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Abstract Beals smoothing is a multivariate transforma-

tion specially designed for species presence/absence

community data containing noise and/or a lot of zeros. This

transformation replaces the observed values of the target

species by predictions of occurrence on the basis of its

co-occurrences with the remaining species. In many

applications, the transformed values are used as input for

multivariate analyses. As Beals smoothing values provide a

sense of ‘‘probability of occurrence’’, they have also been

used for inference. However, this transformation can pro-

duce spurious results, and it must be used with caution.

Here we study the statistical and ecological bases under-

lying the Beals smoothing function, and the factors that

may affect the reliability of transformed values are

explored using simulated data sets. Our simulations dem-

onstrate that Beals predictions are unreliable for target

species that are not related to the overall ecological

structure. Furthermore, the presence of these ‘‘random’’

species may diminish the quality of Beals smoothing val-

ues for the remaining species. A statistical test is proposed

to determine when observed values can be replaced with

Beals smoothing predictions. Two real-data example

applications are presented to illustrate the potentially false

predictions of Beals smoothing and the necessary checking

step performed by the new test.

Keywords Barro Colorado Island � Beals smoothing �
Binary data � Community ecology � Randomization model

Introduction

Community composition data tables (i.e., species-plot data)

are routinely used to study community structure and pro-

cesses. In such tables, rows usually represent sampling

units or sites, columns are species, and entries correspond

to the contributions of the species to the sampled sites (e.g.,

presence/absence, biomass or density estimates). The

research hypothesis is often that community data tables

contain the responses in species composition to the envi-

ronmental conditions prevailing at the sampled sites (in a

broad sense, including the abiotic environmental factors as

well as biological interactions and disturbances). However,

a well-known issue of multivariate analyses is the loss of

sensitivity of resemblance measures as the environmental

distance between sampling units increases. This occurs

because abundance values for species are used as a surro-

gate measure for habitat suitability, and the information on

suitability is lost whenever the species is absent (McCune

1994). Beals (1984) referred to this problem as the ‘‘zero-

truncation problem’’, which is essentially similar to the

well-known ‘‘double-zero problem’’ (Legendre and

Legendre 1998). In order to lessen the zero-truncation

problem, Beals (1984) introduced a data transformation,

which he called the ‘‘sociological favorability index’’. This
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index assesses the ‘‘probability of occurrence’’ of a target

species at a given site on the basis of its joint occurrences

with the remaining species in the data table. A similar

approach can be traced back to the works of Swan (1970)

and Brisse et al. (1980). Ten years later, McCune (1994)

studied this transformation and proposed a new name for it,

Beals smoothing. Apart from avoiding the problem of

many plots not actually sharing any species, McCune

(1994) found Beals smoothing to be ‘‘particularly effec-

tive’’ on noisy data. Niche theory tells us that species are

found at locations where they encounter appropriate living

conditions (Hutchinson 1957). This does not mean, how-

ever, that species will always be found whenever suitable

environmental conditions occur. For example, there may be

historical or physical factors limiting the access of a spe-

cies to an ecologically suitable habitat. Sampling errors,

such as species misidentification or insufficient sampling

effort, may also plague the data table. Clearly, one of the

most important benefits of the Beals transformation is that

it fills these niche ‘‘gaps’’ with species occurrence predic-

tions, thus smoothing out the ‘‘ecological noise’’. When

this ‘‘noise’’ is removed by the transformation, the multi-

variate structure of the data table is greatly simplified,

leading to a substantial increase in the proportion of vari-

ance represented in non-canonical ordination plots

(McCune 1994; Schnittler et al. 2006).

The popularity of this transformation in community

ecology increased after its inclusion in statistical packages

(McCune and Mefford 1999; Oksanen et al. 2008). In recent

years, Beals smoothing has been used as a transformation for

binary data prior to multivariate community analyses—

mostly non-canonical methods, such as Bray–Curtis ordi-

nation (Ellyson and Sillett 2003), CA/DCA (Joy and Death

2000; Holz and Gradstein 2005), and nonmetric multidi-

mensional scaling (NMDS; Kimball et al. 2004; Lee 2004;

Marra and Edmonds 2005; North et al. 2005; Whitehouse

and Bayley 2005; Beauchamp et al. 2006; Schnittler et al.

2006), and also clustering (Whitehouse and Bayley 2005).

The communities under study are varied in the type of

organisms, comprising vascular plants (Kimball et al. 2004,

Lee 2004; North et al. 2005), lichens and bryophytes (El-

lyson and Sillett 2003; Holz and Gradstein 2005;

Whitehouse and Bayley 2005), arthropods (Marra and

Edmonds 2005), fishes (Joy and Death 2000), and fungi

(Beauchamp et al. 2006; Schnittler et al. 2006). Beals

smoothing values have also been used for inference purposes

because they provide a sort of ‘‘probabilities of occurrence’’

(Ewald 2002; Münzbergová and Herben 2004).

Despite its merits, it is important to state that replacing

observed species values by Beals smoothed values in

multivariate analyses must be done with caution for at least

three reasons. First, it may produce erroneous or spurious

results. Beals smoothing can produce consistent trends

even from series of random numbers (McCune 1994;

McCune and Grace 2002). Second, a species may have a

higher probability of occurrence in a site where it does not

occur than in sites where it occurs (Oksanen et al. 2008).

Third, as this transformation highlights the ‘‘estimated’’

ecological niche for the target species, it can distort or

mask spatial or temporal changes in community structure

(Brodeur et al. 2005). Hence, the appropriateness of

applying the Beals smoothing transformation also depends

on the ecological question of interest. These may be the

main reasons why this transformation is not widely used

among ecologists. Clearly, it needs to be further studied

before its use is promoted and extended.

