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Summary

1. Measurements of community resemblance in ecology are often based on species composition, and the starting

point for calculations is usually a site-by-species data table. However, resemblance measurements may not be

sufficiently accurate when communities are described using species composition only. Characteristics such as the

size of their constituting organisms are also important to understand community organization.

2. Here, we provide a framework that generalizes conventional resemblance measurements by incorporating the

size structure of the compared communities. We first introduce the concept of cumulative abundance profile,

which generalizes traditional species abundance values, and describe how to calculate it. We then explain our

approach to compare cumulative abundance profiles in community resemblance measurements and use a small

simulation study to determine which resemblance coefficients appropriately deal with compositional and struc-

tural differences. After that, we present an illustrative example where we study the structural and compositional

variation between andwithin sixDouglas-fir forest plots in British Columbia, Canada.

3. According to our investigations, the generalizations we suggest for the percentage difference (alias Bray–Cur-

tis dissimilarity) and theRu�zi�cka coefficients are appropriate tomeasure community resemblance in terms of size

structure, species composition or both.

4. Our framework allows community resemblance to be measured in terms of either size structure or species

composition, or both. A broad range of applications is expected. In the case of terrestrial plant communities,

potential applications include analyses of community dynamics and classification of vegetation.

Key-words: beta diversity, community ecology, cumulative abundance profile, dissimilarity coeffi-

cients, forest dynamics, size structure

Introduction

The notion of community resemblance is central in ecology.

Ecologists determine routinely the similarity or dissimilarity

between pairs of communities with the aim of quantifying the

amount of community change along time (e.g. before and after

a disturbance; Philippi, Dixon & Taylor 1998), across space

(e.g. to estimate beta diversity; Anderson et al. 2011; Legendre

& De C�aceres 2013) or due to experimental treatments. Since

the beginning of the twentieth century, many dissimilar-

ity/similarity coefficients have been proposed to measure the

resemblance between communities (Koleff, Gaston & Lennon

2003; Legendre &Legendre 2012). Community resemblance is

almost always assessed on the basis of species composition

data in the form of a site-by-species data table. In some cases,

this table simply contains binary data describing species

incidence (i.e. presence or absence), whereas in other cases, it

contains species abundance values (e.g. counts, cover, biomass

or some other measure of relative or absolute importance).

Although data on species composition are fundamentally

important for describing communities, composition alone may

be insufficient because communities that are similar in compo-

sition may differ in other characteristics such as the size of

organisms and vice versa. As a result, the organization of com-

munities may be oversimplified if represented by species com-

position alone. To more accurately describe community

organization and the variation of communities across space or

along time, it is necessary to generalize the conventional

approach to community resemblance by incorporating struc-

tural data describing the size of constituent organisms in addi-

tion to compositional data. Incorporating structural data in

resemblance assessments would allow the analyst to exploit

valuable information obtained during field surveys (e.g.

Holopainen&Kalliovirta 2006). If available, there is no reason

to ignore the wealth of information regarding size when

measuring community resemblance.
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In this paper, we present a general framework to measure

community resemblance in terms of composition, size

structure or taking both elements into account. In the next

sections, we first introduce the concept of cumulative abun-

dance profile (CAP), which generalizes traditional species

abundance values and allows one to describe the structural

component of community organization. After explaining our

approach to compare CAPs, we present six dissimilarity coeffi-

cients that can deal with CAPs and are generalizations of

well-known compositional indices.We then use synthetic com-

munity data to evaluate the ability of these coefficients to

appropriately measure community resemblance along simu-

lated compositional and structural gradients. An example with

real data is then presented where we study the structural and

compositional variation between and within Douglas-fir forest

plots in British Columbia, Canada. Finally, we discuss the

advantages and limitations of the proposed framework and

suggest potential applications.

The cumulative abundance profile

Ecological communities can have similar species composition

(i.e. similar species abundance values) and differ at the same

time in size structure (i.e. distribution of individual sizes). One

might consider that a proper way to accommodate the size of

organisms into resemblance indices is to define abundance, so

that the value of each species is an indication of its overall bio-

mass in the sampled community. However, this strategy would

not indicate whether the biomass value for a given species is

the biomass value of a single very large individual or the sum

of biomass values of several small ones. A vector where each

species has a single abundance value is not sufficient to describe

a community in terms of both its size structure and species

composition. The size structure for the population of each

species in the community will be available if the species identity

and the size of each individual were determined during survey.

In sessile communities, such as coral reefs and forests, the same

information will also be available if abundance values (e.g.

cover) are estimated for a set of predefined vertical strata.

Although in this second case, the individuals constituting the

community may not be identified, and a (simplified) descrip-

tion of the size structure is also obtained.

