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Flow cytometry has recently been in- 
troduced in aquatic ecology. Its unique 
feature is to measure several optical 
characteristics simultaneously on a large 
number of cells. Until now, these data 
have generally been analyzed in simple 
ways, e.g., frequency histograms and bi- 
variate scatter diagrams, so that the mul- 
tivariate potential of the data has not 
been fully exploited. This paper presents 
a way of answering ecologically mean- 
ingful questions, using the multivariate 
characteristics of the data. In order to do 

so, the multivariate data are reduced to a 
small number of classes by clustering, 
which reduces the data to a categorical 
variable. Multivariate pairwise compari- 
sons can then be performed among sam- 
ples using these new data vectors. The 
test case presented in the paper forms a 
time series of observations from which 
the new method enables us to study on 
the temporal evolution of cell types. 

Key terms: Multivariate analysis, clus- 
tering, flow cytometry, aquatic sciences 

The advent of flow cytometry in aquatic sciences is a 
development of great significance for the ecological and 
physiological study of natural populations of microbial 
plankton (11,16). Flow cytometry is a powerful tool for 
acquiring data on the optical and fluorescence charac- 
teristics of particles in the aquatic environment. The 
flow cytometer was initially developed for biomedical 
purposes; it was introduced in aquatic sciences at the 
beginning of the 1980s (16). In contrast to the medical 
field, where the particles to be analyzed are relatively 
homogeneous, natural samples of aquatic particles are 
generally very heterogeneous, i.e., they most often 
comprise a mixture of different cell populations (e.g., 
species or other categories). Such cell populations may 
react differently to environmental variations. In addi- 
tion, flow-cytometric measurements may be contami- 
nated by inorganic particles and artifacts, which in- 
crease the difficulty of interpreting the data. This 
results in data that are multimodal (multiple peaks 
corresponding to different populations) and heterosce- 
dastic (heterogeneous variance-covariance structure). 
In most instances, however, researchers are interested 
in measuring several variables on the same cell. The 
important problem is that  usually the variables that 
we measure are not independent of one another and, 
therefore, we cannot examine results from each vari- 

able individually and draw conclusions from them. As 
a n  example, imagine a doughnut in two dimensions 
projected onto the X and Y axes. The shadow of the 
doughnut on each axis would simply indicate an  inter- 
val, and we would have no idea that the actual shape 
was a doughnut. The “hole” in the middle is only real- 
ized through coordinated combinations of the X and Y 
variables. If the number of variables is less then 3, 
simple plots will help visualize the data and give the 
investigator some insight into the nature of the data. 
With higher dimensions, many standard techniques 
exist for scaling the data in a small number of dimen- 
sions while capturing the essence of the variation in 
the data [e.g., principal component analysis (PCA), fac- 
tor analysis, metric or nonmetric multidimensional 
scaling, etc.1. Most of these procedures involve rotating 
and scaling the data such that the variables become 
less correlated and more amenable to independent 
analysis. 

The multimodality of the data often reflects the pres- 
ence of different populations, each clustered around 
their own centroids (of course, it is also possible for the 
population to be fundamentally multimodal). In such 
cases, it is often desirable to separate the populations 
such that the analysis can be done on each population 
individually. Standard techniques include cluster anal- 
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FIG. 1. Schematic diagram of PCA transformation of data showing 
clusters. The ellipses indicate the variation within each cluster. The 
large ellipse in dotted line indicates the variability of the total pop- 
ulation, i.e., the two clusters together. Minor axes labeled 1 and 2 
indicate the PCA axes for the total population. The thick lines indi- 
cate the clusters when the populations are projected onto a single axis. 

ysis and discriminant analysis. Discriminant analysis 
tries to separate out populations in such a way that the 
between-group sums of squares are maximized; cluster 
analysis, on the other hand, bases its criterion on some 
distance measure defined on the data space. The reason 
for the separation of populations is, of course, that in 
many cases the investigator is interested in variable 
values associated with single populations; the popula- 
tions must first be identified before statistical analysis 
can be performed. 