A first purpose of this paper is to analyze the reliability

of Beals smoothing in several situations comprising dif-

ferent data table sizes or incorporating noise in the data.

Surprisingly, in many of the applications cited above, the

presence of many zeros in the data table at hand was taken

as a sufficient argument for using the transformation. In our

opinion, one should instead check whether Beals smooth-

ing predictions are expected to be reliable enough to

replace the observed values or to make inferences. This

would reduce the chances of obtaining spurious results.

Therefore, the second purpose of this paper is to develop a

statistical test to confirm or reject the Beals smoothing

prediction for each target species. The structure of the

paper is the following. First, the Beals smoothing function

is presented, and the ecological bases underlying the

transformation are stated. The next section proposes a

statistical test whose null hypothesis non-rejection implies

rejecting the Beals smoothing predictions for a given target

species. This is done by measuring the amount of agree-

ment between the predicted and observed values of the

target species and by assessing whether a similar match

could appear by chance. After that, the reliability of the

Beals smoothing function and the statistical power of the

proposed test are studied by extensive simulations. In

the application section, we explore the potentially spurious

effects of the Beals transformation on two forest data sets

with contrasting ecological characteristics.

The Beals smoothing method

The Beals smoothing function

Let X be a community data table with r rows (i.e., sampling

units) and p columns (i.e., species) containing the abun-

dance values of a species. The Beals smoothing function

considers only the species incidence information of X,

referred to as X0. Each X0 cell element, xik
0 , contains either

one or zero, indicating the corresponding presence or

absence of species k in sampling unit i. The first step of the
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Beals smoothing transformation consists in obtaining a

symmetric matrix, M, whose values are the number of joint

occurrences for every pair of species (i.e., M = X0tX0).

The vector of its diagonal elements, n = Diag(M), con-

tains the number of occurrences of each species. After that,

one can compute the Beals smoothing value (Beals 1984;

McCune 1994), bij, which is the ‘‘probability’’ that a given

target species j occurs in sampling unit i:

bij ¼ ð1=siÞ
Xp

k¼1

mjkx0
ik

nk
; ð1Þ

where si is the number of species in unit i, mjk is the

number of joint occurrences of species j and k, and nk is the

number of occurrences of species k. Despite its formal

simplicity, some important issues about this transformation

need to be remarked on in order to understand it properly:

1. The term mjk/nk is actually an estimate of the

probability of occurrence of species j conditional to

the known occurrence of species k. We will denote this

estimate as p̂j=k: Under this interpretation, bij is an

average of estimated conditional probabilities.

2. Highly frequent species tend to show high p̂j=k values

because many species often co-occur with highly

frequent species. Conversely, those species with which

a low-frequency (i.e., rare) target species jointly occurs

are likely to occur in many other units where the target

species is absent. Hence p̂j=k is usually low for a rare

target species. As shown in Electronic Supplementary

Material (ESM)S1, if the occurrence of the target

species j is independent of the occurrence of the

remaining species, then the expected value of bij is

simply the overall frequency of the target species.

3. In the original formulation (Beals 1984; McCune

1994), the target species was included in the summa-

tion. This causes a bias towards higher Beals values in

sites where the target species is already present, which

is not a nuisance when the objective is the replacement

of the abundance values of the observed species, but it

is a handicap when inference has to be done (Münz-

bergová and Herben 2004). To remove this bias, the

target species must be excluded from the summation in

Eq. (1).

4. The table of species joint occurrences may be obtained

from a different source than X0, for instance, by means

of a species-plot database or a bootstrapped sample of

X0 rows (Münzbergová and Herben 2004)—provided

the species indices match, nothing prevents M, and

therefore the p̂j=k values, to be computed from a

different reference table Y0 (r0 x p).

In our opinion, the Beals smoothing function should be

formally redefined to better reflect the above

considerations. As stated in Beals (1984), this function

provides an assessment of the ‘‘sociological favorability’’

of a species in a target sampling unit i. The parameters of

the function are a vector of estimated conditional proba-

bilities, p̂j=; and the vector of species incidence values in

the target sampling unit, xi
0:

bij ¼ bjðp̂j=; x
0
i Þ ¼

Pp
k¼1;k 6¼j p̂j=kx0

ikPp
k¼1;k 6¼j x0

ik

; ð2Þ

where p̂j= ¼ DiagðY0tY0Þ�1Y0ty0
j is computed from a

possibly distinct reference table Y0 (r0 9 p). It is clear that,

in order to compare Beals values corresponding to different

sampling units, the vector of conditional probabilities p̂j=

must always be the same. Note that when the species of

interest is the only species observed in a sampling unit,

Eq. (1) yields 1, while Eq. (2) yields 0. The former thus

retains the observed value as the prediction, whereas the

latter emphasizes the fact that there is a lack of co-

occurrence information to make any prediction. Routinely,

applications of the smoothing function may preferably be

done with Eq. (1) because Eq. (2) is more prone to the

problem pointed out in Oksanen et al. (2008).

Extending the Beals smoothing function to the case of

abundance data is possible. We studied two possible gen-

eralizations of the Beals smoothing function which take

into account abundance values of species in either the

reference table Y or the target unit vector xi, respectively.

Since these are not considered in the following sections,

they have been included in ESM S2 for the benefit of

interested readers.