To determine the distribution of sizes one needs first to

choose which structural variable is used to represent the size of

organisms. For example, in plant communities, the most natu-

ral choice for structural variable is plant height, but other

structural variables, such as the trunk diameter, may be used

instead. In the description of our approach, we will use the

term size for the sake of generality, but readers may envision

particular variables. The only restriction we impose to the

structural variable is that it cannot be negative. Similarly, we

do not constrain the definition of abundance, as long as its

value is non-negative. With the previous considerations in

mind, we define the cumulative abundance profile (CAP) to be a

function that takes a value of size as input and returns the

cumulative abundance of organisms whose size is equal to or

larger than the input value. For example, if height is chosen to

be the structural variable, the function will return the cumula-

tive abundance of organisms as tall as or taller than the given

height. In other words, an organism of height hwill contribute

to the cumulative abundance values at h and also at lower

heights. The cumulative abundance profile is maximal for

value zero of the structural variable and is a non-increasing

continuous function.

The actual calculation of CAP values varies depending on

the format of the community data. Let us consider three cases,

which illustrate how different ways of describing the size struc-

ture can be accommodated to the CAP framework:

CALCULATION OF CAP FROM STRATIF IED COMMUNITY

DATA

Consider the case where the size of organisms has been simpli-

fied into s-ordered size classes (or vertical strata), and the com-

munity has been sampled by assessing the abundance of each

species within each size class t (t = 1,…, s). The class index can

be readily used as the structural variable, provided that classes

have been ordered from small to large. In this case, the CAP

can be represented as a vector of s values and the value for a

given class t is the sum of abundances of the target species in all

classes u ≥ t:

CAPðtÞ ¼
Xs

u¼t
xðuÞ eqn 1

where x (u) is the recorded abundance of the target species in

size class u.

CALCULATION OF CAP FROM INDIV IDUAL DATA

Cumulative abundance profiles may be precisely calculated if

the value of the structural variable is available for every indi-

vidual i of the target species. The CAP value for the target

species at a given size h is the cumulative abundance of all

individuals of that species with size h or larger:

CAPðhÞ ¼
X

i
ai � Iðhi � hÞ eqn 2

where I (hi ≥ h) is an indicator variable equal to one for

individuals of size h or larger and zero otherwise. The interpre-

tation of ai values will depend on the definition chosen for

abundance. If abundance is defined as ‘number of individuals’,

then ai = 1 for all individuals. On the other hand, if abundance

is defined as ‘cover’, then ai will be the contribution of individ-

ual i (e.g. its crown cover) to the cumulative cover value.

CALCULATION OF CAP FROM A CONTINUOUS SIZE

DISTRIBUTION

There is no need to limit the calculation of CAP to discrete

data; it can be computed using a continuous size distribution

for h:

CAPðhÞ ¼ K �
Z 1

l¼h

fðlÞ dl eqn 3

Here, f(l) is the probability density function of individuals

of size l, and K is a constant used to translate cumulative
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probability values into abundance units (e.g. K could be the

total number of individuals in the community).

One can calculate CAPs for each species separately or for

the entire community without taking species identity into

account, that is, after pooling all species. As an example of

calculation, we show in Fig. 1 the distribution of diameter at

breast height (dbh) in 5-cm classes for trees in a Douglas-fir

forest plot and the resulting CAPs calculated with and without

species identity.

Measuring community resemblance in termsof
composition and structure

COMPARISON OF CUMULATIVE ABUNDANCE PROFILES

The basis of our community resemblance framework consists

in replacing species abundance values by CAPs. More specifi-

cally, we suggest that the comparison of two communities

should involve the comparison of pairs of CAPs (one pair per

species) instead of comparing pairs of species abundance

values.Moreover, the comparison of the two CAPs for a given

species j – CAP1j and CAP2j – should be done by integrating

the comparison of cumulative abundance values along the

values of the structural variable. This approach leads to distin-

guishing between the following: Aj, the area(s) where the two

profiles overlap; Bj, the area(s) where CAP1j exceeds CAP2j;

and Cj, the area(s) where CAP2j exceeds CAP1j (see Fig. 2a).

More formally:

Aj ¼
Z 1

h¼0

minðCAP1jðhÞ;CAP2jðhÞÞ � dh

Bj ¼
Z 1

h¼0

ðCAP1jðhÞ �minðCAP1jðhÞ;CAP2jðhÞÞÞ � dh

Cj ¼
Z 1

h¼0

ðCAP2jðhÞ �minðCAP1jðhÞ;CAP2jðhÞÞÞ � dh
eqn 4

If CAPs are defined over s discrete size classes, each of width

w(t), quantitiesAj,Bj andCj can be obtained using:

Aj ¼
Xs

t¼1
wðtÞ �minðCAP1jðtÞ;CAP2jðtÞÞ

Bj ¼
Xs

t¼1
wðtÞ � ðCAP1jðtÞ�minðCAP1jðtÞ;CAP2jðtÞÞÞ

Cj ¼
Xs

t¼1
wðtÞ � ðCAP2jðtÞ�minðCAP1jðtÞ;CAP2jðtÞÞÞ

eqn 5

This decomposition of community resemblance into agree-

ment (Aj) and disagreement (Bj andCj) areas for a given species

is analogous to the decomposition proposed by Tam�as, Podani

&Csontos (2001) for compositional resemblance coefficients.

Why should we compare cumulative abundance profiles?

