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Abstract. Over the past 20 years, sonar remote sensing has opened ways of acquiring new
spatial information on seafloor habitat and ecosystem properties. While some researchers are
presently working to improve sonar methods so that broad-scale high-definition surveys can
be effectively conducted for management purposes, others are trying to use these surveying
techniques in more local areas. Because ecosystem management is scale-dependent, there is a
need to acquire spatiotemporal knowledge over various scales to bridge the gap between
already-acquired point-source data and information available at broader scales. Using a 675-
kHz single-pencil-beam sonar mounted on the remotely operated vehicle ROPOS, 2200 m
deep on the Juan de Fuca Ridge, East Pacific Rise, five dominant habitat types located in a
hydrothermal vent field were identified and characterized by their sonar signatures. The data,
collected at different altitudes from 1 to 10 m above the seafloor, were depth-normalized. We
compared three ways of handling the echoes embedded in the backscatters to detect and
differentiate the five habitat types; we examined the influence of footprint size on the
discrimination capacity of the three methods; and we identified key variables, derived from
echoes that characterize each habitat type. The first method used a set of variables describing
echo shapes, and the second method used as variables the power intensity values found within
the echoes, whereas the last method combined all these variables. Canonical discriminant
analysis was used to discriminate among the five habitat types using the three methods. The
discriminant models were constructed using 70% of the data while the remaining 30% were
used for validation. The results showed that footprints 20–30 cm in diameter included a
sufficient amount of spatial variation to make the sonar signatures sensitive to the habitat
types, producing on average 82% correct classification. Smaller footprints produced lower
percentages of correct classification; instead of the habitat types, the sonar data responded to
intrapatch roughness and hardness characteristics. The sonar variables used in this study and
the methods for extracting and transforming them are fully described in this paper and
available in the public domain.

Key words: canonical discriminant analysis; habitat types; hydrothermal vents; Juan de Fuca Ridge;
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INTRODUCTION

Broad-scale remote-sensing surveys have brought

many benefits to agriculture, mineral exploration, and

environmental management in the terrestrial environ-

ment. In the field of landscape ecology, satellite imagery,

airborne photography, hyper-spectral imagery, passive/

active microwaves, radar, lidar systems, and so forth

provide information on habitat distribution, evolution,

connectivity, structuring process, recovery rates, as well

as evaluation of transition zones, metapopulations, and

even plant population physiological status such as stress

level (Lee and Chough 2001, Carey et al. 2003, Hewitt et

al. 2004, Kotchenova et al. 2004, Lee and Anagnostou

2004, Moya et al. 2004, Schmidtlein and Sassin 2004).

However, because seawater is relatively opaque to

electromagnetic waves (Foster-Smith and Sotheran

2003), optical and radio frequency remote-sensing tools

find few applications in ecological studies and habitat

management on the deep ocean floor. Considering that

more than 60% of the Earth’s surface is covered by 1000

m or more of water, the lack of efficient investigation

tools constitutes not only a serious obstacle to under-

standing the dynamics of biodiversity and ecosystem

functioning at a global scale, but also impairs our

capacity to correctly manage deep-sea resources. On the

rare occasions in which towed platforms and research

submersibles reach such depths, mounted video and still

cameras can be used to survey organism distributions

and, at smaller scales, to obtain direct estimates of

benthic organism density, microtopography, and sub-

strate characteristics. However, the spatial scope and

resolving power of light-based systems remains very

limited in what is essentially an aphotic and light-

absorbing (i.e., turbid) environment. Consequently,

detailed optical imaging of the deep seabed must be
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conducted at very slow speeds and can rarely be done

from altitudes that would provide optimal spatial

resolution (Parry et al. 2003, in situ experimentation).

Benthic ecologists have long awaited the development of

efficient remote-sensing techniques that could be applied

from a distance over large areas of the deep ocean floor

(Hewitt et al. 2004). Even with the recent advances in

light-based and laser-line systems (Irish and Lillycrop

1999, Carey et al. 2003) developed for shallow environ-

ments such as the coastal zone, acoustic technology

remains the only method that has the potential to carry

information through ultimately thousands of meters of

water. Acoustic data also lend themselves much more

easily to automated mapping and statistical analyses

than do maps produced from underwater cameras.

Acoustic sounders and later-developed multibeam

sonars have been used extensively for precise, broad-

scale mapping of seafloor topography. More recently,

innovations in sonar technology have allowed research-

ers to demonstrate the potential for accurate mapping of

seafloor habitat characteristics at broad scales. Through

established methods (Burns et al. 1989, Chivers et al.

1990, Prager et al. 1995, Clarke and Hamilton 1999,

Burczynski 2001, Hamilton 2001, Ellingsen et al. 2002,

Legendre et al. 2002), commercially available systems,

such as BioSonics’ VBT, Echoview, QTC VIEW, or

RoxAnn, are now used by researchers to extract habitat

information from returning acoustic signals. One line of

current research is the development of effective methods

to cover large areas that would involve making the

footprint of the sonar beam (sample area) large enough

to reduce extrapolation needs. This would, however,

result in loss of information on microscale habitat

heterogeneity, which is of great importance for com-

munity ecology and for maintenance of biodiversity.

Understanding ecological dynamics and managing

ecosystems require the ability to effectively map broad

expanses, as well as an understanding of smaller-scale

ecosystem features, which quite often play a determining

role at broader scales.

Using only acoustic spectral features, Pace and Gao

(1988) successfully classified six seabed types: sand, mud,

clay, gravel, stone, and rock. Today, the most com-

monly used method is to use a side-scan sonar using

frequencies of ;1–200 kHz to detect the substratum

type through the use of backscatter intensity curves and

texture analysis of side-scan images (e.g., Brown et al.

2002, Zajac et al. 2003, Hewitt et al. 2004). But there has

been little methodological development for backscatter

interpretation at the higher acoustic frequencies that

could distinguish seafloor habitats and macrofaunal

communities.

This paper begins this methodological development

by experimenting with acoustic returns from a high-

frequency sonar, in order to address the following

questions: (1) Is the information found within back-

scatters informative enough to allow accurate discrim-

ination of abyssal benthic habitats, in this particular

case, five hydrothermal habitats within a vent field

ecosystem? (2) If so, does increasing footprint size allow

the acquisition of backscatters that are increasingly

representative of the spatial heterogeneity inherent to

each habitat? (3) Can we find specific sets of variables

that could be used to correctly identify the nature of the

habitat surveyed, based on sonar signatures?

MATERIALS AND METHODS

Acoustic information was obtained during dives of

the remotely operated vehicle (ROV) ROPOS in 2001

and 2002. Dives were conducted during cruises of the

Canadian Coast Guard Ship J.P. Tully to the hydro-

thermal fields of the Endeavour Segment of the Juan de

Fuca Ridge in the northeast Pacific Ocean, 300 km

southwest of Vancouver Island. Acoustic data were

obtained using an Imagenex 881B single-beam sonar,

equipped with a subminiature profiling head unit model

881–000–130 (Imagenex Technology, Port Coquitlam,

British Columbia, Canada) using 675-kHz frequency

and a 1.78 pencil beam width, mounted on the

submersible. Subsea positioning was determined using

a long baseline (LBL) acoustic navigation system

(Teledyne Benthos, North Falmouth, Massachusetts,

USA) that included a PS8010 Edgetech transceiver

(Edgetech, West Wareham, Massachusetts, USA) and

five bottom transponders georeferenced using the

vessel’s dynamic GPS system. All interrogation, receiv-

ing, and processing related to this LBL system was

handled through the Seascape and Workboat software

(Software Engineering Associates, Seattle, Washington,

USA) on the support vessel.