Ecological basis underlying the application of Beals

smoothing

It is important to consider the ecological model underlying

Beals smoothing before applying it to data at hand. This

model essentially assumes that the pattern of occurrence of

the target species can be predicted from its joint occur-

rences with the remaining species. If this is true, there

should be an overall concordance between the observed

and smoothed values of a target species, allowing an

ecologist to replace the former by the latter. We believe

this assumption can be verified in at least two different

ecological situations:

1. Environmental control. If the observed occurrences of

the non-target species follow their corresponding

ecological niches, then the combination of a set of

species from a sampling unit provides an integrated

estimate of the prevailing environmental conditions

across the sampled habitat. If the observed pattern of

the target species is also environmentally controlled,
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the combination of the species occurrences from a

habitat with the data on species co-occurrences, carried

out in Eq. (2), will provide a valid estimate of habitat

suitability for the target species (Münzbergová and

Herben 2004).

2. Species associations. Since the environmental condi-

tions are not explicitly treated in Beals smoothing,

there can be situations where there is high predictabil-

ity of the target species from co-occurrences even

though the species may not be environmentally

controlled (i.e., if there are groups of correlated

species). Perhaps this situation justifies the original

name of the function: the ‘‘sociological favorability

index’’ (Beals 1984).

In the first ecological situation (1), the observed values of a

target species can be replaced by Beals predictions only if

the observed pattern is mainly controlled by environmental

factors and there is a sufficient proportion of the non-target

species that is also environmentally controlled. Both

hypotheses could be checked by means of multiple

regression or canonical analysis using environmental

variables as explanatory variables. In contrast, in the

second situation (2), the replacement would not be valid for

those target species that are not significantly associated

(either positively or negatively) with any other species.

Again, there are statistical methods to check this hypothesis

(e.g., Legendre 2005). Nevertheless, in both ecological

situations it is assumed that some kind of ‘‘ecological

structure’’ exists (purely sociological and/or environmen-

tally driven). The Beals smoothing approach for a target

species is valid only if the species is related to that

structure. We will hereafter use the words ‘‘ecological

structure’’ to generally refer to any of these two ecological

situations. Note that the presence of species not related to

the structure (that is, species that are neither environmen-

tally controlled in the same way as the others nor

significantly associated), as well as other sources of

‘‘noise’’ in the reference table, can affect the reliability of

Beals predictions. There may be cases where such structure

is very weak, or even non-existent.

Selecting suitable species for Beals smoothing

One of our concerns here is to find a way to statistically test

whether the observed values of the target species can be

replaced by the Beals smoothing predictions. This turns out

to be the same as testing the following ecological question:

whether the target species is related to the ecological

structure or not. Under the null hypothesis that negates this

relationship, the joint occurrences with the non-target

species will be at random, and the expected value of the

Beals function will be the overall frequency of the target

species; this statement is valid only when using Eq. (2). In

this situation, the distribution of Beals smoothing values

for sites where the species has been observed will be

similar to the distribution for sites where it is absent, and

both distributions will have the same mean. On the con-

trary, if the target species is related to, at least, some of the

remaining species, then the Beals smoothing values in sites

where these species occur will tend to be higher than the

values in sites where they are absent. As a result, the two

distributions of Beals values will become distinguishable.

On the basis of this argument we propose the Beals test:

• H0: The target species occurs randomly with respect to

all the non-target species. The distribution of Beals

values for sites where the target species occurs and that

for sites where it is absent are undistinguishable.

• H1: The target species is related to the ecological

structure produced by, at least, some of the non-target

species. The two distributions can be distinguished.

The degree of distinction between the two distributions can

be measured with several statistics accounting for the

variance in the distributions (e.g., Mann–Whitney’s U or a t

statistic). However, as one or both distributions may

contain few values, their variance may not be estimated

properly, and a simpler statistic comparing central posi-

tions may be more powerful. After some preliminary

investigations, we decided to use the difference between

medians, S = Med(A) - Med(B), where A is the set of

Beals values in sites where the target species occurs, and B

is the set of values in sites where it is absent. The statistic S

observed for a given target species (Sobs) has to be

compared with a reference distribution, which can be

generated using randomization methods. In order to devise

a proper randomization test, we have to take into account

the fact that at least some of the non-target species may

constitute an ecological structure, which should not be

altered. Following the null hypothesis, a suitable random-

ization consists in permuting the column values of the

target species while keeping the other columns of the table

intact. This implements a null model for the joint

occurrence, or association, of the target species and the

remaining species (Gotelli 2000; Legendre 2005). An

unrestricted permutation model may, however, generate

situations that are ecologically unreliable if the beta-

diversity of the data is very high, which increases the

likelihood that the occurrences of the species will be placed

in sampling units of very different ecological nature.

Therefore, some kind of environmental constraint in the

null model seems advisable (e.g., Peres-Neto et al. 2001).

We decided to restrict permutations to among the sampling

units corresponding to non-zero Beals smoothing values;

this is equivalent to restricting the permutations to the sites

occupied by any of the species co-occurring with the target
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species (but see the Application section for another type of

restriction). Following each randomization step, the test

statistic is re-computed and stored in Srnd. After all

permutations are carried out, the observed test statistic

Sobs is compared to the distribution of random values

generated under the null hypothesis, and the probability of

the data under H0 is calculated as p = (1 + no. Srnd values

equal to or larger than Sobs)/(no randomizations + 1). The

‘‘1’’ in the numerator adds the observed value to the

distribution, as recommended by Hope (1968). If one is

interested in preserving an experiment-wise type I error

rate, the p values may be adjusted for multiple testing

(Sidak 1967; Holm’s 1979).

