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Local contributions to beta diversity (LCBD) can be used to identify sites with high 
ecological uniqueness and exceptional species composition within a region of interest. 
Yet, these indices are typically used on local or regional scales with relatively few sites, 
as they require information on complete community compositions difficult to acquire 
on larger scales. Here, we investigated how LCBD indices can be predicted over broad 
spatial extents using species distribution modelling and examined the effect of scale 
changes on beta diversity quantification. We used Bayesian additive regression trees 
(BARTs) to predict warbler species distributions in North America based on observa-
tions recorded in the eBird database. We then calculated LCBD indices for observed 
and predicted data and compared the site-wise difference using direct comparison, a 
spatial association test and generalized linear regression. We also examined the rela-
tionship between LCBD values and species richness in different regions and at various 
spatial extents. Our results showed that species distribution models provided unique-
ness estimates highly correlated with observed data. The form and variance of the 
LCBD–richness relationship varied according to the region and the total extent size. 
The relationship was also affected by the proportion of rare species in the communi-
ties. Therefore, sites identified as unique over broad spatial extents may vary according 
to regional characteristics. These results show that species distribution modelling can 
be used to predict ecological uniqueness over broad spatial extents, which could help 
identify beta diversity hotspots and important targets for conservation purposes in 
unsampled locations.

Keywords: beta diversity, broad spatial scale, eBird, ecological uniqueness, local 
contributions to beta diversity, species distribution modelling

Introduction

Beta diversity, defined as the variation in species composition among sites in a geo-
graphic region of interest (Legendre et al. 2005), is an essential measure to describe 
the organization of biodiversity through space. Total beta diversity within a commu-
nity can be partitioned into local contributions to beta diversity (LCBD) (Legendre 
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and De Cáceres 2013), which allow the identification of sites 
with exceptional species composition, hence unique biodi-
versity and potential conservation value. Sites with unique 
community composition often differ from those with high 
species richness, possibly as they harbour rare species or help 
maintain beta diversity (Heino  et  al. 2017, da Silva  et  al. 
2018, Landeiro et al. 2018). Hence, focusing on uniqueness 
can prove helpful as a complementary approach to species 
richness (Heino and Grönroos 2017, da Silva  et  al. 2018, 
Dubois  et  al. 2020, Yao  et  al. 2021). However, the use of 
LCBD indices is currently limited in two ways. First, LBCD 
indices are typically used on data collected over local or 
regional scales with relatively few sites, for example, on fish 
communities at intervals along a river or stream (Legendre 
and De Cáceres 2013). Second, LCBD calculation methods 
require complete information on community composition; 
thus, they are inappropriate for partially sampled sites (e.g. 
where data for some species are missing or uncertain) and 
cannot directly provide assessments for unsampled ones. 
Accordingly, this method is of limited use to identify areas 
with exceptional biodiversity in regions with sparse sam-
pling. However, predictive approaches offer an opportunity 
to overcome such limitations, as computational methods 
often uncover novel ecological insights from existing data 
(Poisot et al. 2019), including in lesser-known locations and 
on larger spatial scales.

Species distribution models (SDMs) (Guisan and Thuiller 
2005) can bring a new perspective to LCBD studies by filling 
in gaps in community composition data to perform analy-
ses on broader scales. Single-species SDMs aim at predict-
ing the distribution of a species in unsampled locations based 
on information (such as environmental data) from sampled 
locations with reported occurrences. Many approaches allow 
going from single-species SDMs to a whole community 
on which to evaluate community-level metrics, yet their 
relevance has not been explicitly evaluated for ecological 
uniqueness and LCBD indices. The most straightforward 
approach is stacked distribution models (S-SDMs) (Ferrier 
and Guisan 2006, Guisan and Rahbek 2011). Single-species 
SDMs are first performed separately, then combined to form 
a community prediction on which community-level analyses 
can be applied. S-SDMs tend to overestimate species rich-
ness (Dubuis et al. 2011, D’Amen et al. 2015, Zurell et al. 
2020), which could result from thresholding the probabilities 
into presence–absence data before stacking the species dis-
tributions (Calabrese et al. 2014). Summing the occurrence 
probabilities without applying a threshold is an alternative 
(Calabrese et al. 2014), but it may limit some analyses as it 
does not return species identities for every site (Zurell et al. 
2020), as is required with LCBD calculations. In compari-
son, joint species distribution models (JSDMs) (Pollock et al. 
2014) try to improve predictions by incorporating species 
co-occurrence or shared environmental responses into the 
models. However, these models do not always improve com-
munity-level predictions compared to S-SDMs (Zurell et al. 
2020). Spatially explicit species assemblage modelling 
(SESAM) (Guisan and Rahbek 2011), hierarchical modelling 

of species communities (HMSC) (Ovaskainen  et  al. 2017) 
and Bayesian networks (BN) (Staniczenko  et  al. 2017) are 
other alternatives that could yield better community predic-
tions than S-SDMs. On the other hand, they add method-
ological and computational overload, impeding their use for 
broad spatial extents. Moreover, their relevance for commu-
nity prediction is often validated against extensive work on 
species richness. By comparison, ecological uniqueness and 
LCBD indices have rarely been used in predictive frame-
works. Therefore, S-SDMs may prove an appropriate first 
step to establish some prediction baselines.