Our main motivation for comparing CAPs was that larger

individuals often have larger impact on the organization, func-

tion and dynamics of communities than smaller ones. Accord-

ingly, in our approach, the amount of agreement and

disagreement is greater when a given change in abundance con-

cerns large individuals compared to when it concerns small

individuals (compare areas Aj and Bj in Fig. 2b–c). On the
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Fig. 1. Example of cumulative abundance profiles calculated for an old-growthDouglas-fir forest plot in British Columbia, Canada (seeExample of

application section): (a) histogram depicting the distribution of diameters at breast height (dbh) in 5 cm classes; (b) cumulative abundance profile

(CAP) using dbh as the structural variable: for each diameter class, we count the number of individuals with that diameter or larger; (c) dbh histo-

gram for each tree species separately; (d) CAP calculated for each tree species separately.
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other hand, if the two communities compared have the same

abundance value for a given species but differ in the size of

organisms, our approach will yield a larger disagreement if the

differences in size are larger (compareBj in Fig. 2d–e).

RESEMBLANCE COEFFICIENTS FOR CAP COMPARISON

Before choosing a coefficient of compositional resemblance, it

is important to discuss which mathematical and ecological

properties are deemed essential for the question at hand

(Hajdu 1981; Faith, Minchin & Belbin 1987; Tam�as, Podani

&Csontos 2001; Jost, Chao&Chazdon 2011; Beck,Holloway

& Schwanghart 2013; Legendre & De C�aceres 2013). In line

with this, we require here that a given coefficient needs to be

function of areas Aj,Bj and Cj for every species j – that is,A1,A2,

…, Ap, B1, B2, …, Bp, C1, C2, …, Cp – (Property P1) to be

considered appropriate for measuring the community resem-

blance in terms of both structure and composition. In addition,

if CAPs are defined for discrete size classes (or vertical strata),

we require that resemblance values should not change with the

subdivision of classes into subclasses, provided that the CAPs do

not change (Property P2). Otherwise, there could be an artificial

increase or decrease in resemblance derived from arbitrary

decisions about the resolution of size classes. This second prop-

erty is analogous to a property of compositional resemblance

coefficients called species replication invariance (Jost, Chao &

Chazdon 2011; Legendre &DeC�aceres 2013).

Following the above requirements, we present in Table 1 six

dissimilarity coefficients of compositional resemblance for

which we could derive a suitable generalization tomeasure dis-

similarity in both composition and structure: Whittaker’s

index of association (also known as relativized Manhattan)
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Fig. 2. Pairs of hypothetical communities (a–e) used to illustrate the three areas issued from the comparison of two cumulative abundance profiles,

CAP1j (continuous line) and CAP2j (dashed line), for a given species j: Aj is the area where the two profiles overlap, whereas Bj and Cj are the areas

where CAP1j exceeds CAP2j andCAP2j exceeds CAP1j, respectively.
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(Whittaker 1952; Faith, Minchin & Belbin 1987), the modified

Canberra metric (Lance & Willams 1967; Stephenson,

Williams & Cook 1972), the percentage difference (Odum

1950) [alias Bray-Curtis (see historical note in Legendre &

Legendre (2012, index, p. 311) about this)], the Ru�zi�cka (1958)

index (a generalization of Jaccard’s binary similarity coeffi-

cient), the quantitative symmetric index of Kulczynski (1928)

and a generalization of Ochiai’s (1957) binary similarity coeffi-

cient to quantitative data that, to our knowledge, has never

been explicitly described before, but follows the generalization

scheme of Tam�as, Podani & Csontos (2001). This generaliza-

tion of Ochiai’s index is different from other generalizations

like the one suggested by Chao et al. (2006) or the chord and

Hellinger distances (Orl�oci 1967; Rao 1995), which were

deemed unsuitable for the current purpose. Appendix S1 pro-

vides the mathematical proofs that these six coefficients have

properties P1 and P2.

TRANSFORMATIONS OF CAPS

Whenmeasuring the compositional resemblance between com-

munities, transformations such as the square root or the loga-

rithm are commonly employed to reduce the weight of

abundance with respect to species presence (Van der Maarel

1979; Legendre & Legendre 2012). Another kind of transfor-

mation involves the transformation of abundance values using

community level statistics, normally with the aim of excluding

differences in total abundance from the resemblance measure-

ment (Faith, Minchin & Belbin 1987; Legendre & Gallagher

2001). Three kinds of transformations can be applied onCAPs.

We describe these transformations inAppendix S2.

Simulation study

In order to evaluate the six generalized dissimilarity coefficients

under different situations, we conducted a simulation study

where we created synthetic ecological communities differing in:

• Size structure –Weused theGamma distribution to stochas-

tically model the size of individuals, and we varied the shape

parameter (scale was 1 in all cases) to obtain differences in size

structure (treatments labelled ‘a’ to ‘e’; Fig. 3).

• Species composition – We used the multinomial distribution

to stochastically model species identity, and we defined a

compositional gradient by setting different proportions of five

species (treatments labelled ‘A’ to ‘E’; Fig. 3).