For all the local navigation and ground-truthing

procedures, images from the submersible’s low-light,

silicon-intensified targeting (SIT) camera, as well as a

three charge-coupled device (3-CCD) color video were

recorded on S-VHS or digital (mini-digital video) tapes

for post-processing (mainly habitat identification and

transect filtering).

To transform and statistically analyze the collected

sonar information, we developed functions under R-

project version 2.1.0 (R Development Core Team 2005).

R is a statistical language freely downloadable from the

Internet.

Study site and habitat description

Located 2200 m deep on the Endeavour Segment of

Juan de Fuca Ridge (47857 04700 N, 12980503000 W),

Clambed is a hydrothermal vent field of ;50 3 20 m

with a central, actively venting chimney (named ‘‘Her-

shey’’) standing 2–3 m tall and surrounded by localized

diffuse venting. Covered mostly by broken lava flows and

nearly sediment-free, the site’s overall topography

consists of two roughly parallel 2–3 m high north/south

trending ridges colonized by hydrothermal vent tube-

worms (Ridgeia piscesae; see Plate 1) and polychaete/

limpet assemblages (Paralvinella palmiformis, Paralvinel-

la sulfincola)/(Lepetodrilus fucensis). Between the ridges,
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lightly sedimented depressions are found, which host

small communities of vesicomyid clams (Calyptogena cf.

pacifica), another hydrothermal vent species. Based on

previous sightings of the studied vent field and on work

on Juan de Fuca Ridge hydrothermal species assemb-

lages by Sarrazin and Juniper (1999), five visually distinct

and dominant habitats were selected to be probed in situ.

In Fig. 1, a photograph of each habitat is associated with

a sample sonar signature (first echo only).

1. Ridge top with dense, continuous tubeworm bushes

(habitat code: Tube).—Within this key habitat, the

structure complexity of the dense tubeworm commun-

ities has been hypothesized to be a leading factor in

diversity (Tsurumi and Tunnicliffe 2003). The channel-

ing effect that tubeworm communities have on the

hydrothermal fluid might reduce the environmental

chemical and thermal fluctuations, just as the wind or

temperature fluctuations are buffered in a terrestrial

forest habitat. Within this microcosm, tubeworms can

either serve as food source, refuge, or substratum, or as

hunting ground. Easy to distinguish from the other

habitat types, these dense, white, bush-like structures are

often covered by microbial mats (e.g., Arcobacter sp.

and Folliculina sp.; Wirsen et al. 2002, Léveillé and

Juniper 2003) and host many small worms and gastro-

pods (e.g., Lepidonotopodium piscesae, Paralvinella dela,

Paralvinella palmiformis, and Depressigyra globulus) and

squat lobsters (Munidopsis alvisca). Species residing

within the tubeworm bushes are rarely visible in the

video recordings.

2. Ridge top with semi-continuous tubeworm bushes

(habitat code: Peri).—Found at the boundary of dense

tubeworm bushes, this habitat exhibits low tube

densities and is the most visually diverse of the five

habitats selected. Species found both outside and inside

the tubeworm colonies can be seen in recorded imagery.

The substratum is clearly visible over ;50% of the area.

3. Ridge top without tubeworms (habitat code:

Lava).—This habitat is the most common of all five

habitats studied, and it consists of bare to lightly

sedimented broken basaltic flow sheets. It is colonized

by very low densities of species non-endemic to hydro-

thermal vents, such as unidentified holothurians, star-

fish, sponges, anemones, and a few crinoids.

4. Ridge top with polychaete/limpet assemblages (hab-

itat code: Limp).—Usually located in the immediate

vicinity of visibly intense hydrothermal flow emissions,

these highly localized and dense communities of limpets

and polychaetes can completely cover the underlying

substratum. Some polychaetes (e.g., Lepidonotopodium

piscesae and Branchinotogluma grasslei) can be seen

attached to the small tubes and shells of Paralvinella

palmiformis, Paralvinella sulfincola, and Lepetodrilus

fucensis.

5. Sedimented depression with clams (habitat code:

Clam).—Within the most sedimented sections of

Clambed, a mixture of clams, empty shells, and a few

fallen tubeworm tubes occur in sediment patches often

visited by spider crabs (Macroregonia macrochira).

Study design

In a pilot study (Durand et al. 2002), we showed that

sonar signatures were sensitive enough to differentiate

geological and biological features based on their

respective densities, textures, and structures. To pursue

the assessment of the use of sonar signatures as a

remote-sensing tool requires some basic assumptions to

be made: (1) Local water variations in chemistry,

temperature, and amount of suspended particles did

not significantly influence backscatters. (2) The ROV

PLATE 1. Glimpses of the habitat at the Clam and Tube sites. (Left) Two spider crabs feed within a community of clams and
scattered tubeworms. (Right) A high-density colony of the same species of tubeworm, Ridgeia piscesae. These tubeworms can grow
to 2 m long. Photo credit: S. Durand.
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submarine noises, gear, or transponder sonar installa-

tions did not interfere with the sonar acquisition process.

(3) For every acquired backscatter, the area of seafloor

receiving the sonar interrogation ping was horizontal

and flat (Clarke and Hamilton 1999).

To assess the discrimination power of our sonar

system, sonar data were collected at different altitudes

from 1 to 10 m above the seafloor, using vertical

transects. At least three vertical transects representing

each habitat were taken at different locations in the field.

With the sonar head always pointing straight down (at

zero degree angle), each vertical transect started in a

stable and controlled position with the ROV resting on

top of the selected site. After a short acquisition period,

henceforth referred to as the stable section, a slow and

controlled vertical ascent was instigated. During sonar

acquisition, both the SIT and color video cameras were

recording. Once beyond 5 m of altitude, the pilot

increased the submarine ascent speed to minimize

unwanted horizontal drifting. Drifting is caused in part

by the increased speed of horizontal currents as the

submersible rises above the seafloor; it is also a direct

consequence of visibility deterioration with altitude,

which interferes with piloting. Using reference points

such as key geological structures and other objects

visually identified at the beginning of each transect

recording, the transect positioning and good visibility

could be ensured only until an altitude of 10 m. None of

the data acquired beyond this altitude limit were used

since the positioning was too uncertain and prone to

error. A total of 18 vertical transects were acquired, with

a mean duration of 4.5 min and ;670 sonar pings per

transect. In 52 min 53 s of raw recording, 7761

backscatters were recorded in digital form with a mean

sampling interval of 0.41 s, within the 1–10 m altitude

range.