Simulation methods

The objectives of the present simulation study were two-

fold. First, we were concerned with assessing the reliability

of Beals smoothing predictions for various numbers of

sampling units or species in the reference table and in the

presence of noise in the data. A second aim was to evaluate

the type I error rate of the proposed statistical test, and its

power, under the same experimental conditions.

Simulated data

Simulated community data tables were created using the

program JCOMPAS, which is an adaptation of Minchin’s

(1987) COMPAS that forms part of the program GINKGO

(Bouxin 2005; De Caceres et al. 2007). In the COMPAS

model, multivariate species abundances are simulated in an

ecological space using unimodal beta functions (Austin

1976). Since the Beals smoothing transform is computed

without reference to a classification and presupposed gra-

dients (Ewald 2002), we considered the nature of the

modeled ecological structure to be of secondary impor-

tance. For simplicity, our simulated ecological space

consisted of a single ecological gradient in the interval [0–

100]. Modal coordinates were chosen uniformly along and

beyond the gradient (from -150 to 150 units to avoid

border effects), and modal abundances were constantly 100

for all species. The parameters related to the form of the

species distributions were sampled from a uniform distri-

bution in the interval [0.3–0.5]. The species responses were

initially generated with neither systematic trend nor qual-

itative or quantitative noise (Minchin 1987). Therefore,

abundance values of species were directly related to habitat

suitability, as specified in the model.

We generated two initial data sets, each containing 1000

independent species and 1000 sampling units uniformly

distributed along the simulated ecological gradient (step 1,

Fig. 1). The first data table was obtained by sampling

species niche breadth values from a normal distribution

with a mean of 50 units and standard deviation of 10 units;

beta-diversity was approximately two half-changes (=100/

50). The second data table had higher beta-diversity (four

half-changes) since the species niche breadth values were

sampled from a normal distribution with a mean of 25 units

and standard deviation of 5 units. These two data sets were

then re-sampled in order to generate smaller subsets of 100

distinct size combinations (from 10 species 9 10 sites to

100 species 9 100 sites). Sites were sampled with

replacement, but not species. Each of the resulting data

tables was duplicated to distinguish between the target and

reference tables (X and Y, respectively, step 2, Fig. 1).

Noise addition

Data tables X and Y were then subjected to sources of

noise (step 3, Fig. 1). We will denote with X0 and Y0,
respectively, the data tables resulting from noise addition.

Three kinds of noise were considered in our simulation

study:

A. ‘‘Random species’’ were generated by independently

permuting the column values corresponding to a

fraction of the species. The same permutation was

applied to both X and Y.

B. ‘‘Two ecological structures’’ were represented by two

uncorrelated groups of species. We divided the species

Fig. 1 Schematic representation of the steps performed in the

simulation study (see text for details)
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into two equally sized groups; entire rows were

permuted within the sub-table corresponding to one

of the two groups. Again, the same permutation was

applied to both X and Y.

C. ‘‘Gap noise’’ was generated by randomly introducing

zeros (i.e., ‘‘gaps’’) in the modeled species abundances.

In this way, we simulated the absence of species due to

reasons not related to its ecological niche. Each gap

followed a Bernoulli distribution. That is, we fixed a

probability of occurrence p and generated vectors of

[0/1] random values that were used as multipliers of the

generated species abundances; an abundance was 0 if

the corresponding Bernoulli value was 0. Only the

reference data table Y0 contained gap noise, and not the

target table X0; since this would be equivalent to

considering fewer species in sampling units, and we

wanted to separate the gap noise error effect on p̂j=

from the effect of species richness (si).

Eight distinct error scenarios were studied:

1. Noise free data: here data tables X0 and Y0 were

exactly the same as X and Y.

2. Random (i.e., permuted) target species: values of the

target species were permuted (noise type A). In this

scenario, an ecological structure exists in the remain-

ing set of species but the target species does not belong

to it.

3. 50% random (i.e., independently permuted) non-target

species: half of the non-target species were permuted

(noise type A). They constituted a source of error for

predicting the target species.

4. 50% of species randomized in block: half of species

were permuted in block (noise type B). In this

scenario, those species belonging to one group consti-

tuted a noise source for the prediction of target species

belonging to the other.

5. 100% (i.e., independently permuted) random species:

all species were permuted independently (noise type A).

In this scenario, there was no ecological structure at all.

6. 50% of gap noise added to the non-target species only:

this scenario tried to simulate a partial decrease in

predictive power of all the non-target species. For each

target species, gaps (noise type C) were added to the

remaining columns of the reference table Y0.
7. 50% of gap noise added to the target species only: this

scenario simulated a partial violation of the target

species relationship to the ecological structure. For

each target species, gaps (noise type C) were added to

its corresponding column in the reference table Y0.
8. 50% of gap noise added to all species: we combined

here the error effects from scenarios (6) and (7), i.e.,

gap noise for both the target and non-target species.

This was perhaps the most realistic scenario among all.

Statistical analyses

Under all simulated conditions (i.e., under all error sce-

narios and for all numbers of species and numbers of

sampling units), we did the following for each target spe-

cies. First, we took the vector of target species abundance

values in X0, denoted xj in Fig. 1. Note that this vector

never contained gap noise, but its values could have been

permuted. Permuted species are those whose ecological

performance is unaffected by the simulated ecological

gradient. Therefore, vector xj can be considered to contain

the ‘‘true’’ ecological performance of the target species.

