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a b s t r a c t

Spatial structures of ecological communities may originate either from the dependence

of community structure on environmental variables or/and from community-based pro-

cesses. In order to assess the importance of these two sources, spatial relationships must

be explicitly introduced into statistical models. Recently, a new approach called principal

coordinates of neighbour matrices (PCNM) has been proposed to create spatial predictors

that can be easily incorporated into regression or canonical analysis models, providing a

flexible tool especially when contrasted to the family of autoregressive models and trend

surface analysis, which are of common use in ecological and geographical analysis. In this

paper, we explore the theory of the PCNM approach and demonstrate how it is linked to

spatial autocorrelation structure functions. The method basically consists of diagonaliz-

ing a spatial weighting matrix, then extracting the eigenvectors that maximize the Moran’s

index of autocorrelation. These eigenvectors can then be used directly as explanatory vari-

ables in regression or canonical models. We propose improvements and extensions of the

original method, and illustrate them with examples that will help ecologists choose the

variant that will better suit their needs.
Spatial autocorrelation © 2006 Elsevier B.V. All rights reserved.

1999), metacommunity analysis (Olden et al., 2001), popula-
Spatial model

Spatial structure

1. Introduction

One of the major current questions in ecology concerns the
identification and explanation of the spatial variability of eco-
logical structures (Cormack and Ord, 1979, Smith, 2002). Space
can be considered either as a factor responsible for ecolog-

ical structures, or as a confounding variable leading to bias
when analyzing a process of particular interest. This realiza-
tion leads ecologists to introduce space as either a predictor
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or a covariable in statistical models. These two approaches
have been used in various contexts such as the analysis of
patterns of species richness (Blackburn and Gaston, 1996b,
Selmi and Boulinier, 2001), species range sizes (Blackburn and
Gaston, 1996a), species associations (Roxburgh and Matsuki,
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tion (Pettorelli et al., 2003) and community ecology (Borcard et
al., 1992, Wagner, 2003, Borcard et al., 2004, Peres-Neto, 2004,
Wagner, 2004).
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Spatial structures observed in ecological communities
can arise from two independent processes (Legendre, 1993,
Legendre and Legendre, 1998, Section 1.1, Fortin and Dale,
2005, Chapters 1 and 5). Environmental factors that influ-
ence species distributions are usually spatially structured and
then, through an indirect process, communities of species are
also spatially structured; this process is called induced spa-
tial dependence. Spatial autocorrelation can also be created
directly at the community level as a result of contagious biotic
processes such as growth, differential mortality, seed disper-
sal, or competition dynamics. In most situations, the spa-
tial heterogeneity of communities is due to the simultaneous
action of these two processes. Variation partitioning (Borcard
et al., 1992, Borcard and Legendre, 1994, Méot et al., 1998) can
be used to assess the importance of these two sources of spa-
tial structure.

Incorporating spatial variation in ecological models
requires tools to explicitly describe spatial relationships as
predictors or covariables. Sokal (1979) used various functions
of geographic distances among sites in Mantel tests to account
for autocorrelation due to isolation by distance in population
genetics models. Polynomial functions of the geographic coor-
dinates can also be used as regressors to generate trend sur-
faces (Student [Gosset] 1914, Gittins, 1968). These spatial base
functions have been used to model spatial relationships (often
called “space” for short in scientific papers) in multivariate
analyses such as canonical correlation analysis (Gittins, 1985,
Pélissier et al., 2002, Gimaret-Carpentier et al., 2003), canoni-
cal correspondence analysis (CCA, Borcard et al., 1992, Borcard
and Legendre, 1994, Méot et al., 1998) or redundancy analysis
(RDA, Legendre, 1993). However, the use of trend surfaces is
only satisfactory when the sampling area is roughly homo-
geneous, the sampling design is nearly regular, the number
of spatial locations is “reasonable” (Norcliffe, 1969, Scarlett,
1972), and the spatial structure to be modelled is rather sim-
ple, such as a gradient, a single wave, or a saddle (Legendre
and Legendre, 1998, Section 13.2). Moreover, the use of a trend
surfaces introduces an arbitrary choice for the degree of the
polynomial function. For instance, Wartenberg (1985a) used
a second-degree polynomial while Borcard et al. (1992) used
a polynomial of degree 3. In any case, polynomial trend sur-
faces of these degrees only allow the modelling of broad-scale
spatial structures. Another problem concerns the correlations
between these spatial predictors, which can be addressed
by using an orthogonalization procedure in order to obtain
orthogonal polynomials, but the higher-degree terms may be
difficult to interpret in the case of surfaces.

Recently, a new approach called principal coordinates of
neighbour matrices (PCNM) has been proposed as an alterna-
tive to trend surface analysis (Borcard and Legendre, 2002).
This method has already been used with success in several
ecological applications (Borcard et al., 2004, Brind’Amour et al.,
2005, Legendre et al., 2005). PCNM base functions are obtained
by a principal coordinate analysis (PCoA, Gower, 1966) of a
truncated pairwise geographic distance matrix between sam-
pling sites. Eigenvectors associated with the positive eigen-

values and corresponding to the Euclidean representation of
the truncated distance matrix are used as spatial predictors in
multivariate regression or canonical analysis (e.g., RDA, CCA).
Even though this approach produces interesting and ecologi-
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cally interpretable results (e.g., Borcard et al., 2004), it suffers
from a lack of mathematical formalism. Indeed, these authors
stated in the original description of the methods that: “This
paper raises a number of mathematical questions [. . .] We hope that
the paper will attract the interest of mathematicians who can help
us understand these properties and develop methods of spatial mod-
eling further” (Borcard and Legendre, 2002, p. 67).

In the present paper, we investigate the mathematical
foundations of PCNM analysis and show that this approach is
closely related to spatial autocorrelation structure functions.
Using these theoretical properties, we develop improvements
and extensions of the original approach. We hope this paper
will help ecologists use the full potential of PCNM analysis
for ecological applications and perceive the method as an
extremely flexible and robust technique for the analysis of
spatial problems.

2. The original PCNM approach

Generation of PCNM base functions is quite straightfor-
ward, requiring the following three main steps (Borcard and
Legendre, 2002):

(1) Compute a pairwise Euclidean (geographic) distance
matrix between the n sampling locations (D = [dij]).

