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 Indicator species are species that are used as ecological indicators of community or habitat types, environmental conditions, 
or environmental changes. In order to determine indicator species, the characteristic to be predicted is represented in the 
form of a classifi cation of the sites, which is compared to the patterns of distribution of the species found at the sites. 
Indicator species analysis should take into account the fact that species have diff erent niche breadths: if a species is related 
to the conditions prevailing in two or more groups of sites, an indicator species analysis undertaken on individual groups 
of sites may fail to reveal this association. In this paper, we suggest improving indicator species analysis by considering all 
possible combinations of groups of sites and selecting the combination for which the species can be best used as indica-
tor. When using a correlation index, such as the point-biserial correlation, the method yields the combination where the 
diff erence between the observed and expected abundance/frequency of the species is the largest. When an indicator value 
index (IndVal) is used, the method provides the set of site-groups that best matches the observed distribution pattern of the 
species. We illustrate the advantages of the method in three diff erent examples. Consideration of combinations of groups 
of sites provides an extra fl exibility to qualitatively model the habitat preferences of the species of interest. Th e method 
also allows users to cross multiple classifi cations of the same sites, increasing the amount of information resulting from the 
analysis. When applied to community types, it allows one to distinguish those species that characterize individual types 
from those that characterize the relationships between them. Th is distinction is useful to determine the number of types 
that maximizes the number of indicator species.    
 Indicator species are species that, due to their niche preferences, 
can be used as ecological indicators of community types, habi-
tat conditions, or environmental changes (McGeoch 1998, 
Carignan and Villard 2002, Niemi and McDonald 2004). 
Th ey are usually determined using an analysis of the rela-
tionship between the observed species presence–absence or 
abundance values in a set of sampled sites and a classifi cation 
of the same sites (Dufrêne and Legendre 1997). Depending 
on the objective of the study, the groups of sites in the classi-
fi cation may represent diff erent qualitative characteristics of 
the ecosystem, such as habitat or community types, environ-
mental or succession states, or the levels of controlled experi-
mental designs. Since indicator species analysis relates two 
elements, the species and the groups of sites, it can be used 
for gaining information on either or both. Indeed, indicator 
species analysis allows the characterization of the qualitative 
environmental preferences of the target species (for instance, 
when the groups are habitat types), and identifi es indicators 
of particular groups of sites, which can be used in further 
surveys. Th e applications of indicator species analysis are many, 
including conservation, land management, landscape map-
ping, or design of natural reserves. Indicator species are com-
monly referred to as ‘diagnostic species’ in vegetation studies 
(Chytrý et al. 2002). 
 Indicator species analysis should take into account the fact 
that niche breadths vary among species. Th is means that some 
species may be related to one group of sites, while others may 
be related to more than one group (Tsiripidis et al. 2009). 
European phytosociologists were aware of this when they 
determined indicator species of groups belonging to diff er-
ent hierarchical levels of a vegetation classifi cation (Barkman 
1989). For example, some species could be indicators of all 
types of calcareous grasslands whereas others would point to 
dry calcareous grasslands on slopes with shallow soils. Th e 
fact that phytosociologists adopted a hierarchical classifi ca-
tion scheme for communities infl uenced the development of 
numerical tools like the well-known two-way indicator species 
analysis (TWINSPAN, Hill 1979). Th is procedure takes a 
site-by-species data table and performs a hierarchical clas-
sifi cation of the sites and, at the same time, determines the 
indicator species for the two sides of each split in the hierar-
chy. Th e main problem of TWINSPAN for indicator species 
analysis is that its multivariate nature makes the indicator 
value of one species dependent on the abundances of the 
remaining species in the data table (McGeoch and Chown 
1998). Dufrêne and Legendre (1997) introduced the indica-
tor value (IndVal) method, which treats each species sepa-
rately. Moreover, unlike TWINSPAN, which generates the 



classifi cation of the sites used in the later steps of the analysis, 
the IndVal method uses an already existing partition of the 
sites as input. Th e way this partition is defi ned is left to the 
user. It may have been obtained on the basis of environmental 
variables, community composition, or otherwise. Th e IndVal 
method determines the group of sites, among those forming 
the partition, to which the target species is most strongly 
related, as measured by the indicator value index. De Cáceres 
and Legendre (2009) recently developed a framework of stati-
stical indices that can be used to measure the degree of asso-
ciation between the target species and each group of sites: we 
will hereafter use the word ‘association’ to refer to this kind 
of relationships. In order to cope with the diff erent niche 
breadths of the species, Dufrêne and Legendre (1997) sug-
gested to compare the indicator values derived from diff er-
ent partitions of the data, each corresponding to a diff erent 
hierarchical level. 

