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Abstract. Species spatial distributions are the result of population demography,
behavioral traits, and species interactions in spatially heterogeneous environmental conditions.
Hence the composition of species assemblages is an integrative response variable, and its
variability can be explained by the complex interplay among several structuring factors. The
thorough analysis of spatial variation in species assemblages may help infer processes shaping
ecological communities. We suggest that ecological studies would benefit from the combined
use of the classical statistical models of community composition data, such as constrained or
unconstrained multivariate analyses of site-by-species abundance tables, with rapidly emerging
and diversifying methods of spatial pattern analysis. Doing so allows one to deal with spatially
explicit ecological models of beta diversity in a biogeographic context through the multiscale
analysis of spatial patterns in original species data tables, including spatial characterization of
fitted or residual variation from environmental models. We summarize here the recent progress
for specifying spatial features through spatial weighting matrices and spatial eigenfunctions in
order to define spatially constrained or scale-explicit multivariate analyses. Through a worked
example on tropical tree communities, we also show the potential of the overall approach to
identify significant residual spatial patterns that could arise from the omission of important
unmeasured explanatory variables or processes.

Key words: ecological community; multivariate spatial data; ordination; spatial autocorrelation; spatial
connectivity; spatial eigenfunction; spatial structure; spatial weight.

INTRODUCTION

A major concern of ecology is the identification and
explanation of the spatial patterns of ecological struc-
tures (species distributions, composition, or diversity

[Legendre 1993]). The presence and abundance of
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individual species vary through space in a nonrandom

way, displaying spatial structures. Hence, community

composition is usually not random, so that beta

diversity, defined as the variation in community

composition (Whittaker 1972), displays spatial patterns.

Considering the fact that there is no single natural scale

at which ecological processes occur, Levin (1992)

suggested that attention should focus on the notion of

scale as a means to understanding patterns in natural

variation. It is now well established that patterns

observed in communities at a given scale are often the

consequence of a complex interplay between various

processes occurring at multiple scales (Menge and Olson

1990). For instance, the interactions between individual

organisms and their local environment, including

immediate neighbors, influence community composition

(Agrawal et al. 2007), while regional and historical

processes can profoundly influence local community

structure (Ricklefs 1987, Borcard and Legendre 1994).

An important research goal in ecology is thus to identify

the most relevant scales to account for compositional

variation and model species–environment interactions,

which may change with the scale of observation

(Dungan et al. 2002, Legendre et al. 2009). Searching

for and analyzing spatial structures at multiple scales

allows researchers to test hypotheses about the mecha-

nisms through which species diversity evolves or is

maintained in ecosystems, a topic of key importance, for

instance, for the development of conservation policies

and the design of biodiversity protection areas (e.g.,

Seiferling et al., in press).

Inferring processes underlying community structure

depends heavily on our capacity to detect patterns in

species distribution data, given that manipulative (field

and laboratory) experiments cannot, in most instances,

be extensive enough to detect the effects of mechanisms

that influence communities at large spatial scales (Currie

2007). However, ‘‘because changes in process intensity

can create different patterns, and because several

different processes can generate the same pattern

signature’’ (Fortin and Dale 2005:3), community ecolo-

gy faces the challenge to draw clear links between

patterns and processes (Vellend 2010). Recently, McIn-

tire and Fajardo (2009) proposed a conceptual frame-

work to enhance inference in ecology using space as a

surrogate for uncovering unmeasured or unmeasurable

ecological processes through the analysis of spatial

patterns and/or spatial residuals. They argued that the

analysis of spatial patterns and associated properties

(e.g., intensity, patchiness, scale, clustering) can help to

infer ecological processes under the condition that

precise alternative hypotheses are well defined a priori

and that appropriate statistical methods are used to

select the most likely hypothesis. In this context,

technological advances to acquire, manage, and store

large georeferenced data sets (e.g., as obtained routinely

through remote sensing, geographic information system,

etc.) and recent methodological developments opened

new avenues to test hypotheses concerning the spatial

organization of ecological structures at different spatial

scales. While McIntire and Fajardo (2009) mainly

developed the conceptual and heuristic aspects of

drawing inferences from spatial analysis, we focus here

on the most recent methods and tools for the multiscale

analysis of spatial structures observed in ecological

communities.

Traditionally, questions about the structure and

determinants of ecological communities have been

tackled using multivariate analyses (Gauch 1982). The

last decade has seen severalmethodological developments

designed to make the multivariate analysis of species

assemblages more spatially explicit and to generalize

analyses of spatial distributions to handle multi-species

communities. Now that large-scale georeferenced data

sets, sophisticated statistical methods, and adequate

computing power are available, the modeling of ecolog-

ical patterns can be done in much greater detail.

Depending on the nature of the data considered, such

models are highly relevant (see Fig. 1). They may be used

for (1) detecting and characterizing spatial patterns (e.g.,

is a community organized into fairly discrete homoge-

neous regions (patches) or distributed along smooth

gradients?); (2) determining whether spatial variation in

community composition can be explained by measured

environmental factors (e.g., is community variation

explained by environmental variables? Do we observe

significant remaining spatial structures that are not

explained by measured environmental descriptors?); (3)

identifying characteristic scales of spatial structures (e.g.,

at which spatial scales is the variation in community

composition well modeled by environmental factors? At

which other scales do we observe spatial structures that

are not explained by environmental descriptors?)

As multivariate spatially explicit methods have

recently been developed and diversified (e.g., Borcard

et al. 1992, Borcard and Legendre 2002, Wagner 2004,

Dray et al. 2006, Ferrier and Guisan 2006, Lichstein

2007, Soininen et al. 2007, Blanchet et al. 2008a), we aim

to highlight here how they can be used to address the

above questions. While much effort has focused on the

nuisance aspect of spatially dependent observations in

statistical models (see Dormann et al. [2007] for a

review), we adopt another viewpoint based on the idea

that the presence of any nonrandom spatial structure in

species data has a biological, historical or environmental

cause. Hence, following McIntire and Fajardo (2009),

we suggest that explicitly introducing the spatial

component as a proxy (space as a surrogate) into

analyses of community composition data helps to

identify potential underlying processes that may be

difficult to measure directly from field studies. In many

situations, species assemblages may display spatial

dependence induced by responses to spatially structured

explanatory variables, and also spatial autocorrelation

due to the population dynamics of the response

variables themselves (Peres-Neto and Legendre 2010).
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It is generally assumed that broad-scaled spatial

structures in the species response data correspond to

the scale (sometimes referred to as wavelength) of

environmental drivers, whereas spatial autocorrelation

generated by community dynamics is usually finer

scaled. However, this classical dichotomy is probably

too naı̈ve (there are plenty of counterexamples of fine-

scale environmental drivers and broad-scale population

dynamics) and may arise simply because community

ecologists usually measure and include broad-scaled

environmental variables, ignoring or failing to measure

those structured at finer scales. While it may appear

oversimplistic to oppose niche and neutral influences on

community structuring (Currie 2007, Smith and Lund-

holm 2010), we suggest that identifying the characteristic

spatial scales of variation displayed by the response

variables that are explained (or not) by the measured

environmental variables is a first step toward disentan-

gling the various processes that might act to structure

the spatial distributions of species (Smith and Lundholm

2010). To achieve this goal, the hypotheses about the

processes one is positing as influential should be clearly

stated in the form of competing models explaining

variation in community composition. As a consequence,

the choice of sampling and analytical procedures should

become more oriented toward comparing and contrast-

ing relevant models and hypotheses. A causal model can

then be built efficiently using a combination of several

statistical tests corresponding to different alternative

hypotheses regarding the determinants of (spatial)

structures of ecological communities (Legendre and

Legendre 2012: Section 13) (see Cottenie [2005] for an

illustration).

After introducing some basic but critical notions, we

review some recent developments in spatially explicit

multivariate methods. Here we will restrict our review to

ecological studies involving community data and envi-

ronmental variables, measured in space, illustrating how

these methods can help to illuminate the important

factors structuring communities and their turnover or

variation (beta diversity), using a tropical forest data set.