• Community size – We considered the following numbers of

individuals per community: 25, 50, 100, 200 and 400 (treat-

ments labelled ‘1’ to ‘5’).

We designed three experiments by crossing two of the

three gradients each time: Experiment 1 – gradients in com-

position and size structure (and 100 individuals); Experiment

2 – gradients in composition and number of individuals (and

structural treatment ‘c’); Experiment 3 – gradients in size

structure and number of individuals (and compositional

treatment ‘C’). For each experiment, we generated

5 9 5 = 25 communities, corresponding to all combinations

of gradient positions, and we labelled each community with

its combination of treatments. CAPs were calculated for each

species and community using the number of individuals as

abundance measure and their size as structural variable. We

then calculated the dissimilarity between each pair of com-

munities using each of the six coefficients in Table 1. Finally,

we displayed each of the resulting dissimilarity matrices using

non-metric multidimensional scaling (nMDS) in two dimen-

sions. We evaluated the performance of coefficients visually

by determining whether the set of communities formed a

two-dimensional grid in a plane, with axes corresponding to

the two simulated gradients, as in Minchin (1987).

The percentage difference (alias Bray–Curtis) and the

Ru�zi�cka index yielded good results under the three experi-

ments (Fig. 4). The case of Whittaker’s index of association

can also be considered satisfactory because this index excludes

differences in total abundance among the compared communi-

ties. The Kulczynski and Ochiai indices yielded curvilinear

distortions but the results were reasonably acceptable. Finally,

the Canberra index yielded strong distortions in two experi-

ments.

Example of application

In order to illustrate our framework with real data, we analyse

in this section the variation between and within six plots in a

Douglas-fir forest located in the Greater Victoria Watershed

District in southern Vancouver Island, British Columbia,

Canada. These data were obtained during a chronosequence

survey made by the Canadian Forest Service to study the

changes caused by converting old-growth coastal temperate

forests to managed forests (He & Duncan 2000; Getzin et al.

2006). The advantage of using our framework here is that it

allows measuring community changes derived from manage-

ment by focusing on compositional and structural aspects

either separately or simultaneously.

The dominant species in this coastal forest are the shade-

intolerant Douglas-fir [Pseudotsuga menziesii var. menziesii

(Mirb.) Franco], the shade-tolerant western hemlock [Tsuga

heterophylla (Raf.) Sarg.] and the western redcedar (Thuja

plicata Donn ex D. Don). Three of the six plots are located in

the northern part of the Victoria Watershed District, whereas

the other three are located in the southern part. Within each of

the two areas, a distinct plot was established in immature

(25–45 years since last management), mature (65–85 years)

and old-growth (>200 years) forest stands. For our illustration,

we considered that differences in topography or soil among

stands (Trofymow et al. 1997) were of lower importance than

stand age. All trees were georeferenced within the boundaries

of each plot, and the diameter at breast height (dbh) of each

live tree was measured. Because some of the six plots were

larger than others, for our analysis, we only used the data cor-

responding to subplots of 60 9 60 m delineated from the

south-west corner of each plot.We excluded seedlings and sap-

lings (<0�5 cm in diameter) and discarded all individuals that

did not belong to the three dominant species mentioned above.

We first calculated species composition in all plots, using the

number of individuals as the measure of abundance (see Table

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 1167–1177
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S3�1 inAppendix S3). Abundance values were log-transformed

to decrease the importance of large numbers of individuals,

producing matrix XCOMP. We then calculated CAPs either

disregarding species identity (matrix YSTR) or considering it

(matrix YCOMP-STR). In both cases, we also used the number

of individuals as the measure of abundance, and we used

5-cm-diameter classes as the structural variable. Cumulative

abundance values were also log-transformed (see Figs S3�1 and
S3�2 inAppendix S3).

In each of the two sampling areas (north and south) sepa-

rately, we determined the dissimilarity between immature,

mature and old-growth stands by calculating the percentage

difference (alias Bray–Curtis) coefficient on matrices XCOMP,

YSTR and YCOMP-STR. The dissimilarity values obtained in

each case are shown in Table 2. Compositional dissimilarity

values were larger between plots in the north than between

plots in the south (Table 2a). Dissimilarities assessing differ-

ences in structure but not in composition were again larger

between plots of the northern area than between plots of the

southern area (Table 2b). Nevertheless, for plots in the south-

ern area, structural dissimilarities were comparatively larger

than the corresponding dissimilarities in composition. When

accounting for differences in composition and structure simul-

taneously, dissimilarity values were also larger between plots

of the northern area than between plots of the southern area

(Table 2c). Dissimilarity values in composition and structure

were always larger than the corresponding dissimilarities in

either composition or structure alone.