 A hierarchical classifi cation of sites may be too rigid to 
capture the niche preference of the target species. Th is is so 
because hierarchies do not consider all possible combinations 
of low-level clusters of the hierarchy, but only those allowed 
by the nested topology. For example, an indicator species analy-
sis based on a hierarchical classifi cation will be inadequate 
for a target species preferring two low-level clusters that do 
not form a node in the immediate upper clustering level. 
Acknowledging this fact, we present here an improvement of 
the IndVal approach, which consists in considering all struc-
tures at higher levels that come from combinations of groups 
of the initial partition of sites. For each species, the combina-
tion of site groups to be retained and tested for statistical sig-
nifi cance is the one with the maximum association strength. 
Th e consideration of combinations of groups of sites pres-
ents some advantages. With respect to the species, it provides 
a fi ne characterization of the species habitat preferences from 
qualitative environmental data. With respect to the groups of 
sites, it allows one to distinguish between those species that 
characterize individual groups and those that explain the 
similarity between individual groups because they are associ-
ated to some larger grouping of the sites. 

 In the following section, we explain the method of indica-
tor species analysis with combinations of groups in a detailed 
way. We consider two types of association indices (De Cáceres 
and Legendre 2009), the indicator value and the correlation 
value, and explain their diff erences in relation to the combi-
natorial approach. We then illustrate the advantages of the 
method using three diff erent examples. First, we re-analyze 
the tree species-habitat associations found in Barro Colorado 
Island (Harms et al. 2001). Second, we determine beetle indi-
cator species in response to fi re, by crossing two classifi ca-
tions of the sites in the indicator species analysis. Th ird, we 
show how our approach can be helpful when using the num-
ber of indicator species to determine the optimal number of 
community types present in a community data table.   

 Indicator species analysis with combinations 
of site groups  

 The method 
 Th e method of indicator species analysis with combinations 
of site groups is an extension of the original IndVal method 
(Dufrêne and Legendre 1997). Th e input consists in two 
elements: the target species data vector, containing occur-
rence or abundance values at locations or sites, and a par-
tition of the sites into a set of k non-overlapping classes, 
hereafter called ‘site groups’ (step 1 in Fig. 1). Th e main dif-
ference between the original IndVal method and the exten-
sion presented here is the following: whereas the original 
method considers the association between the target species 
and each of the k site groups in the partition, the extended 
method considers the association between the target spe-
cies and each of the possible groups of sites that arise from 
combining (union operation) the site groups (step 2 in Fig. 1). 
If there are k diff erent site groups in the partition, the num-
ber of possible combinations is 2k–1, including the set of all 
sites. Th e original IndVal method looked for the group of 
sites to which the species was maximally associated. Anal-
ogously, the site-group combination to be retained in our 
method is the one showing the strongest association with the 
target species (step 3). Of course, the maximum association 
value may diff er depending on the association index used 
(De Cáceres and Legendre 2009). In the next subsection, we 
present two types of association indices (Table 1) and discuss 
how the method of indicator species analysis with combina-
tions of site groups diff ers when one or the other type is used. 
Before reporting the target species as indicator of the selected 
site-group combination, the association must be tested for 
statistical signifi cance (step 4). We explain in subsection ‘Stati-
stical inference’ how the signifi cance test is carried out in the 
original IndVal and in the extended method.   

 Association indices 
 Indices for assessing the strength of association between species 
and groups of sites are reviewed in De Cáceres and Legendre 
(2009). We discuss here two indices that we modifi ed to deal 
with combinations of site groups: 

1)   ‘Indicator value’ indices are specially designed to assess 
the predictive value of a species as indicator of a combi-
nation of site groups. Th e indicator value (IndValind in 
Table 1) index (from Dufrêne and Legendre 1997) is cal-
culated as the product of two quantities, called A and B. 
Quantity A gives the probability of a site being a member 
of the site-group combination when the species has been 
found at that site (i.e. the positive predictive power of 
the species as ecological indicator of the site-group com-
bination, Murtaugh 1996). Quantity B informs of how 
frequently (and hence how easily) the species is found at 
sites of the site-group combination under study. 

  2) ‘ Correlation indices’ assess the positive or negative pref-
erence of the species for the environmental conditions 
prevailing within sites belonging to the site-group com-
bination, compared to the remaining sites. Th e phi 
coeffi  cient of association is a correlation index commonly 
used in vegetation studies to identify diagnostic spe-
cies for plant community types (Chytrý et al. 2002). 
In the case of species abundance data, De Cáceres and 
Legendre (2009) suggest the point-biserial correlation 
coeffi  cient (rpb in Table 1). In our case, rpb is equal 
to the Pearson correlation between a (binary) variable 
indicating whether the site belongs to the site-group 
combination under study, or not, and a (quantitative) 
variable containing the abundance of the species. 
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Step 3: Compute the association value between the species and each combination

of site groups and retain the combination that yields the maximum association value.

Species vector

Combination 1

Combination 2k–1

...

Site classification

Combination 2

Step 1: Construct vectors with the target species abundances and the initial site

classification.

Step 2: Generate combinations of site groups.

Step 4: Test the statistical significance of the association, by repeating step 3 after 

each permutation of the species data.