Heteroscedastic data present more complicated prob- 
lems for standard analyses. A heterogeneous variance- 
covariance structure usually results from the biological 
characteristics of the populations. For example, the op- 
tical characteristics of the cells may show a racge of 
intraspecific variability that is due to variations in 
physiological or nutritional states, with the resulting 
variance differing depending of the species (15). Figure 
1 illustrates the types of problems that may be pre- 
sented by such data. Figure l a  shows two populations 
(solid line ellipses) where the two variables measured 
are correlated with one another but the correlation is 
homogeneous among the two populations. Unless one 
can identify the two population variance-covariance 
structures a priori, all the analyses with which we 
work will use the variance-covariance structure of the 
total observations, in this case that of the two popula- 
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a) Two population with honiogeneous variance-covariance structure 
(as indicated by thin dotted lines within each ellipse); b) hypothetical 
PCA transformation of (a); c) two populations with heterogeneous 
variance-covariance structure and (d) PCA transformation of (c) and 
the projection of the populations onto the first PCA axis. 

tions combined. The total variance-covariance struc- 
ture of the data is depicted as a dotted line ellipse in the 
figure. A principal component analysis applied to such 
data would then orient the major variation axis as  the 
two axes labeled 1 and 2 in the figure. Rotation and 
standardization along the two PCA axes would result 
in Fig. lb .  Under normal conditions, we would be ex- 
amining higher dimensional data, which we would 
project onto PCA axes in order to obtain insight into 
the original multidimensional structure. This is shown 
as the thick solid lines in the 4 figures composing Fig. 
1. As can be seen with Figs. l a  and lb ,  although we 
could not tell the 2 populations apart by examining 
either the X-axis or Y-axis projection alone in Fig. l a ,  
the PCA axis 1 projection in Fig. l b  allows us to easily 
separate the two populations. Consider now Fig. l c ,  
where the variance-covariance structures of the 2 pop- 
ulations differ from each other (the small axes within 
the ellipses have different angles). As can be seen in 
Fig. Id, a projection onto the first PCA axis does not 
easily differentiate the 2 populations. Although the 
structure of the 2 populations was intuitively obvious 
in this case, since the example was in 2 dimensions 
only, this would not be the case when the data are in 
high dimensions and can only be visualized by using 
some ordination to lower dimensionality. Flow cytom- 
etry also generates large data sets, which considerably 
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limits the applicability of the technique for routine 
studies. Up to now, flow-cytometric data have gener- 
ally been analyzed by simple methods only, such as 
frequency histograms, bivariate scatter diagrams, etc.; 
the multivariate potential of the data generally re- 
mains unexploited. A major development for aquatic 
studies would be to  improve the numerical procedures 
for analyzing multivariate flow cytometric data. The 
present paper describes an approach that fully takes 
into account the multivariate nature of flow-cyto- 
metric data and presents an example of results ob- 
tained using this approach. 

MATERIALS AND METHODS 
Numerical Analysis 

The numerical procedure described here is based on 
cluster analysis. The purpose of cluster analysis is to 
allocate objects to groups or clusters, which are not 
defined a priori but emerge from the data such that 
objects in a given cluster tend to be similar to one an- 
other and objects in different clusters tend to be dis- 
similar. This allocation can be based on a single vari- 
able measured on the objects, but it is more often based 
on multivariate data. Because of the characteristics 
mentioned above in the Introduction, clustering of flow 
cytometric data presents unusual problems. First, 
since the number of cells analyzed by flow cytometry 
may easily exceed lo4, it is not practical to consider 
clustering algorithms that require the computation of 
pairwise distance matrices, e.g., UPGMA clustering 
(5). Second, multivariate flow cytometry data of mul- 
tiple populations often show variance-covariance struc- 
tures (matrices) that present difficulties with some of 
the commonly used clustering algorithms; i.e., the 
within population variance-covariance structure may 
differ widely from one population to another. This is 
quite natural, since the biological response of different 
populations to  the measured variables may not be the 
same. Most clustering algorithms assume that the 
variance-covariance matrices of the different popula- 
tions are equal or similar. Therefore, application of al- 
gorithms that do not account for different variance- 
covariance structures, e.g., k-means algorithm (1, B ) ,  
may result in partitions that seem unnatural and are 
unable to identify accurately different populations in 
the data. 