After comparingplots to eachother,wewonderedwhich for-

est standsweremore structurally and/or compositionally heter-

ogeneous and whether within-plot variability changed with

stand age. To address these questions, we repeated our dissimi-

larity calculations after dividing each of the initial 60 9 60 m

plots into nine 20 9 20 m subplots. Note that using smaller

sampling units may artificially increase the amount of spatial

variation because fewer plants are used to describe the commu-

nity (Bellehumeur, Legendre & Marcotte 1997). Nevertheless,

variability comparisons are still valid among sets of sampling

units of the same size. As before, we calculated percentage dif-

ference dissimilarity with emphasis on compositional data,

structural data and using both attributes. Figs. 5a–c show the

corresponding ordination diagrams, obtained using principal

coordinate analysis (PCoA, Gower 1966) computed on the

square roots of the dissimilarities to avoid the production of

negative eigenvalues. In order to facilitate the interpretation of

these plots, we added either compositional and/or structural

variables as arrows. We then calculated the amount of spatial

variation (i.e. non-directional beta diversity) foundwithin each

plot as the sumof the dissimilarity values between the nine sub-

plots divided by 72 (= n�(n – 1) for n = 9) (Legendre, Borcard&

Peres-Neto 2005; Legendre & De C�aceres 2013); actually, the

beta diversity calculation method uses squared dissimilarities,

but these had been square-rooted to make the dissimilarity

matrices Euclidean. The results showed that the amount of var-

iation in either composition or structure generally tended to

increase with stand stage (see ‘Var’ values in Fig. 5), but other

patternswere less clear.We tested for homogeneity of variances

using the permutational test developed by Anderson (2006)

available in function ‘betadisper’ of theRpackage ‘vegan’ (Ok-

sanen et al. 2012). The three forest plots in the southern area

did not differ in the amount of internal variation for composi-

tion (F = 2�747; P-value = 0�0844), structure (F = 2�264;
P-value = 0�1171) or composition and structure (F = 1�950;
P-value = 0�1622). In contrast, differences in amount of inter-

nal variation turned out to be significant for the three plots in

the northern area (composition F = 6�331, P-value = 0�0044;
structure F = 3�767, P-value = 0�0121; composition and struc-

tureF = 9�047,P-value < 0�0001), because the immature stand

was much more internally homogeneous in all aspects

compared to the other two.

Discussion

Ecological communities have long been studied both in terms

of species composition and size structure, although the two

components are usually analysed separately (e.g. Lee et al.

2002; Fang et al. 2012). The inherently multivariate nature of

species assemblages has led ecologists to embrace multivariate

statistical methods for the description and analysis of commu-

nity compositional patterns (Legendre & Legendre 2012). In

Fig. 3. Size structure treatments (a–e in the left panel; shape indicates the parameter of a gamma distribution) and species composition treatments

(A–E in the right panel) used in the three experiments of our studywith simulated community data.
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Fig. 4. Non-metric multidimensional scaling (nMDS) ordinations of the dissimilarity matrices obtained by computing each of the six dissimilarity

coefficients on the 25 synthetic community matrices created in each experiment. Communities are labelled using the combination of treatments that

were varied in the experiment.
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contrast, analyses of the structural component of communities

are not normally carried out using multivariate statistics. For

example, variables such as the mean tree diameter, height or

basal area are usually calculated separately to describe forests

in terms of their size structure (e.g. Fang et al. 2012). If more

detailed structural information is needed, plant size (height or

diameter) frequency distributions are also calculated and com-

pared (e.g. Davies, Palmiotto&Ashton 1998; Lee et al. 2002).

A few studies have been published in the past proposing to

measure community resemblance in terms of size structure (see

Faith et al. 1985 and references therein). However, we are the

first to present a general framework to determine community

resemblance integrating differences in size structure and species

composition in a single measurement. The framework is

grounded in the concept of cumulative abundance profile,

which, if abundance is defined as number of individuals, is

directly obtained from the empirical distribution of the chosen

structural variable. Our framework allows users to focus on

either species composition or size structure if desired. On the

one hand, species composition can be disregarded if species are

merged into a single entity. On the other hand, size structure

can be disregarded if all organisms are assumed to have the

same size. If both species composition and size structure were

disregarded, then resemblance measurements would be based

on the overall abundance in the community (e.g. the total num-

ber of individuals or total biomass). In fact, the overall abun-

dance is a feature of community organization underlying both

compositional (i.e. abundance divided among species) and

structural (i.e. abundance divided among size classes) attri-

butes. Although we used terrestrial plant communities in most

of our examples, our proposals can be readily applied to fresh-

water or marine benthic communities such as aquatic macro-

phytes, coral reefs, periphyton species in multilayer mats (e.g.

Tall et al. 2006) and other types of plant or animal communi-

ties where the size of organisms is considered relevant for com-

munity organization.

ABOUT THE CHOICES FOR ‘ABUNDANCE’ AND

‘STRUCTURAL VARIABLE ’

Because we wanted to keep our framework as general as possi-

ble, we did not constrain the definition of abundance and struc-

tural variable, leaving to users the choices regarding specific

measurements (or possible transformations). We discuss here

the range of options within each of these two general variables.