SIGNAL PROCESSING METHODS

Visual filtering and data treatments

With the footprints localized on SIT video frames,

each sonar transect was visually filtered. Transect

segments in which the footprints were outside the

targeted habitat and frames with poor visibility were

eliminated. Using an algorithm developed for this

research and described in the next two subsections, the

FIG. 1. Sample echo signatures at an altitude of 8.5 m (left), corresponding to the habitat types pictured on the right. To
represent the sample echo signatures, only the first echoes of the backscatters were used here; the first and second echoes are
described in Fig. 2. The selected habitats are located 2200 m deep on the Endeavour Segment of Juan de Fuca Ridge in the
northeast Pacific Ocean.
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raw backscatters of the retained transect portions were
analyzed. The beginning of the first echo was located by

scanning the backscatters for their first substantial
intensity increase. These areas were then used to

estimate the sonar head acquisition altitude during
sampling; Fig. 2 describes how the backscatters were
segmented. Using these altitude estimates, a filtering

procedure was initiated to identify and remove any other
obviously bad signals carrying incomplete echoes or

erroneous intensity curves. To detect and locate the first

and second echoes (Fig. 2) inside a backscatter, both the
original and smoothed backscatters were used; the

smoothing algorithm used a moving window averaging
21 consecutive intensity values. We removed any

acoustic return for which detection of either the first
or second echo failed. For the remaining 7646 acoustic
returns, we subtracted from the whole echo the signal

ambient noise, averaged from the noise estimation areas.
For logistic reasons, the recording of a large number of

the echoes stopped within the second echo set area. As a

FIG. 1. Continued.
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result, derived variables that express proportions be-

tween the first and second echoes consider only the

second echo rise area.

Since our data were acquired at different altitudes, to

compare echoes with one another, a depth normal-

ization procedure was applied to correct both the

strength of the recorded intensity values and the

temporal spreading of the backscatters (Clarke and

Hamilton 1999, Hamilton 2001). Note that since the

sonar beam is a cone, the size of the sampled area, or

footprint, is physically linked to the acquisition altitude.

Therefore, even with depth normalization that accounts

for temporal spreading and power, it is not possible to

compensate for the effect of insonifying a large vs. a

small habitat area. To assess the impact of such

variation, altitude-dependent data tables, described

below, were extracted and analyzed.

Sonar variable extraction methods

Three approaches were used to extract variables from

backscatters. The first approach is similar to the

methods used in the QTC VIEW, RoxAnn, and

BioSonics software. We computed a series of variables

from both the first and second echo sections of all depth-

normalized backscatters, producing a data table of 28

extracted variables referred to as VE (not shown),

describing locations, sections, or proportions of areas.

These variables are described in Appendix A (Table A1).

The second method used only the intensities of the

first echo as variables. Once depth normalization was

applied, the associated temporal correction stretched or

compressed the individual acoustic returns. Intensities

had originally been recorded at 13.333-ls intervals; the

intensities making up the first echo were resampled with

a 10-ls sampling interval, after smoothing using the

‘‘interspline’’ function of the R language (R::pack-

age::splines::interspline). Using these equally spaced

intensity values, we created our intensity variables (Int)

by averaging sets of five consecutive values, and we

assembled them in a data table referred to as VI (not

shown), which contained a maximum of 92 consecutive

intensity variables per backscatter. For shorter echoes

not producing 92 variables, zeros filled the empty cells.

The third method combined all the variables found in

VE and VI into a new data table called VT.

In Fig. 3, each box plot gives a descriptive insight into

the role of the first 30 intensity variables used in the VI

and VT data tables. By combining the box plot positions

and the mean and median lines, it is possible to visually

characterize the variables. The variables averaged from

the corresponding intensity groups 1–5, 6–10, and 11–

15, called ‘‘Int1–5,’’ ‘‘Int6–10,’’ and ‘‘Int11–15,’’ respec-

tively, clearly represent the rising portion of the echoes.

Variables ‘‘Int16–20’’ and ‘‘Int21–25’’ describe the first

echo peak. The intensity values from 26 to 90 (intensity

variables ‘‘Int26–30’’ to ‘‘Int86–90’’) correspond to the

backscatter tail or set area of the first echo. Beyond that,

the curve becomes flat and cannot be visually inter-

preted.

Data filtering, segmentation, and transformations

In data tables VI, VE, and VT, any variable exhibiting

no variation within either of our habitat types, as well as

any variable showing very little variation, or fewer than

10 individual values differing from the mean, was

removed. The first 59 variables were kept in data table

FIG. 2. Echo segmentation of a real backscatter, acquired at 1.28 m of altitude, for which intensities have only been filtered for
noise. The intensity variables described in Fig. 3 come from the first echo complete area. The other variables were extracted using
both the first and second echoes.
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VI (‘‘Int1–5’’ to ‘‘Int291–295’’); 25 variables remained in

data table VE after ‘‘Histo5’’ to ‘‘Histo7’’ had been

removed (Appendix A: Table A1).

In order to bring the data tables close to the

multinormality condition, which would improve the

performance of discriminant analysis (see Statistical

analyses), different transformations were applied to the

VI and VE data tables prior to the creation of table VT.

In data table VI, 15 possible transformations described

in Table A2 of Appendix A were tried in turn on six

different subtables. Because all variables found in data

table VI are of the same nature (they represent signal

intensities), they should all be subjected to the same

transformation. To estimate the common skewness of all

transects, we standardized the values of each variable

within each transect, which controls for the effect of the

first two moments of their distributions, and combined

the standardized values in a single table. The absolute

values of skewness were averaged across variables for

each VI data table. The transformation that produced

the smallest mean skewness was selected.

For data table VE, all variables were not of the same

nature and did not have similar distributions. Therefore,

for each variable we tested the following: no trans-

formation, the square-root, the double square-root, or the

log transformation and selected the transformation that

produced the smallest skewness. After applying the best

transformation to each variable, all variables found in the

VI and VE sets were combined to create VT data tables.

For each of the resulting and newly transformed VI,

VE, and VT data tables, five new subtables were created.

Using only the backscatters found in the stable section

(code STB, ;1 m altitude) of each transect, STB

subtables were constructed for each habitat and used

for control and initial tests. This application was

restricted to the STB subtables because all their back-

scatters had been acquired during the period of greatest

visibility, ensuring accurate habitat identification; alti-

tude variations were also minimal so that the acquisition

of returns was unaffected by depth-related phenomena

(see Clarke and Hamilton 1999). Then, three altitude-

related subtables were created using the following

backscatter altitude acquisition ranges: 1–4 m, 4–7 m,

and 7–10 m. Finally, for each of the five habitats, the

backscatters found in the best altitude transect, in terms

of visual sample quality and ROV displacement, were

used to produce the BEST subtables. We then assessed

the discriminating power of our three sets of variables

found in the VI, VE, and VT data tables and the effect of

altitude and footprint size by combining the information

provided by the analysis of all these subtables.

Statistical analyses

To assess the discriminating power of the sonar

variables found in the VI, VE, and VT data tables, the

percentage of correct classification (PCC) after discrim-

inant analysis was computed using the function R-

Pkg::MASS::predict.lda. For each data table, a random

selection representing 70% of the backscatters was used

the compute the discriminant model while the remaining

30% served to predict the habitat associated with each

backscatter. The PCC index was calculated for these

validation data.

For each data table, variance condensation was

achieved by principal component analysis (PCA). We

used only the principal components accounting for 99%

FIG. 3. A combination of the intensity values of all backscatters used in this study. The cloud of gray stars represents the first
150 intensity values found in the first echo of all acoustic returns. Each box plot portrays the localized distribution of five
consecutive intensity values, which form one intensity variable. The whiskers of the box plots show the minimum and maximum
values, while the boxes show subsection quartiles (25%, 50%, and 75%).
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of the variance (assembled in the COM data sets) in

linear discriminant analyses (R-Pkg::MASS::lda) and

obtained our first PCC results without selection of wave

form variables; see Table 1.