RELATING COMMUNITY STRUCTURES TO

ENVIRONMENTAL VARIABILITY

A traditional approach in community ecology consists

in combining data from multiple species distributions

FIG. 1. Relationships between data, questions, and methods involved in the analysis of the spatial structures of ecological
community data.
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with environmental descriptors to obtain a summary of

community structures and their relationships with

environmental variability. From a methodological point

of view, this community–environment modeling com-

prises two steps: (1) summarizing community structures

and (2) relating them to environmental variability (the

‘‘assemble’’ and ‘‘predict’’ steps of Ferrier and Guisan

[2006]), both of which can be combined in different

ways. Usually, the first step requires the synthesis of

complex information on a large number of species into a

simpler form. The use of diversity indices, for example,

is an extreme simplification that reduces multiple species

information to a single synthetic value (e.g., species

richness). Multivariate analysis (classification and ordi-

nation methods) represents a much richer alternative

that takes better advantage of the multi-dimensional

nature of ecological data. These two options share some

similarities as ordination methods and some classical

diversity indices are intimately linked (Pélissier et al.

2003). Hereinafter, we will refer to the multiple species

distribution data as a site-by-species abundance matrix

or community table, Y, and to the environmental data as

a site-by-variables matrix or environment table, E,

where both of the matrices Y and E have matching sites

(Fig. 1). Ordination has long been a central approach to

summarize the information contained in the community

table, Y, by producing a small number of orthogonal

gradients of compositional change, often referred to as

‘‘factors’’ or ‘‘ordination axes,’’ along which species or

sites may be ordered to study their relative positions

(Gauch 1982, Legendre and Legendre 2012). It allows

one to separate structural information associated with

selected factors (axes) from random noise. Among the

plethora of available methods (see Legendre and

Legendre 2012:388) we consider only the commonly

used family of eigenvector-based approaches (or eigen-

analyses) that include principal component analysis

(PCA) and correspondence analysis (CA) as special

cases.

Historically, ecologists have first used indirect ap-

proaches for interpreting the structures of species

assemblages (structural information extracted by the

eigenanalysis of Y) in relation to environmental vari-

ability: site scores along the ordination axes, which are

composite indices of species abundances contained in Y,

were compared a posteriori to environmental variables

(‘‘indirect comparison,’’ ‘‘indirect gradient analysis’’).

Progressively, new techniques were developed to con-

strain the ordination according to the table E of

explanatory environmental variables (‘‘direct compari-

son,’’ ‘‘direct gradient analysis’’; see Legendre and

Legendre [2012: Section 10.2] for a synthesis). Techni-

cally, direct gradient analysis can be viewed as an

extension of multiple regression, which has a single

response variable, to the case of a multi-species response

table: Y is then partitioned according to E, into a table of

fitted values, F¼ f(E), and a table of residuals, R¼Y� F

(Fig. 1). Constrained ordination (or canonical analysis)

concentrates on the eigenanalysis of the fitted community

table, F, allowing the direct analysis of the variation in

species abundances explained by the environmental

variability. Standard approaches include canonical

correspondence analysis (CCA) and redundancy analysis

(RDA). Partial canonical analysis is an extension of these

constrained ordination methods to the case where

explanatory variables include covariables whose effects

on the species response variables should be controlled.

For instance, one can focus on the residual community

table R to analyze the variation in species abundances

unrelated to what has been modeled by the environment

table E (partial PCA, or partial residual analysis [PRA]).

In the past, the application of constrained and

unconstrained ordination methods has been mainly

motivated by the desire to assess and describe ecological

structures. Nowadays, the availability of fast computers

and the development of permutation procedures permit

the use of these methods for evaluating ecological

hypotheses in an inferential framework (Manly 1997).

More specifically, incorporating space as an explicit

component in these analyses represents a further step

toward the objective of uncovering unmeasured or

unmeasurable ecological processes (McIntire and Fa-

jardo 2009).

SPATIAL STRUCTURE, DEPENDENCE, AND

AUTOCORRELATION

The spatial distribution of organisms may vary from

aggregated (clustered) through a random pattern to the

regular (uniform) case. Individuals are randomly posi-

tioned if the location of one individual is independent of

the positions of all others. Aggregation occurs when

individuals tend to be close together, resulting in a high

variance of density estimates across space (over-disper-

sion). On the other hand, regularity occurs when

individuals tend to avoid each other (e.g., spatial

distributions of territorial organisms) so that density

estimates are less variable (under-dispersion). According

to the type of spatial distribution, appropriate sampling

should be designed to ensure proper estimates of

abundances and their distributions (Andrew and Map-

stone 1987). It follows that the spatial structures

manifest themselves by the relationship (or lack of

independence) between abundance values observed at

neighboring sites in space. In many instances, individ-

uals are aggregated so that sampling sites that are closer

together tend to display abundance values that are more

similar than sites that are further apart, resulting in

positive spatial dependence. Regular distribution of

individuals may produce the opposite effect, inducing

negative spatial dependence. Note that different ecolog-

ical processes could act simultaneously, inducing both

negative and positive dependencies in a data set (Dray

2011).

At the community level, spatial dependence may be

induced by the functional dependence of the response

variables (species) on some explanatory variables (e.g.,
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environmental) that share some parts of their spatial

structures (induced spatial dependence [Legendre and

Legendre 2012, Fortin and Dale 2005]). This phenom-

enon has long been described in ecology as the

environmental control model, which is the foundation

of niche theory. If all important spatially structured

explanatory variables are included in the analysis, the

community model Y ¼ f(E) þ R ¼ F þ R, correctly

accounts for the spatial structure and matrix R contains

independent and identically distributed (i.i.d.) residuals.

On the other hand, if the function is misspecified, for

example through the omission of salient explanatory

variables with spatial patterning such as a large-scale

trend, or through inadequate functional representation,

one may incorrectly interpret the spatial patterning of

the residuals as autocorrelation.

Autocorrelation refers to a type of spatial dependence

that may appear in species distributions as the result of

population or community dynamics; it is also designated

as true autocorrelation, inherent autocorrelation, or

autogenic autocorrelation (Fortin and Dale 2005), or

interaction model (meaning interaction among the sites)

by Cliff and Ord (1981:141). From a statistical

standpoint, autocorrelation is the spatial structure found

in the error component of a community–environment

model, once the effect of all important spatially

structured environmental variables has been accounted

for (i.e., included in the model). In practice, it is fairly

difficult (if not impossible) to know whether all

important environmental drivers have been included

(and with correct functional forms) in the analysis of a

particular data set. Hence, if autocorrelation remains in

residuals, it could be driven by any number of processes

including unmeasured (small-scale) environmental var-

iables, or population/community dynamics. Neverthe-

less, theoretically, a complete model can be written as

Y ¼ f ðEÞ þ R ¼ Fþ R ¼ Fþ Tþ U ði:e:; R ¼ Tþ UÞ

where R is broken down into the spatial autocorrelation

in the residuals, T, and a random error component, U.

However, these two residual components are impossible

to partition unless expectations from specific autocorre-

lated models (such as dispersal models for instance) can

be obtained in the same metric as R, which no longer

contains abundances, but signed deviations of the

observed abundances from their fitted values as predict-

ed by the environmental variables. As a consequence,

the presence of a spatial structure in residuals, which

makes the species residuals in R not i.i.d., has long been

seen as a statistical nuisance for the environmental

control model (Legendre 1993, Griffith and Peres-Neto

2006), often generating inflated type I error rates in the

environmental model and spurious (apparent) species–

environment concordance.

Indeed, apparent species–environment concordance

can be generated when species distributions and

environmental factors are both independently spatially

structured. In this case, modeling tools (regression,

canonical analysis) will have a tendency to indicate

significant habitat affinities even if measured environ-

mental factors are not actually significant drivers of

species occurrences or co-occurrences (Dormann et al.