Second, we transformed data tables X0 and Y0 into their

corresponding incidence data tables X0 and Y0 (step 4,

Fig. 1). Beals smoothing values were then computed using

Eq. (2) (step 5, Fig. 1). As this equation does not take into

account the observed presence or absence of the species in

the target site, it enables us to know how effective the

Beals function is in filling species ‘‘gaps’’. We assessed the

reliability of the Beals smoothing values by calculating the

Pearson correlation coefficient between the target species’

predicted values, bj, and the ‘‘true’’ abundance values in xj

(step 6, Fig. 1). Due to the zero truncation, zero-simulated

abundance values are not an indication of species suit-

ability. Therefore, sampling units where the modeled

abundance was zero were excluded from the correlation

analysis. In contrast, those sampling units containing zeros

due to gap noise were included in the comparison (note that

X0 did not contain gap noise). We also restricted the cor-

relation analysis to those target species with positive-

simulated abundances in at least five sampling units; this

insured that it was possible for the computed correlation

coefficients to reach the 1% significance level. The Beals

test was run on the same target species included in the

correlation analysis (step 7, Fig. 1). The number of per-

mutations was set to 199 and the significance level to

a = 0.05.

Steps 2–7 were repeated as many times as was nec-

essary in order to have at least 1000 target species. We

then averaged the corresponding 1000 correlation values

to obtain an average correlation assessing the reliability of

Beals predictions under the simulated conditions. The

statistical power of the Beals test was assessed by

counting the proportion of target species for which the

test rejected the null hypothesis and dividing this value by

the number of tests. Type I error rate was also assessed

by modeling incidence data using the Bernouilli distri-

bution, where the probability for each species was equal

to its corresponding relative frequency in X. Data

re-sampling, noise addition, and statistical analyses were

performed using functions written in the R statistical

language (R Development Core Team 2007) and are

available under request.
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Simulation results

Reliability of Beals smoothing values

Let us first consider the results on the error-free condition

(scenario 1). Figure 2a and b shows the average Pearson

correlation between predicted performance and true simu-

lated performance that was computed in data sets of

different sizes. The two axes of the representation can be

interpreted to be independent sources of information. The

number of sampling units indicates the size of the database

used to compute conditional probabilities, p̂j=: Alterna-

tively, the higher the number of species in the data table,

the higher the species richness in the vector of sampling

units xI
0. As expected, an increase in either the number of

sampling units or species richness had a positive effect on

the reliability of Beals smoothing as a predictor of species

performance. The differences between Fig. 2a and b are

due to the following. For the same data set size, high beta-

diversity data (right) had fewer joint occurrences in the

reference data table than low beta-diversity data (left), so

more sites were needed to obtain the same quality of

conditioned probability estimations. At the same time, in

high beta-diversity data, the sampling units had lower

species richness and, consequently, predictions were less

reliable than in low diversity data for the same total

number of species.

We observed distinct effects on the reliability of Beals

smoothing values in low diversity data depending on the

noise scenario. Under permutation of the target species

values (scenario 2) the predicted values were totally

uncorrelated to the modeled abundances in all cases.

Random permutation of 50% of the species (scenario 3) is

equivalent to including some species with low predictive

power; as a result, more species were needed to ensure a

proper representation of the ecological structure (Fig. 3a)

than with the noise-free condition (Fig. 2a). Block ran-

domization (scenario 4) differed from the previous

scenario in that species were not independently random-

ized. Consequently, the disturbance on the predictions for

target species belonging to the other block was not can-

celled out, and the overall noise effect was somewhat

stronger (Fig. 3b). Under the permutation of all species

(scenario 5), the results were the same as under the per-

mutation of the target species (scenario 2): correlation

was non-existent in all cases. The addition of 50% gaps

into the non-target species of the reference table Y (sce-

nario 6) had almost no effect on the reliability of Beals

smoothing predictions (Fig. 3c). Whereas gap noise in

non-target species k diminished the amount of sampling

units used to compute the conditional probability, the

target species j still occurred roughly in the same pro-

portion of sampling units where k was found. In contrast,

when gaps were present in the target species (scenario 7),

the reliability of Beals smoothing predictions was sub-

stantially lower for a given number of sampling units

(Fig. 3d). Our explanation in this case is that the gaps in

target species j yielded an underestimation of pj/k for all

non-target species k that were ecologically close to the

target species. Consequently, their estimated conditional

probability values became similar to the values corre-

sponding to species that were less ecologically related to

the target species. In short, the p̂j=k values lose their

predictive power. The addition of more species did not

improve the situation because the gaps were in the target

species and not in the non-target species. Only a larger

data table (i.e., more sampling units) overcame this

problem; then the number of occurrences of the target

species became sufficiently large to ensure the quality of

the p̂j= estimates. Finally, when gap noise was present in

all species (scenario 8), the results were almost equal to

those of scenario 7. Similar noise effects were observed

for the high-diversity data sets (results not shown). We

repeated the same study using Spearman instead of

Pearson correlation, and the qualitative interpretation of

results was the same.
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a) b)Fig. 2 Average correlations

between the simulated

abundance values and the Beals

smoothing values (computed

from presence–absence data) for

different sizes of data tables and

without noise (scenario 1). SR
Mean species richness per

sampling unit in the target data

tables
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Statistical power and type I error rate of the Beals test

We used the rate of rejection of the null hypothesis on data

simulated using the Bernouilli distribution to assess the type

I error rate of the test. The empirical type I error rate was

slightly under the 5% significance level (its 95% confidence

interval was [0.0427, 0.0456]) consequently, the permuta-

tion test cannot be considered exact, although it is still valid.