Combining LCBD indices with a predictive approach 
through SDMs will allow measuring uniqueness over broader 
spatial extents, across continuous landscapes and on a higher 
number of sites than what has previously been studied. LCBD 
scores have typically been used at local or regional scales with 
relatively few sites (up to 60 sites on extents covering 10–400 
km, Legendre and De Cáceres 2013, da Silva and Hernández 
2014, Heino and Grönroos 2017, Heino et al. 2017). Some 
studies did use the measure over broader, near-continental 
extents (Yang  et  al. 2015, Poisot  et  al. 2017, Taranu  et  al. 
2020), but the total number of sites in these studies were 
relatively small (maximum 51 sites). Recent studies also 
investigated LCBD and beta diversity on sites distributed 
in contiguous grids or as pixels, hence uniform sampling 
intervals and no spatial gaps, but these did not cover large 
extents and a high number of sites (up to 1250 sites and 
6 km2, Tan et al. 2017, 2019, Legendre and Condit 2019, 
D’Antraccoli et al. 2020). Two recent studies have, however, 
adopted promising predictive approaches on regional extents. 
First, Niskanen et al. (2017) predicted LCBD values of plant 
communities (and three other diversity measures) on a con-
tinuous scale and a high number of sites (> 25 000) using 
boosted regression trees (BRTs). However, they modelled the 
diversity measures directly after calculating them on a smaller 
number of sampled sites. Second, Vasconcelos et al. (2018) 
used ecological niche models (ENMs) to predict anurans 
ecological niches according to actual and forecasted envi-
ronmental conditions, then calculated the LCBD values on 
the predictions to identify biodiversity hotspots. Using this 
approach, predicted LCBD values are calculated in a way 
closer to the original formulation. This development of pre-
dictive techniques is exciting, especially as it could be pushed 
a step further to continental extents, a higher number of sites 
and more species occurrences using SDMs and massive data 
sources. Still, it should be accompanied by an investigation of 
the determinant of ecological uniqueness in such conditions.

Measuring ecological uniqueness from LCBD indices 
over broad spatial extents and spatially continuous data also 
raises the question of which sites will be identified as excep-
tional and for what reason. The method intends that sites 
stand out and receive a high LCBD score whenever they dis-
play an exceptional community composition, be it a unique 
assemblage of species with high conservation value or a com-
munity richer or poorer than others in the region (Legendre 
and De Cáceres 2013). Both the original study and many of 
the later empirical ones have shown a negative relationship 
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between LCBD scores and species richness (Legendre and 
De Cáceres 2013, da Silva and Hernández 2014, Heino and 
Grönroos 2017, Heino et al. 2017), although other studies 
observed both negative and positive relationships at differ-
ent sites (Kong  et  al. 2017) or quadrats (Yao  et  al. 2021). 
Some studies showed that the direction of the relationship 
is related to the percentage of rare species in the community 
(da Silva et al. 2018, Yao et al. 2021). However, beta diversity 
and species rarity are both concepts that depend on scale. 
For instance, total beta diversity increases with spatial extent 
(Barton et al. 2013) and varies because of higher environmen-
tal heterogeneity and sampling of different local species pools 
(Heino et al. 2015). Therefore, the LCBD-richness relation-
ship and the effect of rare species on LCBD values should be 
investigated over broad spatial extents, as they might not be 
constant across scales.

Here, we examined whether species distribution mod-
els (SDMs) can be combined with local contributions to 
beta diversity (LCBD) to assess ecological uniqueness over 
broader spatial extents. We also investigated the effect 
of scale changes on beta diversity quantification. We first 
predicted species distributions on continental scales using 
extended occurrence data from eBird and Bayesian addi-
tive regression trees (BARTs). We then quantified unique-
ness with the LCBD measure for both predicted and 
observed data. Next, we examined the site-wise difference 
using direct comparison, a spatial autocorrelation test and 
generalized linear regression. We then investigated the 
relationship between uniqueness and species richness for dif-
ferent regions and scales and according to the proportion of  
rare species.

Methods

Occurrence data

We used occurrence data from eBird (Sullivan  et  al. 2009) 
downloaded through the eBird Basic Data set from June 
2019 (eBird Basic Dataset 2019). We restricted our analy-
ses to the New World warbler family (Parulidae) in North 
America (Canada, United States, Mexico). eBird is a semi-
structured citizen science data set, meaning that observations 
are reported as checklists of species detected in an observation 
run (Johnston et al. 2021). Observers can explicitly specify 
that their checklist contains all species they could detect and 
identify during a sampling event, in which case it is labelled 
as a ‘complete checklist.’ Using complete checklists instead 
of regular ones allows researchers to infer non-detections in 
locations where detection efforts occurred, which offers per-
formance gains in species distribution models (Johnston et al. 
2021). Therefore, we selected the data from the complete 
checklists only. Our final data set comprised 62 warbler spe-
cies and 22 974 330 observations from 9 103 750 checklists. 
Warblers are a diverse group with many species, are popular 
among birders given their charismatic aspect, and are widely 
distributed in various habitats across North America.

Environmental data

Our environmental data consisted of climatic data from 
WorldClim ver. 2.1 (Fick and Hijmans 2017) and land 
cover data from the Copernicus Global Land Service 
(Buchhorn  et  al. 2019). We restricted these data to a spa-
tial extent comprised between latitudes 20°N to 75°N and 
between longitudes 145°W to 50°W. First, the WorldClim 
data consist of spatially interpolated monthly climate data for 
global land areas. We used the standard BIOCLIM variables 
(Booth  et  al. 2014) from WorldClim 2.1, which represent 
annual trends, ranges and extremes of temperature and pre-
cipitation, but selected only 8 out of the 19 ones to avoid 
redundancy (bio1, bio2, bio5, bio6, bio12, bio13, bio14, 
bio15). We downloaded the data at a resolution of 10 arc-
minutes (around 18 km at the equator), the coarsest resolu-
tion available, which should mitigate potential imprecision 
in the eBird data regarding the extent of the sampled areas 
in each observation checklist. Moreover, some studies have 
argued that coarser resolutions lead to less overestimation of 
species richness and better identification of bird biodiversity 
hotspots given the patchiness of observation data (Hurlbert 
and Jetz 2007). We acknowledge that using an arcminutes-
based resolution means that the surface area of our pixels will 
not be equal depending on the latitude.

Second, the Copernicus data are a set of variables repre-
senting ten land cover classes (e.g. crops, trees, urban areas) 
and measured as a percentage of land cover. The data are only 
available at a finer resolution of 100 m. We coarsened them to 
the same ten arcminute resolution as the WorldClim data by 
averaging the pixels’ cover fraction values. We removed two 
variables (moss and snow) from our predictive models as their 
cover fraction was 0% on all sites with warbler observations.

Species distribution models

We converted the occurrence data to a presence–absence for-
mat compatible with community analyses. We considered 
every pixel from our ten arcminutes environmental layers as 
a site and then verified, for each species, if there was a single 
observation in every site. Finally, we recorded the outcome 
as a binary value: present (1) if a species was ever recorded in 
a site and absent (0) if it was not. Complete checklists help 
ensure that these zeros represent non-detections, rather than 
the species not being reported; hence we considered them 
as absence data, similar to Johnston et al. (2021), although 
we recognize that there exists a doubt on whether these truly 
represent non-detections.