2007, Peres-Neto and Legendre 2010). In cases of spatial

dependence, the effective number of degrees of freedom

in the sample is smaller than the one estimated from the

number of observations; in other words, observations

are not independent and thus cannot be freely permuted

at random to create the reference (null) distribution of

the test statistic. As a consequence, statistical tests

(parametric or non-parametric, such as permutation

tests) generate narrow confidence limits, making the test

too liberal and generating inflated type I error levels (i.e.,

the null hypothesis is too easy to reject [Bivand 1980,

Legendre et al. 2002]). Whether parameter estimates

may be affected by spatial dependence depends on the

model, the type of statistic and the degree and sign,

positive or negative, of the spatial dependence. Theo-

retical and simulation work is still needed to clarify the

situations in which parameter estimates are also affected

(but see Peres-Neto and Legendre [2010] for some

discussion).

An important point that is often overlooked is that

spatial dependence could cause inferential problems

even when only some variables within both response (Y)

and predictor sets (E) (i.e., some species and some

environmental variables) are spatially structured (Legen-

dre et al. 2002). Therefore, the first analytical step

should always be to test for the presence of spatial

dependence in the residual table, R, in order to assess

whether there are missing spatially structured covariates

in the model. Univariate statistics such as Moran’s I

(1950) or multivariate alternatives (e.g., trace of the

variogram matrix, see the section Spatial ordination) can

be used to evaluate the significance of spatial patterns in

residuals using different procedures, including Monte-

Carlo permutation tests (Cliff and Ord 1981).

If a spatial structure is detected in residuals, several

techniques are available to take it into account in the

case of the univariate environmental control model (i.e.,

when analyzing a single response variable [Dormann et

al. 2007, Beale et al. 2010]) and can be considered for

testing summary statistics of community data as

response variables, such as species richness or species

scores along a single ordination axis (Diniz-Filho and

Bini 2005). Rangel et al. (2007) chose another strategy

by modeling species richness as sums of individual

species responses predicted from univariate spatial

models. There are however few alternatives for dealing

with multiple species responses in multivariate autore-

gressive models (but see Jin et al. [2005]; M13 in Table

1). Alternatively, restricted permutations may also help

by considering the appropriate number of ‘‘exchange-

able units’’ (and consequently degrees of freedom) in

multi-way sampling designs, particularly when sites are

embedded within ecological classes (Anderson and ter

Braak 2003, Couteron and Pélissier 2004, Heegaard and
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Vandvik 2004). Another approach is to filter out

(remove) the effects of spatial dependence by detrending

(‘‘spatial filtering’’ sensu Griffith [2000]; M7 in Table 1).

For instance, partial canonical analysis can be used to

partial out the effect of spatial predictors (see Specifying

the spatial component), so that tests for statistical

significance of other sets of predictors of interest (e.g.,

environment) can be performed from a new community

table corrected for spatial dependence (see Griffith and

Peres-Neto 2006, Tiefelsdorf and Griffith 2007, Peres-

Neto and Legendre 2010).

These different methods usually ‘‘correct’’ or account

for the properties of the data to allow proper statistical

inference in the presence of spatial dependence. In this

context, the existence of spatial structures is considered

as a ‘‘nuisance’’ that should be removed or at least taken

into account (see Dormann et al. [2007] for a review of

methods under this point of view). We want to highlight

an alternative viewpoint focusing on the biological

information contained in spatial patterns that are the

signature of processes (e.g., environmental filtering,

limited dispersal, historical biogeography) that shape

species distributions. Hence, we suggest that the

information contained in these spatial structures should

be exploited rather than removed in order to improve

the analysis of ecological structures. In this context, the

spatial component should be introduced explicitly and

considered as a proxy/surrogate of unmeasured process-

es (McIntire and Fajardo 2009). Ecological inference

can then be performed from the multiscale analysis of

spatial structures in original data tables (Y), but also in

each of the fitted (F) or residuals (R) tables from an

environmental (or other) model.

SPECIFYING THE SPATIAL COMPONENT

Whatever the viewpoint adopted (nuisance or surro-

gate), there is a clear need to add a ‘‘spatialize’’ step to

the usual ‘‘assemble’’ and ‘‘predict’’ steps of community–

environment modeling. Spatial information can be

introduced implicitly using mapping techniques in a

two-step procedure: once community structures have

been summarized by any constrained or unconstrained

ordination technique, the sites scores along selected

ordination axes are represented in geographical space as

a way to identify spatial patterns. Goodall (1954)

introduced this indirect approach using contour lines

of PCA scores to map the main spatial structures of

vegetation data and link them to environmental

variability. Since this early work, there has been an

increasing interest to consider both spatial and multi-

variate aspects simultaneously by introducing the spatial

component (depicted as table S in Fig. 1) explicitly into

community analysis (Table 2; see also Dray et al. 2006).

Note that an important issue to keep in mind is that in

any field study, the sampling design imposes an artificial

spatial structure on the data through decisions about the

TABLE 1. Description of various properties of methods for the analysis of spatial ecological data.

Labels Methods Bibliographic references

Inputs

Species–environment
link

Treatment of
species information

M1 Mantel test Mantel (1967), Legendre and
Troussellier (1988)

possible (if partial Mantel) distance matrix

M2 autocorrelation measure of
sites scores after simple
ordination

no ordination method

M3 autocorrelation measure of
sites scores after
canonical ordination

yes ordination method

M4 multivariate spatial analysis
based on Moran’s I
(MULTISPATI)

Dray et al. (2008) no ordination method

M5 partial canonical
ordination

Borcard et al. (2004) yes ordination method

M6 variation partitioning Borcard et al. (1992), Borcard
and Legendre (1994)

yes ordination method

M7 spatial filtering Griffith (2000) yes raw data table
M8 multiscale ordination

(MSO)
Wagner (2003, 2004),

Couteron and Ollier (2005)
yes ordination method

M9 multiscale pattern analysis
(MSPA)

Jombart et al. (2009) possible raw data table

M10 linear model of
coregionalization (LMC)

Bellier et al. (2007),
Warckernagel (2003)

yes raw data table

M11 constrained clustering Gordon (1996) possible raw data table
M12 boundary detection Jacquez et al. (2008) possible raw data table
M13 multivariate autoregressive

model
Jin et al. (2005) yes raw data table

Notes: The ability to consider both species (Y) and environmental (E) information, the pre-treatment of the species abundance
table, and the type of spatial component included in the analysis is detailed. The different outputs produced by the method (ability
to describe the multiscale properties, tools to summarize the spatial patterns, and associated significance tests) are presented.

� See Table 2.
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extent of the study, the number of samples, and the size,

shape, and spatial arrangement of the sampling units

(e.g., Andrew and Mapstone 1987, Fortin and Dale

2005). Moreover, different alternatives that have been

proposed to describe the pairwise relationships among

sampling locations will affect the type of spatial

information included or constraining the multivariate

analysis.

Geographical distance matrix

In the past, ecologists used to represent spatial links

(i.e., proximities) by functions of geographic coordinates

to construct a matrix of inter-site geographic distances

(S1 in Table 2; Legendre and Fortin 1989). Then, spatial

structures were identified by approaches such as the

Mantel (1967) test (M1 in Table 1), which has been

recommended in the past to identify spatial structures by

testing the correlation between two distance matrices,

where one matrix represents the spatial configuration of

sites and the other summarizes pairwise ecological

similarities (e.g., Bray-Curtis index) among sample

locations. While Mantel’s test summarizes spatial

structures by a global measure, the Mantel correlogram

(Oden and Sokal 1986, Borcard and Legendre 2012)

partitions the analysis into a series of distance classes

that allows changes in the intensity of spatial patterns at

different distances (scales) to be identified. Recently, this

approach has gained much attention in the form of

distance-decay similarity approaches to analyze how

beta diversity varies across space (e.g., Soininen et al.

2007). Ferrier (2002) extended this distance-based

approach and proposed generalized dissimilarity mod-

eling (GDM), a nonlinear method to model ecological

dissimilarities as a function of geographical and

environmental distances. The significance of explanatory

distance matrices (including space) can be tested by

comparing the deviances of different models using

permutation procedures (Ferrier et al. 2007). However,

TABLE 2. Summary of the different tools available to consider the spatial component and their ability to explicitly describe
multiscale patterns.