Alternative strategies were also used. Firstly, instead

of computing a PCA for each VI, VE, and VT data

table, the variables with the highest contributions were

identified by forward selection with permutation tests. A

function to carry out discriminant analysis, following

the algorithm described by ter Braak and Smilauer

(2002: section 3.11) with forward selection of explan-

atory variables (ter Braak and Smilauer 2002: section

5.8.1), was developed in the R language by S. Dray

(personal communication). Using only this selection of

variables, henceforth referred to as FWD, discriminant

analysis was computed again, producing another set of

percentages of correct classification describing the

discriminating power of a smaller set of selected

variables for each of the three kinds of data tables (VI,

VE, and VT). Secondly, since the set of selected

variables varied from table to table, identical sets of

variables had to be used in all tables to allow

comparisons and understand the role of key variables.

By choosing the variables with the highest selection

frequencies in all FWD selections (Appendix A: Table

A3), we created a subset of three variables called SEL.

Discriminant analyses were computed with it, and a

series of explanatory discriminant analysis plots were

produced (Appendix B).

RESULTS

Depth variation has been shown in the literature to

affect our capacity to detect and differentiate sonar

signatures (Hewitt et al. 2004). Without a proper depth

normalization procedure, the effects of uncorrected

altitude fluctuations are likely to overshadow the

variation inherent in the nature of the seabed and

fatally link the sonar signatures to altitude-related

variables. To perform an accurate depth normalization,

since the rate at which the sound is absorbed as it travels

through water was estimated instead of being precisely

measured, corrective measures were taken. To adjust the

absorption rate and consequently optimize our depth

normalization procedure, we used several plots such as

those presented in Fig. 4 to visualize the effect of the

power correction by comparing original to the power-

normalized backscatters, respectively drawn in Fig. 4a

and b. The thick and dark gray lines shown in both plots

represent strong intensities and correspond to the first

and second echo areas. In Fig. 4a, as the ROPOS gained

altitude, the intensity of the backscatters weakened from

left to right in all transects; consequently, paler grays are

showing in the right-hand portion of each transect. In

Fig. 4b, the power normalization algorithm removed the

fading, to a point at which a homogeneous gray

background was found, from left to right, within and

among transects. The darker curves look more homoge-

neous; this is a visual sign of an accurate power

correction (meaning as in Hamilton [2001]). Comparison

TABLE 1. Percentages of correct classification.

Variable set
and methods

Tables and subtables

MeanSTB BEST ALL 1–4 4–7 7–10

VI

COM 85.4 69.9 58.7 63.1 63.0 72.4 68.8
FWD 79.6 71.0 58.1 61.3 61.7 73.1 67.5
SEL 83.8 71.6 58.6 62.8 63.3 76.9 69.5

VE

COM 94.6 78.2 65.3 67.9 67.7 77.6 75.2
FWD 90.8 72.9 61.0 65.7 59.0 68.7 69.7
SEL 86.2 74.7 58.5 63.5 62.4 68.7 69.0

VT

COM 95.8 78.8 68.0 70.7 76.6 85.1 79.2
FWD 94.4 76.9 63.4 68.7 65.5 76.9 74.3
SEL 94.1 75.5 63.6 70.4 68.4 84.3 76.1

VI mean 82.9 70.8 58.5 62.4 62.7 74.1 68.6
VE mean 90.5 75.3 61.6 65.7 63.0 71.7 71.3
VT mean 94.8 77.1 65.0 69.9 70.2 82.1 76.5
Total mean 89.4 74.4 61.7 66.0 65.3 76.0 72.1

Notes: Percentages of correct classifications (PCC) for the variable sets found in the intensity variables (VI), variables describing
echo shapes (VE), and the combination of VI and VE (VT) data tables were estimated by three methods. The first analysis (COM)
used the complete set of principal components accounting for 99% of the variance in the data. The second analysis (FWD) used
only the original variables retained by forward selection. Finally, analysis SEL used eight VI, eight VE, or all of these 16 variables,
depending on which variable set was tested. This variable selection was based on the distribution and frequency of the variables
previously selected by forward selection. Analyses were repeated using the groups of returns that were obtained when the remotely
operated vehicle (ROV) was stable and at low altitude (STB) or when they were found in the transects with the best sonar return
quality (BEST). The other groups include sonar returns found in all vertical transects (ALL) or select those acquired at specific
altitude ranges that are 1–4 m (1–4), 4–7 m (4–7), and 7–10 m (7–10). The selected habitats are located 2200 m deep on the
Endeavour Segment of Juan de Fuca Ridge in the northeast Pacific Ocean.
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of Fig. 4a and b shows that the power correction in the

depth normalization procedure increased our capacity to

visualize specific sections of the backscatters. (In Fig. 4b,

the addition of three overlaid white lines to the intensity

profiles describing the first echo start and end positions

plus the second echo start positions served two

purposes. First, they allowed us to visually assess the

success of the echo detection algorithm; secondly, they

served as visual markers showing from which sections of

the backscatters we were extracting our variables.)

The first and second echo starting curves should, in

principle, be smooth if the algorithm operates correctly,

because the physical conditions under which the echoes

were acquired involved slow and gradual ROV rise and

constant recording. This is the case for the first echoes,

but the detection of the beginning of the second echoes is

more random. Instead of having the second echo

bouncing off the seafloor to the air/water interface to

the seafloor and finally to the sonar head, our second

echoes are reflected on the seafloor, the underside of the

ROV, and the seafloor again, before reaching the sonar

head for the second time. Reflections from a large,

homogeneous air/water interface are much smoother

than reflections from the ventral surface of the ROV,

which has an irregular shape, holes, and attached

equipment such as canisters of various shapes, textures,

and densities. In addition, because the second echoes are

by nature weak, an accurate second echo detection

algorithm was difficult to produce. More work will be

necessary to improve this algorithm.

After extraction of the variables, normalizing trans-

formations were applied to all data tables. Table A1 in

Appendix A shows the VE variable names and gives the

selected transformations and associated skewness val-

FIG. 4. (a) Original profiles of recorded acoustic returns. Echoes are represented by vertical lines of pixels going from the
bottom to the top of the graph and shaded according to signal intensity (darker is stronger signal), for three vertical transects in the
Peri habitat. The three dark curves are areas of strong intensities that correspond to the peaks of the first echoes. Above these three
curves are three paler gray curves corresponding to the peaks of the second echoes. The rising shape of these lines, from left to right
along each transect, is caused by the altitude gain. When the altitude increases, the delay between the time when the signal is sent
and received for the first time by the sonar head also increases. Consequently, the resulting sonar signal intensity power is weaker
because the longer it travels in water, the more it gets dissipated and absorbed. (b) The power-normalized acoustic returns are now
uniform in shading. White lines show the boundaries of the first echoes and the second echo start positions, detected by the
algorithm. The gray lines of the second echoes are mostly hidden by the white lines drawn over them. The second echo end positions
are, in our case, the second echo maxima. The second echo end positions were not shown; they would have been barely
distinguishable because they were too close to the second echo start positions.
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ues. For the VI variables, Table A2 in Appendix A gives

the skewness values calculated for all transformations

applied to segments of the altitude transects. Exhibiting

the lowest skewness values, the double square-root

transformation followed by the arcsine transformation

was consistently the most appropriate combination of

transformations for VI variables, except for the 7–10

subtable, in which the Hellinger transformation pro-

duced a result slightly better than the arcsine trans-

formation. A double square-root followed by an arcsine

transformation was consequently applied to all VI data

tables (intensities). That transformation implies that

only the shape information remains to be analyzed in the

transformed VI data tables, since VI variables are

ranged by dividing their values by the maximum

intensity present in the original signal.