We predicted species distribution data on continuous 
scales from our presence–absence data using Bayesian addi-
tive regression trees (BARTs) (Chipman et al. 2010), a clas-
sification and regression trees method recently suggested for 
species distribution modelling (Carlson 2020). BARTs are 
based on an ensemble of trees, similarly to boosted regres-
sion trees and random forest, but follow a sum-of-trees 
model and a Bayesian framework. Trees are first constrained 
as weak learners by priors regarding structure and nodes, then 
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updated through an iterative Bayesian backfitting Markov 
Chain Monte Carlo (MCMC) algorithm which ultimately 
generates a posterior distribution of predicted classification 
probabilities (Chipman  et  al. 2010, Carlson 2020). In the 
context of species distribution modelling, BARTs showed 
high performance when compared to other predictive algo-
rithms (Konowalik and Nosol 2021, Tytar and Baidashnikov 
2021). We first performed BARTs separately for all species 
and estimated the probability of occurrence in all the sites of 
our region of interest using the posterior median. We then 
converted the results to a binary outcome according to the 
threshold that maximized the true skill statistic (TSS) for 
each species, as suggested by Carlson (2020).

Quantification of ecological uniqueness

We used the method of Legendre and De Cáceres (2013) to 
quantify compositional uniqueness from overall beta diversity 
for both the observed and predicted data. First, we assembled 
the presence–absence data by site to form two site-by-species 
community matrices, one from observed data, called Y (39 
024 sites by 62 species) and one from predicted data, called 
Ŷ (99 382 sites by 62 species). Next, we measured species 
richness per site as the number of species present. Finally, 
we removed the sites without any species from the predicted 
matrix Ŷ, for a new total of 85 526 sites (this was unnecessary 
for the observed matrix Y ). We then applied the Hellinger 
transformation to both matrices in order to compute beta 
diversity from the community composition data (Legendre 
and De Cáceres 2013). We measured total beta diversity as 
the variance of each community matrix and calculated the 
local contributions to beta diversity (LCBD), which quantify 
how much a specific site (a row in each matrix) contributes 
to the overall variance in the community (Legendre and De 
Cáceres 2013). High LCBD values indicate a unique com-
munity composition, while low values indicate a more com-
mon species set. We note that our LCBD values, which add 
up to 1 because the values are divided by the total sum-of-
squares of the data matrix, were very low given the high num-
ber of sites in both Y and Ŷ. However, the relative difference 
between the scores in one set matters more than the absolute 
value to differentiate their uniqueness.

Comparison of observed and predicted values

We performed three verification to compare the richness and 
uniqueness estimates obtained from our predicted distribu-
tions to those obtained with the eBird occurrence data. First, 
we performed a direct comparison by subtracting the richness 
and LCBD estimates obtained from Y (the observed data) 
from the estimates obtained from Ŷ (the predicted data). To 
do so, we used the richness estimates as-is but modified the 
LCBD values to achieve a non-biased comparison, given that 
the values were initially calculated on sets of different lengths. 
Therefore, we recomputed the LCBD scores only for the sites 
for which we had occurrences in both Y and Ŷ, which mostly 
corresponded to the sites in Y, minus a few sites where the 

SDMs predicted no species occurrence. We then plotted the 
richness and LCBD differences to examine their spatial dis-
tributions. Second, we performed the modified t test from 
Clifford  et  al. (1989) to assess the correlation between the 
observed and predicted estimates and test for spatial associa-
tion. We performed the test separately for the richness and 
the LCBD estimates. Third, we performed generalized linear 
models between the observed and predicted estimates and 
plotted the deviance residuals to examine their spatial dis-
tribution. We used a negative binomial regression with a log 
link function for the richness estimates and a beta regression 
with a logit link function for the LCBD values, similar to 
Heino and Grönroos (2017) and Yao et al. (2021).

Investigation of regional and scaling variation

To investigate possible regional and scaling effects, we recal-
culated LCBD values on various subregions at different loca-
tions and scales. First, we selected two subregions of equivalent 
size (20.0 longitude degrees by 10.0 latitude degrees) with 
contrasting richness profiles and corresponding to different 
ecoregions to verify if the relationship between species rich-
ness and LCBD values was similar. The first subregion was 
in the northeast (latitude 40°N to 50°N, longitude 80°W to 
60°W), was mostly species-rich (for both the observed and 
predicted data), and corresponded to the Eastern Temperate 
Forests level I ecoregion (Commission for Environmental 
Cooperation 1997). The second subregion was in the south-
west (latitude 30°N to 40°N, longitude 120°W to 100°W), 
was mostly species-poor, and covered Mediterranean 
California, North American Deserts, Temperate Sierras and 
Southern Semi-Arid Highlands ecoregions (Commission for 
Environmental Cooperation 1997). Second, we recalculated 
the LCBD indices at three different extents, starting with a 
focus on the northeast subregion and progressively extend-
ing the extent to encompass the southwest subregion. We did 
these two verifications with both the observed and predicted 
data but only illustrate the results with the predicted data as 
both were qualitatively similar.

Proportion of rare species

We investigated the effect of the proportion of rare species in 
the community on the direction of the relationship between 
species richness and LCBD values in our northeast and 
southwest subregions. Following De Cáceres  et  al. (2012) 
and Yao et al. (2021), we classified species as rare when they 
occurred in less than 40% of the sites in each subregion. We 
calculated the proportion of rare species for every site. We 
then grouped the sites for both subregions depending on 
whether they were part of an ascending or a descending por-
tion in the LCBD–richness relationship. Given that the rela-
tionship sometimes displays a curvilinear form with a positive 
quadratic term (Heino and Grönroos 2017, Tan et al. 2019), 
we separated the ascending and descending portions based on 
the species richness at the site with the lowest LCBD value 
(using the median richness if there were multiple sites). This 
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value corresponds to the inflection point of the relationships. 
For example, the lowest LCBD value was 7.045 × 10-05 in 
the northeast subregion and the corresponding richness was 
23. All the sites with more than 23 species were assigned to 
the ascending portion, and all the sites with 23 species or 
fewer were assigned to the descending portion. In the south-
west subregion, the lowest LCBD value and its correspond-
ing richness were 5.438 × 10-05 and 12, respectively. We then 
mapped the ascending and descending groups to view their 
spatial distribution. We also examined the distribution of the 
rare species proportions in both groups using a kernel density 
estimation plot. Similar to our previous verification, we per-
formed this analysis with both observed and predicted data 
but once again only illustrate the results with the predicted 
data as both were qualitatively similar.