Labels Methods Family
Explicit multiscale
decomposition

S1 geographical distance matrix distance based on geographic coordinates no
S2 polynomial template based on geographic coordinates broad scales
S3 spatial weighting matrix (SWM) SWM no
S4 principal coordinates of neighbor

matrices (PCNM)
SWM-derived spatial template broad and medium

scales
S5 Moran’s eigenvector maps (MEM) SWM-derived spatial template yes
S6 asymmetric eigenvector maps (AEM) spatial template derived from directed graphs yes
S7 Fourier, wavelets predefined spatial template yes

TABLE 1. Extended.

Inputs Outputs

Type of spatial
component�

Explicit
multiscale detection

Description of the
spatial structures

Significance tests of
spatial structures

S1 no a statistic yes (but very low power)

S3 (but a posteriori) no a statistic, mapping yes

S3 (but a posteriori) no a statistic, mapping yes

S3 no biplot, mapping no

S2, S4, S5, S6, S7 yes (if submodels) biplot, mapping yes

S2, S4, S5, S6, S7 yes (if submodels) Venn diagram yes

S2, S4, S5, S6, S7 no not relevant not relevant
S3 (multiple) yes variogram yes

S5 yes biplot no

S3 (multiple) yes mapping no

S3 no mapping of patches no
S3 no mapping of boundaries yes
S3 no autoregressive parameters yes
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no explicit measure of the intensity of the spatial pattern

is provided by this GDM approach. Legendre and

Fortin (2010) have shown that the sum of squares

partitioned in Mantel tests and regression on distance

matrices differs from the sum of squares partitioned in

linear correlation, regression, and canonical analysis.

Specifically, the R2 statistic from regression on distance

matrices is unrelated to that which would be obtained

from the use of canonical methods, and cannot be

interpreted as an explained proportion of the variance of

the response data. Moreover, Legendre et al. (2005)

showed that the Mantel test has very low power in

contrast to other spatial frameworks to detect spatial

structures and thus should not be used for that purpose;

the efficiency of related methods such as GDM has not

been evaluated yet. Mantel-based approaches have also

been conceptually criticized as a general approach to

beta diversity analysis (Laliberté 2008, Legendre et al.

2008, Pélissier et al. 2008). Moreover, because they

aggregate the original data in the computation of sites-

by-sites distance matrices, these Mantel-based methods

do not allow one to obtain information about particular

species and environmental variables. Nonetheless, Man-

tel-based approaches remain used by ecologists probably

because geographic distances are a very intuitive way to

consider space, even though they are based on the

assumption that ecological processes are strictly distance

dependent and that this dependence is constant over the

whole study area.

Spatial weighting matrix

Substantial improvement has stemmed from the

concept of a spatial weighting matrix (SWM) used as a

starting point to construct parsimonious representations

of space (S3 in Table 2). In its broader sense, a SWM is

usually a square symmetric matrix (sites-by-sites) that

contains non-negative values expressing the strengths of

the potential exchanges between the spatial units;

conventionally, diagonal values are set to zero. In its

simplest form, a SWM is a binary matrix, with ones for

pairs of sites considered as neighbors and zeros

otherwise. These binary connectivity matrices are

directly related to matrix representations of graphs

(Fig. 2a) constructed using distance criteria or tools

derived from graph theory to depict connectivity (Fall et

al. 2007, Dale and Fortin 2010); they may also describe

spatial discontinuities or boundaries (Fig. 2d; Fortin

and Dale 2005, Jacquez et al. 2008). Binary spatial links

may appear too restrictive to represent complex inter-

site relationships, however. SWMs that explicitly weigh

the spatial relationships among sampling locations may

be more appropriate in that case (Fig. 2b and c). For

instance, the weights can be derived from functions of

spatial distances (Dray et al. 2006), least-cost links

FIG. 2. Spatial link types. (a) Complete graph of direct links between sampling points (all lines, black and gray). The double
lines are the nearest-neighbor links between points. The dotted line and the nearest-neighbor links create a minimum spanning tree.
All black lines (simple, double, dotted) create a Delaunay triangulation graph. The links can also be seen as the Euclidean distances
between sampling points. (b) Unidirectional and bidirectional links as indicated by the arrows; the links have different weights as
indicated by the different thicknesses of the lines. (c) Least-cost links accounting for land cover types (gray patches) between
sampling locations that impede species movement; animals avoid as much as possible crossing these patches. (d) As in panel (c), but
with a barrier (dashed line) that prevents movement (i.e., links) between some sampling locations.
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between sampling locations (Fig. 2c; Fall et al. 2007) or

any other proxies/measures of the easiness of transmis-

sion of matter (e.g., organisms via dispersal), energy,

nutrients, or information (e.g., social information

among individuals) among sampling sites. In geography,

the use of SWM has been popularized by Cliff and Ord

(1973:12) who advocated its ‘‘great flexibility’’ and has

become the standard way of describing spatial config-

urations of sampling sites.

Univariate measures of spatial correlation such as the

Moran (1950) and Geary (1954) statistics evaluate the

strength of spatial structures using a representation of

spatial links in the form of a SWM. Different

procedures, including Monte-Carlo permutations tests,

can be used to test the significance of spatial structures

using these indices (Cliff and Ord 1973). If spatial

structures have been detected, they can be characterized

by structure functions to study the effect of spatial scale

on spatial correlation. Correlograms and (semi)-vario-

grams plot spatial correlation indices (respectively,

Moran’s I and semi-variance, which is intimately linked

to Geary’s index) against distance classes among sites.

Distance classes can be computed as distances along the

links of a neighborhood graph corresponding to a SWM

(instead of straight-line geographic distances). Several

ecological studies have demonstrated the efficiency of

variograms and correlograms to identify characteristics

of spatial structures such as their periodicity, direction-

ality, or patch size (Radeloff et al. 2000, Fortin and Dale

2005). In the context of community ecology, these tools

can be useful for evaluating the strength of the spatial

structures displayed along the ordination axes extracted

from the analysis of the initial (Y), predicted (F), or

residual (R) tables (M2 and M3 in Table 1; Pyke et al.

2001, Baraloto and Couteron 2010).

Spatial templates

Another approach to specify the spatial component

consists in building a spatial model from table S to

produce spatial templates against which the structure of

community tables can be analyzed. Perhaps the most

common approach is the generation of trend surfaces

from polynomial functions of the geographic coordi-

nates (S2 in Table 2; Gittins 1985). More recently, Dray

et al. (2006) showed that the diagonalization of a

centered SWM is a generic way to generate ‘‘eigenvector

maps,’’ which are efficient representations of spatial

relationships (Appendix). They coined the general name

‘‘Moran’s eigenvector maps’’ (MEM; S5 in Table 2) for a

concept that embraces as special cases distance-based

eigenvector maps (for distance-defined SWMs), among

which those provided by principal coordinates of

neighbor matrices (PCNM; the pioneering technique of

Borcard and Legendre 2002; S4 in Table 2), and

Griffith’s eigenfunctions (1996, 2000) based on a matrix

of binary (or topological) links. The eigenvectors of any

centered SWM are orthogonal and have a straightfor-

ward interpretation as spatial correlation templates that

can be ranked according to their Moran’s (1950) index

(Appendix).
Since symmetric relationships among sampling loca-

tions are not always adequate to reflect processes that
are directional or asymmetric, Blanchet et al. (2008a)

developed asymmetric eigenvector maps (AEM; S6 in
Table 2), a form of spatial eigenfunctions that allows

one to model directional spatial patterns such as the
ones along river networks or oceanic currents (see also
Mahecha and Schmidtlein [2008] for an approach using

anisotropic spatial filters; and Salomon et al. [2010] for
how asymmetric dispersal can impose patterns in species

coexistence). However, AEMs cannot be reduced to the
MEM framework.

SWM and its associated eigendecomposition (MEM)
provide very efficient and flexible ways of specifying the

spatial component in an analysis. In the remainder of
this paper, we focus on several recently developed

methods that explicitly introduce an SWM- or MEM-
based spatial constraint into multivariate community

analysis. Griffith and Peres-Neto (2006) proposed the
general expression of eigenfunction-based spatial anal-

ysis, or spatial eigenfunction analysis, for the latter
approach. Spatially constrained ordination and cluster-

ing methods (see Spatially constrained ordination and
clustering) usually introduce the spatial component by

extending univariate autocorrelation measures (SWM-
based) or by using spatial eigenfunctions (MEM-based)

as predictors/covariables in a modeling framework of
species abundances. MEM can be also used as an
orthonormal basis (Ollier et al. 2006) on which the

species variances are decomposed to obtain a signature
of their spatial distributions, allowing the study of

community compositional variation at multiple scales.