(2) Choose a threshold value t and construct a truncated dis-
tance matrix using the following rule:

D∗ =
{

dij if dij ≤ t

4t if dij > t

(3) Perform principal coordinate analysis (PCoA) of the trun-
cated distance matrix D*. This analysis consists in the
diagonalization of � where:

� =
[
−1

2
(d∗2

ij − d∗2
i· − d∗2

·j + d∗2
·· )

]

= −1
2

(
I − 11t

n

)
D∗

2

(
I − 11t

n

)

where

d∗2
i = 1

n

n∑
j=1

d∗2
ij , d∗2

·j = 1
n

n∑
i=1

d∗2
ij , d∗2

·· = 1
n

n∑
i=1

d∗2
i·

and D∗
2 = [(d∗

ij )
2] (1)

I is the identity matrix and 1 is a vector containing all 1s.

After diagonalization, principal coordinates are obtained
by scaling each eigenvector uk of � to the length

√
�k where

�k is the eigenvalue associated with eigenvector uk. Since the
original Euclidean distance matrix has been truncated, there
are negative eigenvalues, so that it is impossible to represent
D* entirely in a Euclidean space. Hence, in the original PCNM
method, only the principal coordinates associated with posi-

tive eigenvalues (corresponding to the Euclidean representa-
tion of D*) are kept and used as spatial descriptors; see the
discussion in Section 4 on the usefulness of negative eigen-
values.
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. Distances, similarities, and spatial
eighting matrices

CoA is usually computed on a distance matrix but Gower
1966) showed that this analysis can also be computed from a
imilarity matrix (also shown in Legendre and Legendre, 1998,
. 431). For instance, consider the similarity matrix S derived
rom a distance matrix D:

= [sij] =
[

1 −
(

dij

max(dij)

)2
]

= 11t − D2

max (dij)
2

with D2 = [d2
ij ]

(2)

These similarities vary between 0 (for dij = max(dij)) and
(for dij = 0). It is easy to show that a PCoA performed on

he distance matrix D is equivalent to the diagonalization
f � = (max(dij)2/2)(I − (11t/n))S(I − 11t/n) which provides the
ame eigenvectors as those obtained by diagonalization of
I − 11t/n)S(I − 11t/n).

It is possible to interpret this similarity matrix S as a
eighted graph (Chung, 1997, see Fig. 1). Each non-null value

ij indicates a connection between sites i and j; the intensity
f the connection is expressed by the value sij. A more inter-
sting interpretation is to consider S to be a spatial weighting
atrix (Bavaud, 1998, Tiefelsdorf et al., 1999), which indicates

he strength of the potential interaction among the spatial
nits. In the PCoA of D (Fig. 1a), all sites are considered to
e neighbours except those corresponding to the largest dis-
ance, for which the similarity is null. The intensity of the
ink is expressed by sij = 1 − (dij/max(dij))2. In the original PCNM

pproach, the spatial weighting matrix is:

∗ = 11t − D∗
2

(4t)2
with D∗

2 = [d∗2
ij ] (3)

ig. 1 – A small example to illustrate the equivalence between di
numbers in boxes) are positioned according to their geographic
omputed and similarities are calculated from them. The largest
onnectivity, a graph is drawn where each connection has length
ollowed by distances in parentheses. In the case of a complete d
he value of the similarity (sij = 1 − (dij/max(dij))2). No connection i
ull (s13 = s31 = 0). Loops represent the influence of points on them
arenthesis) values. In the original PCNM approach (b), the matr
he smallest distance that keeps all sites connected. The similar
engths (distances) greater than the threshold are removed.
6 ( 2 0 0 6 ) 483–493 485

If the distance dij is greater than the threshold value, d∗
ij

= 4t

and s∗
ij

= 0, sites i and j are not considered neighbours, whereas
if dij is less than or equal to the threshold, the two sites are

considered neighbours and the spatial link is s∗
ij

= 1 − (dij/4t)2.
The weight associated with the link of a site with itself is s∗

ii
=

1.

4. Moran’s eigenvector maps (MEM)

In this section, we consider the n-by-1 vector x = [x1 . . . xn]t con-
taining measurements of a quantitative variable of interest at
n sites and a n-by-n symmetric spatial weighting matrix W.
The usual formulation for Moran’s index of spatial autocorre-
lation (Moran, 1948, Cliff and Ord, 1973) is:

I(x)
n
∑

(2)wij(xi − x̄)(xj − x̄)∑
(2)wij

∑n

i=1(xi − x̄)2
where

∑
(2)

=
n∑

i=1

n∑
j=1

with i �= j (4)

The values wij are weights from matrix W. In Moran’s I
autocorrelation analysis, we usually make wij = 1 for sites i
and j that are within the distance class under consideration
and wij = 0 for the sites that are outside that distance class.
Note, however, that matrix W can be any non-negative spatial
weighting matrix. Moran’s I can be positive or negative. It can
be rewritten as follows using matrix notation:

I(x) = n

1tW1

xt(I − 11t/n)W(I − 11t/n)x

xt(I − 11t/n)x
(5)

For a spatial matrix W, de Jong et al. (1984) have shown
that the upper and lower values of Moran’s I are given by

(n/1t W1)�max and (n/1t W1)�min where �max and �min are the
extreme eigenvalues of � = (I − 11t/n)W(I − 11t/n); this equa-
tion has the same form as Eq. (1). Hence, the eigenvectors
of � are vectors with unit norm maximizing Moran’s I under

stances, similarities, and spatial weights. Five sites
coordinates. Euclidean distances (dij) among sites are
distance is d13 = 5. To illustrate the property of spatial
dij. The values on the graph connections are similarities,

istance matrix (a), the weight given to each connection has
s represented between sites 1 and 3 because the weight is
selves; they are labelled by similarity (distance in

ix is truncated using t = 2.23; the threshold is chosen to be
ities are computed by 1 − (dij/4t)2 and all connections with
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the constraint of orthogonality. The eigenvalues of this matrix
are equal to Moran’s I coefficients of spatial autocorrelation
(post-multiplied by a constant), and similarly they can be
either positive or negative. Eigenvectors associated with high
positive (or negative) eigenvalues have high positive (or nega-
tive) autocorrelation and describe global (or local) structures;
(this point of view of local and global structures was devel-
oped in Thioulouse et al., 1995). The eigenvectors associated
with eigenvalues with extremely small absolute values cor-
respond to spatial autocorrelation with low intensity and are
not suitable for defining spatial structures. In this context, the
PCNM base functions are particular cases of Moran’s eigen-
vector maps (hereafter referred to as MEM), thus maximizing
spatial autocorrelation with respect to the spatial weighting
matrix defined by S*. As the construction of the matrix S* is
deduced from the computation of the matrix of geographical
distances, PCNM can be seen as distance-based eigenvectors
maps (DBEM). MEM is a general framework which consists in
the diagonalization of a spatial weighting matrix, DBEM is a
particular case of this framework where the spatial weight-
ing matrix is defined with distances and PCNM method is a
particular case of DBEM (PCNM ⊂ DBEM ⊂ MEM).