Software

We used Julia ver. 1.6.1 (Bezanson et al. 2017) for most of 
the project and R ver. 4.1.0 (<www.r-project.org>) for some 
specific steps. We used the Julia package SimpleSDMLayers.
jl (Dansereau and Poisot 2021) as the basic framework for 
our analyses, to download the WorldClim 2.1 data, and to 
map our results through the package’s integration of Plots.
jl. We also used StatsPlots.jl to produce the kernel density 
estimation plots in our rare species analysis. We computed 
the LCBD indices with our own function implemented in 
Julia, whose results were verified by comparison to the beta.
div function from the package adespatial (Dray et al. 2021) in 
R. We used the R packages auk (Strimas-Mackey et al. 2018) 
to extract and manipulate eBird data, embarcadero (Carlson 
2020) to perform the BART models, vegan (Oksanen et al. 
2019) to apply the Hellinger transformations, and SpatialPack 
(Vallejos et al. 2020) to perform the modified t test (with the 
function modified.ttest) from Clifford et al. (1989). We used 
MASS (Venables and Ripley 2002) and betareg (Cribari-
Neto and Zeileis 2010) to perform the negative binomial and 
beta regressions, respectively. We also used GDAL (GDAL/
OGR Contributors 2021) to coarsen the Copernicus land 
cover data. All the scripts required to reproduce the analy-
ses are archived on Zenodo (<https://doi.org/10.5281/
zenodo.6024392>).

Results

Species distribution models generate relevant 
community predictions

Species richness from observation data (Fig. 1a) was higher 
on the east coast and lower on the west coast, with many 
unsampled patches in the north, south and central west. 
Richness results from SDM data (Fig. 1b) displayed higher 
richness on the east coast and sites with few or no species up 
north and in the central west. There was no clear latitudinal 
gradient in richness but rather an east–west one. Landmarks 
such as the Rocky Mountains and croplands in the central 

west (which should be species-poor habitats) were notably 
visible on the maps, separating the east and west. LCBD 
scores from observation data (Fig. 1c) were low on the east 
coast and higher on the border of sampled sites in the central 
west. They were also higher in the north and in the south 
where observations were sparser. Results from SDM predic-
tions were qualitatively similar (Fig. 1d), with lower LCBD 
values in the east and more unique sites in the central west, 
Central Mexico and some northern regions. There was no 
clear latitudinal gradient, and the east–west contrast, while 
present, was less clear than on the richness maps.

The modified t test of Clifford et al. (1989) showed a high 
correlation between the observed and predicted estimates 
of richness and uniqueness, as well as a statistically signifi-
cant spatial association between the values. For species rich-
ness, the correlation coefficient was 0.777, the F-statistic 
was 20.007 and the p-value was 6.093 ×10-04. For LCBD 
scores, the correlation coefficient was 0.518, the F-statistic 
was 40.083 and the p-value was 5.528 ×10-09.

The difference between the observed and predicted esti-
mates (predicted richness – observed richness and predicted 
LCBD – observed LCBD) showed opposite geographic 
distributions for species richness and ecological unique-
ness (Fig. 2). Predicted richness estimates were higher than 
observed estimates on the east coast, on the west coast and in 
Mexico but were lower than observed estimates in the cen-
tral west (Fig. 2a). Predicted LCBD estimates, on the other 
hand, were lower than observed estimates on the east coast 
and higher in the central west (Fig. 2b). Regression residuals 
showed similar geographic distributions to their correspond-
ing difference values (Fig. 3).

Uniqueness displays regional variation as two 
distinct profiles

The relationship between LCBD values and species richness 
displayed contrasting profiles in species-rich and species-poor 
regions (Fig. 4). In the species-rich northeast region, LCBD 
scores displayed a mostly decreasing relationship with spe-
cies richness, with a slightly curvilinear form and increase of 
values for very rich sites. The sites with the highest LCBD 
values were the species-poor sites while the species-rich sites 
displayed scores. The southwest subarea showed a different 
relationship with a sharper initial decline and a larger increase 
as richness reached 20 species. The sites with the highest 
LCBD values were the poorest in terms of species richness, 
as in the northeast region, but the species-rich sites were pro-
portionally more unique in the southwest region. Total beta 
diversity was higher in the southwest subregion (0.417) than 
in the northeast (0.179), indicating higher compositional dif-
ferences between the sites.

Uniqueness depends on the scale on which it is 
measured

The LCBD-richness relationship showed important variation 
when scaling up and changing the region’s extent (Fig. 5). For 
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smaller extents, starting with a species-rich region, the rela-
tionship is well defined, mostly decreasing but notably cur-
vilinear (with a lesser increase for richness values higher than 
the median). However, as the extent increases and progres-
sively reaches species-poor regions, the relationship broad-
ens, displays more variance and loses its curvilinear aspect 
while keeping a decreasing form. Total beta diversity was 
higher when increasing the spatial extent, going from 0.121 
to 0.284 and 0.687.

Uniqueness depends on the proportion of  
rare species

The proportion of rare species per site differed depending 
on the classification in the ascending or descending portions 
of the LCBD–richness relationship (Fig. 6). The proportion 
of rare species was higher in the sites corresponding to the 
ascending portions of the relationships (shown in Fig. 4) 

than in the sites corresponding to the descending portions 
for both subregions. The classification of the sites in the two 
portions showed a clear latitudinal gradient in the northeast 
subregion, while it was distributed in patches in the south-
west subregion (Fig. 6).