Although we did not require abundance to be defined using

any specific metric, our cumulative abundance profiles are best

suited to measurements such as number of individuals, per-

centage cover or basal area, because all these can broadly be

related to the occupation of space; hence, integration of cumu-

lative abundance values across the domain of the structural

variable provides measurements that can be interpreted as

‘volumes’ or ‘biomass’. Abundance measurements that relate

Table 2. Percentage difference (alias Bray-Curtis dissimilarity) values

calculated between the immature (IM), mature (MA) and old-growth

(OG) Douglas-fir forest plots on Vancouver Island (Canada). Dissimi-

larities were calculated using a different approach for each of the three

cases (a–c) described in the text

IMvs.MA MAvs. OG IMvs. OG

a) Composition (matrixXCOMP)

Southern area 0�095 0�054 0�098
Northern area 0�209 0�259 0�482

b) Structure (matrixYSTR)

Southern area 0�191 0�111 0�273
Northern area 0�210 0�216 0�410

c) Composition and structure (matrixYCOMP-STR)

Southern area 0�263 0�167 0�277
Northern area 0�349 0�356 0�649
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Fig. 5. Ordination diagrams obtained using principal coordinate analysis (Gower 1966) on percentage difference dissimilarity values (computed

after taking the square root of dissimilarities, to avoid negative eigenvalues): (a) composition, (b) structure, (c) composition and structure. Composi-

tional variables (the logarithm of the number of individuals for each species (CD_log(#), HL_ log(#), DF_ log(#), where CD =western redcedar, HL

=western hemlock and DF =Douglas fir) and structural variables (the average diameter for each species: CD_dbh, HL_dbh, DF_dbh) were added

as arrows in the ordination diagrams to facilitate interpretation. Forest subplots are drawn using different symbols depending on the forest plot they

belong to. We also indicate the amount of variance (Var, non-directional beta diversity) found within each forest plot, following Legendre & De

C�aceres (2013). Plot identifiers: IM = immature,MA =mature, OG = old growth;N = north, S = south.
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to both the occupation of space and size of individuals, such as

biomass, are less suited for our framework unless they are

measured separately for different strata. We did not require a

specific definition of the structural variable either, because we

do not think that applications of our framework should be

restricted to a single type of structural attribute. As much as

ecologists choose tomeasure abundance using differentmetrics

depending on the application, different attributes may be used

to represent the size of organisms. Sometimes one may have a

specific attribute in mind but use another attribute as a surro-

gate (e.g. dbh instead of height). One could even use the age of

the organisms as the structural variable instead of their size.

Clearly, further exploration is required to assess the effect of all

those decisions on the resemblance values.

ABOUT DISSIMILARITY COEFFIC IENTS AND

ORDINATION ANALYSES

Our purpose when evaluating dissimilarity coefficients was not

to show the benefits of one specific index over others.However,

we used synthetic communities to study the ability of the

different coefficients to capture structural and compositional

differences. Five of the dissimilarity coefficients (namely

Whittaker’s, the percentage difference, Kulczynski, Ru�zi�cka

and the new generalization of Ochiai) can be considered

CAP-based generalizations of coefficients that have been rec-

ommended in the past for measurements of compositional

resemblance either in their presence–absence form (Bloom

1981; Janson & Vegelius 1981) or in their abundance-based

form (Hajdu 1981; Faith, Minchin & Belbin 1987). Other indi-

ces, such as the chord/Hellinger distances, have also been rec-

ommended to measure compositional resemblance (Faith,

Minchin &Belbin 1987; Legendre &Gallagher 2001; Legendre

&De C�aceres 2013) but were deemed less suitable for the CAP

framework because they could not be expressed in Aj-Bj-Cj

notation (Property P1). Although we believe our choices are

valid, other coefficients may be developed in the future to bet-

ter measure the resemblance in composition and size structure.

Other properties may also be required depending on the type

of communities or the purpose of the application.

Because none of the recommended dissimilarity measures

can be emulated by calculating the Euclidean distance on

transformed rectangular matrices (Legendre & Gallagher

2001; Legendre & De C�aceres 2013), adopting the proposed

resemblance framework has implications for classification and

ordination analyses. For unconstrained ordinations, the pres-

ent approach can only be used in combination with metric or

non-metric multidimensional scaling techniques. For this rea-

son, one cannot draw structural or compositional variables

directly in ordination biplots, although they can be added a

posteriori, as we did in Fig. 5. Regarding constrained ordina-

tion, our framework does not directly accommodate the analy-

sis of species–environmental relationships using methods such

as redundancy analysis or canonical correspondence analysis.

However, distance-based redundancy analysis (Legendre &

Anderson 1999; Legendre & Legendre 2012, Section 11�1�5)
can still be used to display and test the relationship between

compositional and/or structural changes and potential explan-

atory factors.

POTENTIAL APPLICATIONS

We believe that incorporating structure in community resem-

blancemeasurements will be particularly useful for community

ecology studies conducted at relatively fine scales. Despite scale

limitations, our framework for dissimilarity measurements is

useful in a broad range of studies, in fundamental or applied

ecological research. Clear examples are studies focusing on

plant community dynamics (e.g. Christensen 1977; Davies,

Palmiotto & Ashton 1998; Harcombe et al. 2002) because our

framework allows users to describe temporal patterns in

structure and composition jointly. Grouping species according

to their functional or structural attributes prior to calculation

of cumulative abundance profiles can increase the potential of

our framework. For example, fire management decisions usu-

ally benefit from the classification of forest stands in terms of

their flammability. Measuring the dissimilarity between stands

using information about the vertical arrangement and

composition of fuel types may be useful to obtain such a classi-

fication.