5. Notes on the original PCNM approach

We have shown that the PCNM approach is closely related to
Moran’s index of spatial autocorrelation. This observation pro-
vides elements that will help improve the original method
proposed by Borcard and Legendre (2002). As shown in the
previous section, negative eigenvalues correspond to nega-
tive autocorrelation and their associated eigenvectors can be
used to describe local structures. These structures can be pro-
duced by biotic processes such as species territoriality and
competition. Hypotheses involving these types of ecological
processes have rarely been tested, however. Scaling the eigen-
vectors to lengths

√
�k, as done in PCoA, must be avoided

in order to retain these “negative” eigenvectors which, oth-
erwise, would become imaginary. In any case, there is no
need for such scaling of the PCNM base functions because
predictors can be standardized or rescaled to unity before
regression or multivariate analysis without any effect on the
explanatory power (measured by R2 or AIC) or the fitted val-
ues. Eigenvectors associated with eigenvalues having small
absolute values are lightly spatially structured. Their role
as spatial predictors is dubious and it could be useful to
remove them before subsequent analyses. Since the eigenval-
ues are linearly related to Moran’s I, one might consider testing
this index (by permutation procedures) for each eigenvec-
tor and keeping only those that represent significant spatial
autocorrelation.

A second aspect concerns the diagonal terms of the spatial
weighting matrix in PCNM analysis. In the classical formu-
lation of Moran’s I, the summation of quantities is limited to
i �= j. This means that only spatial weighting matrices that have
zeros on the diagonal are considered. Bavaud (1998) related

spatial weighting matrices to Markov chains and considered
the possibility of having non-zero values on the diagonal. Note,
however, that this option introduces the influence of a point
on itself when computing autocorrelation. Although, from a
1 9 6 ( 2 0 0 6 ) 483–493

theoretical point of view, this statement may seem difficult to
justify in most cases, in practice, the influence of a non-zero
diagonal can easily be assessed and discounted. Consider a
symmetric matrix W with zero diagonal: the diagonalization
of � = (I − 11t/n)W(I − 11t/n) produces eigenvectors ui. associ-
ated with eigenvalues �i. If we consider that a point may have
influence on itself, as in the original PCNM approach (the val-
ues s∗

ii
on the loops are 1 in Fig. 1b), the matrix to consider

becomes (I − (11t/n))(W + I)(I − (11t/n)) which can be rewritten
as (I − (11t/n))W(I − (11t/n)) + (I − (11t/n)) = � + (I − (11t/n)). The
matrix � + (I − (11t/n)) is doubly centred therefore their eigen-
vectors are centred. It can easily be shown that the eigenvec-
tors of � + (I − (11t/n)) are ui associated with eigenvalues that
are �i + 1. Hence, eigenvectors with moderate negative auto-
correlation (�i < −1) computed from W correspond to positive
autocorrelation when the spatial weighting matrix is defined
as W + I. This explains why the original PCNM approach pro-
duces a maximum of 2n/3 positive eigenvalues in the case of n
equidistant sites along a straight line, while one would expect
to obtain an equal number of positive and negative eigenval-
ues.

Lastly, our interpretation of the PCNM approach facilitates
the understanding of the proposition to multiply the threshold
value t by a factor of 4. Borcard and Legendre (2002) justify this
choice by the fact that they “observed that beyond a factor of four
times the threshold for the ‘large’ distances, the principal coordinates
remain the same to within a multiplicative constant’. In the PCNM
approach, the spatial link between two neighbours i and j (from
Eq. (3)) is expressed by

s∗
ij = 1 −

(
dij

4t

)2

(6)

The stability empirically observed by Borcard and Legendre
(2002) is due to the fact that when the factor is sufficiently high
(say 4), the second term of the spatial weighting function (Eq.
(6)) is very small, and the spatial link between two neighbours
tends to 1. Hence, PCNM eigenvectors are very close to MEM of
a binary weighting matrix defined using a distance criterion
(wij = 1 if dij ≤ t, and 0 otherwise).

6. Choice of a spatial weighting matrix

Our interpretation of PCNM base functions as a particular case
of MEM generalizes the original approach because “the use of a
generalised weighting matrix [. . .] allows the investigator to choose
a set of weights which he deems appropriate from prior consider-
ations. This allows great flexibility” (Cliff and Ord, 1973, p. 12).
Indeed, the spatial weighting matrix can be defined in dif-
ferent ways according to particular ecological hypotheses of
interest and their spatial interactions (Sokal, 1979). The spatial
weighting matrix W = [wij] can be seen as the Hadamard prod-
uct (element-wise product) of a connectivity matrix B = [bij] by
a weighting matrix A = [aij] (i.e., [wij] = [bijaij.]). The connectivity
matrix B is binary, where a connection value of 1 is given for

two sites that are connected (neighbours) and 0 otherwise. It
can be constructed using distance criteria (select a distance
threshold and connect all points that are within that dis-
tance of each other), or more sophisticated procedures such
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s the Delaunay triangulation, Gabriel graph, relative neigh-
ourhood graph, sphere of influence, or minimum spanning
ree (Jaromczyk and Toussaint, 1992, Legendre and Legendre,
998, p. 752). Matrix A can be used to weight the connec-
ions defined in B and make W more realistic. For instance, we
an introduce the notion of geographic similarity in A using
− (dij/max(dij)), which varies linearly with the geographic dis-

ance (Aubry, 2000). In population genetics, Sokal (1979) tried
everal non-linear transformations of the distances as weights
(dk

ij
, d−k

ij
, ln(dij)).