SPATIALLY CONSTRAINED ORDINATION AND CLUSTERING

Spatial ordination

Informally speaking, spatial ordination embraces any

ordination procedure that explicitly integrates a spatial
component S (Fig. 1). A way to account for space in

ordination methods consists in considering S as a set of
spatial predictors (or spatial templates) representing a
multiscale decomposition of space on which are

regressed the tables Y, F, or R, depending on the
ecological hypotheses that are being tested. This type of

analysis was initiated with constrained ordination (either
CCA or RDA) using an explanatory table of spatial

predictors, such as a polynomial trend-surface function
of the geographic coordinates of sites (Gittins 1985,

Borcard et al. 1992). In canonical trend surface analysis,
site scores optimize the spatial component of the

variation of community composition and they can be
mapped to depict the spatial patterns of beta diversity.

Correlations can be computed between these sites scores
and the environmental variables to evaluate if the main

spatial structures are related or not to environmental
variability. Then, significant environmental variables

can be introduced as covariables in a partial canonical
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analysis to control for their effect and focus on

unexplained spatial patterns that could reflect other

ecological processes such as biotic relationships (Bor-

card and Legendre 1994, Pélissier et al. 2002, Gimaret-

Carpentier et al. 2003). Several limitations to the use of

polynomial functions have been reported in the litera-

ture such as their ability to only account for smooth

broad-scale spatial patterns, or the collinearity found

among the spatial predictors unless orthogonal polyno-

mials are used (Dray et al. 2006).

The MEM framework solves most of the problems

posed by polynomials and offers a powerful alternative

to construct spatial predictors that can be used in spatial

ordination. However, the large number (number of sites

� 1) of spatial predictors, called eigenfunctions, pro-

duced by the MEM approach renders the multiple

regression stage of canonical methods unstable and

meaningless. To alleviate this problem, one can divide

the MEM eigenfunctions into two subsets displaying

positive and negative spatial correlation, corresponding

to those with positive and negative eigenvalues, respec-

tively, and analyze the subset that is relevant for the

study (broad or fine spatial scales). As a complement,

one can use forward selection to select a subset of spatial

predictors to be incorporated in the statistical model (see

Blanchet et al. 2008b); in that case, only a part of the

spatial information in the SWM is retained in the

analysis as significant eigenfunctions. Selection of MEM

eigenfunctions is a crucial issue and Bini et al. (2009)

showed that the use of different criteria could strongly

influence the interpretation of environmental effects in

the case of a univariate response variable. Detailed

discussions on the selection of spatial predictors can be

found in Peres-Neto and Legendre (2010) in the case of

statistical inference in the presence of spatial depen-

dence; further work is required to confirm these results

when MEM are used as a proxy for unmeasured

processes.

Several methods that incorporate the spatial con-

straint directly in the form of the SWM have been

proposed. Compared to methods based on spatial

explanatory variables, they have the advantage of

avoiding a preliminary step of selection of predictors.

These multivariate procedures are based on the diago-

nalization of a matrix describing the spatial relationships

between the variables. The construction of that matrix is

similar to the computation of a variance–covariance

matrix except that the diagonal elements are univariate

statistics of spatial autocorrelation instead of variances

while the off-diagonal elements contain bivariate auto-

correlation statistics instead of covariances. This leads to

the variogram matrix (sensu Wagner 2003) or to the

spatial correlation matrix (Wartenberg 1985) depending

on whether the Geary (1954) or Moran (1950) indices

were used to estimate spatial autocorrelation. In the

ecological literature, Thioulouse et al. (1995) proposed a

general framework that reconciles these two approaches,

while Dray et al. (2002) presented a Geary-based

method to link data sets from two different spatial

samples in the same geographic area (e.g., if environ-

mental descriptors and species have been sampled in the

same region but not exactly at the same sites). To date,

the most integrated, yet flexible example of spatial

ordination is probably the MULTISPATI method

(multivariate spatial analysis based on Moran’s I; Dray

et al. [2008]; see also Jombart et al. [2008]; M4 in Table

1), which generalizes Wartenberg’s (1985) analysis to

CA and potentially to any ordination method. The

application to vegetation data clearly showed that the

method is able to reveal spatial patterns of floristic

composition, which were not apparent in the mapping of

CA scores alone (Dray et al. 2008). Contrary to methods

based on spatial predictors, this approach preserves all

the spatial information contained in the SWM, but

unfortunately it does not yet allow the consideration of a

table of environmental explanatory variables.

A variety of options have been proposed that relate to

the definition of the SWM, the form of the spatial

constraints (SWM or its eigenfunctions) and the choice

of a particular ordination method (e.g., PCA, CA); the

latter implying different ways to quantify beta diversity.

The construction of the SWM is recognized as a critical

step in these analyses. Spatial connections between sites

may be postulated a priori, using pre-existing knowledge

about the question one wants to investigate through

spatial ordination (e.g., dispersal routes and rates).

Some spatial ordination techniques can also be used

to measure and test the importance of spatial structures.

Constrained ordination using an explanatory table of

spatial predictors (e.g., MEM) provides a way to

evaluate and test the significance of spatial structures.

The intensity of spatial patterns can be estimated as the

part of variation in community data that is explained by

spatial predictors and tested by permutation procedures

(Peres-Neto et al. 2006). Environmental descriptors can

also be introduced in this framework, leading to the

variation partitioning in canonical analysis pioneered by

Borcard et al. (1992) and Borcard and Legendre (1994)

and modified by Peres-Neto et al. (2006) to estimate and

test the relative importance of spatial structures,

environmental variables or both on the variation in

species compositions (M6 in Table 1). Some spatial

multivariate statistics have also been defined from the

variogram matrix or the spatial correlation matrix for

significance testing. For instance, Wagner (2003) pro-

posed the trace and the total sum of elements of the

variogram matrix to characterize multivariate spatial

patterns. These quantities can be tested by permutation

procedures. Deriving statistics from the spatial correla-

tion matrix directly is much harder, given that it can

contain positive and negative values corresponding to

positive and negative spatial correlation. Hence, statis-

tics based on the sum of elements of that matrix have no

meaning (i.e., positive and negative autocorrelated

patterns cancel each other out) and cannot be used.

Alternative statistics to test either positive or negative
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multivariate autocorrelation have been proposed using

multiple regression on two sets of MEMs (Jombart et al.

2008).

Spatial clustering

Exploratory analysis using spatial ordination tech-

niques may reveal that the data could be clustered across

space into groups with either narrow (sharp) or wide

boundaries between them (Fortin and Drapeau 1995). A

first but indirect way of obtaining a spatial partition is to

apply a clustering method on the site scores produced by

a spatial ordination method. A more elegant and

efficient way to delimit spatially homogeneous groups

is to incorporate spatial constraints in the clustering

method (Legendre and Fortin 1989, Gordon 1996; M11

in Table 1). Spatial adjacency or contiguity of sampling

sites can be represented by a binary SWM, which is then

used to restrict the clustering algorithm to only cluster

sampling sites that are contiguous in space, thus creating

patches (Legendre and Fortin 1989). Although two or

more patches of similar species composition would form

a single entity in an unrestricted clustering, the spatial

restriction of contiguity forces them to remain separat-

ed. Examples of application of spatially constrained

clustering to floristic variation are found in Fortin and

Drapeau (1995) and Tuomisto et al. (2003). Likewise, K-

means partitioning algorithms may be constrained by a

contiguity matrix (Legendre and Fortin 1989). Similarly,

multivariate classification and regression trees can

produce spatially constrained clusters if the geographic

coordinates of sampling sites are used as the constraints

in the analysis (Bachraty et al. 2009). By determining

spatially homogeneous patches, spatial clustering delin-

eates boundaries between adjacent spatial clusters (Fig.

3; Fortin and Drapeau 1995).