Upon examination of the VI, VE, and VT variables

retained after forward selection, the following trends

were observed (Appendix A: Table A3). On average, out

of 59 VI, 25 VE, and 84 VT available variables, only six,

seven, and nine variables, respectively, were retained by

forward selection. The frequency distribution of the

intensity variables selected in either VI or VT shows that

20% are found between Int1 and Int26, 60% are found

between Int26 and Int90, and 20% are found above

Int90 (the latter group was never selected at low altitude,

1–4 m). Consequently, inside the group of the most often

selected variables (code SEL), a similar ratio was kept:

the eight Int variables selected were ‘‘Int11–15,’’ ‘‘Int21–

25,’’ ‘‘Int31–35,’’ ‘‘Int46–50,’’ ‘‘Int55–60,’’ ‘‘Int71–75,’’

‘‘Int91–95,’’ and ‘‘Int181–185’’; for the VE variables

retained after VE or VT forward selection, the seven

variables with the highest selection frequencies were

‘‘DRSx,’’ ‘‘Skew,’’ ‘‘NewAlt,’’ ‘‘Vmn.s,’’ ‘‘Histo1,’’

‘‘Vmx.sE1,’’ ‘‘Vmx.sE2,’’ and ‘‘Time.RE1.’’

Table 1 shows differences in classification perform-

ance among the three types of data tables. Data tables

VT led to higher percentages of correct classification

than either VI or VE. Table 1 allows us to answer our

first question: Is the information found within back-

scatters informative enough to allow accurate discrim-

ination of abyssal benthic habitats, in this particular

case, five hydrothermal habitats within a vent field

ecosystem? Using only the sonar samples taken during

the stable section of each transect, defined by moments

of low altitude where the ROV was minimizing its

vertical and horizontal displacements, a control test was

performed. Even if the overall efficiency of our method

cannot be assessed using only the percentages of correct

classification for STB data, the high PCC values (82.9%,

90.5%, and 94.8%) obtained in this controlled situation

confirm that the five hydrothermal habitats under study

possess differentiable and repeatable sonar signatures.

Relationship between PCC and altitude

To verify the performance of the VI, VE, and VT data

tables between 1 and 10 m, we compared the percentages

of correct classification for all backscatters (code ALL)

to those of the transect with the best backscatter quality

(code BEST). The latter gave, on average, 12.7% better

results (Table 1). It appears that this subset of variables

displayed limited habitat variation in the sonar signa-

tures and consequently facilitated discrimination. In

order to understand why, on average, ALL and BEST

TABLE 2. Habitat assignments of all echoes based on the combination (VT) of intensity variables (VI) and variables describing
echo shapes (VE) data tables, using the complete variable sets (COM).

Habitat observed,
by altitude

Habitat assigned by sonar
Partial
PCCTube Peri Lava Limp Clam

1–4 m

Tube 859 228 30 4 2 76.5
Peri 184 996 166 48 63 68.4
Lava 3 127 780 28 48 79.1
Limp 0 8 15 806 250 74.7
Clam 0 42 27 220 772 72.8

4–7 m

Tube 373 55 14 0 3 83.8
Peri 43 271 68 4 6 69.1
Lava 28 61 176 2 3 65.2
Limp 0 4 1 231 5 95.9
Clam 1 9 9 13 119 78.8

7–10 m

Tube 113 2 0 0 0 98.3
Peri 2 103 0 1 0 97.2
Lava 3 0 71 11 0 83.5
Limp 0 2 15 89 0 84.0
Clam 0 0 0 0 29 100.0

Notes: To construct this table, all available backscatters and variables of the VT data table were used to create the discriminant
model and for prediction. The total number of backscatters in the data tables are 5706 for 1–4 m, 1499 for 4–7 m, and 441 for 7–10 m.
Partial PCC stands for the percentage of backscatters from a given habitat that were correctly classified by reference to our visual
habitat classification.
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had such low discrimination capacity (61.7% and 74.4%,

respectively) compared with the mean of 89.4% for the
low-altitude subtable (code STB), we compared the PCC

obtained for altitude-specific subtables (1–4, 4–7, and 7–
10 m) to identify how the intrahabitat variation was

distributed within our transects. At altitude ranges of 1–
4 and 4–7 m, on average, the PCCs obtained were
similar, but an increase in PCC averaging 10.7%

occurred between 4–7 and 7–10 m.
In an attempt to illustrate why an altitude-related

variation can be seen even on depth-normalized data, we
compared the classification obtained through sonar

signature discrimination with our initial visual habitat
classification for the VT data tables. The results in Table

2 provide an answer to our second question: Does
increasing footprint size allow the acquisition of echoes

that are increasingly representative of the spatial
heterogeneity inherent to each habitat? At 1–4 m, 4–7

m, and 7–10 m of altitude, the sonar beam width was
respectively 3–12, 12–20, and 20–30 cm in diameter. This

means that the very small footprints at low altitude were
more likely to detect intrahabitat patches of different

textures and densities. For example, the classification
obtained for the Peri habitat at 1–4 m shows that,

besides the 68.4% of the backscatters that were correctly
classified, most of the remaining acoustic returns were
classified as representing the Lava and Tube habitats,

which are the Peri main constituents. In the classification
results obtained for the 1–4 m and the 4–7 m data, a

clear division exists between the acoustic returns
belonging to the Lava, Peri, and Tube habitats on the

one hand and the Limp and Clam habitats on the other.
The 4–7 m data do better than the 1–4 m data at

separating the Limp and Clam backscatters. At 7–10 m
of altitude, most (91.8%) of the sonar signatures were

correctly classified, indicating that an optimal footprint
size had been reached.

TECHNICAL DISCUSSION

The influence of altitude

Having shown (Fig. 4) that an accurate depth

normalization was applied on all backscatters, because
the footprint size of the sonar beam is directly related to

the ROV altitude by physical laws, the variable ‘‘New-
Alt’’ describing the ROV altitude was used to monitor

the impact of footprint size on our discrimination
capacity. By looking at the explanatory variables

selected to describe the data tables and subtables
(Appendix A, Table A3), we realized that in the 7–10

subtables, ‘‘NewAlt’’ was never selected among the
significant variables for VE and VT. This absence was

attributed to the fact that, as the footprint expands with
altitude, the backscatter signals incorporate more and

more of the habitat’s fine-grain spatial heterogeneity.
Therefore, as long as the amount of heterogeneity
sampled is not sufficiently representative of a sampled

habitat texture and density, the nature of the informa-
tion in the backscatter is likely to change with altitude.

Thus, as long as the sonar has sampled an area

representative of the habitat general texture and density,

whatever the variation in altitude, the resulting sonar

signature variation no longer relates to altitude,

producing better discrimination among habitat types.

