
statistic was —(0.101 (p = 0.006) by using 20 equal-frequency distance classes. To assess
whether the lack of normality of the raw data had an effect on our findings, we recalculated
the significance probability of Pearson’s r by permutations with similar results; e.g., the
one-tailed permutational p of Pearson’s  was 0.366 for Erie 5 and 0.454 for Erie 7.

Actually, on the basis of the marginal distribution for X and the conditional distribution
of Y given w, it is possible to calculate the theoretical covariance between X and Y from
the joint probability density function of (X, ¥). Accordingly, for each of the three bivariate
distributional models that produced differences between the analyses in Section 3.4, it can
be shown that the double integral defining cov(X,Y") is 0.0. In other words, whatever
the statistic calculated on the raw data and for a given Type | crror risk, the correlation
between X and Y should be nonsignificant for these three models. It can also be shown
that an ellipse | model corresponding to circle | would provide similar results. To assess
the effect of inequality of variances between X and ¥ on our findings, consider a bivariate
distribution for {X,Y") defined by the marginal distribution of circle 1 for X and the
condittional distribution of circle 1 for ¥ given x multiplied by a positive constant «.
This defines an ellipse 1 model, for which corr(X,Y) = corr(Xeirere 1, @Yeirere 1) and
corr(dy, dy) = corr{dx circie 1. 40y cirale 1). The similarity of results for ellipse 1 and
circle 1 follows from the invariance of correlations after linear transformation of data.

Any Mantel type of analysis, including partial Mantel tests, Mantel correlograms, and
multiple regression on distance matrices, may replace the Maniel test in the observation of
a disagreement with Pearson’s correlation analysis. For example, the Mantel correlogram
(Oden and Sokal 1986; Sokal 1986) that we computed for dy versus dx from the Erie 5
data set had seven significant (p < 0.05) ordinates out of 20: four positive at intermediate

dy classes and three negative at further classes.
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Users of the Mantel test, including in an analysis-of-variance approach (e.g., Mielke
et al. 1976; Hubert, Golledge, and Costanzo 1982; Clarke 1993; Fortin and Gurevitch
1993), should be fully aware that the hypotheses tested are stated in terms of distances
or closeness, following Mantel and Valand (1970}, instead of raw data. Whether in its
original form (Mantel 1967) or in its regression extensions (Manly 1986; Smouse et al.
1986; Legendre et al. 1994), the objective of the Mantel test is the detection of relationships
between a dependent proximity matrix and one or several explanatory proximity matrices,
On the other hand, in the Manltel correlogram of dy- versus dx, the null hypothesis is that,
at a given distance class dx, the mean dy distance within that class is equal to the mean
dy distance from the other distance classes dx.

In summary, full care should be taken when drawing conclusions based on the Mantel
test. Special attention should be paid when one of the two variables or sets of variables
is related to the Poisson distribution in the discrete case or the associated exponential
distribution in the continuous case, i.e., when the values taken by one or more of the
variables may change drastically due to the scarcity of individuals of large size or the
occurrence of tare cvents with great impact in the sampling area. In contrast, under the
multivariate normal model for the raw data, the use of squared Euclidean distances in the
Mantel test provides a situation in which the Mantel test and Pearson’s correlation analysis
agree. We hope this paper will motivate (urther investigation about the specific aspects of
these two methods of analysis.
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Addendum

Strictly speaking, equation (3.3) is correct when i’ =i+1if 1 £i <nand when i’ =i-11if |
< i £ n. Otherwise, equation (3.3) must read

2

corr(dx,--rz, dy,i-fz) = , p —
n ! (- pXIL—: })(1 _ lez—zI)

within the limits of positive definiteness of the variance-covariance matrix of the normal

vector (x', ¥')' and the boundaries of the correlation coefficient.