The choice of a spatial weighting matrix is a critical step
ecause it can greatly influence the results of spatial analy-
es (Tiefelsdorf et al., 1999). In the case of regular sampling
e.g., a regular grid), structures defined by eigenvectors are
oughly similar for different definitions of W. For irregular dis-
ributions of sites, however, the number of positive/negative
igenvalues and the spatial structures described by their asso-
iated eigenvectors are greatly influenced by the spatial rela-
ionships defined in W. For a given sampling scheme, various
ypes of connections (B) and weighting functions (A) may lead
o very different spatial structures displayed by eigenvectors.

his point is illustrated by Fig. 2, which is described in the
ext paragraph. In a study reviewing the use of different forms
f weighting matrices for spatial autoregressive modelling,
riffith (1995) and Griffith and Lagona (1998) have shown that a

ig. 2 – Comparisons of the eigenvectors obtained for two differe
ites randomly positioned along a straight line are considered (a
igenvectors obtained by the original PCNM approach are presen
MEM) are also given for a spatial weighting matrix, correspondin
onsecutive points along the transect are considered neighbours

2a,2b = 0.3, r3a,3b = 0.93, r4a,4b = 0.98. In each panel, the dotted line
ess influential in the case of MST.
6 ( 2 0 0 6 ) 483–493 487

parsimonious specification (i.e., small number of neighbours)
of the relationships among sites is to be preferred. In the orig-
inal PCNM approach, B is based on a distance criterion and A
is defined by the function 1 − (dij/4t)2.

The structure of B is very sensitive to the distribution of
sites and the shape of the PCNM base functions may, then, be
greatly influenced by the sampling design. We illustrate this
observation by considering two irregular samples of 100 sites
along a transect (Fig. 2). The PCNM base functions obtained
for these two samples display very different spatial struc-
tures and are only slightly correlated (r1a,1b = 0.28, r2a,2b = 0.30).
A parsimonious specification of B (two consecutive points on
the transect are neighbours) with A = [1 − (dij/max(dij))], as sug-
gested by Griffith and Lagona (1998), produces eigenvectors
that are more robust relative to the spatial distribution of the
sampling sites. Indeed, Pearson correlations show that a first-
neighbour connection (of the minimum spanning tree type) is
less sensitive to variations in the sampling design (r3a,3b = 0.93,
r4a,4b = 0.98).

Recommendation. The choice of the spatial weighting matrix
W is the most critical step in spatial analysis. This matrix

is a model of the spatial interactions recognized among the
sites, all other interactions being excluded. In some cases, a
theory-driven specification can be adopted, and the spatial
weighting matrix can be constructed based upon biological

nt spatial weighting matrices. Two irregular samples of 100
and b). For each sample, the first (1) and fifteenth (2)
ted. The first (3) and fifteenth (4) Moran’s eigenvectors
g to a minimum spanning tree (MST), where only

, with weights equal to 1 − (dij/max(dij)). r1a,1b = 0.28,
indicates the ordinate zero. Note how site positioning is
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considerations (propagation process, Sokal and Oden, 1978,
e.g., patch size, Hanski, 1994, dispersion capability, Knapp et
al., 2003). Olden et al. (2001), for instance, discussed a vari-
ety of isolation distances; some of them may reflect better the
challenges encountered by fish while dispersing. In most situ-
ations, however, the choice of a particular matrix may become
rather difficult and a data-driven specification could then be
applied. Under this latter approach, the objective is to select
a configuration of W that results in the optimal performance
of the spatial model (Getis and Aldstadt, 2004). In the case of
multiple linear regression of a response variable y on a set
of explanatory variables X, the efficiency of the model can
be assessed, for instance, by the Akaike information criterion
(AIC). For standard linear models, we have:

AIC = −n log
(

RSS
n

)
+ 2K (7)

where RSS is the residual sum of squares, K is the number
of parameters in the fitted model and n represents the num-
ber of sites. When the sample size n is small, a bias correc-
tion is needed (Hurvich and Tsai, 1989) and the corrected AIC
becomes:

AICc = AIC + 2K(K + 1)
(n − K − 1)

(8)

The lowest value of AICc identifies the best model. For the
case of a multivariate response Y (e.g., multiple species) as
found in canonical analysis (e.g., RDA, CCA), an AIC-like cri-
terion has recently been proposed (Godinez-Dominguez and
Freire, 2003). It requires a multivariate analogue to the uni-
variate RSS, which is computed for redundancy analysis (RDA)
by

RSS = trace(YtY) − trace(ŶtŶ) (9)

where Ŷ = X(XtX)−XtY contains the regression fitted values.
A procedure based on AICc can easily be implemented to

decide which is the best weighting matrix among a number
of suitable options. Our proposed approach consists of three
main steps:

(1) Define a set of possible spatial weighting matrices.
(2) For each candidate:

• Compute MEM and store them, by columns, in a matrix
U (n × p).

• Select the model with the lowest AICc. Note that this
task is facilitated by the orthogonality of MEM because
we can rewrite RSS = trace(YtY) −

∑p

i=1trace(Ytuiut
i
Y).

Each eigenvector ui reduces RSS by the value
trace(Ytuiut

i
Y). To obtain the best model for a given U,

we must:
Sort the eigenvectors in descending order according
to their associated values trace(Ytuiut

i
Y).

Enter the eigenvectors from the sorted list, one by one,

in the model. We obtain p models with K = 1, 2, . . ., p
variables.
Compute AICc for each model.
Select the model with the lowest AICc.
1 9 6 ( 2 0 0 6 ) 483–493

(3) Select the spatial weighting matrix corresponding to the
model with the lowest AICc.

This data-driven approach selects the best matrix W
according to AICc. A complete example of this approach is pre-
sented next.