Species vector

Selected combination

0 0 3 0 2 3 0 5 5 6 3 4

1 1 1 1 2 2 2 2 3 3 3 3

0 0 3 0 2 3 0 5 5 6 3 4

0 0 0 0 1 1 1 1 1 1 1 1

rpb CIndValind

1 1 1 1 0 0 0 0 0 0 0 0 -0.617 0.156

0 0 0 0 1 1 1 1 0 0 0 0 -0.028 0.492

0 0 0 0 0 0 0 0 1 1 1 1 0.645 0.762

1 1 1 1 1 1 1 1 0 0 0 0 -0.645 0.458

1 1 1 1 0 0 0 0 1 1 1 1 0.028 0.651

0 0 0 0 1 1 1 1 1 1 1 1 0.617 0.889

1 1 1 1 1 1 1 1 1 1 1 1 NA 0.816

Σ

 Indicator species analysis may give diff erent results depend-
ing on the association index used (see example in Fig. 1). 
Indicator value indices do not consider species absences out-
side the site-group combination under study (De Cáceres 
and Legendre 2009). As a result, when computed across site-
group combinations, the combination that gets the highest 
association value is the one that best matches the observed 
presences of the species. Indicator species analysis using indi-
cator value indices is a good tool to simplify and understand 
an observed species pattern. A randomly distributed species 
will have higher indicator values for larger site-group combi-
nations (see expected values for random species in Table 1). 
As a consequence, randomly distributed species will tend to 
be matched with the set of all sites; that association cannot be 
tested for signifi cance. Unlike indicator values, correlation 
indices take into account species absences both inside 
and out side the site-group combination under study. Th e 
set of all sites cannot be considered in a study involving 
correlation indices; the number of possible combinations 
is therefore 2k–2. An indicator species analysis using a 
correlation index will look for the site-group combination 
that has the highest diff erence between the species observed 
and expected frequency (or abundance). We provide in the 
Supplementary material Appendix 1 the results of a small 
simulation study; it may prove useful to those readers inter-
ested in better understanding the diff erences between rpb 
and IndValind. 
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 Readers of Table 1 will notice that we present two versions 
of IndValind and rpb. The standard (non-equalized) indices 
give the same weight to all individual sites; they are appropri-
ate when the number of sites each site group is proportional 
to the ecological variability of the group (i.e. the larger the 
number of sites, the larger the ecological variability of the site 
group), but they may produce inaccurate estimates if some site 
groups with similar variability are over-sampled with respect to 
others (Tichý and Chytrý 2006). In order to avoid the poten-
tial problem of unbalanced sampling, group-equalized indices 
have to be used (Tichý and Chytrý 2006, De Cáceres and Leg-
endre 2009). Group-equalized indices give equal weights to all 
site groups, therefore assuming that all have the same ecologi-
cal variability. Under the present context of site-group com-
binations, group-equalized indices assume that the ecological 
variability of each site-group combination is proportional to 
the number of site groups it contains. Group-equalized indices 
will be our choice throughout this paper.    

 Statistical inference 
 In order to report that a target species is associated to a site-
group or a site-group combination, we fi rst need to reject the 
null hypothesis that negates this association. A permutation 
test is a procedure that involves comparing an observed test 
statistic with a distribution obtained by randomly reordering 
(i.e. permuting) the data. De Cáceres and Legendre 
(2009) describe a permutation test to assess the statistical 
Figure 1. Description of the steps involved in indicator species analysis with site-group combinations. Sites occupied by at least one indi-
vidual of the target species and site memberships to the site-group combinations are indicated in gray.
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   Notation (following De Cáceres and Legendre 2009 and previous works): Let N be the number of sites in the data set, Ni be the number of 
sites belonging to site group i, n the number of sites where the target species occurs, and ni the number of sites in site group i where it occurs. 
Let then a be the sum of abundances of the target species over all sites, ai the sum of its abundances in site group i, l the norm of the vector 
abundances of the target species, and li the norm of the abundance vector of the target species in site group i. Moreover, let K be the set of 
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 signifi cance of the association between the target species and 
a given group of sites. If the null hypothesis of no association 
is true, the association value computed after randomly reas-
signing species occurrence or abundance values to sites will 
be similar or very close to that observed for the original, unper-
muted data. Th e p-value of the permutation test for positive 
(negative) species preference is the proportion of the permu-
tations that yielded the same or higher (lower) association 
values than that observed for the unpermuted data. 

 When considering site-group combinations, permutation 
tests can be performed using the indices in Table 1 as test sta-
tistics. Th e permutation test described above is valid for assess-
ing the statistical signifi cance of the association between the 
target species and a given site-group combination. However, 
when assessing the signifi cance of the association between 
the target species and the site-group combination with maxi-
mum association value, there is a caveat in the permutation 
test. Th e process of selecting the combination with maximum 
association value (step 3 in Fig. 1) increases the probability 
of fi nding a signifi cant result, because the selected site-group 
combination is not independent of the species pattern. Th is 
means that random species will be found signifi cant more 
often than the signifi cance level, and the permutation test 
described above will not have a correct level of type I error. 
In order to solve this problem, we need to redo the selection 
process after each permutation of the species data. Th is modi-
fi ed permutation test (step 4 in Fig. 1) uses the maximum 
association value as the test statistic. It will have a correct level 
of type I error for random species, because we incorporate 
the process of selecting the site-group combination into the 
distribution of the null hypothesis of no association. Note 
that Dufrêne and Legendre (1997) also used the maximum 
IndVal, among the individual site groups, as the statistic for 
their permutation test. Th erefore, the diff erence again con-
sists in that we consider combinations of site groups instead 
of individual groups only. 