In the algorithm described below, a variation of the 
normal mixture algorithm is used (4). The normal mix- 
ture model assumes that the observations come from k 
populations, each with an arbitrary variance-covari- 
ance matrix. Using an iterative process, the algorithm 
assigns probabilities P(j) (j = 1,k) to each observation, 
where PQ) denotes the probability that the observation 
belongs to cluster j. As in the k-means algorithms (1, 
81, the number of clusters (k) is fixed a priori by the 
investigator. The iterations of the normal mixture al- 
gorithm try to maximize a function that describes the 
log likelihood of the observed data, given the k differ- 
ent allocations of each particle to the clusters. The al- 

gorithm is modified here by positively allocating each 
observation to one of the k possible clusters in an iter- 
ative manner. 

In a first step, our algorithm tries to estimate the 
mean of each of the k clusters. This is achieved in the 
same way as in Hartigan’s leader-algorithm (4). First, 
k initial seeds are selected as starting points for the k 
centroids. The initial seeds may be picked randomly 
from the data set or selected by the investigator. These 
initial seeds are also the initial centroids for each clus- 
ter. Second, Mahalanobis generalized distances (9) are 
calculated between each observation and each of the k 
initial centroids: 

D2,, = X’,, S-’, X,,. (1) 

DZij is the squared distance between observation i and 
centroid j,  X, denotes the vector of the multivariate 
differences between observation i and centroid j, and 
S-’, is the inverse of the variance-covariance matrix 
for cluster j. In the initial step, all Sj’s are set as the 
identity matrix. Observations are assigned to clusters 
with the smallest D, value. The values of the k cen- 
troids are updated at  each step to include the newly 
assigned observations. 

The second step assumes that only the observations 
that are close to the centroids (within distance cj) are 
correctly allocated, and therefore are appropriate to be 
included in the estimation of the variance-covariance 
matrices. If such a restriction is not set, each iteration 
will allocate more and more observations to the cluster 
possessing the largest number of observations. In this 
step, a matrix Sj is computed for each of the k clusters. 
First, for each centroid, Euclidean distances are calcu- 
lated to each of the other k-1 centroids and the smallest 
distance is determined. This distance is then multi- 
plied by a constant z, which results in a unique value cJ 
for that centroid. Initially, constant z is set to 0.25, 
resulting in cj’s that are 114 of the distance to the near- 
est centroid. The variance-covariance matrix Sj for 
each cluster j is calculated by computing the variances 
and covariances of all observations that have been al- 
located to cluster j (during the previous step) and that 
are within distance cJ. In subsequent iterations, this 
value is increased under the assumption that the allo- 
cation of observations becomes more reliable for calcu- 
lating the variance-covariance matrices. 

In the third step, distances D, are computed using 
the new Sj matrices, and observations are reassigned to 
the nearest cluster based on these new distances. The 
first step is repeated, but now using the newly calcu- 
lated Sj’s instead of the old ones. A cost function is then 
computed as 

n 

1 = 1  

Cost = d2,. 

Here d2i is the Mahalonobis distance (9) between ob- 
servation i and the centroid of the cluster to which it 
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has been assigned. This function is analogous to the log 
likelihood used in the usual mixture algorithm. Addi- 
tional iterations of steps 1-3 are performed to improve 
the clustering results, using minimization of the cost 
function as the criterion for goodness of fit. 

In the example discussed below, the data are a series 
of measurements taken at regular time intervals. If 
there are reasons to believe that the parameters of the 
subpopulations (in terms of the variables measured by 
the flow cytometer) do not change among samples, but 
that only the number of cells in each sample varies with 
time, we are justified to analyze all the samples simul- 
taneously. Observations can be assigned to  the k clus- 
ters based on the whole of the t samples, after which the 
observations in each cluster can be reassigned to the 
original t times. As seen below, such an analysis allows 
the study of individual population dynamics for mixed 
community samples. The algorithm presented above 
and the assignment procedure have been implemented 
in a user-friendly program written in PASCAL. 

Biological Sampling 
It is important to note that the flow-cytometric data 

concerning phytoplankton populations are used here 
only to illustrate the numerical procedure described 
above. These data come from an experiment on the 
feeding behavior of mussels (Mytilus edulis) in the 
presence of the toxic microalga AZexandrium excava- 
tum. However, it is not in our intention to interpret the 
ecological aspects of the results in this paper; the eco- 
logical implications of these results will be presented in 
detail elsewhere. 