7. Ecological illustration

Here we illustrate the use of MEM and the data-driven pro-
cess for selection of the spatial weighting matrix with a real
data set. We re-examine data concerning the distribution of
oribatid mites in the peat blanket of a bog lake. This data set
has been used to illustrate the variation partitioning method
with space modelled as a third order polynomial of geographic
coordinates (Borcard et al., 1992; Borcard and Legendre, 1994)
as well as the original PCNM approach (Borcard and Legendre,
2002; Borcard et al., 2004). The community has been described
by the abundances of 35 mite species in 70 soil cores. Prior to
the analyses reported here, the species data were Hellinger-
transformed (Legendre and Gallagher, 2001) and detrended
by multiple linear regression on geographic coordinates to
remove the effect of a linear gradient; see Borcard et al. (2004)
for details.

We tested different types of spatial weighting matrices
using the data-driven procedure presented above. Five ways of
defining neighbouring (Jaromczyk and Toussaint, 1992) rela-
tionships were used (matrix B): Delaunay triangulation (tri),
Gabriel graph (gab), relative neighbourhood graph (rel), mini-
mum spanning tree (mst) and distance criterion (dnn). For the
last approach, two sites i and j were considered as neighbours
if dij < �. In this case, ten values of the parameter � evenly dis-
tributed between 1.011 m and 4 m were considered. The lowest
value in this range (1.011 m) is the lowest value that keeps all
sites connected; it corresponds to the longest edge of the min-
imum spanning tree constructed using geographic distances.
The highest value (4 m) has been deduced from an empiri-
cal multivariate variogram (Wagner, 2003) of the transformed
species data (Fig. 3). This multivariate extension is simply the
sum of the empirical univariate variograms for all species. The
chosen value corresponds to the highest distance at which the
variogram is significant.

We assume that the ecological similarity between two
sites is higher for site pairs that are spatially closer. This
assumption must be taken into account when constructing
the spatial weighting matrix W. To achieve this goal, spa-
tial weights are defined using monotonic decreasing functions
varying with distance. Three functions have been considered
in this example: a linear (f1 = 1 − dij/max(dij)), a concave-down

(f2 = 1 − (dij/max(dij))˛), and a concave-up function (f3 = 1/dˇ
ij
).

We considered the sequence of integers between 2 and 10 for
˛, and between 1 and 10 for ˇ. The case ˛ = 1 corresponds to
the linear weighting function f1.

We computed MEM for the five types of binary connectivity
matrices (bin) and for all combinations of these connectiv-

ity matrices with the three weighting functions. We used our
data-driven specification procedure to identify the best spatial
weighting matrix according to AICc. For each combination of
a type of connectivity and a weighting option, we only report
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Fig. 3 – Empirical multivariate variogram of the oribatid
mite community data. The variogram was computed with
14 distances classes of 0.69 m in width. The dotted line
corresponds to half the maximum distance between sites,
beyond which the variogram is not interpretable. The
dashed line indicates the total inertia of the oribatid mite
community data. For the k-th distance class, the envelope
corresponds to the 0.025/14 and 1-0.025/14 quantiles
(Bonferroni correction) of the distribution of 1000
variograms obtained after permutation of the species data.
For each distance class, the numbers in bold above the
x-axis indicate the number of sites used in the computation
of the variogram; numbers in parentheses indicate the
number of unique pairs of sites that fall into each distance
c
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Fig. 4 – Proportion of the explained variation of the oribatid
community as a function of the number of orthogonal
vectors included in the model. Results are represented for a
set of random orthogonal vectors (rnd), original PCNM
(pcnm), and MEM of the best spatial weighting matrix
selected by the data-driven procedure (dnn and f2). For each
set of predictors, the best model according to AICc is
represented by a large empty symbol. Predictors are
included in the model according to their associated values
trace(Ytuiut

i
Y) ensuring that the fit obtained with k

explanatory variables is the best one for a model of that

native to multi-dimensional scaling. In the context of spa-
lass; significant values are indicated by filled symbols.

he values of ˛, ˇ and/or � producing the best model, as well as
he corresponding value of AICc. We also included in our pro-
edure the original PCNM (pcnm), a third-order polynomial of
he geographic coordinates (poly), and a set of random orthog-
nal vectors (rnd).

The results are summarized in Table 1. The best spatial
eighting matrix, corresponding to the lowest value of
ICc, was constructed with a distance criterion (dnn) using
= 2.67 m as the cut-off value and with the concave-down
eighting function f2 with ˛ = 3. Results of original PCNM
nalysis are better than those of a third-order polynomial,
ut many of the other spatial weighting matrices produced
better fit. The highest value of AICc was obtained with

rthogonal random vectors, indicating that all methods
rovide fits better than chance alone. The best model for
he dnn-bin option according to AICc was obtained with
= 2.01. This value corresponds to the last distance where
ignificant positive autocorrelation was obtained in the
ariogram (Fig. 3). This element confirms the ability of AICc

o select the “best” model. For the other weighting functions

ith dnn connectivity, no relationship can be found between

alues of � and the variogram because the computation of
his variogram is based on a binary weighting function.
rank.

The improvement due to the new approach is illustrated
in Fig. 4. The data-driven procedure selected a model that
increased the part of variation explained by space compared
to the original PCNM approach. For a model containing 7
explanatory variables (number of variables of the best model
according to AICc), space explained 31.4% of the variation of
the oribatid mite community with the original PCNM approach
and 36.2% with the dnn-f2 option. For a model with 8 vari-
ables (number of variables of the best model with PCNM as
predictors, according to AICc) these values increase to 34.2%
and 38.4% respectively.

8. Relationships with other
eigenvector-based approaches

The new interpretation of the PCNM approach provided in this
paper highlights relationships with other existing approaches.
For instance, if all sites are connected (i.e., ∀i, j [bij] = 1) and
A = [1−(dij/max(dij))], the approach is equivalent to a PCoA

based on
√

dij, proposed by Critchley (1978) as an alter-
tial analyses, Méot et al. (1993) diagonalized Dw − W where
Dw = Diag(pi) is a diagonal matrix containing the row sums of

W
(

pi =
∑n

j=1Wij =
∑n

i=1Wij

)
. This diagonalization allowed
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Table 1 – Results of the procedure for the data-driven specification of the spatial weighting matrix for the oribatid mite
data set