 When reporting the results of indicator species analysis 
for several species, users should be aware of multiple testing 
issues. Let us say that we conduct indicator species analysis 
with α � 0.05 on 200 species without correcting for multiple 
testing and obtain 10 signifi cant results. If we say that there 
are 10 indicator species, this ‘experiment-wise’ statement will 
probably be wrong, because under the null hypothesis of no 
association the expected number of signifi cant results with 
200 species is α � 200 � 10. Corrections for multiple test-
ing are advisable in this case. Th ese procedures (e.g. see the 
‘p.adjust’ function of R) modify the p-values in order to keep 
the probability of fi nding, among all the statistical tests, at 
least one signifi cant result at the chosen signifi cance level. 
After the correction, we can report the number of signifi -
cant indicators more safely. If, however, we are interested in 
reporting that a given species is an indicator, we do not need 
any correction because we are not making any experiment-
wise statement. If the test is exact, the probability of type I 
error will be equal to α in that case.    

 Real data examples  

 Example 1. Species–habitat associations in 
Barro Colorado Island 
 One of the possible applications of indicator species analysis 
is to determine the ecological preference of species among 
  Table 1. Mathematical formulae and expected values of the indicator value (IndValind) and the point biserial correlation (rpb) indices when 
applied to combinations of site groups. Both non-equalized and group-equalized versions are presented.   
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a given set of habitat types. We re-examine here the habitat-
association patterns of trees and shrubs within the 50-ha 
permanent Forest Dynamics plot of Barro Colorado Island 
(BCI), Panama. Habitat-association patterns in BCI were 
fi rst studied by Harms et al. (2001) from a seven-habitat clas-
sifi cation of 20 � 20 m grid cells in the plot based on the 
combination of topography, hydrology and historical facts. 
Th e seven habitat types are: high plateau (H, fl at areas above 
152 m); low plateau (L, fl at areas below 152 m); areas with 
more than 7° in slope (S), which, due to the geology and 
hydrology of BCI, are moister than the plateaus later into 
the dry season; streams fl anked with steep ravines (R); a sea-
sonally-inundated swamp (W); secondary (about 100 years 
old) forest (F); and mixed habitats of diffi  cult classifi cation 
(M). Even if some species have an optimum among the seven 
original habitats, many of them may be more strongly related 
to two or more habitats types. We therefore intend to pro-
vide a more accurate characterization of species habitat niche 
preferences by considering combinations of habitat types. 

 We took the fi rst BCI tree census, carried out in 1982–83, 
and counted the number of individuals of each tree species 
(i.e. the number of live stems with at least 1 cm dbh) in 20 � 
20 m grid cells. We assessed the strength of the associations 
with the (group-equalized) rpb index because the original 
study of Harms et al. (2001) aimed at determining both the 
positive and negative species habitat preferences. We com-
pared the number of species with signifi cant habitat prefer-
ences in the combinatorial analysis (there were 27–1 � 127 
combinations) to the same number obtained in the analysis 
performed considering the seven individual habitats only. In 
both cases, we determined the statistical signifi cance of max-
imum association value using the permutation test described 
above. In order to prevent infl ation of type I error due to auto-
correlation in the unpermuted data, we restricted the per-
mutations to those allowed by a toroidal shift (Lotwick and 
Silverman 1982). Briefl y, permutations were obtained by using 
a two-dimensional torus connecting the map margins and then 
sliding one variable map (i.e., the target species abundance 
values) over the other (i.e. the memberships to the site-group 
combination). 

 Among the 307 tree species, 64 (21%) showed a signifi -
cant association in the indicator value analysis considering 
habitat combinations, whereas if habitat combinations were 
not considered 44 (14%) species showed signifi cant results. 
Th e low proportion of species showing preferences may be 
due to the small amount of topographic variation in the BCI 
plot. Among the 64 species showing a signifi cant habitat 
preference, 34 were associated to a single habitat type, 17 were 
associated to the combination of two habitats, 10 were asso-
ciated to three or four habitats, and three species were asso-
ciated to fi ve or six habitats (Table 2). Harms et al. (2001) 
mentioned a group of species strongly associated with slope 
areas, containing Beilschmiedia pendula, Chrysochlamys 
eclipes, Poulsenia armata, Unonopsis pittieri and Virola suri-
namensis. According to the results of the indicator species 
analysis with habitat combinations, only U. pittieri is asso-
ciated to slopes only (Table 2). Th e remaining four species 
have a broader habitat preference. Th e habitats preferred by 
B. pendula are slopes and the low plateau. C. eclipes and 
P. armata are strongly associated to slopes and streamside habitats. 
V. surinamensis is weakly associated with slopes, streamside 
1678
and swamp habitats. Knowing that these three habitats retain 
more moisture during the dry season makes this result consis-
tent with Fisher et al. (1991), who wrote that V. surinamensis 
can persist and grow in shaded understory as long as there is 
no strong dry season. When habitat combinations were not 
considered, the habitat with maximum association for these 
four species was slopes but the statistical signifi cance was 
lower (Table 2). Th erefore, whereas Harms et al. (2001) cor-
rectly stated that those fi ve species grow preferably on slopes, 
we achieved here a more detailed determination of the niche 
preferences of these species along the moisture gradient. 
From the results presented in Table 2, one can conclude that 
if the target species is actually associated to more than one 
habitat, the high frequency or abundance in one of them 
can hinder fi nding statistically signifi cant results for another 
habitat. Th e combinatorial approach also allowed detecting 
some species that were positively associated to several habi-
tats, meaning that they were avoiding specifi c habitats. For 
example, Hybanthus prunifolius (Violaceae) is found every-
where in BCI except in the moister habitats, i.e. the swamp 
(W) and near the streams (R). One may say that this species 
is negatively associated to these moister habitats.    