We were also interested in knowing whether or not the

Beals test was capable of making the distinction between

‘‘random’’ and ‘‘true’’ species, and how its statistical power

was affected by the amount of information and the various

noise situations. Figure 4a and b show the rates of rejection

of the null hypothesis for data tables of distinct sizes and

beta-diversity values and no noise (scenario 1). The number

of species in the data tables had little impact on statistical

power—very few related species are necessary to display a

sociological structure—which mostly depended on the

number of sampling units. With a minimum number of

sampling units—say r = 20–30 for both high and low beta-

diversity data—the power of the test was above 95%.

The power results of the Beals test under the noisy

scenarios and low-diversity data were the following. As

could be expected, permuting the target species (scenario

2) resulted in it being significantly related to the structure

5% of the time. By contrast, the Beals test was quite robust

(i.e., its power was quite stable) in the presence of non-

target permuted species (scenario 3); that is, the presence

of 50% permuted species did not severely affect the

probability of rejecting the null hypothesis for non-per-

muted target species (Fig. 5a). When species were divided

into two blocks (scenario 4), all species had to be detected

as informative since they were either related to one eco-

logical structure or the other. As can be seen in Fig. 5b, the

presence of two independent ecological structures only

slightly diminished the power of the method, since within

each structure every target species had its ecological niche.

Under the permutation of all species (scenario 5), the

ecological structure was completely lacking, and the rate of

rejection was again near 5%. Under the addition of 50%

gap noise to the non-target species of the reference table

(scenario 6, Fig. 5c), the test was almost as powerful
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Fig. 3 Average correlations for

low-diversity data table sizes

and different noise conditions. a
Scenario 3: half of the non-

target species values permuted

independently, b scenario 4,

data rows permuted within a

block comprising half of the

species, c scenario 6, 50% of

gaps added to all non-target

species of the reference table, d
scenario 7, 50% gaps added to

the target species of the

reference table. Mean species

richness per sampling unit in the

target data tables is the same as

in Fig. 2a
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(lower) as for the noise-free condition. In contrast, the

presence of gap noise in the target species (scenario 7)

severely affected the statistical power of the Beals test

(Fig. 5d), and far more sampling units were needed to

attain the rate of 95% of true species recognition than in

noise-free data. Our explanation here is that the more niche

‘‘gaps’’ there are in the target species observed values, the

higher the probability of confounding it with a true ‘‘ran-

dom’’ species. Scenario 8 results were again similar to

those of scenario 7.

Real-data applications

One of the conclusions from the previous simulation study

is that Beals smoothing produces spurious predictions

whenever the target species is not related to the ecological

structure or whenever the ecological structure does not

exist. We believe this fact fully justifies the application of

the proposed test before the replacement of observed val-

ues by predicted ones. In this section we show with real

data how the apparently outstanding results of the Beals

transformation may be spurious on occasion. We studied

two distinct forest data sets:

1. The Barro Colorado Island (BCI) data from the first

tree census conducted on the 50-ha forest dynamics

plot in 1981–1983 (Hubbell et al. 2005). We calculated

the incidence of each tree species on grids of cells of

five distinct sizes, ranging from 10 9 10 m

(5000 cells of 100 m2) to 100 9 100 m (50 cells of

1 ha). For each cell size we hence obtained a distinct

data table.

2. The vegetation data from Bryce Canyon National Park

(Utah, USA) (Roberts et al. 1988), part of the ‘labdsv’

library (Roberts 2006) of the R statistical language.

This data table contains abundance values for 169

vascular plants identified at 160 sampling sites. Again,

we only considered the species presence/absence

information.

We started our analyses by computing the average,

maximum, and minimum number of species per site

(Table 1). As the BCI plot is part of a tropical forest,

species richness values are much higher there than in Bryce

Canyon, which corresponds to temperate vegetation. The

species richness of the BCI cell is also higher for broad

scales (larger cell sizes). This average number of species

a priori ensures the reliability of the Beals transformation

in most cells/sites. For large cell sizes, many tree species in

BCI may occur in all cells. As these species are uninfor-

mative in terms of co-occurrences, we counted the number

of non-trivial species, i.e., species which are not always

present. If ecological structures are present, the number of

sampling units is high enough in all data tables to provide

high-quality values of conditioned probabilities.

In most applications, Beals smoothing is used as a

method to filter out noise before ordination analyses. We

ran principal component analysis (PCA) on the original

presence–absence tables, and we noted in Table 1 the

overall data variability and percentages of explained vari-

ation corresponding to the first two PCA axes. Due to the

more complex structure of the tropical forest, the first two

PCA axes recovered a smaller percentage of the informa-

tion for BCI than for Bryce Canyon. The percentage of

information recovered was also lower for fine-scaled data

(10 9 10 m cells) than for broad-scaled data. We again ran

PCA on the data tables resulting from the application of

Beals smoothing (without discarding any species). Beals

smoothing greatly simplified the data because the per-

centages of structure explained in two first PCA

dimensions were much higher, whereas the total number of

dimensions needed to fully represent the data was the

same. Up to this point, one may ask whether this aston-

ishing and apparently successful clarification of data was

spurious. In order to answer this question, we ran the Beals
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test on all of the non-trivial species. The permutation