Sometimes the spatial structure is neither patchy nor

in the form of gradients, but a combination of the two.

In such cases, instead of trying to delineate patches, one

may look for transition zones showing abrupt changes in

community composition, or boundaries. Boundary

detection methods (e.g., edge detection, segmentation,

Wombling algorithms; see Fortin and Dale [2005] for a

review; M12 in Table 1) do not produce patches like

constrained clustering techniques but patches can arise

as a combination of different boundary types (width,

shape), intensities or scales (Csillag et al. 2001, Philibert

et al. 2008). Hence, boundary detection may be regarded

as a more flexible approach than constrained clustering.

The pioneering work of Womble (1951) on genetic

boundary techniques to detect zones of rapid spatial

change provided the conceptual framework to develop a

series of boundary detection methods for quantitative or

qualitative observational data (Oden et al. 1993, Fortin

1994, Jacquez et al. 2008) with emphasis on ecological

data. Alternatively, Monmonier’s algorithm (Monmo-

nier 1973) detects boundaries by finding the path

exhibiting the largest differences (found in a distance

matrix) between neighboring objects.

After deriving spatial patches either by spatial

clustering or boundary detection, one can investigate if

these patches are the result of self-organization (ecolog-

ical processes within and among species), environmental

influence, or both. To approach this question, patches in

community structure may be compared to patches

derived from environmental variables (Jacquez et al.

2008).

DECOMPOSING SPATIAL PATTERNS OF SPECIES

ASSEMBLAGES AT MULTIPLE SCALES

Scale is generally defined on the basis of the main

features of the sampling design such as the extent of the

study area or the size and spacing of the sampling units

(Wiens 1989). MEMs are orthogonal maps that provide

a decomposition of the spatial relationships among the

sampling sites based on a given SWM. Hence, spatial

eigenfunctions reflect the spatial distribution of sites and

are usually interpreted in terms of separate scales as a

spectral decomposition (Appendix; Borcard and Legen-

FIG. 3. Principle of clustering with spatial contiguity constraint. (a) Draw the sites on a map. (b) Link the sites by a connection
network, here a Delaunay triangulation, which can be represented by an adjacency matrix. (c) Cluster the (univariate or
multivariate) community composition response data by agglomerative clustering of K-means partitioning, using the link edges as
constraints: only adjacent sites or groups of sites can be clustered by the algorithm operating on the response data.
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dre 2002). Results about the most influential eigenfunc-

tions in the analyses presented in the previous section

thus straightforwardly translate into scale analyses.

Another point of view relates to the distance beyond

which observations appear as fairly independent: this

distance can be estimated by the range of the semi-

variogram (Bellier et al. 2007). From these premises,

different methods have been proposed to study the

multiscale characteristics of community data. Fully

worked examples of several of the methods described

in the following section are presented in Chapter 7 of

Borcard et al. (2011).

Spatial predictors in submodels

One can identify the MEMs that contribute signifi-

cantly to the explanation of the species response data

using canonical ordination methods. These MEMs can

be assembled into a small number of submodels, e.g.,

broad scale, intermediate scale, and fine scale. The

predicted values, generated for each submodel, can be

then reanalyzed by canonical analysis against environ-

mental variables in order to identify the environmental

variables linked to the species distributions at the scale

represented by each submodel (Borcard et al. 2004; M5

in Table 1).

An alternative is multivariate variation partitioning

(Borcard et al. 1992), which allows researchers to

partition the variation of a species response data table

among two or several explanatory tables. These data

tables may contain environmental variables as well as

spatial predictors (all MEMs, or those corresponding to

one of the submodels, e.g., the broad-scale variation, or

to several of them). This modeling allows one to

determine how much of the species variation is spatially

structured, and within that, how much variation can be

related to the influence of the measured environmental

variables (see Legendre et al. 2009, Peres-Neto and

Legendre 2010).

Analysis of a scalogram

One can perform a complete and additive decompo-

sition of the variability of a single response variable or a

multivariate data table onto the MEMs basis. This

principle is similar to the spectral decomposition based

on Fourier transforms using sine and cosine functions

(S7 in Table 2; Renshaw and Ford 1984, Munoz et al.

2007) or on wavelet orthogonal bases (Keitt and Fischer

2006). However a major point is that unlike MEMs,

these methods are restricted to regular sampling designs

(grid). A scalogram can be constructed showing how

well each MEM eigenfunction explains the variability of

the response data (Legendre and Borcard 2006).

Different statistics can be computed and tested using

permutation to summarize some properties of the

scalogram and thus identify the main scales of variation

(see Ollier et al. [2006] in a phylogenetic context).

Jombart et al. (2009) computed scalograms for a set of

individual species and assembled them into a table that

was then subjected to a particular PCA to produce a

summary of the multiscale covariation and identify the

main scales at which the species distributions were

structured (multiscale pattern analysis, MSPA; M9 in

Table 1). By analogy with Fourier analysis, Munoz

(2009) suggested that a smoothing procedure (Munoz et

al. 2007) helped to improve process inference and

allowed one to grasp independent signatures of habitat

structure (environmental control) and metapopulation

dynamics (an aspect of biotic control).

Empirical variography

Multiscale ordination (MSO; M8 in Table 1) is

another way to reveal and analyze the multiscale

structure of the spatial distributions of organisms. It

consists of computing a series of variance-covariance

matrices corresponding to different scales (empirical

variogram matrix [Wagner 2003]). The multiple scales

are represented by multiple aggregations of the original

SWM into higher-order SWMs (Couteron and Ollier

2005). Wagner (2003, 2004) concentrated on distance-

based SWMs and offered a wide range of tools to

interpret and analyze variogram matrices. As a gener-

alization of the empirical (semi)-variogram, a multivar-

iate variogram depicts how the total variance of the

community data changes as a function of distance

(Wagner 2004). The method has been generalized to a

wide range of ordination methods; this allows one to

directly interpret variogram values as portions of beta

diversity (Couteron and Ollier 2005). This generalization

also includes canonical ordination methods, allowing

one to compare the spatial structures embodied by the

initial (Y), predicted (F), and residual (R) tables.

Multivariate geostatistics

Variography can also be done by fitting a nested

variogram model to the observed experimental vario-

gram. This model considers an observed phenomenon as

the sum of several independent subphenomena acting at

different characteristic scales (Wackernagel 2003, Bellier

et al. 2007). The resulting model is a weighted sum of

elementary variogram models with different parameters

(range, sill). Different fitting procedures can be used

such as least-squares, weighted least-squares, or maxi-

mum likelihood (Cressie 1993). Model selection proce-

dures such as the Akaike Information Criterion can help

to choose among nested variogram models (Webster and

McBratney 1989). The scale components of a nested

variogram model, which directly relate to the ranges of

the individual variogram models, can then be extracted

and mapped by filter kriging, which explicitly decom-

poses the hierarchical layering of the spatial structures

identified in the data (Wackernagel 2003). Spatial

components extracted by filter kriging are conceptually

analogous to spatial eigenfunctions because filter kriging

techniques bear some analogy with spectral analysis

methods (Wackernagel 2003). The nested variogram

approach can also be used to model variograms and
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cross-variograms simultaneously through a linear model

of coregionalization (LMC [Wackernagel 2003]; M10 in

Table 1). LMC models the variance–covariance matrix

of several spatially structured variables at multiple

scales, hence depicting how relationships between

species and environment change across scales (Bellier

et al. 2007).

Bellier et al. (2007) compared PCNM (a distance-

based form of MEM) and nested variogram models and

obtained comparable results for identifying relevant

scales of species distributions, though patterns at finer

scales identified by the PCNM submodels appeared

smoother than those obtained by filter kriging. They

suggested that this could be due to the fact that nested

variogram models combine the sampling scheme and the

data in one step, whereas the PCNM method first uses

the sampling scheme to construct eigenfunctions and

then selects the eigenfunctions that are the most highly

related to the response data. In MEM-based methods,

the definition of submodels using a potentially large

number of synthetic spatial predictors is an arbitrary

step and methodological developments are still required

to refine an appropriate and rigorous approach for

submodel selection. On the other hand, nested vario-

gram modeling requires the fitting of numerous vario-

gram and cross-variogram parameters and makes strong

assumptions about stationarity for both the response

and predictor variables (i.e., the processes that structure

the environment). In multiscale ordination and scalo-

grams, there is no estimation of additional parameters

and the whole spatial information is considered,

avoiding the subjective selection of spatial predictors.