The nature of the five habitat type signatures

Our third and last question was: Can we find specific

sets of variables that could be used to correctly identify

the nature of the habitat surveyed, based on sonar

signatures? We used the set of selected variables (SEL)

to compute discriminant functions among habitat types

and produced six graphical representations of the

resulting habitat cluster projections on the first and

second discriminant axes (Appendix B). From these

analyses, the centroids of the habitat clusters were

correlated with the environmental variables. The corre-

lations were noted in Table 3 as either positive ‘‘þ,’’
negative ‘‘–,’’ or null ‘‘0.’’

The VE and VI results presented in Table 3 were

written to two data files, each with five rows (habitat

types) and 24 columns (the rows of Table 3), and

analyzed by K-means partitioning. For VE and VI as

well, the results indicated the presence of two major

groups of habitats differentiated by the variables derived

from the backscatters: Clam and Limp formed the first

group and Lava, Peri, and Tube formed the second.

Skewness of the first echo (variable ‘‘Skew’’), as well as

intensity variables ‘‘Int31–35,’’ ‘‘Int46–50,’’ and ‘‘Int71–

75’’ were good indicators of this partition.

1. Clam and Limp habitats.—Habitat Clam had the

most highly and positively skewed first echo, followed

by Limp. The rise section of the first echo was short and

correlated with strong intensities whereas the set section

had mostly low intensities. Clam’s sonar signatures were

also negatively correlated to the maximum value of the

smoothed first echo (variable ‘‘Vmx.sE1’’), which

indicates the presence of a smooth and soft type of

surface (Bax et al. 1999). The positive correlations of the

Clam centroid with the minimum value between the two

echoes (variable ‘‘Vmn.s’’) indicates that after the first

echo, the ambient noise remaining in the signal was

higher than for other habitats.

The less strongly skewed signatures of the Limp

habitat showed a small amount of low-class intensities

(variable ‘‘Histo1’’), very strong negative correlations

with the minimum value between the two echoes

(variable ‘‘Vmn.s’’), and good positive correlations with

the maximum value of the smoothed second echo

(variable ‘‘Vmx.sE2’’). These correlations support the

idea that the Limp habitat contained high densities of

gastropod shells, which produced a very reflective, hard,

and smooth surface allowing for low energy penetration.

The sonar wave dissipated well, which produced low

intensity values between the two echoes (variable

‘‘Vmn.s’’). An interesting fact about Limp is the differ-

entiation between the rise and set sections of the first

echo. As soon as the positively correlated rise section
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TABLE 3. Correlation between sonar variables and habitat types, for the three altitude ranges.

Notes: The table reports correlations of selected environmental variables with the centroids of the five habitat
types in the space of the first two discriminant functions for the various altitude subtables: 1–4, 4–7, and 7–10 m.
Positive, negative, and uncertain correlations are marked, respectively, as ‘‘þ,’’ ‘‘–,’’ and ‘‘0.’’ The ‘‘0’’ case
occurred when the habitat centroid was at an angle close to 908 with the variable vector or when the variable was
considered unstable based on its canonical weight and correlation vectors, shown in panels (a) and (b) of Figs.
B1–B6 of Appendix B. For each habitat, the variables showing the same correlation sign over the three altitude
classes are highlighted in dark gray; those that only have two identical signs out of three are highlighted in light
gray. In the left-hand half of the table, height echo shape variables (VE) are used. DRSx corresponds to the time
distance between rise and set area centroids of the first echo (E1). Out of a seven-class histogram describing E1
intensities based on matrix max, Histo1 is the first class. Skew is the E1 skewness, which is derived from the third
statistical moment. Time.RE1 is the time proportion between E1 rise and E1 total time laps. Vmn.s is the
minimum value found between smoothed E1 and second echo (E2). Vmx.sE1 is the maximum value in the
smoothed E1. Vmx.sE2 is the maximum value in the smoothed E2, and NewAlt is the echo acquisition altitude.
In the right-hand half of the table, height power intensity variables (VI) are used. Their number simply defines
which echo intensity values were averaged to produce the given variable. More details are given about VE
variables in Table A1 of Appendix A; see Fig. 3 for a visual representation of the VI variables.
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passed the ‘‘Int11–15’’ intensity variable, negative

correlations appeared from that point until the end of

the set section (variable ‘‘Int91–95’’).

2. Tube, Peri, and Lava habitats.—In the group with

the most negatively skewed first echoes, the Tube habitat

was the most extreme, followed by Peri sonar signatures.

In both cases, the echo shapes were the opposite of Clam

and Limp. Their intensity variable correlations de-

scribed a slow rise section, followed by higher intensities

in the set section. While the Peri signature presented

positive correlations in the set section of the first echo

until variable ‘‘Int56–60,’’ the Tube correlations were

positive until ‘‘Int91–95’’; they were more stable in the

sense that they were found more often in the entire 1–10

m altitude range. This suggests that, as the density of

tubeworms increased, the first echo became longer since

the positive correlations with intensity variables went

further to the right in the set section. Beside the fact that

the Tube’s first echo intensities could be described by

low intensities, they were shaped by numerous peaks

and troughs. The positive correlations with variable

‘‘Histo1’’ and negative correlations with ‘‘Vmx.sE2’’

indicate how weak the sonar signal became after

multiple reflections around the uneven and smooth

tubular structures of the tubeworms.

Lava represented an intermediate case between the

Tube and Clam extremes. In terms of correlations, Peri

sonar signatures were intermediates between the Lava

and Tube signatures. Obviously affected by the presence

of the relatively rough and hard lava surface within its

habitat, most of the strong correlations seen in Tube,

such as with ‘‘Skew,’’ ‘‘DRSx,’’ ‘‘Histo1,’’ or in Lava

with ‘‘Vmx.sE1,’’ were weaker in the Peri habitat. The

Lava sonar signatures correlated with a quick rise and a

set section that showed positive correlations reaching up

to ‘‘Int71–75.’’ It was also the habitat associated with the

strongest smoothed maximum in the first echo. The

high-intensity set section of Lava might relate to the fact

that most Lava reflections were influenced by the

unevenness of the broken lava sheets.

CONCLUSION

Besides surface roughness and hardness, many

factors such as sonar signal frequency, ping length,

and beam width (footprint) can affect echo shapes. One

of the major issues in backscatter analysis is the use of

correct depth normalization procedures (Hamilton

2001). To properly study the reflective nature of each

habitat, we must ensure that most of the altitude-

related variation is removed prior to analysis. The

visual representation of that correction, such as in our

Fig. 4, is quite important because it allows an assess-

ment of the procedure used.

Under the assumption of an accurate depth normal-

ization procedure, the presence of the ‘‘NewAlt’’

variable among the variables retained by forward

selection would indicate the influence of footprint size

variation. ‘‘NewAlt’’ was not selected to describe any of

the 7–10 m data tables (Appendix A: Table A3). That,

and the stronger discrimination shown by the 7–10 m

tables compared to the other depths (Table 2), led us to

conclude that footprint size can drastically affect our

capacity to investigate and ultimately detect habitat

types.

Prior to any sonar survey, it is essential to make sure

that the sonar settings are optimal. We used vertical

transects over identifiable habitat types to verify the

sonar’s ability to differentiate the five habitats under

investigation. This exercise permitted the identification

of key variables derived from backscatters and allowed

us to identify an optimal footprint size to achieve

sampling at scales that are representative of the general

habitat textures and densities. Having optimized the

sonar acquisition settings and depth normalization

procedure, to bring even more robustness to sonar

surveys, new sonar technology will need to be developed

to allow the footprint size to remain constant during

seafloor classification surveys (Legendre et al. 2002).