 Example 2. Indicator beetle species responding 
to fi re and altitude 
 Th is application will show how indicator species analysis with 
combination of site groups can be applied to interpret the 
results of fi eld mensurative pseudo-experiments with crossed 
factors. Th is is achieved by using as input the classifi cation 
of sites derived from crossing the factors. Beetles are frequently 
used to indicate habitat alteration (Rainio and Niemelä 2003, 
Moretti et al. 2004). In this application, we identify the 
post-fi re beetle species responses along an altitudinal gradi-
ent. Th e data are part of a broader research project which 
started in 2004, one year after a wildfi re destroyed 300 ha of 
conifer forest between 800 and 2200 m above sea level (m a.s.l.) 
in the Swiss Alps (Wohlgemuth et al. 2006). We used the site 
classifi cation derived from a two-way sampling design that 
consisted of three fi re treatments (i.e. unburnt area, margin 
of the burnt area, center of the burnt area) across three alti-
tudes (i.e. 1200, 1450, 1700 m a.s.l.). Longhorn beetles 
(Cerambycidae) and metallic wood-boring beetles (Bupres-
tidae) were sampled weekly between April and September 
2005 and 2006 (two and three years after the fi re) at 18 trap 
sites along three transects at diff erent altitudes, by means of 
one pitfall trap and one window trap per trap site. Speci-
mens were identifi ed at the species level, and the number of 
individuals per species counted. Using a canonical redun-
dancy analysis biplot, we found that most of the species were 
associated to the margin and center burnt sites (Moretti 
et al. 2010). Our aim in this example of application was to 
use indicator species analysis to give a more detailed descrip-
tion of the post-fi re response of each beetle species. Since 
we wanted to describe the pattern of each species, we used 
the group-equalized IndValind as association index. We car-
ried out three indicator species analyses on log-transformed 
individual counts. In the fi rst analysis, we used the three fi re 
treatment levels as the classifi cation of sites (which yields 
23–1 � 7 combinations of levels). Th e second analysis was 
conducted using the three altitude levels (seven combinations 
again). We ran the third analysis using the nine conditions 
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resulting from the crossing of treatment and altitude eff ects 
as classifi cation of sites (which yields 29–1 � 511 combi-
nations). In all cases, the two survey years were considered 
to represent independent observations (giving four replicate 
observations of the beetle community in each area). 

 Among the 62 species available, indicator species analysis 
revealed 17 indicators responding to fi re, most of them being 
associated to burnt areas (the combination of margin and 
center). Th e analysis on altitude belts yielded 13 indicators, 
mainly associated to low or low and intermediate altitudes. 
Five species were signifi cant indicators in both analyses: 
Chlorophorus sartor and Anthaxia hungarica were at the same 
time indicators of burnt areas and low altitudes, whereas 
Anthaxia sepulchralis, Anastrangalia sanguinolenta and Steno-
pterus rufus were indicators of burnt areas and low and inter-
mediate altitudes (Fig. 2a–b). Th e third analysis yielded 25 
indicators; the higher number of indicators is likely to be due 
to the fi ner description of the environmental conditions of 
the sampled sites obtained by crossing the two factors (Fig. 2c). 
Most importantly, the third analysis clarifi ed the situation 
that each species was indicating best. In this sense, we found 
the results of this third analysis to be a very good comple-
ment to the canonical biplot. For example, Obrium brun-
neum had been found to be an indicator of unburnt sites 
in the fi rst analysis, but the third analysis revealed that its 
occurrence was restricted to low and intermediate altitudes. 
Using a minimum association value of √IndValind � 0.8 as 
a threshold, four species were confi rmed to be indicators 
of fi re at all altitudes (Acmaeops pratensis, Gaurotes virginea, 
Pachyta quadrimaculata, Anastrangalia dubia). Th ree spe-
cies, Chlorophorus sartor, Anthaxia hungarica and Acmaeops 
marginatus, were indicators of fi re at low altitudes; while 
only Stenopterus rufus was a good indicator of fi re in low and 
intermediate altitudes. Some species had higher number of 
individuals at the margin of the burnt area, like Anthaxia 
helvetica, while others, like Alosterna tabacicolor, occupied 
the burnt margin area coming from the forest, both benefi ting 
from the positive margin eff ect. On the other hand, the two 
species appearing to be restricted to margin sites in the fi rst 
analysis were not confi rmed as good indicators in the third 
one. Th us, strict indicators of the margin sites are unlikely. 
Many of the indicator species found in our study are of great 
importance from the point of view of conservation, while sev-
eral of the indicator species related to the burnt sites at diff erent 
altitudes are rare in Switzerland and the information about 
their ecology is scarce. Th e combinatorial approach obtains 
detailed information about the ecological niche of species 
with relatively narrow habitat and microclimatic requirements.    