The experimental protocol was as follows: A natural 
population of marine phytoplankton was incubated for 
3 d in a controlled-temperature room (15°C) under con- 
tinuous light (Optimarc-400; irradiance of 150 pmol of 
photons mp2 s-'). Water was enriched with Fi20 me- 
dium (3). After this initial incubation, cultured Alex- 
andrium excavatum were added to  the natural phyto- 
plankton population to  obtain a final concentration of 
about 200 cellsiml. Four liters of this mixture were then 
fed to  8 mussels (3.0-3.5 cm), for a period of 7 h. A 
magnetic stirring bar maintained gentle mixing in or- 
der to prevent sedimentation of particles. Ten samples 
were taken during the 7-hperiod (at 1,12,26,47,68,94, 
124, 221, 316, and 448 min) to monitor the feeding 
behavior of the mussels. Sample 0 was taken just before 
adding the toxic algae. Water samples were analyzed 
using a Becton-Dickinson FACS Analyzer flow cytom- 
eter, equipped with a Coulter-type volume analyzer and 
a 75-pm square orifice. Measurements on each particle 
included cell volume, phycoerythrin (FLl), and in vivo 
fluorescence of chlorophyll a (FL2) and 90" light scatter. 
Cells were excited by a mercuryicadmium arc lamp at 
a wavelength of 488 nm, and autofluorescence of both 
chlorophyll a emission greater than 665 nm as well as 
phycoerythrin at 575 nm were detected by photomulti- 
plier tubes. Fluorescence units were normalized rela- 
tive to 10-pm standard fluorescent beads (Coulter 

EPICS Division, Hialeah, FL) added to each sample at 
the beginning of the counts (final concentration of 1000 
beadsiml). The samples were analyzed in volumes of 0.5 
ml each time. The operating current was set at 0.5 MA, 
and the gain was on a logarithmic scale. Cell size mea- 
surements were calibrated in terms of equivalent spher- 
ical diameter, based on standard volume polystyrene 
beads, and the signal threshold was set on Coulter vol- 
ume. All data were collected in list mode to allow fur- 
ther analysis. In the present paper, we analyzed only 
the fluorescent particles. 

RESULTS 
Figure 2a shows typical results from a Becton Dick- 

inson FACS Analyzer flow cytometer. With the FACS 
Analyzer, 4 variables can be measured on each parti- 
cle: Coulter volume, FL1, FL2, and 90" light scatter. 
Data are normally represented in contour or scatter 
diagrams (Fig. 2b). Although flow-cytometric measure- 
ments are typically multidimensional, it is almost im- 
possible to follow the spatio-temporal changes of each 
group with such representations. This is because one 
has to use gating to isolate a given group, chosen on 
arbitrary criteria based on two variables only (Fig. 2c). 
Simple statistics are provided for each gate (Table 1). 
Moreover, each sample must be analyzed separately, 
which is time consuming. The procedure described in 
this paper allows the separation of the data in such a 
way that a multidimensional peak corresponds to a sin- 
gle population, while troughs correspond to boundaries 
between populations. 

Table 2 shows the characteristics of the 5 clusters 
generated by the above procedure, using the entire 
time series of 10 samples. The number of cluster has 
been chosen from the contour graph resulting from the 
principal component analysis. Each cluster contains 
cells with similar characteristics, on the basis of the 4 
measured variables. Groups 4 and 5 correspond to the 
toxic algae and fluorescent beads, respectively. In the 
data set chosen, these additions are independent of the 
natural population, and so could be used as controls. 
Microscopic identification showed that group 1 corre- 
sponds to Chaetoceros debilis (size range 11-13 pm); 
group 2 corresponds to small cells, such as Chaetoceros 
sp. (5.6-6.4 pm), Skeletonema costatum (3.6 pm), and 
small flagellates (4.8 pm), whereas group 3 corre- 
sponds to ThaZassiosirapacifKa (17-20 pm) and T .  con- 
ferta (12.6-13.8 pm). 