Discussion

Our results showed a decreasing relationship between species 
richness and LCBD values on broad spatial extents (Fig. 5c) 
but also highlighted that the exact form of this relationship 
varies depending on the region and the spatial extent on which 
it is measured. Our species-rich northeast subregion (Fig. 4a) 
showed a decreasing relationship, very similar to previous 
studies and slightly curvilinear, as described by Heino and 
Grönroos (2017) and Tan et al. (2019). This result for warbler 
species is in line with the original study on fish communities 

Figure 1. Comparison of species richness and LCBD scores from observed and predicted warbler occurrences in North America. Values were 
calculated for sites representing ten arcminute pixels. We measured species richness after converting the occurrence data from eBird (a) and 
the SDM predictions from our single-species BART models (b) to a presence–absence format per species. We applied the Hellinger trans-
formation to the presence–absence data, then calculated the LCBD values from the variance of the community matrices separately for the 
occurrence data (c) and the SDM predictions (d). Areas in light grey (not on the colour scale) represent mainland sites with environmental 
data but without any warbler species present.
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(Legendre and De Cáceres 2013) and with following ones 
on insect metacommunities (da Silva and Hernández 2014, 
Heino and Grönroos 2017, Heino  et  al. 2017), dung bee-
tles (da Silva et al. 2018, 2020), aquatic beetles (Heino and 
Alahuhta 2019), stream macroinvertebrates (Sor et al. 2018), 
stream diatoms (Vilmi  et  al. 2017), multi-trophic pelagic 
food webs (phytoplankton, zooplankton, fish) (Taranu et al. 
2020), temperate forest trees (Tan et al. 2019), mammals (da 
Silva  et  al. 2020), wetland birds (de Deus et  al. 2020) and 
various phylogenetic groups (plants, lizards, mites, anurans, 
mesoinvertebrates) (Landeiro  et  al. 2018). However, it was 
originally argued that the negative relationship was not gen-
eral or obligatory (Legendre and De Cáceres 2013). Different 
LCBD–richness relationships have also been observed, with 
both positive and negative relationships for different sites 
or taxonomic groups in some studies (Kong  et  al. 2017, 
Teittinen et al. 2017), as well as a negative relationship with 
the number of common species but a positive relationship 
with the number of rare species (Qiao et al. 2015).

Our results further show that the relationship may depend 
on the region’s richness profile, as the relationship was differ-
ent in our species-poor southwest subregion, with a sharper 
initial decrease (Fig. 4b). Therefore, the curvilinear form 
may depend on how pronounced the contrast is between the 
region’s median richness and its richest ecologically feasible 
sites. The increasing part of the curvilinear form for higher 
richness values was also more pronounced in our results 
(Fig. 4a–b, 5c) than in previous studies (Tan  et  al. 2019), 
which reinforces the idea that the relationship and its curvi-
linear form may vary depending on the region.

The variation in the LCBD–richness relationship when 
extending the study extent showed that the uniqueness pat-
terns highlighted are not necessarily the same depending on 
the scale on which it is used (Fig. 5). The relationship pro-
gressively lost its clear definition and curvilinear form as the 
east and west profiles merged, creating a new distinct pro-
file with more variation and no curvilinear form. Therefore, 
aggregating too many different sites might possibly mask 

Figure 2. Comparison between observed and predicted estimates of species richness (a) and ecological uniqueness (b). The difference values 
represent the estimate from the predicted data set minus the estimate from the observed data set. LCBD values were recalculated for the 
same set of sites with observations in both data sets.
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some patterns of uniqueness in species-rich sites. Total beta 
diversity, on the other hand, showed the variation expected 
from previous studies, increasing with spatial extent (Fig. 5) 
(Barton et al. 2013, Heino et al. 2015). Its value was high at 
the continental scale (0.687) but lower than what has been 
observed in some studies (e.g. 0.80 on macroinvertebrate 
communities in the Lower Mekong Basin by Sor et al. 2018).

Our results confirm that the proportion of rare species in 
the community may affect the direction of the relationship 
between species richness and ecological uniqueness (Fig. 6). 
da Silva et al. (2018) suggested that the proportion of rare 
and common species in the communities determines whether 
the relationship will be negative, non-significant or positive. 
Yao et al. (2021) showed an association between the direction 
of the relationship and the proportion of rare species, with 
sites with a lower proportion (between 60% and 75% in their 
case) displaying a negative relationship and sites with a higher 
proportion (around 85%) showing a positive one. Our results 
further show that sites associated with a positive relationship 

within a curvilinear one tended to have a higher rare species 
proportion (Fig. 6). This also implies that the proportion of 
rare species was higher in species-rich sites than in species-
poor ones in both our northeast and southwest subregions. 
Further work should attempt to disentangle the effects of the 
rare species proportion and the region’s richness profile.

Our results showed that SDM models provide richness 
and uniqueness predictions highly correlated to the occur-
rence data while filling gaps in poorly sampled regions 
(Fig. 1). The results showed a statistically significant spatial 
association between predicted and observed estimates despite 
correcting for autocorrelation using the modified t-test from 
Clifford et al. (1989). A positive autocorrelation on large dis-
tances indicates aggregates or structures repeating through 
space (Legendre and Fortin 1989). This is consistent with our 
results, as the distribution of richness and uniqueness values 
was visibly spatially structured in both our observed and pre-
dicted data (Fig. 1). Nonetheless, it is possible that the auto-
correlation in the predicted values could represent an artifact 

Figure 3. Comparison of the regression residuals between the observed and predicted estimates of species richness (a) and ecological unique-
ness (b). The estimate from the predicted data set was used as the dependent variable and the estimate from the observed data set as the 
independent variable. A negative binomial regression with a log link function was used for species richness, and a beta regression with a logit 
link function was used for uniqueness. LCBD values were recalculated for the same set of sites with observations in both data sets.
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of the predictive models (capturing the spatial structure from 
the environmental variables, for example), and might not 
represent the true autocorrelation expected for the unique-
ness estimates. Further work could verify this by quantita-
tively comparing the autocorrelation and spatial structures in 
the observed and predicted uniqueness estimates.