approach described above is, however, hampered by the

presence of autocorrelation in the distribution of BCI

species. To correct for this autocorrelation effect, we

restricted the permutations to those provided by a toroidal

shift (Harms et al. 2001; Fortin and Dale 2005). After 199

permutations and using a significance level a = 0.05,

almost 60% of species were significant in the Bryce Can-

yon data set. Many of the non-significant species were also

rare. In the case of BCI, the proportion of significant spe-

cies was not the same for all cell sizes; the percentages

were around 65% for the 10 9 10-m cells and decreased

for broader scales, down to 12.9% of the non-trivial species

for the 100 9 100-m cells. We studied whether ordination

diagrams could be affected by the lack of reliability of

Beals smoothing by computing the percentage of total

variation corresponding to the set of significant species in

both the original and transformed data tables [columns

noted as ‘Significance (%)’ in Table 1]. For the Bryce

Canyon data, the percentages were 85% for the original

untransformed data table and 97% for the Beals-trans-

formed. Thus, the 40% of ‘‘noisy’’ species (i.e., those that

did not pass the Beals test) only accounted for 15% (i.e.,

100–85) of the original variability and 3% (i.e., 100–97) of

the transformed one. The latter percentage indicates that

the interpretation of PCA ordinations on the transformed

data is safe, since the information shown is mostly related

to those species for which the transformation is valid. For

the BCI data sets, the situation depended on the scale. In

the finest scaled data set (10 9 10 m) more than half the

species were significantly associated to the ecological

structure, accounting for 90.8% of the original data varia-

tion and 95.8% of the transformed data variation. In this

situation, ordination diagrams contain a substantial amount

of information concerning significant species. However,

the larger the cell size, the smaller the number of species

that are significant and the lower the fraction of variability

that they account for. In the worst case (100 9 100 m

cells), in fact, 74% (i.e., 100–26) of the post-transformation

variability corresponded to spurious predictions of the
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Fig. 5 Statistical power of the

Beals test for different low-

diversity data tables and

different noise conditions. a
50% of the species values were

permuted independently, b data

rows were permuted within a

block comprising 50% of the

species, c 50% gaps were added

to all non-target species of the

reference table, d 50% gaps

were added to the target species

of the reference table. Mean

species richness per sampling

unit in the target data tables is

the same as in Fig. 4a
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smoothing function. It is obvious that the transformation

and the subsequent ordination in this case should not be

used.

Discussion

Clearly, the Beals smoothing function needed to be further

studied before recommendations could be made as to its

use. In extending the work of McCune (1994), one of the

aims of the present paper was to study the reliability of

Beals smoothing values under different conditions.

Assuming that an ‘‘ecological structure’’ exists and that the

target species is related to it, the reliability of Beals

smoothing depends on both the reliability of the estimated

conditional probabilities and the species richness in the

target sampling units. In turn, the reliability of the condi-

tional probability estimations depends on the size of the

reference data table. Münzbergová and Herben (2004)

concluded their study by saying that ‘‘…any reasonably

large database can be used’’. We attempted to go further

and establish a practical threshold. Our simulations indi-

cate that, in the absence of noise, a minimum of 40

sampling units are necessary in order to obtain a good

correlation between the predicted values and the modeled

species performance. The use of Beals smoothing with

fewer sampling units may produce unreliable estimates. In

terms of the number of species used to compute the

function, we observed a rather strong robustness of Beals

smoothing values to small species richness in the target

sampling unit. For practical issues, we estimate that a

minimum of ten species is necessary in the target sampling

unit to ensure the quality of the predictions. While this may

seem a rather liberal threshold, there are published appli-

cations of Beals smoothing to data with a richness of

between five and ten species (e.g., Ellyson and Sillett 2003;

Marra and Edmonds 2005; Beauchamp et al. 2006), and

even below five species (e.g., North et al. 2005).

The above thresholds were given after naively assuming

that the ecological structure was without noise and the data

table had low beta-diversity (i.e., from Fig. 2a). In real

applications, however, the predictive power of Beals

smoothing is strongly affected by high beta-diversity val-

ues and/or the presence of noise in the species data.

Specifically, species ‘‘gaps’’ due to spatial or temporal

dynamics are expected to be a common source of noise in

real vegetation data tables. Fortunately, the effect of these

‘‘gaps’’ on Beals predictions can be overcome if a suffi-

cient number of sampling units are used in the reference

table. This was probably the case of the BCI 10 9 10-m

table, where the fine-scaled local spatial variability was

counterbalanced by a large number of cells. In contrast, our

results with simulated data indicate that the presence ofT
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species not related to the sampled ecological structure calls

for higher species richness in the target sampling units in

order to achieve valid Beals smoothing predictions

(Fig. 3a). Whereas sampling effort may be increased, it is

not possible to sample more species once all existing

species in the community have been found. ‘‘Random’’

species are likely to occur in real data. For example,

community data can contain a subset of species whose

pattern is related to environmental gradients that act at a

scale different from the observation scale (i.e., microhab-

itat conditions may exist) or is sensitive to a different

ecological factor. Furthermore, the species whose patterns

of occurrence contain many ‘‘niche gaps’’ may eventually

behave like ‘‘random’’ species. In sites with small species

richness, the presence of those ‘‘random species’’ causes

the Beals smoothing values to be insufficiently reliable,

regardless of the number of sites. Reliability problems will

also appear when using a reference data table Y where the

species have different co-occurrence structures than those

in the target data table X (for example, due to a different

geographical extent). Summing up, it is clear that in many

real situations the Beals transformation should be avoided.

Users must use this technique with caution.

The statistical test presented in this paper offers several

advantages. First, it is expected to give non-significant

results whenever there is no structure at all or the target

species is not related to it. Second, the power of the Beals

test does not appear to be severely affected by low species

richness, provided there is a minimum number of sampling

units (95% power is achieved between 20 and 30 sampling

units in Fig. 4a–b) and enough occurrences of the target

species to allow a valid randomization approach. Third, the

Beals test is also quite robust to the presence of random

non-target species or to gaps in their distribution (Fig. 5a,

c). We showed in the last section how this test can be used

to prevent spurious applications of the transformation. We

believe the Beals test can also be useful to community

ecologists to select species prior to multivariate analyses

where either (1) species in the community data table are

expected to be an expression of the prevailing habitat

conditions, or (2) species associations are important.