 Example 3. Determining the number of types in 
a community data table 
 Delimiting community types is a way to simplify the com-
plexity of community data, providing a complementary view 
to non-canonical ordination methods (Legendre and Legendre 
1998). Although they are artifi cial, community types may 
become very useful for the synthesis of ecological survey 
results. For instance, plant community types are often used 
to generate vegetation maps, but they can also be useful to 
characterize community-level successional changes over time. 
Arbitrary choices of a clustering method and the number of 
groups are usually a source of concern among the practitioners 
1680
of clustering methods (Mucina 1997). Th e strategy normally 
employed consists in comparing diff erent possible classifi -
cations using a pre-specifi ed criterion. Many criteria exist, 
and most of them are based on the geometrical compactness 
and isolation of clusters (Milligan and Cooper 1985), but 
for community ecology data authors have suggested using 
the number of indicator species (Dufrêne and Legendre 
1997, Tuomisto et al. 2003, Aho et al. 2008). If we take into 
account that community types are not real entities, and that 
community data is essentially of continuous nature, fi nding 
‘natural’ or ‘data-driven’ community types is a certainly dif-
fi cult, if not impossible, task. We do not pretend here to 
perform a comparison of criteria to determine the optimal 
classifi cation of community data (Milligan and Cooper 
1985, Aho et al. 2008), but rather to show the added value 
of considering site-group combinations when using indica-
tor species as a criterion. 

 We took three community data sets: 1) the oribatid mite 
data of the Sphagnum mosses of lac Geai (Saint-Hippolyte, 
Québec, Canada) collected by Daniel Borcard and used in 
a number of publications (Borcard et al. 1992). Th e data set 
consists in individual counts of 35 mite species in 70 soil cores 
from a sampling area of 2.5 m by 10 m in size; it is available 
in the ‘vegan’ and ‘ade4’ R language libraries, for example; 2) 
wetland vegetation data from the alluvial plain of Adelaide 
River (Australia) studied by Bowman and Wilson (1986). 
Th e community data table is composed of 40 sites and 33 
vascular plants whose abundance values are recorded fol-
lowing cover classes. It is available in the R language library 
‘indicspecies’ (De Cáceres and Legendre 2009); 3) the BCI 
plot data, presented in our fi rst application, consists in stem 
counts of 307 tree species in 1250 grid cells. We ran K-means 
partitioning (MacQueen 1967) on each of the three data 
sets after transforming the community data through the 
Hellinger transformation (Legendre and Gallagher 2001). Th is 
transformation decreases the importance of abundance over 
occurrence (as in the square root transformation) and avoids 
the double-zero problem when comparing species composi-
tion between sites (Legendre and Legendre 1998). In order to 
determine the best partition of each community data table, 
we fi rst conducted several runs of K-means using diff erent 
numbers of clusters, from two to eight. We then carried out 
four indicator species analyses on each data table and each par-
tition. Th e four analyses come from the crossing of whether 
site-group combinations are considered or not, and whether 
IndValind or rpb is used as the association index. We did not 
use the Hellinger transformation for the indicator species 
analyses in order to keep the results for each species inde-
pendent. Th e mite data were log-transformed prior to indi-
cator value analysis in order to reduce the infl uence of very 
large values. In the results of each analysis, we counted the 
total number of signifi cant indicator species (after 999 per-
mutations, α � 0.05). In the analyses considering site-group 
combinations, we also counted how many, among the overall 
signifi cant species, were associated to a single group. 

 For the oribatid mite data (Fig. 3a), the number of Ind-
Valind indicator species with and without combinations had 
a maximum (25–26 species) at k � 4, while the plot for rpb 
was almost fl at, indicating a lack of clear clustering struc-
ture. Th e number of species associated to single groups in the 
IndValind group-combination analysis was highest at k � 2 



a) Response to fire (Unburnt, Margin, and Center) b) Response to altitude (1200, 1450, 1700 m.a.s.l.)