WORKED EXAMPLE: FLORISTIC COMPOSITION

ALONG THE PANAMA CANAL

Condit et al. (2002) used a model of distance decay in

similarity derived from the spatially explicit neutral

model of Chave and Leigh (2002) to illustrate the fact

that the floristic dissimilarity between forests plots along

the Panama Canal (PCW data from Pyke et al. 2001)

decreased with distance as a result of limited dispersion

and habitat effects. They showed that the observed

pattern was as predicted by the neutral model in the

intermediate range of distances (0.2–50 km). This,

however, cannot fully explain the steep decline of

similarity observed at shorter distances (,0.1 km). They

further advocated the role of local habitat heterogeneity

(canopy light gaps) to explain the departure from

neutrality at the local scale. Their approach consisted

in examining the discrepancy between the observed

dissimilarities and those expected from a theoretical

model of similarity decay fitted to the observed

similarity vs. distance function, based on the approxi-

mation of a general dispersal parameter common to all

species. Hypotheses about the niche processes acting at

local scales were suggested a posteriori to explain

departures from the fitted model.

We used here a complementary approach, initially

applied by Pyke et al. (2001) to study the PCW data set,

which consists in examining how the spatial pattern of

beta diversity changes when considering the initial

species abundance table (Y), its approximation by

environmental variables (F), and its residual counterpart

when environmental variables are factored out (R) as

proposed by McIntire and Fajardo (2009). While Pyke

et al. (2001) used a posteriori semi-variogram modeling

of ordination scores, instead, here, we used the MEM

framework to estimate and test the multiscale compo-

nents of spatial patterns in Y, F, and R.

We considered an initial floristic table Y containing

the abundances of 778 species in 50 forest plots

(supplemental Table 1 of Condit et al. [2002], from

which we omitted the 50 1-ha subplots from Barro

Colorado Island) and a table E containing four

explanatory environmental variables (annual precipita-

tion, elevation, age, and geology given in Appendix B of

Chave et al. [2004]). We applied a chi-square transfor-

mation (Legendre and Gallagher 2001) on table Y and

used a principal component analysis (PCA) to identify

the main patterns in community data. We used the chi-

square transformation to put emphasis on rare species,

which represent the majority of the 778 species in this

data set (526 species have less than 10 individuals and

581 occur in five sites or fewer). Data and R scripts are

available in the Supplement and allow one to reproduce

the different analyses presented here. We also provide

the code to perform the analyses using the Hellinger

transformation that gives more weight to abundant

species, thus producing contrasting results.

Redundancy analysis (RDA) was used to identify the

main structures explained by the measured environmen-

tal variables (analysis of F) while partial residual

analysis (PRA) allowed us to remove the effects of

measured environmental variation (analysis of R). The

spatial component S was considered using MEMs based

on a Gabriel graph (Legendre and Legendre 2012:836–

837). For each table (i.e., Y, F, and R), scalograms were

computed by projecting the sites scores on the first two

axes of the different analyses (PCA, RDA, and PRA,

respectively) onto the spatial basis formed by the 49

MEMs, which produced a partitioning of the respective

variances according to spatial scales ranked from the

broadest to the finest. In order to avoid aliasing effects

(i.e., undesired sampling artefacts at fine scales; see Platt

and Denman [1975]), scalograms are presented in a

smoothed version with seven spatial components formed

by groups of seven successive MEMs (Munoz 2009). In

the absence of spatial structure, the individual R2 values

(measuring the amount of variation explained by a given

scale) that form a scalogram are expected to be

uniformly distributed (Ollier et al. 2006). We used a

permutation procedure (with 999 repetitions) to test if

the maximum observed R2 (R2Max, corresponding to

the smoothed MEM at which the ecological pattern is

mainly structured) is significantly larger than values
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obtained in the absence of a spatial pattern. This worked

example is, to our knowledge, the first application of this

method, which was originally developed for phyloge-

netic comparative studies (Ollier et al. 2006), in a spatial

context.

The environmental variables explained a significant

proportion of the variation of the initial floristic table, Y

(R2 ¼ 0.31, P ¼ 0.041 based on 999 permutations). The

estimated table F exhibited two prominent axes,

representing, respectively, 28.3% and 21.8% of the total

variance in F, and correlating mainly with elevation (r¼
�0.94 and �0.26, respectively) and rainfall (r ¼ �0.35
and �0.80, respectively). Fig. 4 shows maps and

associated scalograms of the main ordination axes.

The scalograms for the first two axes of the initial

floristic table, Y, have similar shapes with variance

accumulation in both broad- and fine-scale components

(Fig. 4, top). The first axis exhibited a broad-scale

FIG. 4. Maps along the Panama Canal of the site scores on the first and second axes of the analysis of the original table
(principal component analysis of Y), the approximated table F (redundancy analysis with E as predictors) and the residual table R
(partial principal component analysis with E as covariables). For each score, a smoothed scalogram (the 49 Moran’s eigenvector
maps [MEMs] are assembled in seven groups) indicates the portion of variance (R2) explained by each spatial scale. For each
scalogram, the scale corresponding to the highest R2 (in dark gray) is tested using 999 permutations of the observed values (P values
are given). The 95% confidence limit is also represented by the line of plus signs.
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nonrandom spatial pattern (R2Max ¼ 0.42, P ¼ 0.006)

while the second axis had an important but nonsignif-

icant fine-scale component (R2Max ¼ 0.29, P ¼ 0.057).

The first two axes of table F (R2Max ¼ 0.42, P ¼ 0.003

and R2Max ¼ 0.76, P ¼ 0.001 for axis 1 and 2,

respectively) showed significantly skewed distributions

of the spatial variance toward the broad-scale compo-

nents (Fig. 4, middle). This result is not surprising given

that all available environmental variables included in X

varied essentially at large spatial scales. On the other

hand, the first two axes of the residual table R (Fig. 4,

bottom) showed a significant accumulation of the spatial

variance in the fine-scale components for the first axis

(R2Max ¼ 0.41, P ¼ 0.011) and a nonsignificant

structure at fine and medium scales for axis 2 (R2Max

¼ 0.20, P ¼ 0.205). This means that a significant fine-

scaled spatial pattern remained in the data after the

large-scale effects attributable to the measured environ-

mental gradients (mainly a combination of elevation and

rainfall) were partialed out.

Finally, we also performed variation partitioning of Y

(Borcard et al. 1992) considering the environmental,

broad-scale, and fine-scale components. Following

Blanchet et al. (2008b), a forward selection procedure

was applied to the MEM spatial predictors (those

associated with nonsignificant Moran’s indices were

removed a priori), and 13 MEMs explaining 42.9% of

the total variation of Y were selected. These MEMs were

then divided in two groups corresponding to broad

scales (9 MEMs associated with a positive Moran’s

statistic) and fine scales (4 MEMs associated with a

negative autocorrelation). Variation partitioning (Fig. 5)

identified a significant pure broad-scale spatial fraction

(adjusted R2 ¼ 0.11, P ¼ 0.005), a significant pure fine-

scale spatial fraction (adjusted R2 ¼ 0.10, P ¼ 0.005), a

slightly significant pure environmental fraction (adjusted

R2 ¼ 0.06, P ¼ 0.049) and a fraction corresponding to

broad-scale structured environment (adjusted R2 ¼
0.06). These results indicate prominent effects of large-

scale environmental drivers on the spatial structure of

communities. The detection of additional significant

broad-scale spatial patterns in residuals suggests that

there are other important large-scale drivers (be they

environmental, historical or biotic) in this system. Fine-

scale structures could be generated by dispersal process-

es (Condit et al. 2002, although probably limited by the

omission of the 50 1-ha plots from Barro Colorado

Island), biotic interactions, or micro-site effects of

unmeasured environmental factors.