Even though the test proposed here is a safeguard from

spurious results of the smoothing function, it does not

guarantee its appropriateness. When using the Beals

smoothing, we are imposing an ecological model onto our

data and throwing out the variability that does not fit this

model. If the model is consistent with the assumptions and

objectives of subsequent analyses, one will generally obtain

better results on the transformed data. For example, Beals

smoothing (or the selection of species based on the Beals

test) may improve the results of analyses aiming at the

elucidation of the relationships between communities

in terms of their ‘‘potential’’ composition, such as in

unconstrained ordination or clustering. When explaining

community data by taking into account environmental

variables, smoothed data will usually give the appearance of

improving the species–environment relationships because

all variability not related to the environmental control

hypothesis will likely have been filtered out. Statistical tests

comparing the amount of signal versus noise (e.g., F-like

tests) should be more powerful with filtered data. While

those analyses may be valid statistically, special care has to

be taken when interpreting results ecologically as they will

be referring to the Beals model and not to the original data.

To be cautious, we recommend users perform statistical

inference on the original data, unless otherwise fully justi-

fied. The analyses whose objectives are incompatible with

the Beals’ model must be avoided—for example, quanti-

fying and/or testing the significance of the spatial or

temporal variation of ecological communities.
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S1. Expected value of Beals smoothing for a “random” species 

 
We demonstrate here that the expected value of bij for a “random” target species j in site i is 

the species relative frequency. Let be the (true) probability of species j conditioned to the 

appearance of species k and let the number of appearances of species nk be a fixed quantity. Then, 

the number of observed joint occurrences between the two species, mj/k, is a random variable (RV) 

distributed following a Binomial law, , with mean 

kjp /
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Following this,  (the probability of species j conditioned to k estimated from nk occurrences of 

species k) will be a RV with mean 
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kjp /)kjpE /ˆ( = .  Now, let si be the number of species at a given 

location i (excluding the species of interest if present).  si is also considered a fixed quantity. As bij 

is simply an average of values, it is easy to obtain the mean of the RV bij: 
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However, if the target species j is a “random” species, meaning that it is completely unrelated to 

the reference species, the true conditioned probabilities are equal to the target species frequency 

(pj). That is,  for all species k. This straightforwardly yields , as we wanted 

to demonstrate. 
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S2. Extending the Beals smoothing function to species abundance values 18 
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31 

32 

Although Beals smoothing was originally intended to be a transformation for binary species 

data tables, nothing prevents us from computing it using the information contained in the 

abundances of table X. Of course, this is done at the cost of making additional ecological 

assumptions. Since there are two vectors of parameters in eq. (2), such a generalization can be 

done in two corresponding ways, which are independent and compatible.  

Perhaps the most natural generalization is to replace, in eq. (2), the vector of presence/absence 

values in the target sampling unit, , by abundance values, . With this substitution, the Beals 

smoothing function becomes a weighted average of estimated conditional probabilities, where the 

weights are the species abundances, and the resulting values become considerably smoother. This 

generalization implies the following ecological assumption: The abundance values in a given 

sampling unit are related to the relative performance of the species under the environmental 

conditions of the sampled habitat.  

0
ix ix

The second generalization consists in using abundance data for the computation of . 

Specifically, abundances of reference species k can be included as weights to assess the number of 

joint occurrences between species k and j (the target species): 
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estimated conditional probabilities is then  and the interpretation of  

is slightly different. If the abundance values are individual counts, then  is the estimated 

probability of “finding species j where an individual of species k has been found”. Generally 

speaking, the effect of including abundances in this way provides a “refined assessment” of the 

estimated conditional probability. It can be done assuming a different hypothesis for each 

reference species k: The abundance values of species k (and not only its presence) can be 

predicted from the environmental conditions of the corresponding sampled sites.  
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The abundance values of the target species do not play any role in any of these two 

generalizations if eq. (2) is used. As stated above, these two generalizations of Beals smoothing 

can be applied independently or simultaneously. That is, one could choose to keep the initial 

binary definition for  and use a weighted average for bj; or instead use abundances for  

while keeping the average unweighted; or else use abundances in both cases (i.e. using both 

generalizations).  

kjp /ˆ kjp /ˆ

Once a target species has been proven to be related to the main ecological patterns, another 

interesting ecological question is whether its abundance values can be modeled. The following 

simple test can be devised to address this question: 

Beals species abundance (BSA) test:  

• H0: Abundances values are not related to the “sociological favorability” of the species. 

• H1: Abundances values are related to the “sociological favorability” of the species. 

Answering this question affirmatively for species k would allow us to use its abundances when 

computing  for any other species j. A correlation measure appears naturally as a suitable test 

statistic. Such correlation analysis has to be restricted to those sampling units where the species 

has been found in order to avoid the zero-truncation problem. In addition, the permutation method 

has to be restricted to within those sampling units where the species has been found. As Beals 

smoothing function is independent of the target species abundance values, this restricted 

permutation method does not affect its value. Thus, the BSA test turns out to be a simple 

correlation test whose reference distribution is generated by permutations on one of the vectors. 

Naturally, if the number of species occurrences is very low – say less than 5 – this test will have 

very low statistical power. 
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