Connectivity Weighting Best model
function AICc Number of

variables
Values of

parameters

tri bin −95.19 5
f1 −96.71 6
f2 −96.22 6 ˛ = 10
f3 −96.83 7 ˇ = 1

gab bin −96.09 9
f1 −97.70 9
f2 −98.55 8 ˛ = 3
f3 −92.88 9 ˇ = 1

rel bin −99.22 8
f1 −97.10 9
f2 −97.01 8 ˛ = 5
f3 −94.01 9 ˇ = 1

mst bin −98.92 6
f1 −97.02 8
f2 −98.29 5 ˛ = 5
f3 −95.43 7 ˇ = 1

dnn bin −100.56 5 � = 2.01
f1 −101.99 6 � = 3.66
f2 −102.70* 7 � = 2.67; ˛ = 3
f3 −100.51 8 � = 1.01; ˇ = 1

Other approaches
pcnm −97.85 8
poly −95.78 6
rnd −89.62 3

n, we
ntifie
For each combination of a type of connectivity and a weighting optio
according to AICc See text for details. The lowest value of AICc (*) ide

them to maximize (or minimize) Geary’s index of spatial auto-
correlation (Geary, 1954). When the neighbouring weights are
uniform (∀i, pi = 1/n), their method is equivalent to minimiz-
ing (or maximizing) Moran’s I. In this approach, only binary
spatial weighting matrices are considered (i.e., ∀i, j [aij] = 1).
Another attempt due to Griffith (1996) is based on the diag-
onalization of � to obtain eigenvectors maximizing Moran’s
I. Hence, our interpretation of PCNM is strictly equivalent to
Griffith’s approach. Note, however, that his work mainly used
binary spatial weighting matrices.

9. MEM and spatial modelling

Autocorrelation is often related to a statistical problem
because it introduces biases in standard statistical inference
methods. Because the value observed at one site is influenced
by the values at neighbouring sites, these values are not inde-
pendent of one another. Since individual observations convey
information about their neighbours, the number of degrees
of freedom for a given set of observations may be reduced.
That is the reason why, in the presence of positive autocorre-
lation, statistical tests become too liberal (the null hypothesis
is rejected more often that it should). This problem has been

well studied in the context of correlation analysis (Bivand,
1980, Clifford et al., 1989, Dutilleul, 1993), linear regression
(e.g., Cliff and Ord, 1981) or analysis of variance (Legendre et
al., 1990). The problem of spatial autocorrelation can be han-
only report the values of or, ˛, ˇ and/or � producing the best model
s the best spatial weighting matrix.

dle in two ways: (i) the statistical method can be modified in
order to take autocorrelation into account or (ii) the spatial
dependency between observation can be removed; following
that, a classical statistical method is used (spatial filtering).

In the context of linear regression, various approaches
have been developed to take spatial autocorrelation into
account. The linear model can be fully described in a matrix
form: y = Xb + e with e ∼ N(0, V) and V = �2I. The ordinary least
squares (OLS) procedure allows the estimation of b by min-
imizing

∑
e2

i
. An explicit assumption of the OLS procedure

is that the variance-covariance matrix V is of the form �2I.
The generalized least squares (GLS) procedure allows users to
deal with the more general situation in which V = �2D, where
D �= I. If V is a symmetric matrix with a positive determinant,
GLS can be treated as an OLS problem y* = X*b + e using the
transformed variables y* = P−1y and X* = P−1X where D = PtP. In
the case of spatially autocorrelated errors, a GLS procedure
can be used if the autocorrelation structure is known. The
simultaneous scheme for error autocorrelation (SAR-error)
assumes that y = Xb + e where e = �We + u and u ∼ N(0, �2I). The
SAR-error model can be rewritten y = Xb + �Wy − �WXb + u and
is equivalent to the GLS problem y = Xb + e where e ∼ N(0,V)
and V = �2((I − �Wt)(I − �Wt))−1. Removing the term �WXb
from a SAR-error model results in the simpler autoregres-

sive response model (SAR-lag) y = Xb + �Wy + u where u ∼ N(0,
�2I). An alternative to SAR is the conditional scheme model
(CAR) in which V = �2(I − �Wt)−1. The reader should consult
Wall (2004) for a comprehensive description of SAR and CAR,
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ing (including the eigenvector approach) and the consistency
of their results with those obtained by a spatial autoregres-
sive model. The eigenvector approach has been introduced
in the generalized linear modelling framework using Poisson
6 ( 2 0 0 6 ) 483–493 491

(Griffith, 2002) or binomial error (Griffith, 2004). In this context,
spatial filtering is used as an alternative for auto-Poisson and
autologistic models. It allows users to deal with negative as
well as positive autocorrelation (contrary to the auto-Poisson
model) and avoids computational problems related to the esti-
mation of autoregressive models. A major drawback of the
eigenvector approach is that it requires the diagonalization of
the spatial weighting matrix, which is a computer intensive
task for large matrices. Hopefully, Griffith (2000a) provided an
analytical formulation for eigenvalues and eigenvectors (using
cosines and sines) for regular square tessellations. These ana-
lytical results are very useful in the case of raster maps (e.g.,
satellite images) where each pixel is an observation.

10. Future directions

This paper provides new insights on the original formulation
of the PCNM method, and introduces it in the framework of
Moran’s eigenvector maps. This formalism extends the origi-
nal PCNM approach by allowing various definitions of spatial
weighting matrices and other aspects related to this defini-
tion, as well as making it possible to consider negative spatial
autocorrelation. Some questions remain to be solved, how-
ever. The first one concerns the choice of the eigenvectors to
be introduced as spatial predictors in a statistical model. In
all applications of PCNM analysis, this choice is done by clas-
sical forward selection, which tends to minimize the residual
sum of squares (RSS). Forward selection is known to underes-
timate the residual variance (Freedman et al., 1992), becom-
ing too liberal when there are a large number of candidate
regressors (Westfall et al., 1998). In other words, even if the
response variable is not spatially structured, the probability
of selecting at least one MEM is greater than the chosen sig-
nificance level. To solve this problem, Copas and Long (1991)
proposed a correction of the residual degrees of freedom in
the case of orthogonal regression, whereas multiple testing
procedures are used by Westfall et al. (1998). Tiefelsdorf and
Griffith (submitted) considered the possibility of basing model
selection on the minimization of the spatial autocorrelation of
residuals instead of RSS. In their approach, the retained model
is the one that presented a Moran’s I for the residual varia-
tion below an established threshold. A problem related to this
approach is that some eigenvectors included in the model by
the Moran’s I minimization procedure can be non-significant
using the RSS criterion. A more appropriate method may be
to select the relevant spatial predictors with a criterion that
will take into account both the fit of the model (RSS) and the
spatial structure (Moran’s I). Further work is required to evalu-
ate these different procedures and to extend them to the case
of multivariate response variables as in canonical analyses,
which are routinely used in ecological research (Birks et al.,
1996).