Table 3 shows changes in the 5 clusters during the 
course of the experiment. Time 0, which corresponds to 
the sample before the toxic algae were added, indicates 
that there were some toxic cells in the natural popula- 
tion; toxic algae are normally present in natural wa- 
ters at the time of the year the natural sample was 
collected (August). Decreasing numbers of particles in 
groups 1-4 (last column) is the result of grazing by 
blue mussels. Group 5 stays constant during the whole 
experiment, since the beads were added as controls just 
before counting the samples on the flow cytometer. Us- 
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FIG. 2. a) Typical results from a Becton Dickinson FACS Analyzer 
flow cytometer. With the FACS Analyzer, 4 variables can be mea- 
sured on each particle: Coulter volume (VOL), FL1, FL2, and 90" light 
scatter (SSC). Flow-cytometric data are normally represented using 

b) a scatter diagram (in this case the x-axis is the volume and the 
y-axis is the red fluorescence emitted by chlorophyll a) or cj contour 
diagrams on which the user can gate the different populations arbi- 
trarily (the same axes as in b). 

ing these results, it is possible to estimate the grazing 
rate by blue mussels for each cluster, and thus to assess 
whether or not the mussels select their food. Figure 3 
shows the temporal evolution of each cluster on the 

basis of two variables, i.e., size and chlorophyll a fluo- 
rescence; alternatively, all the variables can be used 
together to produce a 2-dimensional principal compo- 
nents plot on which the clusters can be shown. Plots of 
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Table 1 
Simple Statistics Given by the Standard Software of the Becton Dickinson FACS Analyzer 

Date : 812190 Sample ID : TO-T-C 
Cytometer : FACS Analyzer I Sample tag : 005 File : TOTCOO5 

Parameters : VOL FL2 
Contour statistics 

Gated events : 4240 Tntal avant- . A 3 A n  

X & Y  X & Y  % % X & Y  X & Y  
# Lower Upper Events Gated Tot Mean Mode Peak 
1 1.00 13.89 1714 40.42 40.42 3.79 1.93 16 

1.00 15.51 4.05 3.73 
2 17.30 33.40 559 13.18 13.18 21.84 21.54 

3.34 8.03 5.11 5.18 
254 

3 17.30 173.02 1392 32.83 32.83 74.91 46.42 18 
17.30 268.27 102.41 80.31 

4 193.07 299.36 190 4.48 4.48 231.99 193.07 13 
124.52 517.95 321.34 299.36 

5 299.36 719.69 129 3.04 3.04 424.49 299.36 7 
372.76 1000.00 594.28 464.16 

6 1.00 1000.00 4240 100.00 100.00 58.23 21.54 254 
1 .oo 1000.00 71.20 5.18 

The last row 6, represents the whole population of fluorescent cells, while rows 1-5 represent the 5 gates shown in Fig. 2c. 

Table 2 
Centroids of Each Cluster in Terms of Cell Size, F L l ,  FL2, 

and Light Scatter 

Number 
of 

Cluster Size Light observa- 
N (pM) FL1 FL2 scatter tions % 
1 11.57 1.0205 143.2775 109.7040 2903 (11.9) 
2 5.46 1.0000 45.0766 35.5094 11149 (45.8) 
3 15.55 1.2332 169.7905 143.7354 2940 (12.1) 
4 22.15 2.6059 209.4775 175.3376 1695 (7.0) 
5 9.84 98.9518 59.6884 154.4194 5652 (23.2) 

Total numbers of observations in the whole series are indi- 
cated in the second to last column. 

all pairs of variables may also be produced (Fig. 4). 
These graphs allow visualization of the criteria used to 
establish each cluster. 

The organization of flow-cytometric data in a table 
such as Table 3 opens the way to more advanced sta- 
tistical analyses, such as temporal autocorrelation 
analysis, time-constrained clustering, ordination anal- 
ysis of the time series, search for discontinuities, re- 
gression analyses, and so on. Likewise, observations 
obtained in the spatial domain can be analyzed using 
multivariate spatial statistical methods (7). 

DISCUSSION 
Using flow cytometry to analyze natural populations 

of aquatic particles has already resulted in significant 
discoveries (6) ,  such as, for example, the existence of 
large populations of prochlorophytes in the oceans (2). 
However, the analysis and interpretation of flow-cyto- 
metric data are not a trivial task, and this has limited, 
so far, the usefulness of flow cytometry in studying 
oceanographic and limnological problems. This is be- 

Table 3 
Number of Observations in Each Cluster at Different Times 

Time (minji Total 
cluster 1 2 3 4 5 1-4 

0 570 2215 741 275 506 3801 
1 615 2312 666 389 545 3982 

12 575 1969 554 312 577 3410 
26 440 1682 484 308 567 2914 
47 443 1756 383 217 550 2799 
68 339 1297 298 166 531 2100 
94 255 1036 291 169 557 1751 

124 187 815 211 121 578 1334 
221 30 140 21 3 543 194 
316 13 91 22 9 607 135 
448 6 51 10 1 597 68 

Time 0 is before the toxic algae had been added. Figures are 
numbers of cells per 0.5 ml. 

cause it has generally been impossible to relate flow- 
cytometric data to other oceanographic and limnologi- 
cal variables. As a result, flow cytometry is a powerful 
tool that has been mostly limited to a descriptive role 
in oceanography and limnology. 