Species IndVal p-value Species IndVal p-value

U M C
Obrium brunneum 0.761 0.002 1700 Chlorophorus sartor 0.770 0.002

1450 Acmaeops marginatus 0.730 0.002
1200 Anthaxia hungarica 0.724 0.004

Grammoptera ruficornis 0.707 0.004
Alosterna tabacicolor 0.920 0.001 Leptura maculata 0.599 0.022

Arhopalus rusticus 0.577 0.034

Stenurella melanura 0.646 0.006
Rhagium inquisitor 0.703 0.020

Corymbia maculicornis 0.622 0.013

Anthaxia sepulchralis 0.870 0.005
Acmaeops pratensis 0.995 0.001 Pachytodes cerambyciformis 0.867 0.004
Gaurotes virginea 0.970 0.001 Anastrangalia sanguinolenta 0.834 0.015

Pachyta quadrimaculata 0.967 0.001 Stenopterus rufus 0.749 0.006
Anastrangalia dubia 0.951 0.001 Corymbia rubra 0.693 0.019

Anthaxia quadripunctata 0.947 0.001 Stenurella bifasciata 0.612 0.039
Anastrangalia sanguinolenta 0.927 0.001

Anthaxia sepulchralis 0.912 0.001
Anthaxia similis 0.849 0.002

Dinoptera collaris 0.830 0.003
Clytus lama 0.809 0.021

Stenopterus rufus 0.791 0.002
Anthaxia hungarica 0.677 0.017
Chlorophorus sartor 0.645 0.027

c) Response to the crossed effects of fire and altitude

Species IndVal p-value Species IndVal p-value

U M C U M C
1700 Obrium brunneum 0.842 0.002 1700 Anthaxia helvetica 0.890 0.005
1450 1450
1200 1200

Alosterna tabacicolor 0.920 0.005 Corymbia maculicornis 0.752 0.014

Stenopterus rufus 0.925 0.001 Pseudovadonia livida 0.727 0.045

Acmaeops pratensis 0.995 0.001 Clytus arietis 0.823 0.002
Gaurotes virginea 0.970 0.001

Pachyta quadrimaculata 0.967 0.001
Anastrangalia dubia 0.951 0.001

Arhopalus rusticus 0.801 0.011
Chlorophorus sartor 0.944 0.001
Anthaxia hungarica 0.887 0.001

Acmaeops marginatus 0.817 0.002
Grammoptera ruficornis 0.764 0.006 Stenurella melanura 0.819 0.001

Leptura maculata 0.733 0.023

Anthaxia quadripunctata 0.987 0.001
Anastrangalia sanguinolenta 0.945 0.001 Stenurella bifasciata 0.750 0.011

Anthaxia similis 0.851 0.047

Anthaxia sepulchralis 0.931 0.001
Dinoptera collaris 0.869 0.003 Corymbia rubra 0.777 0.019

Pattern

Pattern Pattern

Pattern
(20 species), but very low (four species) at k � 4, indicating 
that at this level most species are better associated to combi-
nations of two or three groups rather than to single groups. 
A decision to divide the data set into two groups of sites 
would be in accordance with Legendre (2005), who found 
two signifi cant species associations for this data. For the 
wetland vegetation data (Fig. 3b), the number of indica-
tor species without considering combinations was not a 
Figure 2. Indicator species for the beetle data (α � 0.05, 999 perm.) in response to fi re (a), altitude (b), or the crossed eff ect of fi re and altitude 
(c). In grey: the combination of site groups that is most strongly related to the species pattern. 
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useful criterion, because the same number of indicators was 
obtained for many values of k. On the other hand, when site-
group combinations were considered, there was a fi rst maxi-
mum of 15 indicators at k � 3 for IndValind and at k � 5 
for correlations. Finally, the number of indicators associated 
to individual groups pointed to k � 2 or 3 with IndValind, 
and to k � 3 or 4 with rpb. Th is last result is consistent with 
Dale (1988), who used the same data to compare fuzzy clas-
sifi cation methods and pointed out that three or four groups 
of sites can be distinguished. Th e results in the case of BCI 
were surprising (Fig. 3c): there was a strong peak (126 spe-
cies) at k � 4 without considering combinations. Th e fact 
that with combinations the number of IndValind indicator 
species was much lower refl ects the fact that many of the BCI 
species occur in almost all 20 � 20 m cells of the plot. Th e 
combination analysis, using the indicator value index as the 
statistic, matched those species with the group combination 
1682
that includes all sites. Since the statistical signifi cance cannot 
be tested in that situation, the number of diagnostic spe-
cies with signifi cant combinations was lower. In the case of 
BCI, a partition into four or fi ve site groups seems optimal 
and agrees with the habitats defi ned by Harms et al. (2001). 
Note that in the fi rst application we found that only four 
among the seven habitat types had indicator species associ-
ated to them individually (Table 2). 

 Provided that one decides to compare classifi cations using 
the number of indicator species as a criterion, our results indi-
cate that distinguishing between species associated to single 
groups and species associated to two or more groups can be 
helpful. While the indicators for single site groups eff ectively 
characterize the individual community types, the indicator 
species associated to two or more groups allow one to inter-
pret the similarity between community types because they 
characterize a higher-level grouping structure. Nevertheless, 
Figure 3. Number of statistically signifi cant indicator species (α � 0.05, 999 perm.) resulting from a classifi cation using K-means partitioning 
with diff erent numbers of groups on the three data sets (a–c) Empty squares: the number of indicator species when site-group combinations 
are not considered; triangles: the number of indicator species when site-group combinations are considered; crosses: the number of indicator 
species associated to a single site group when combinations are considered. 



a simulation study specifi cally focusing on this issue would 
be most useful.    