Ecologists are nowadays interested in different components

of the spatial variation of communities (i.e. beta diversity)

other than the one issued from species (taxonomic) composi-

tion (Graham&Fine 2008; Swenson, Anglada-Cordero & Ba-

rone 2011). By allowing the incorporation of size structure into

the analysis of community resemblance, we are opening the

door to the quantification of the structural component of beta

diversity. Structural beta diversity may be quantified indepen-

dently or in combination with species composition, as we did

in this paper. Whether structure should be combined with

other components of beta diversity remains to be explored.

Software availability

Functions to calculate, transform and plot cumulative abun-

dance profiles from either stratified community data or indi-

vidual data have now been included in the ‘vegclust’ R

package (De C�aceres, Font & Oliva 2010). The package also

includes a function to calculate the six dissimilarity coefficients

studied in this paper for discrete size classes.

Acknowledgements

The work was initiated when the authors visited Sun Yat-sen University in July

2012. The authors would like to thank Albert Petit for useful discussions in the

field and Pau Vericat for providing interesting ideas on potential future applica-

tions of this framework. This research was supported by respective NSERC

grants to P. Legendre (no. 7738) and F. He. M. De C�aceres was supported by

research projects BIONOVEL (CGL2011-29539/BOS) and MONTES

(CSD2008-00040) funded by the SpanishMinistry of Education and Science. The

authors are thankful to Sun Yat-sen University for providing a stimulating

collaborative environment.

References

Anderson, M.J. (2006) Distance-based tests for homogeneity of multivariate dis-

persions.Biometrics, 62, 245–253.

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 1167–1177
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Appendix S1 Mathematical proofs for the properties P1 and P2 of coefficients. 

Property P1 – The coefficient is function of A1, A2, …, Ap, B1, B2, …, Bp , C1, C2, …, Cp 

We provide here the demonstration for the continuous CAP definition; the demonstration for the 

discrete case is analogous. Let us first restate the definitions of Aj, Bj and Cj: 

 

€ 

A j = min(CAP1 j (h),CAP2 j (h))⋅ dhh=0

∞

∫
B j = (CAP1 j (h) −min(CAP1 j (h),CAP2 j (h)))⋅ dhh=0

∞

∫
C j = (CAP2 j (h) −min(CAP1 j (h),CAP2 j (h)))⋅ dhh=0

∞

∫  
We now show the following equivalences: 

 

€ 

A j + B j = min(CAP1 j (h),CAP2 j (h))⋅ dhh=0

∞

∫ + (CAP1 j (h) −min(CAP1 j (h),CAP2 j (h)))⋅ dhh=0

∞

∫ =

= min(CAP1 j (h),CAP2 j (h))⋅ dhh=0

∞

∫ − min(CAP1 j (h),CAP2 j (h))⋅ dhh=0

∞

∫ + CAP1 j (h)⋅ dhh=0

∞

∫ =

= CAP1 j (h)⋅ dhh=0

∞

∫  
and, similarly: 

 

€ 

A j +C j = ... = CAP2 j (h)⋅ dhh=0

∞

∫  
The last two equivalences lead to: 

 

€ 

A j + B jj=1

p
∑ = CAP1 j (h)⋅ dhh=0

∞

∫j=1

p
∑ = y1+

A j +C jj=1

p
∑ = CAP2 j (h)⋅ dhh=0

∞

∫j=1

p
∑ = y2+

 

Now, we demonstrate the translation of other components of indices into the Aj-Bj-Cj notation: 

 

€ 

max(y1 j (h),y2 j (h)) dhh=0

∞

∫ = (y1 j (h) + y2 j (h) −min(y1 j (h),y2 j (h))) dhh=0

∞

∫ =

= y1 j (h) dhh=0

∞

∫ + y2 j (h) dhh=0

∞

∫ − min(y1 j (h),y2 j (h)) dhh=0

∞

∫ = (A j + B j ) + (A j +C j ) − A j =

= A j + B j +C j  

 

€ 

y1 j (h) − y2 j (h) dhh=0

∞

∫ = max(y1 j (h),y2 j (h)) −min(y1 j (h),y2 j (h)) dhh=0

∞

∫ =

= max(y1 j (h),y2 j (h)) dhh=0

∞

∫ − min(y1 j (h),y2 j (h)) dhh=0

∞

∫ =

= (A j + B j +C j ) − A j = B j +C j  

 

€ 

y1 j (h) − y2 j (h)( ) dhh=0

∞

∫ = y1 j (h) dhh=0

∞

∫ + y2 j (h) dhh=0

∞

∫ =

= (A j + B j ) + (A j +C j ) = 2A j + B j +C j  
With these equivalences in mind, the reformulation is straightforward for the Canberra metric, the 

percentage difference (alias Bray-Curtis), the Ružička index, the Kulczynski index and the 

generalized Ochiai index. In the case of Whittaker’s index of association, one has to apply a 

transformation (see Appendix S2) zij(h) = yij(h)/ yi+ and the reformulation is valid for the 

transformed CAPs.