Lastly, our approach to Moran’s eigenvectors maps is only
suitable for symmetric spatial weighting matrices; we assume
that the influence of site i on site j is equal to that of site j
e c o l o g i c a l m o d e l l i n g

and Lichstein et al. (2002) for an ecological application. Usu-
ally, the spatial weighting matrix W is row-standardized (row
totals equal to 1) so that � is restricted within the range −1
to 1. The SAR-error model could be fitted if the value of �

was known: V could be estimated easily and GLS procedure
could be used. However, in general, � is not known and must
be estimated using a maximum likelihood procedure. A way
to avoid this relatively complex numerical procedure is to
guess a value of �. For instance, one can assign the maxi-
mum possible value � = 1 and the SAR-error model can then
be rewritten as (I − W)y = (I − W)Xb + u. This approach is often
called ‘spatial differencing’ because the transformed variables
(I − W)y and (I − W)X are the differences between observed
values and weighted averages (as reflected by W) of neigh-
bouring values (e.g., Ord, 1975). If � has to be estimated, the
maximum likelihood approach must be carried out. This pro-
cedure requires to compute the Jacobian determinant of the
n-by-n matrix I − �W and is computationally intensive when
n is large. Many approaches have been proposed to speed up
this step using eigendecomposition (Ord, 1975, improved in
Smirnov and Anselin, 2001), LU or Cholesky decomposition
(Pace, 1997, Pace and Barry, 1997a, 1997b), or approximation
functions (e.g., Barry and Pace, 1999). Theoretically, autore-
gressive models can be fitted to a variety of response dis-
tributions, including binary (autologistic), and Poisson (auto-
Poisson). However, the auto-Poisson model can only have neg-
atively autocorrelated errors and is therefore of limited prac-
tical use. The autologistic model has been used in several
ecological applications (e.g., Wu and Huffer, 1997) but estima-
tion of parameters is impaired by several technical problems
(Griffith, 2004).

In the context of multivariate analysis (multivariate
response Y), spatial autocorrelation has rarely been intro-
duced explicitly in statistical models. Lebart (1969) introduced
spatial differencing in PCA, Wartenberg (1985b) proposed a
PCA that finds linear combinations of variables maximiz-
ing Moran’s index of autocorrelation, while developments of
multivariate autoregressive models are recent (e.g., Jin et al.,
2005).

Griffith (2000b, 2003) and Getis and Griffith (2002) suggested
the use of eigenvectors as spatial predictors in multiple regres-
sion as an alternative to autoregressive models; this sugges-
tion is similar to that of Borcard and Legendre (2002) to use
PCNM base functions as spatial predictors in multiple regres-
sion or canonical analysis. The spatial filtering techniques
convert variables that are spatially autocorrelated into spa-
tially independent variables in an OLS regression framework.
Advantages of this approach are linked to the use of an OLS
technique: OLS regression is simpler than GLS regression, has
a well-developed theory, and has available a battery of diag-
nostic tools that make interpretations easier. Moreover, the
eigenvector approach presents the advantage of decompos-
ing the variation into spatial and non-spatial components, and
the orthogonality of eigenvectors facilitates the analysis and
the understanding of the spatial part. Getis and Griffith (2002)
demonstrated the efficiency of two approaches of spatial filter-
on site i. It could be interesting to extend this approach to
non-symmetric spatial weighting matrices. This could be very
useful in some ecological problems. For instance, we could
take into account different upstream and downstream con-
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nectivities in river networks. There are many possible avenues
for expanding the applications of Moran’s eigenvectors anal-
ysis. This study is an initiative to clarify the mathematical
properties of PCNM analysis and show ecologists that it is a
flexible and robust analytical tool for considering ecological
data in a spatial context.

11. Supplement

An R package “spacemakeR” containing functions to perform
the analyses presented in the paper is available online. It
includes a detailed documentation indicating how to cre-
ate and manage spatial weighting matrices, compute their
Moran’s eigenvectors, and use the model selection procedure.
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Barry, R., Pace, K., 1999. Monte Carlo estimates of the log
determinant of large sparse matrices. Linear Algebra
Applications 289, 41–54.

Bavaud, F., 1998. Models for spatial weights: A systematic look.
Geogr. Anal. 30, 153–171.

Birks, H.J.B., Peglar, S.M., Austin, H.A., 1996. An annotated
bibliography of canonical correspondence analysis and
related constrained ordination methods 1986–1993. Abstr.
Bot. 20, 17–36.

Bivand, R., 1980. A Monte Carlo study of correlation coefficient
estimation with spatially autocorrelated observations.
Quaest. Geogr. 6, 5–10.

Blackburn, T.M., Gaston, K.J., 1996a. Spatial patterns in the
geographic range sizes of bird species in the New World.
Phil. Trans. Roy. Soc. Lond. Ser. B – Biol. 351, 897–912.

Blackburn, T.M., Gaston, K.J., 1996b. Spatial patterns in the
species richness of birds in the New World. Phil. Trans. Roy.
Soc. Lond. Ser. B – Biol. 19, 369–376.

Borcard, D., Legendre, P., 1994. Environmental control and
spatial structure in ecological communities: an example
using oribatid mites (Acari, Oribatei). Environmental and
Ecological Statistics 1, 37–61.

Borcard, D., Legendre, P., 2002. All-scale spatial analysis of
ecological data by means of principal coordinates of
neighbour matrices. Ecological Modelling 153, 51–68.

Borcard, D., Legendre, P., Avois-Jacquet, C., Tuomisto, H., 2004.
Dissecting the spatial structure of ecological data at
multiple scales. Ecology 85, 1826–1832.

Borcard, D., Legendre, P., Drapeau, P., 1992. Partialling out the
spatial component of ecological variation. Ecology 73,

1045–1055.