 Discussion  

 On considering site-group combinations in 
indicator species analysis 
 Th is paper stresses that indicator species analysis must take 
into account the fact that niche breadths vary among species. 
Tsiripidis et al. (2009) recently addressed the same issue, pro-
posing an algorithm that considers the possible association of 
the species with more than one group of sites. Th eir method is 
based on the comparison between relative frequency values of 
the target species across site groups, using an arbitrary diff er-
ence threshold. As a consequence, their approach does not allow 
statistical inference and only applies to presence-absence species 
data. In the present paper, we discussed a simple but powerful 
extension of the well-known IndVal method, based on explor-
ing all possible combinations of site groups. In the application 
section we demonstrated several advantages of our approach 
compared to normal practice in indicator species analysis. For 
the benefi t of interested readers, we included in the R language 
library ‘indicspecies’ (�http://sites.google.com/site/miquelde
caceres/software�) (De Cáceres and Legendre 2009, supple-
ment) a function that can be used to perform indicator species 
analysis with or with out combinations. 

 Although the consideration of combinations of site-groups 
highly improves the fl exibility of the indicator species analy-
sis, some site-group combinations arising from the method 
may not be easy to interpret ecologically. Site-group combi-
nations that are diffi  cult to interpret can occur in at least three 
cases: 1) since the test uses a signifi cance level (for example 
α � 0.05), the reported association may in fact be a random 
event; 2) due to historical reasons (e.g. dispersal limitation), 
the reported association may refl ect the pattern of the tar-
get species in the studied data set, but not its real ecological 
preference; 3) the sites forming the site-group combination 
may share some environmental characteristic(s) driving the 
species preference, that the ecologist was unaware of. Unless 
the investigator is interested in this last case, the value of 
the reported association will only be of practical usefulness 
when the indicated entity has received some interpretation. 
Fortunately, the method presented here allows restricting the 
site-group combinations to those that have ecological mean-
ing according to the analyst. Previous applications of the 
original IndVal method were even more restrictive since they 
were assuming that the ecologically relevant combinations 
involved individual site-groups only.    

 On the limitations of indicator species analysis 
 Indicator species are useful albeit simple tools to indicate the 
qualitative state of an ecosystem when it is unknown. Th is 
means, for instance, that one can use indicator species to clas-
sify sites of unexplored ecosystems (e.g. in vegetation map-
ping) or to monitor the succession of a particular habitat or 
environmental gradient to natural and anthropogenic stres-
sors over time (e.g. recover after pollution, disturbance by 
fi re, climatic changes, etc). Depending on the purpose of the 
application, indicator species are categorized between envi-
ronmental, ecological or biodiversity indicators (McGeoch 
1998). Although the methods are very distinct from the ones 
used here, it is worth noting that diversity indicator species 
can be determined, for instance by selecting predictors of 
species richness in regression models (Mac Nally and Fleishman 
2004). Besides its advantages, indicator species analysis also 
has several limitations. We will conclude by restating six of 
them, with the aim of preventing misuses and/or abuses of 
the method and, if possible, encourage future developments. 
(1) Although it provides a qualitative assessment of the tar-
get species niche, indicator species analysis is not the best 
method to describe species niches. Th ere exist methods based 
on quantitative environmental data that better perform this 
task (Th uiller et al. 2004). (2) Th e spatial, temporal and 
environmental context of determination of indicator spe-
cies is crucial and should always be mentioned and described 
(De Caceres et al. 2008, Willner et al. 2009). For example, 
the BCI species-habitat associations we studied here apply 
to the 50 ha BCI forest plot only. A broader topographical 
and geographical context of determination would have been 
necessary in order to state that the studied species indeed 
prefer the indicated habitats. Another example is the study of 
insect indicator species through time along a year: the results 
would be diff erent from, and uncomparable with, the results 
of a study through space. (3) Users of indicator species analy-
ses should bear in mind that they are trying to detect pat-
terns of association, without knowing whether these patterns 
arise from the process attributed to them. For example, if 
the BCI species-habitat associations correspond to true niche 
preferences, one can expect that U. pitteri should grow and 
perform poorly outside the slope areas, and the four other 
species cited should be able to support relatively high growth 
and performance in a wider range of habitats. (4) More indi-
cator species will be found than expected by chance when 
the classifi cation of sites has been obtained from the species 
composition itself (De Cáceres and Legendre 2009). In this 
case, p-values must be taken with caution: they do not result 
from a genuine test of signifi cance since the classifi cation of 
sites is not independent from the species data used in the 
indicator species analysis. (5) IndVal’s quantity B expresses 
how easily the target species is found at sites belonging to 
the site-group combination under consideration. Th e cur-
rent calculation as a simple frequency does not allow distin-
guishing between the ability to detect the species in space 
and time (De Cáceres and Legendre 2009). (6) In the nor-
mal application of indicator species analysis, the presence of 
a species (or a group of species) is taken as an indication of 
the state of the ecosystem. IndVal’s quantity A informs of the 
probability of the site-group combination given the fact that 
the species has been found. Th e accuracy of bioindication 
would be higher after performing probabilistic calculations 
from the detected presence of multiple species. 
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