Even when that technology becomes available, we will

still be a long way from developing databases of sonar

signature definitions describing diverse habitat types

found over whole benthic ecosystems. To construct such

a database would require each habitat to be described

using a constant set of variables based on various and

specific sets of frequencies, footprint sizes, and pulse

lengths. Before such standardization can be initiated,

more work will be required to identify the best frequency

combinations and sets of explanatory variables.

In this paper, we have shown that abyssal habitat

identification is possible through the use of sonar

signatures based on only one frequency, using a small

and changing footprint and using a remotely operated

vehicle operating at 2200 m deep. This provides some

optimism for future sonar mapping developments.

Multiscale high-resolution seafloor sonar surveys may

prove very useful for habitat mapping, resource evalua-

tion, and ecosystem management purposes.

Before sonar-based systems can be used routinely for

broad-scale surveys of habitats, many issues remain to

be addressed both in terms of the sonar signal

frequencies to be used and the establishment of key

variable sets. Bax et al. (1999:717) wrote: ‘‘. . . it is clear

that the full power of acoustic habitat discrimination has

not yet been realized—there is far more information in

the returning echoes and the pattern of echoes than is

currently being interpreted.’’

Sonar remote-sensing surveys require both a set of

sonar signatures and some ground truthing, the latter

through either visual investigation or physical sampling,

both of which are highly time consuming. The need for

ground truthing could be reduced through the develop-

ment of a database on the behavior of sonar signatures

in various types of substrata and habitats through a

series of criteria spreading over ranges of specific

frequencies and sampling unit sizes (grain size). The

development of such a database would require cooper-
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ation between researchers and the companies providing

benthic remote-sensing services. In order to encourage

free and open communication and debate, we provide

the definitions of our variables in Appendix A for

scrutiny and use by the scientific research and technol-

ogy communities.

The sonar variables developed in this study and the

method for extracting and transforming them are fully

described in this paper and are available in the public

domain.

Technical implications for other domains

Classical remote-sensing methods are extensively used

to produce bathymetric maps describing the demersal

relief found in any type of water body. In these surveys,

variables describing the echo time of arrival, such as

‘‘NewAlt,’’ are used to compute altitude, which is, when

added to the sonar depth, the information illustrated in

bathymetric maps. With variables such as the echo

general power intensity, e.g., ‘‘Vmx.sE1,’’ texture and

density layers can be overlaid over bathymetric maps for

substrate type identification. Extending the domain of

application further, the method presented in this paper

can be used as a guide for those who either wish to

extract more information from remote sonar surveys,

find other useful variables to extract, or use new sonar

frequencies. The science behind understanding sonar

signatures is young, but it has potential applications in

fine- to broad-scale ecological surveys serving monitor-

ing, management, and exploration purposes. Fish school

identification capabilities could be improved by using

some of the sonar variables described in this paper.

Beyond the realm of aquatic sciences, sonar signatures

can be used in many terrestrial applications. Mobile

robots, which are already extensively using ultrasounds,

have external sensors; a fine analysis of the sound

returns in detection algorithm would give robots

another mean to identify the nature of the objects they

encounter.
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APPENDIX A

Three tables showing (1) the definitions of the variables describing echo shapes along with the transformation details, (2)
transformation trials for the intensity variables data, and (3) the variables retained by forward selection (Ecological Archives A016-
047-A1).

APPENDIX B

Figures showing habitat clusters that were obtained from different altitude ranges using the variables with the highest selection
frequencies (SEL variable subset) projected on the first and second discriminant axes (Ecological Archives A016-047-A2).

SUPPLEMENT

Package for data analysis of echoes used in this study and a sample data set (Ecological Archives A016-047-S1).
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DESCRIBING ECHO SHAPES ALONG WITH THE TRANSFORMATION

DETAILS, (2) TRANSFORMATION TRIALS FOR THE INTENSITY
VARIABLES DATA, AND (3) THE VARIABLES RETAINED BY FORWARD

SELECTION.
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Table A1 shows the definitions of the VE variables along with the transformation details,
Table A2 the transformation trials for the VI data, and Table A3 the variables retained by forward
selection.

 

TABLE A1. Definitions, transformations, and skewness values of the VE variables (variables
describing echo shapes).

Variable name Definition Transformation Skewness

NewAlt The computed altitude Double Sqrt 1.29

Pmx.sE1 Point of maximum found in the smoothed E1 Double Sqrt 1.24

Pmn.s Point of minimum found between smoothed E1 and E2 Sqrt 1.26

Pmx.sE2 Point of maximum found in the smoothed E2 Double Sqrt 1.36

Vmx.sE1 Maximum value in the smoothed E1 None 0.09

Vmn.s Minimum value found between smoothed E1 and E2 Double Sqrt 3.48

Vmx.sE2 Maximum value in the smoothed E2 Double Sqrt 4.18

DRSx Time distance between rise and set area centroids of E1 None 0.72

DRSy Intensity distance between rise and set area centroids of E1 None 0.14

Area.R Area below the curve of E1 rise section Double Sqrt 1.60

Area.S Area below the curve of E1 set section Double Sqrt 1.48

Area.E2 Area below the curve of E2 rise section Double Sqrt 11.78

Area.RE1 Proportion between E1 rise and E1 total area None 0.10

Area.RE2 Proportion between E1 rise and E2 rise area Double Sqrt 49.80

Time.R Time laps of E1 rise section Sqrt 1.15

Time.S Time laps of E1 set section Double Sqrt 2.06
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Time.E2 Time laps of E2 rise section Double Sqrt 4.79

Time.RE1 Proportion between E1 rise and E1 total time laps Log 0.26

Time.RE2 Proportion between E1 rise and E2 rise time laps Double Sqrt 6.72

Var E1 variance (second statistical moment) Double Sqrt 2.25

Skew E1 skewness (derived from third statistical moment) Log 0.20

Histo1 1st histogram class of E1 intensities, based on matrix max Double Sqrt 1.60

Histo2 2nd histogram class of E1 intensities, based on matrix max Double Sqrt 1.07

Histo3 3rd histogram class of E1 intensities, based on matrix max Log 0.58

Histo4 4th histogram class of E1 intensities, based on matrix max Double Sqrt 2.28

Histo5 5th histogram class of E1 intensities, based on matrix max Double Sqrt 13.94

Histo6 6th histogram class of E1 intensities, based on matrix max Double Sqrt 32.86

Histo7 7th histogram class of E1 intensities, based on matrix max Double Sqrt 69.48

   Notes: The VE variables used in our analyses were selected out of a larger set of 66 variables in
such way as to minimize collinearity among the variables. Then, out of four transformations
(none, log, sqrt, and double sqrt), the transformation producing the lowest skewness values was
applied to each of these variables. For all rising, setting, and complete sections found in our
backscatters, the areas under the curves and the time spent were calculated. The following area
and time spent proportions were also calculated: E1 rise / E1 complete and E1 rise / E2 rise. The
points and values of maximum intensity found in E1 and E2, in both the original and smoothed
curves, and the point and value of minimum intensity found between these maxima were also
described. Finally, the statistical moments, a 7-class histogram of E1 intensity values, and the
distances in the x and y directions, between the centroids of the E1 rising and setting sections,
were calculated.
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TABLE A2. Transformation trials for the VI data table and subtables.