Predicted values also tended to underestimate uniqueness 
in species-rich regions and overestimate it in species-poor 
ones, with the opposite trend for species richness (Fig. 2, 3). 
Overprediction of richness using S-SDMs was reported pre-
viously (Dubuis et al. 2011, D’Amen et al. 2015, Zurell et al. 
2020). No comparable baseline exists for predictions of 
LCBD values, as our study is the first to compare LCBD 
estimates from observed and predicted data in such a way. 
However, some studies showed that LCBD distributions 
were spatially structured across sampling sites (da Silva et al. 
2018). On the other hand, the spatial structure in our results 
did not exactly concord with the one reported by Heino and 
Alahuhta (2019), who showed a negative relationship between 
LCBD values and latitude for diving beetles communities in 
northern Europe. In comparison, our LCBD scores increased 

both in the north and south (Fig. 1), hence did not strictly 
increase with latitude, and also showed a clear east–west gra-
dient. Overall, our distribution results (Fig. 1, 2, 3) also have 
implications for conservation, as they confirm that species 
richness and ecological uniqueness measured from LCBD 
values may conflict and highlight different potential hotspots 
(Dubois  et  al. 2020, Yao  et  al. 2021), thus reinstating the 
need to protect both with complementary strategies.

Our predictions for regions with sparse sampling are of 
interest as they allow a quantitative evaluation, however 
imperfect, for sites where we would otherwise have no infor-
mation. Our SDMs also offered relevant LCBD predictions 
using eBird, arguably one of the largest presence–absence 
data sets available (when using its complete checklist sys-
tem), showing the measure’s potential on such massive data. 
Together, the potential to generate uniqueness predictions in 
new locations and through massive data opens new oppor-
tunities for LCBD analyses on extended spatial scales and 
on a broader diversity of taxons. An interesting way forward 
would be to test these results using more advanced commu-
nity assembling techniques than S-SDMs. The use of SESAM 

Figure 4. Comparison between a species-rich region (northeast, a) and a species-poor one (southwest, b) based on the SDM predictions for 
warbler species in North America. The left-side figures represent the LCBD scores for the assembled presence–absence predictions, calcu-
lated separately in each region. The colour scales are set to the respective range of LCBD scores to highlight the relative change within each 
region rather than compare the scores between both regions. The right-side two-dimensional histograms represent the decreasing and 
slightly curvilinear relationship between LCBD values and species richness. The vertical and horizontal dashed lines respectively represent 
the median richness and LCBD value in each region, while BDtot represents the total beta diversity.
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(Guisan and Rahbek 2011) with probabilistic SDMs, prob-
ability ranking and species richness predictions as macroeco-
logical constraints returns high site-level prediction accuracy 
(Zurell et al. 2020) and would be compatible with presence–
absence LCBD calculations. The use of probabilistic stacks 

rather than binary ones (Calabrese  et  al. 2014) could also 
constitute a novel way to calculate LCBD indices. Both these 
procedures should reduce the richness deviation we observed, 
and it would be interesting to verify if this can also be the 
case with LCBD values. An ensemble of SDM algorithms 

Figure 5. Effect of extent size on the relationship between site richness and LCBD values based on the SDM predictions for warbler species 
in North America. The relationship progressively broadens and displays more variance when scaling up while total beta diversity increases. 
The LCBD values were recalculated at each scale based on the sites in this region. The vertical and horizontal dashed lines respectively rep-
resent the median richness and LCBD value in each region, while BDtot represents the total beta diversity.
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could also be used to capture a broader range of possible out-
comes for the LCBD predictions. However, given the high 
performance of BARTs in model comparisons (Konowalik 
and Nosol 2021, Tytar and Baidashnikov 2021) and the 
large extent we covered, we do not believe the changes to the 
LCBD gradients would be strong enough to affect our results 
in a meaningful way.

This study showed how ecological uniqueness can be mea-
sured over broad spatial extents, including for regions with 
sparse sampling, and how scale changes may affect beta diver-
sity quantification. It is the first study to assess the relevance of 
local contributions to beta diversity calculated on the output 
of species distribution models. It is also the first to compare 
the relationship between LCBD values and species richness for 
different regions and spatial extents. First, our results showed 
that the negative relationship often observed between species 
richness and LCBD scores can take different forms depending 

on the richness profile of the regions on which it is measured. 
Therefore, species-rich and species-poor regions may display 
different ways to be unique. Second, the negative relationship 
was not constant when varying the spatial study extent and 
may be less clearly defined at broad scales when contrasting 
regional relationships are present. The broad-scale uniqueness 
profile might then be completely distinct from the regional pro-
files constituting it. Finally, species distribution models offer a 
promising way to generate uniqueness predictions on broad 
spatial extents and could prove useful to identify beta diversity 
hotspots in unsampled locations on large spatial scales, which 
could be important targets for conservation purposes.

Acknowledgements – We acknowledge that this study was conducted 
on land within the traditional unceded territory of the Saint 
Lawrence Iroquoian, Anishinabewaki, Mohawk, Huron-Wendat 

Figure 6. Proportion of rare species in the ascending and descending portions of the LCBD–richness relationship for the northeast (a) and 
southwest (b) subregions. The left side figures show the geographic distribution of the sites from each group. Sites were assigned to the 
ascending portion if their species richness was higher than the richness of the site with the lowest LCBD value, which corresponds to the 
inflection point of the right side figures of Fig. 4, and in the descending portion otherwise. The right side figures represent the kernel density 
estimation of the proportion of rare species in each group. Values on the y-axis are probability densities scaled so that the area under the 
curve equals one. Similarly, the area under the curve for a given range of values on the x-axis (proportions of rare species) represents the 
probability of observing a value in that range. Species were classified as rare when they occurred in fewer than 40% of the sites in the sub-
region. The proportion of rare species was then calculated for every site.



12

and Omàmiwininiwak nations. We thank Élise Filotas and Anne-
Lise Routier for their helpful comments on this manuscript.
Funding – We received financial support from the Fonds de 
recherche du Québec – Nature et Technologie (FRQNT, grant no. 
275686) and the Computational Biodiversity Science and Services 
(BIOS2) NSERC CREATE training program.