Brind’Amour, A., Boisclair, D., Legendre, P., Borcard, D., 2005.
Multiscale spatial distribution of a littoral fish community
in relation to environmental variables. Limnol. Oceanogr. 50,
465–479.
1 9 6 ( 2 0 0 6 ) 483–493

Chung, F.K.R., 1997. Spectral graph theory. American
Mathematical Society.

Cliff, A.D., Ord, J.K., 1973. Spatial autocorrelation. Pion, London.
Cliff, A.D., Ord, J.K., 1981. Spatial processes. Pion, London.
Clifford, P., Richardson, S., Hémon, D., 1989. Assessing the

significance of the correlation between two spatial
processes. Biometrics 45, 123–134.

Copas, J.B., Long, T., 1991. Estimating the residual error
variance in orthogonal regression with variable selection.
The Statistician 40, 51–59.

Cormack, R.M., Ord, J.K., 1979. Spatial and temporal analysis in
ecology. International Co-operative Publishing House,
Fairland.

Critchley, F., 1978. Multidimensional scaling: a short critique
and a new method. In: Corsten, L.C.A., Hermans, J. (Eds.),
COMPSTAT 1978: Proceedings in computational statistics.
Physica-Verlag, Leiden.

de Jong, P., Sprenger, C., van Veen, F., 1984. On extreme values
of Moran’s I and Geary’s c. Geogr. Anal. 16, 17–24.

Dutilleul, P., 1993. Modifying the t-test for assessing the
correlation between two spatial processes. Biometrics 49,
305–314.

Fortin, M.-J., Dale, M.B., 2005. Spatial analysis: a guide for
ecologists. Cambridge University Press, Cambridge.

Freedman, L.S., Pee, D., Midthune, D.N., 1992. The problem of
underestimating the residual error variance in forward
stepwise regression. The Statistician 41, 405–412.

Geary, R.C., 1954. The contiguity ratio and statistical mapping.
The incorporated Statistician 5, 115–145.

Getis, A., Aldstadt, J., 2004. Constructing the spatial weights
matrix using a local statistic. Geogr. Anal. 36, 90–104.

Getis, A., Griffith, D.A., 2002. Comparative spatial filtering in
regression analysis. Geographical Analysis 34, 130–
140.

Gimaret-Carpentier, C., Dray, S., Pascal, J.-P., 2003. Broad-scale
biodiversity pattern of the endemic tree flora of the
Western Ghats (India) using canonical correlation analysis
of herbarium records. Ecography 26, 429–444.

Gittins, R., 1968. Trend-surface analysis of ecological data. J.
Ecol. 56, 845–869.

Gittins, R., 1985. Canonical Analysis, A Review with
Applications in Ecology. Springer Verlag, Berlin.

Godinez-Dominguez, E., Freire, J., 2003. Information-theoretic
approach for selection of spatial and temporal models of
community organization. Mar. Ecol.–Prog. Ser. 253, 17–24.

Gower, J.C., 1966. Some distance properties of latent root and
vector methods used in multivariate analysis. Biometrika
53, 325–338.

Griffith, D.A., 1995. Some guidelines for specifying the
geographic weights matrix contained in spatial statistical
models. In: Arlinghaus, S.L. (Ed.), Practical Handbook of
Spatial Statistics. CRC Press, Boca Raton, pp. 65–82.

Griffith, D.A., 1996. Spatial autocorrelation and eigenfunctions
of the geographic weights matrix accompanying
geo-referenced data. Can. Geogr. 40, 351–367.

Griffith, D.A., 2000a. Eigenfunction properties and
approximations of selected incidence matrices employed in
spatial analyses. Linear Algebra Appl. 321, 95–112.

Griffith, D.A., 2000b. A linear regression solution to the spatial
autocorrelation problem. J. Geogr. Syst. 2, 141–156.

Griffith, D.A., 2002. A spatial filtering specification for the
auto-Poisson model. Stat. Prob. Lett. 58, 245–251.

Griffith, D.A., 2003. Spatial autocorrelation and spatial filtering:
gaining understanding through theory and scientific
visualization. Springer-Verlag, Berlin.
Griffith, D.A., 2004. A spatial filtering specification for the
autologistic model. Environ. Planning A 36, 1791–1811.

Griffith, D.A., Lagona, F., 1998. On the quality of
likelihood-based estimators in spatial autoregressive models



g 1 9

H

H

J

J

K

L

L

L

L

L

L

L

M

M

M

N

O

O

P

P

P

P

e c o l o g i c a l m o d e l l i n

when the data dependence structure is misspecified. J. Stat.
Planning Inference 69, 153–174.

anski, I., 1994. A practical model of metapopulation
dynamics. J. Animal Ecol. 63, 151–162.

urvich, C.M., Tsai, C.-L., 1989. Regression and time series
model selection in small samples. Biometrika 76, 297–307.

aromczyk, J.W., Toussaint, G.T., 1992. Relative neighborhood
graphs and their relatives. Proc. IEEE 80, 1502–1517.

in, X., Carlin, B., Banerjee, B., 2005. Generalized hierarchical
multivariate CAR models for areal data. Biometrics 61,
950–961.

napp, R.A., Matthews, K.R., Preisler, H.K., Jellison, R., 2003.
Developing probabilistic models to predict amphibian site
occupancy in a patchy landscape. Ecol. Appl. 13, 1069–1082.

ebart, L., 1969. Analyse statistique de la contiguı̈té. Publication
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81–112.

egendre, P., 1993. Spatial autocorrelation: trouble or new
paradigm? Ecology 74, 1659–1673.

egendre, P., Borcard, D., Peres-Neto, P.R., 2005. Analyzing beta
diversity: partitioning the spatial variation of community
composition data. Ecol. Monogr. 75, 435–450.

egendre, P., Gallagher, E.D., 2001. Ecologically meaningful
transformations for ordination of species data. Oecologia
129, 271–280.

egendre, P., Legendre, L., 1998. Numerical Ecology, 2nd ed.
Elsevier Science, Amsterdam.

egendre, P., Oden, N.L., Sokal, R.R., Vaudor, A., Kim, J., 1990.
Approximate analysis of variance of spatially autocorrelated
regional data. J Classification 7, 53–75.

ichstein, J., Simons, T., Shriner, S., Franzreb, K., 2002. Spatial
autocorrelation and autoregressive models in ecology. Ecol.
Monogr. 72, 445–463.
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