CONCLUDING REMARKS

Beyond the standard nuisance viewpoint, an alterna-

tive and more promising perspective is that describing

spatial structures in data can help us challenge our

models and improve our understanding of species and

community distributions (Legendre 1993). Spatially

structured residuals usually indicate either that the

model may be misspecified in the sense that important

predictors may be missing from the model or that other

processes are important besides the effects of the

measured environmental factors (Griffith 1992, Fortin

and Dale 2005, Wagner and Fortin 2005, McIntire and

Fajardo 2009). Habitat models relating habitat charac-

teristics to community structure are expected to answer

at least two questions: (1) How well is the distribution

of a set of species explained by a set of predictor

variables? and (2) Which predictors are irrelevant or

redundant in the sense of failing to strengthen the

explanation of patterns after other predictors have been

taken into account? The first question relates to the

predictive power of the model that can be used, for

example, in conservation management, for questions

such as estimating habitat suitability, forecasting the

effects of habitat change due to human interference,

establishing potential locations for species reintroduc-

tion, or predicting how community structure may be

affected by the invasion of exotic species. The second

question is important for heuristic development such as

determining the likelihood of competing hypotheses to

explain particular patterns in community structure

(Peres-Neto 2004). Given that a number of ecological

processes are spatially structured, one way to account

for some of the unrecorded or unavailable information

is to use spatial predictors in our models as proxies for

missing, but otherwise important predictors, e.g.,

missing environmental variables, biotic interactions,

dispersal, or even long-lasting historical effects such as

biogeographical events (Leibold et al. 2010). The

methods presented in this review and summarized in

Table 1 offer different alternatives to explicitly intro-

duce space into community analysis; an R package

FIG. 5. Variation partitioning results of the Panama Canal
data among an environmental component (lower left circle), a
broad-scale spatial component (upper left circle), and a fine-
scale MEM spatial component (right circle). The empty
fractions in the plot have small negative adjusted R2 values.
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implementing them is under development (available

online).17 We consider that these tools will help

ecologists implement appropriate methods to model

their data in a more precise spatially explicit framework

for generating and testing specific relevant hypotheses

regarding patterns and potential processes.

Another point that is rarely considered is that

omitting relevant explanatory variables or representing

them by an incorrect functional form leads to model

misspecification, which can translate into spatial non-

stationarity (Fotheringham et al. 2002). Within this

framework, the use of local statistics (Anselin 1995) can

be relevant to better understand the nature of the

misspecification and to identify the spatial structure of

variables that have been omitted from the model and

should be introduced to improve its accuracy. It is clear

that this perspective has been underexplored and its

development could be useful in ecological studies.

Recently, this approach has gained attention by the

application of geographically weighted regression (Fo-

theringham et al. 2002), which allows the study of the

spatial non-stationarity of coefficients estimates (i.e.,

local changes in the relationships between the response

and explanatory variables in linear univariate models).

However, this method has been questioned in the

spatial statistics literature (e.g., Finley 2011) and it

seems difficult to extend it to the case of multiple

species responses. A promising alternative might be to

capture this non-stationarity by introducing interaction

terms between environmental variables and spatial

eigenfunctions in species–environment models (Griffith

2008).

As specific spatiotemporal signatures are expected

from population and community dynamics, an impor-

tant future objective should be to express predictions of

mechanistic models, either analytic or simulation-based,

in a way that can be directly investigated by spatially

explicit multivariate methods. Observed data could then

be used for model testing, as in the worked example, and

inference about model parameters (Beeravolu et al.

2009). Using such an approach, Munoz et al. (2007)

applied Fourier analysis to gridded species occurrence

maps by reference to a classical metapopulation model

and uncovered distinguishable signatures of population

dynamics and habitat structuring. Condit et al. (2002)

considered the predictions of a neutral model regarding

the decay of compositional similarity with distance and

concluded that departures from expectations are prob-

ably explained by environmental determinants. Note

that the focal model in Condit et al. (2002) was the

neutral random dispersal of species with distance, rather

than a model of species responses to environmental

predictors. Yet, there is increasing evidence that

compositional turnover, i.e., beta diversity, is shaped

by interactions between geographic connections and

environmental heterogeneity. An exciting challenge is

therefore to use the diversity of spatialized multivariate

techniques to identify the various modalities of such

interactions. Although recent studies based on artificial

data generated by mechanistic models seem to indicate

that variation partitioning is inefficient to distinguish

signatures of neutral and niche processes (Smith and

Lundholm 2010), we are convinced that a thorough

analysis of the multiscale components of multivariate

spatial structure, spatial dependence and spatial corre-

lation through the partitioning of the community data

(Y) into tables of fitted (F) and residuals values (R), will

allow researchers to identify the important potential

environmental factors that influence the variation of

beta diversity. It could help to design further empirical

studies by identifying unexplained spatial patterns that

could be due to the omission of important environmen-

tal variables or to other types of ecological processes.

Additional information on species (e.g., phylogeny or

traits) could be integrated in this analytical framework

to explore new questions and refine ecological hypoth-

eses (Cavender-Bares et al. 2004, Ives and Helmus 2010,

Leibold et al. 2010, Peres-Neto et al. 2012). In the future,

our understanding of ecological processes and associat-

ed community structures would benefit from a general

framework integrating the development of ecological

theories, mechanistic models and statistical methods.

This would help to define testable hypotheses concerning

the observed patterns and would allow for a rigorous

evaluation of statistical methods that could be used in

empirical case studies.
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SUPPLEMENTAL MATERIAL

Appendix

From spatial weighting matrix (SWM) to Moran’s eigenvector maps (MEM) (Ecological Archives M082-011-A1).

Supplement

Data and R scripts to reproduce the different analyses of the tropical forest data set (Ecological Archives M082-011-S1).
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Appendix A – From spatial weighting matrix (SWM) to Moran’s eigenvector maps (MEM) 

A spatial weighting matrix (SWM) is a way to code the strength of the potential interactions 
between spatial units. For a given spatial organization of n sampling locations, Dray et al. (2006) 
proposed to construct a n-by-n SWM W as the Hadamard product (i.e. the element-wise product) 
of a n-by-n connectivity matrix B by a n-by-n weighting matrix A. The connectivity matrix is 
binary and we have: 

 

 The weighting matrix A (Ai,j ≥ 0) allows users to give unequal importance to the spatial 
links of matrix B to obtain a more realistic representation of potential spatial interchanges among 
the sampling units. These weights may be derived from functions of spatial distances or represent 
any other measure of the easiness of transmission of matter (e.g. organisms), energy, or 
information between sampling sites. 

 For instance, the SWM corresponding to the PCNM method is computed using a distance-
based criterion. A threshold value t is chosen and we have the following rules: 

 and  

where dij is the geographic distance between sampling points i and j. 

 For a given SWM, W, the construction of Moran’s eigenvector maps (MEM) is obtained 
through the diagonalization of the doubly-centered (i.e. by row and column) matrix HWH: 

(HWH)V = VΛ  

where H is a centering operator equal to  with I the n-by-n identity matrix and 1 a 
n-by-1 vector of ones. Matrix V contains eigenvectors in columns and matrix Λ  is a diagonal 
matrix of associated eigenvalues. These eigenvectors are centered and orthogonal (by definition); 
they maximize the spatial autocorrelation measured by Moran’s (1950) statistic. Hence the first 
eigenvector corresponds to a distribution of values that gives the upper bound of Moran’s index 
for the given SWM. The second eigenvector maximizes Moran’s index with the constraint of 
being orthogonal to the first eigenvector, etc. In summary, MEM represents a spectral 
decomposition of the spatial relationships among the observation points and results into a set of 
multiscale spatial explanatory variables called spatial eigenfunctions. In practice, the first 
eigenvectors associated to high positive eigenvalues allow users to model broad-scaled spatial 
phenomena while the last ones correspond to negative eigenvalues and fine scales. 



 The MEM eigenfunctions differ depending on the spatial organization of the points on the 
map. Some MEMs are mapped in Figure A1. The eigenfunctions shown in panels c-h have 
positive Moran’s I values whereas the eigenfunction in panels i-j display negative Moran’s I. All 
MEM are orthogonal within each set (Fig. A1). 
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