 Property P2 – Invariance to subdivision of discrete size classes 
We provide the proof for the subdivision of discrete size classes into two subclasses; subdivision 

in k subclasses is analogous. First, it is straightforward to see that, if size classes are subdivided in 

two subclasses, the sum of CAP values across classes does not change because the width of the 

subdivided classes is half the width of the original ones: 

€ 

yi+
* =

w(t)
2

yij (t)t=1

s
∑ +

w(t)
2

yij (t)t=1

s
∑

⎡ 

⎣ ⎢ 
⎤ 

⎦ ⎥ 
= w(t)yij (t)t=1

s
∑ = yi+

 

The proof of invariance for each coefficient involves duplicating the terms that describe 

summation over strata and replacing the class width terms w(t) by w(t)/2: 

 

• Whittaker’s index of association: 
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1
2

w(t)
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⋅
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⎥ 

j=1

p
∑ =

=
1
2

2⋅ 1
2

w(t)⋅
y1 j (t)
y1+
* −

y2 j (t)
y2+
*t=1

s
∑

⎡ 

⎣ 
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• Canberra metric: 
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1
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• Percentage difference (alias Bray-Curtis): 
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• Ružička index: 
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• Kulczynski index: 
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• Generalized Ochiai index: 
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Appendix S2 Transformations of cumulative abundance profiles 

We mention here three kinds of CAP transformations: 

1. Single-argument functions of cumulative abundance values. As with species abundance data, 

this transformation pursues the objective of modulating the importance of species abundance 

with respect to species presence (see Fig. S2.1). Note that we refer here to the transformation 

of the cumulative abundance values, not the transformation of abundance values 

corresponding to individuals (ai) or size classes (x (u)) before adding them. Examples are 

CAP’(h) = sqrt(CAP(h)) or CAP’(h) = log(CAP(h)+1). A special case of this kind of CAP 

transformation is transforming cumulative abundances into presence-absence (incidence) 

values. In this case CAP’(h) is one if there are plants of the species whose size is h or larger; 

and is zero otherwise. 

2. Transformation of the structural variable. The objective of this transformation is to modify 

the importance of the structural component when measuring community resemblance. When 

dealing with individual data, one may transform the values of the structural variable before 

calculating CAPs. For example, in the CAPs shown in Figs. S2.1.c-d the structural variable 

are size classes of sqrt(dbh) instead of size classes of dbh. Transformations of the structural 

variable may be implicit when defining vertical strata that are finer near the ground (e.g. 

moss and herb layers) than in the upper levels (e.g. lower and upper tree layers). A special 

case of this kind of transformation is assuming that all organisms have the same value for the 

structural variable, or stating that size is irrelevant to the description of our community. 
Transformations of the structural variable can be fairly complex. For example, one may 

decide to divide the height of each tree by the maximum height of the corresponding species, 

in an attempt to remove differences in maximum heights among species. 

3. Transformations of cumulative abundance values involving CAP summary statistics. When 

measuring the compositional resemblance between communities, one often wishes to 

exclude differences in the total number of individuals or total abundance from the 

comparison. One way to achieve this is to divide each abundance value by the total 

abundance of the community, so that species proportions are produced. An equivalent CAP 

transformation consists in dividing each cumulative abundance value by the sum of CAP 

integrals over all species in the community. In the continuous case this is formulated as 

CAP’ij(h) = CAPij(h)/ yi+, where: 

€ 

yi+ = CAPij (h)⋅ dhh=0

∞

∫j=1

p
∑  



Note that this CAP transformation is already inbuilt into the generalization we suggest for 

Whittaker’s index of association. 

 



Fig. S2.1. Illustration of the effects of transforming cumulative abundance profiles, using 

the profiles for an old-growth Douglas fir forest plot in British Columbia, Canada: (a) 

CAPs calculated for three tree species (as in Fig. 1d); (b) same profiles as (a) after log-

transforming the cumulative abundances (i.e. number of trees); (c) same profiles as (a) 

after taking the square root of the structural variable (i.e. tree dbh); (d) same profiles as 

(a) after transforming both cumulative abundances (log) and the structural variable (sqrt). 

 



Appendix S3 Species composition and CAPs of the six Douglas fir forest plots in British 

Columbia, Canada. 

 

Table S3.1 Tree composition (number of living trees). 
  South    North  

 Immature Mature Old-growth  Immature Mature Old-growth 

Douglas fir 315 178 81  767 661 106 

Western redcedar 19 64 58  0 8 15 

Western hemlock 203 83 153  2 15 218 

 

Fig. S3.1 Cumulative abundance profiles calculated without using species identity. 

 

Fig. S3.2 Cumulative abundance profiles calculated for each species separately 

	  