Author contributions

Gabriel Dansereau: Conceptualization (equal); Formal 
analysis (lead); Funding acquisition (lead); Methodology 
(equal); Project administration (supporting); Software (lead); 
Visualization (lead); Writing – original draft (lead); Writing – 
review and editing (lead). Pierre Legendre: Conceptualization 
(equal); Methodology (equal); Project administration (sup-
porting); Supervision (supporting); Writing – review and 
editing (equal). Timothée Poisot: Conceptualization (lead); 
Funding acquisition (supporting); Methodology (equal); 
Project administration (lead); Resources (lead); Software 
(equal); Supervision (lead); Writing – original draft (support-
ing); Writing – review and editing (equal).

Data availability statement

All data used in this work come from publicly accessible data 
sets. The WorldClim climate data are available at <www.
worldclim.org/data/worldclim21.html>. The Copernicus 
land cover data are archived on Zenodo <https://doi.
org/10.5281/zenodo.3243509>. The eBird Basic Dataset is 
available for download from eBird after completing a data 
request form at <https://ebird.org/science/use-ebirddata/
download-ebird-data-products>. Pre-processed data ready for 
analysis are available alongsidethe scripts on Zenodo <https://
doi.org/10.5281/zenodo.6024392>.

References

Barton, P. S. et al. 2013. The spatial scaling of beta diversity. – 
Global Ecol. Biogeogr. 22: 639–647.

Bezanson, J. et al. 2017. Julia: a fresh approach to numerical com-
puting. – SIAM Rev. 59: 65–98.

Booth, T. H. et al. 2014. BIOCLIM: the first species distribution 
modelling package, its early applications and relevance to most 
current MaxEnt studies. – Divers. Distrib. 20: 1–9.

Buchhorn, M. et al. 2019. Copernicus global land service: land 
cover 100m: Epoch 2015: Globe. – Zenodo, <https://doi.
org/10.5281/zenodo.3243509>.

Calabrese, J. M. et al. 2014. Stacking species distribution models 
and adjusting bias by linking them to macroecological models. 
– Global Ecol. Biogeogr. 23: 99–112.

Carlson, C. J. 2020. Embarcadero: species distribution modelling 
with Bayesian additive regression trees in R. – Methods Ecol. 
Evol. 11: 850–858.

Chipman, H. A. et al. 2010. BART: Bayesian additive regression 
trees. – Ann. Appl. Stat. 4: 266–298.

Clifford, P. et al. 1989. Assessing the significance of the correlation 
between two spatial processes. – Biometrics 45: 123–134.

Commission for Environmental Cooperation 1997. Ecological 
regions of North America. – Commission for Environmental 

Cooperation, <www3.cec.org/islandora/en/item/1701-ecologi-
cal-regions-north-america-toward-common-perspective/>.

Cribari-Neto, F. and Zeileis, A. 2010. Beta regression in R. – J. 
Stat. Softw. 34: 1–24.

D’Amen, M. et al. 2015. Using species richness and functional traits 
predictions to constrain assemblage predictions from stacked 
species distribution models. – J. Biogeogr. 42: 1255–1266.

D’Antraccoli, M. et al. 2020. More species, less effort: designing 
and comparing sampling strategies to draft optimised floristic 
inventories. – Perspect. Plant Ecol. Evol. Syst. 45: 125547.

da Silva, P. G. and Hernández, M. I. M. 2014. Local and regional 
effects on community structure of dung beetles in a Mainland–
Island scenario. – PLoS One 9: e111883.

da Silva, P. G. et al. 2018. Disentangling the correlates of species 
and site contributions to beta diversity in dung beetle assem-
blages. – Divers. Distrib. 24: 1674–1686.

da Silva, P. G. et al. 2020. Can taxonomic and functional metrics 
explain variation in the ecological uniqueness of ecologically-
associated animal groups in a modified rainforest? – Sci. Total 
Environ. 708: 135171.

Dansereau, G. and Poisot, T. 2021. SimpleSDMLayers.jl and GBIF.
jl: a framework for species distribution modeling in Julia. – J. 
Open Source Softw. 6: 2872.

De Cáceres, M. et al. 2012. The variation of tree beta diversity 
across a global network of forest plots. – Global Ecol. Biogeogr. 
21: 1191–1202.

Deus, F. et al. 2020. Avian beta diversity in a neotropical wetland: 
the effects of flooding and vegetation structure. – Wetlands 40: 
1513–1527.

Dray, S. et al. 2021. Adespatial: multivariate multiscale spatial 
analysis. – <https://CRAN.R-project.org/package=adespatial>.

Dubois, R. et al. 2020. Ecological uniqueness of plant communities 
as a conservation criterion in lake-edge wetlands. – Biol. Con-
serv. 243: 108491.

Dubuis, A. et al. 2011. Predicting spatial patterns of plant species 
richness: a comparison of direct macroecological and species 
stacking modelling approaches. – Divers. Distrib. 17: 
1122–1131.

eBird Basic Dataset 2019. Version: EBD_relJun-2019. – Cornell 
Lab of Ornithology.

Ferrier, S. and Guisan, A. 2006. Spatial modelling of biodiversity 
at the community level. – J. Appl. Ecol. 43: 393–404.

Fick, S. E. and Hijmans, R. J. 2017. WorldClim 2: new 1-km 
spatial resolution climate surfaces for global land areas. – Int. 
J. Climatol. 37: 4302–4315.

GDAL/OGR Contributors 2021. GDAL/OGR geospatial data 
abstraction software library. Manual. – Open Source Geospatial 
Foundation, <https://gdal.org>.

Guisan, A. and Rahbek, C. 2011. SESAM a new framework inte-
grating macroecological and species distribution models for 
predicting spatio-temporal patterns of species assemblages. – J. 
Biogeogr. 38: 1433–1444.

Guisan, A. and Thuiller, W. 2005. Predicting species distribution: 
offering more than simple habitat models. – Ecol. Lett. 8: 
993–1009.

Heino, J. and Alahuhta, J. 2019. Knitting patterns of biodiversity, 
range size and body size in aquatic beetle faunas: significant 
relationships but slightly divergent drivers. – Ecol. Entomol. 
44: 413–424.

Heino, J. and Grönroos, M. 2017. Exploring species and site con-
tributions to beta diversity in stream insect assemblages. – Oec-
ologia 183: 151–160.