The clustering procedure described above is some- 
what similar to the linear adaptive clustering scheme 
of Rohlf (121, which also computes distances between 
observations based on different variance-covariance 
matrices for each cluster. The linear adaptative clus- 
tering algorithm adjusts for cluster size by multiplying 
the determinant of the variance-covariance matrix (a 
measure of the hypervolume of the cluster) with the 
distance measure, thereby preventing the allocation of 
most points to one large cluster. In our algorithm, this 
is achieved by the use of critical distances. 

It is important to note that although the cost func- 
tion defined above is used to assess the goodness-of-fit 
measure, it does not have all the desirable statistical 
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FIG. 3. Temporal evolution of each cluster on the basis of two vari- 
ables, i.e., size and chlorophyll a fluorescence. The different colors 
represent clusters (blue is cluster 1, purple is cluster 2, green is clus- 
tcr 3, red is cluster 4, and orange is cluster 5). The decrease in the 
number of objects from time 1 to time 10 is the result of feeding by the 
mussels (x-axis is the volume and y-axis is the fluorescence emitted 
by chlorophyll a). 

FIG. 4. Plots of all pairs of variables. Variable 2 is the volume; 
variable 3 is the FL1; variable 4 is the FL2 emitted by chlorophyll a; 
and variable 5 is the 90" light scatter. The colors correspond to the 
same clusters as in Fig. 3. 
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properties. First, it is not guaranteed that the algo- 
rithm will necessarily find the minimum solution. Em- 
pirically, the algorithm seems to converge within a few 
iterations (which is desirable for large data sets), but 
cluster allocations may not be optimal. One point that 
alleviates this problem is the fact that, in our program, 
the clustering results can be checked visually on the 
computer screen; a trained user may detect grossly in- 
adequate results. Second, the solution found may not 
be unique, i.e., there may exist other cluster assign- 
ments that have the same cost function value. Third, 
comparing the cost function value for k clusters with 
that for, say k+l clusters is difficult. It must be un- 
derstood that when the investigator a priori selects k as 
the number of desired clusters, a particular statistical 
model is also being selected. This is similar to choosing 
a model in regression analysis: The investigator may 
decide to fit a linear model or a quadratic function. In 
both cases, a R2 statistic is computed and the investi- 
gator must decide whether an increase (or decrease) in 
the R2 value is meaningful. At the limit, R2 can be 
increased to 1.0 (perfect fit) by allowing as many model 
parameters as there are data points. In the same way, 
one can fit clusters perfectly by allowing as many clus- 
ters as there are observations. 

For reasonably well-defined clusters, as we expect to 
find for mixed samples of very distinct populations, the 
above caveats should not be much of a problem. The 
large number of observations found in flow cytometry 
are advantageous in this case, since the large ratio of 
the number of observations to the number of model 
parameters (the k centroids, and the elements of the k 
variance-covariance matrices) results in more robust- 
ness. Another advantage of flow-cytometric data is 
that they are relatively low-dimensional (usually less 
then 10 variables). This allows a fairly accurate ordi- 
nation of the data through such methods as principal 
component analysis. The ordination can be used by the 
investigator to determine whether well-defined clus- 
ters are present and, if so, how many such clusters exist 
and approximately where their centroids lie. The pro- 
gram we have developed allows preliminary visual 
analysis of the data. If the ordinations do not reveal a 
clear structure, numerous procedures have been devel- 
oped for determining the correct number of clusters in 
a cluster analysis. Milligan and Cooper (10) have stud- 
ied 30 such indices through a simulation study. They 
found that the most desirable index for their simulated 
data was the cubic clustering criterion, which is com- 
puted by the SAS package (13, 14). This index is the 
product of 2 components; the exact formula is given by 

Milligan and Cooper (10). The results must be taken 
with some caution, since again they may be data-de- 
pendent. As in all multivariate studies, the investiga- 
tor should first look at  the general structure of the data 
before proceeding with further analyses. 
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