13

Heino, J. et al. 2015. A comparative analysis reveals weak relation-
ships between ecological factors and beta diversity of stream 
insect metacommunities at two spatial levels. – Ecol. Evol. 5: 
1235–1248.

Heino, J. et al. 2017. Unravelling the correlates of species richness 
and ecological uniqueness in a metacommunity of urban pond 
insects. – Ecol. Indic. 73: 422–31.

Hurlbert, A. H. and Jetz, W. 2007. Species richness, hotspots and 
the scale dependence of range maps in ecology and conserva-
tion. – Proc. Natl Acad. Sci. USA 104: 13384–13389.

Johnston, A. et al. 2021. Analytical guidelines to increase the value 
of community science data: an example using eBird data to 
estimate species distributions. – Divers. Distrib 27: 1265–1277.

Kong, H. et al. 2017. Spatio-temporal variation of fish taxonomic 
composition in a south-east asian flood-pulse system. – PLoS 
One 12: e0174582.

Konowalik, K. and Nosol, A. 2021. Evaluation metrics and valida-
tion of presence-only species distribution models based on dis-
tributional maps with varying coverage. – Sci. Rep. 11: 1482.

Landeiro, V. L. et al. 2018. Species-poor and low-lying sites are 
more ecologically unique in a hyperdiverse Amazon region: evi-
dence from multiple taxonomic groups. – Divers. Distrib. 24: 
966–977.

Legendre, P. and Condit, R. 2019. Spatial and temporal analysis of 
beta diversity in the Barro Colorado Island Forest Dynamics 
Plot, Panama. – For. Ecosyst. 6: 7.

Legendre, P. and De Cáceres, M. 2013. Beta diversity as the vari-
ance of community data: dissimilarity coefficients and parti-
tioning. – Ecol. Lett. 16: 951–963.

Legendre, P. and Fortin, M.-J. 1989. Spatial pattern and ecological 
analysis. – Vegetatio 80: 107–138.

Legendre, P. et al. 2005. Analyzing beta diversity: partitioning the 
spatial variation of community composition data. – Ecol. Mon-
ogr. 75: 435–450.

Niskanen, A. K. J. et al. 2017. Drivers of high-latitude plant diver-
sity hotspots and their congruence. – Biol. Conserv. 212: 
288–299.

Oksanen, J. et al. 2019. Vegan: community ecology package. – 
<https://CRAN.R-project.org/package=vegan>.

Ovaskainen, O. et al. 2017. How to make more out of community 
data? A conceptual framework and its implementation as mod-
els and software. – Ecol. Lett. 20: 561–576.

Poisot, T. et al. 2017. Hosts, parasites and their interactions respond 
to different climatic variables. – Global Ecol. Biogeogr. 26: 
942–951.

Poisot, T. et al. 2019. Data-based, synthesis-driven: setting the 
agenda for computational ecology. – Ideas Ecol. Evol. 12: 9–21.

Pollock, L. J. et al. 2014. Understanding co-occurrence by model-
ling species simultaneously with a joint species distribution 
model (JSDM). – Methods Ecol. Evol. 5: 397–406.

Qiao, X. et al. 2015. Beta diversity determinants in badagongshan, 
a subtropical forest in central China. – Sci. Rep. 5: 17043.

Sor, R. et al. 2018. Uniqueness of sampling site contributions to 
the total variance of macroinvertebrate communities in the 
Lower Mekong Basin. – Ecol. Indic. 84: 425–432.

Staniczenko, P. P. A. et al. 2017. Linking macroecology and  
community ecology: refining predictions of species distribu-
tions using biotic interaction networks. – Ecol. Lett. 20: 
693–707.

Strimas-Mackey, M. et al. 2018. Auk: eBird data extraction and 
processing with AWK. – <https://cornelllabofornithology.
github.io/auk/>.

Sullivan, B. L. et al. 2009. eBird: a citizen-based bird observation 
network in the biological sciences. – Biol. Conserv. 142: 
2282–2292.

Tan, L. et al. 2017. How beta diversity and the underlying causes 
vary with sampling scales in the Changbai Mountain Forests. 
– Ecol. Evol. 7: 10116–10123.

Tan, L. et al. 2019. Understanding and protecting forest biodiver-
sity in relation to species and local contributions to beta diver-
sity. – Eur. J. For. Res. 138: 1005–1013.

Taranu, Z. E. et al. 2020. Large-scale multi-trophic co-response 
models and environmental control of pelagic food webs in 
Québec Lakes. – Oikos 130: 377–395.

Teittinen, A. et al. 2017. Local and geographical factors jointly 
drive elevational patterns in three microbial groups across sub-
arctic ponds. – Global Ecol. Biogeogr. 26: 973–82.

Tytar, V. and Baidashnikov, O. 2021. Associations between habitat 
quality and body size in the Carpathian-podolian land snail 
Vestia turgida: species distribution model selection and assess-
ment of performance. – Zoodiversity 55: 25–40. <http://ojs.
akademperiodyka.org.ua/index.php/Zoodiversity/article/
view/67>.

Vallejos, R. et al. 2020. Spatial relationships between two georefer-
enced variables: with applications in r. – Springer. <http://
srb2gv.mat.utfsm.cl/>.

Vasconcelos, T. S. et al. 2018. Expected impacts of climate change 
threaten the anuran diversity in the brazilian hotspots. – Ecol. 
Evol. 8: 7894–7906.

Venables, W. N. and Ripley, B. D. 2002. Modern applied statistics 
with S, 4th edn. – Springer. <www.stats.ox.ac.uk/pub/
MASS4/>.

Vilmi, A. et al. 2017. Ecological uniqueness of stream and lake 
diatom communities shows different macroecological patterns. 
– Divers. Distrib. 23: 1042–1053.

Yang, J. et al. 2015. The compositional similarity of urban forests 
among the world’s cities is scale dependent. – Global Ecol. Bio-
geogr. 24: 1413–1423.

Yao, J. et al. 2021. Ecological uniqueness of species assemblages and 
their determinants in forest communities. – Divers. Distrib. 27: 
454–462.

Zurell, D. et al. 2020. Testing species assemblage predictions from 
stacked and joint species distribution models. – J. Biogeogr. 47: 
101–113.