  Second transformation   Second transformation

  

Table
types

First
transformation

None Arcsine Hellinger Table
types

First
transformation

None Arcsine Hellinger

None 2.05 1.30 1.05 None 10.62 7.70 7.49

Sqrt 1.07 0.69 0.57 Sqrt 7.51 6.06 5.82

Double Sqrt 0.69 0.44 0.62 Double Sqrt 5.95 5.51 5.58

Log 1.93 — — Log 10.51 — —

STB

Mod. Arcsine 1.13 — —

1–4 m

Mod. Arcsine 7.57 — —

None 6.04 3.96 3.81 None 4.66 3.32 3.09

Sqrt 3.82 2.75 2.61 Sqrt 3.14 2.58 2.48

Double Sqrt 2.65 2.40 2.55 Double Sqrt 2.50 2.37 2.56

Log 5.96 — — Log 4.61 — —

BEST

Mod. Arcsine 3.86 — —

4–7 m

Mod. Arcsine 3.15 — —

None 13.47 8.89 8.52 None 3.06 2.32 2.17

Sqrt 8.79 6.66 6.31 Sqrt 2.19 1.87 1.70

Double Sqrt 6.50 5.99 6.09 Double Sqrt 1.74 1.68 1.66

Log 13.36 — — Log 3.03 — —

ALL

Mod. Arcsine 8.86 — —

7–10 m

Mod. Arcsine 2.21 — —

   Notes: The presented values are the means of all skewness values computed on all VI data
tables after different sequences of transformations. The lowest (best) skewness value for each
data subset is in bold. Illogical transformations were not calculated (—). In the first set of
transformation, either no transformation (None) was applied, or the effect of high intensity
outliers on the distribution was reduced through a square root (Sqrt), double square root (Double
Sqrt), log (Log), or modified arsine transformation (Mod.Arcsine). This modified form used the
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table maximum as the denominator in the calculation of proportions, prior to computing the
square root and then the arcsine, instead of the object’s maximum in the ordinary arcsine
transformation (Sokal and Rohlf 1995). With this modification, all these transformations
conserved both the strength and shape information found in backscatters. In a second step, on all
the newly transformed tables, we performed either no transformation (None), an ordinary arcsine
transformation (Arcsine: arcsin(y/ymax)

0.5), Sokal and Rohlf 1995), or a Hellinger transformation
(Hellinger: Legendre and Gallagher 2001). The last two removed the overall intensity of the
signal and preserved only the shape information of the sonar returns. STB, BEST, 1–4 m, 4–7 m,
and 7–10 m are subtables of ALL, which refers to the complete data set. The STB subtable
contained only the echoes acquired while the visibility was optimal and the remotely operated
vehicle was in a stable position, hovering at low altitude over the selected habitat. The BEST
subtable contained only the best transect for each habitat type. The 1–4 m, 4–7 m, and 7–10 m
subtables contained echoes acquired at different altitude ranges, respectively 1 to 4, 4 to 7, and 7
to 10 m.
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TABLE A3. Variables retained by forward selection, making the FWD variable sets.

Method Table type Selected variables

STB Int46-50, Int26-30, Int81-85, Int41-45, Int71-75, Int1-5, Int11-15, Int31-35
BEST Int61-65, Int31-35, Int91-95, Int21-25
ALL Int51-55, Int71-75, Int26-30, Int41-45, Int11-15
1–4 m Int55-60, Int41-45, Int71-75, Int26-30, Int11-15
4–7 m Int51-55, Int26-30, Int171-175, Int6-10, Int101-105

VI

7–10 m Int181-185, Int31-35, Int56-60, Int11-15, Int96-100, Int186-190, Int206-210

STB Skew, Vmn.s, NewAlt, Histo1, Pmn.s, Time.R, Time.RE1, Histo4, Time.S,
DRSx

BEST DRSx, Vmx.sE1, Vmx.sE2, NewAlt, Var
ALL Skew, Vmn.s, Pmx.sE1, NewAlt, Vmx.sE2, DRSx
1–4 m DRSx, Vmn.s, Pmx.sE1, Vmx.sE2, Skew, NewAlt, Histo1
4–7 m Skew, Histo1, Vmx.sE2, Time.RE1, Pmx.sE2, DRSx, Pmn.s

VE

7–10 m Histo1, Skew, DRSx, Vmx.sE1, Time.RE1, Time.R, Time.S

STB Int46-50, Int26-30, Vmn.s, Int71-75, NewAlt, Skew, Int1-5, Int41-45, Int81-85,
DRSx, Int16-20, Pmn.s

BEST DRSx, Int31-35, Vmx.sE2, Vmx.sE1, NewAlt, Int91-95
ALL Int51-55, Vmn.s, DRSx, Vmx.sE1, Int71-75, Int41-45, Pmx.sE1, Histo2
1–4 m Int56-60, Vmn.s, Skew, Int41-45, Int21-25, Vmx.sE2, Int71-75, Pmx.sE1

4–7 m Skew, Int6-10, DRSx, Int26-30, Int171-175, NewAlt, Int106-110, Int51-55,
Int21-25, Vmx.sE2, Vmn.s

VT

7–10 m Int181-185, Skew, DRSx, Int31-35, Int71-75, Vmx.sE1, Time.R, Int291-295,
Time.RE1

   Notes: The STB, BEST, 1–4, 4–7, and 7–10 subtables are described in the notes of Table A2.
Based on their appearance frequencies, the VE variables “DRSx”, “Histo1”, “Skew”,
“time.RE1”, “Vmn.s”, “Vmx.sE1”, “Vmx.sE2”, “Newalt” were selected to be included in the
SEL variable set. For the VI set, the distribution of the variables selected by forward selection
showed that 20% of the variables were describing the rise area of the first echo, and 60% for the
set area. Consequently, based on these ratios and on the variable appearance frequencies, “Int11-
15”, “Int21-25”, “Int31-35”, “Int46-50”, “Int56-60”, “Int71-75”, “Int91-95”, and “Int181-185”
were also selected to be part of set SEL.
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APPENDIX B

Ecological Archives A016-047-A2

FIGURES SHOWING HABITAT CLUSTERS THAT WERE OBTAINED
FROM DIFFERENT ALTITUDE RANGES USING THE VARIABLES WITH

THE HIGHEST SELECTION FREQUENCIES (SEL VARIABLE SUBSET)
PROJECTED ON THE FIRST AND SECOND DISCRIMINANT AXES.
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Habitat clusters, obtained from different altitude ranges using the SEL variable subset, projected
on the first and second discriminant axes.

The SEL subset of variables was used to construct the six figures presented in this Appendix. The
first three figures (Fig. B1, Fig. B2, Fig. B3) are based on the VI data tables (power intensity
values found in the echoes) whereas the following three (Fig. B4, Fig. B5, Fig. B6) on the VE
data tables (variables describing echo shapes). VT graphs are not shown since the nature of their
variable sets (VI and VE combined) makes it harder to unravel the links and relationships
between the variables and the centroids of the habitat clusters created by discriminant analysis
(R-Pkg::ade4:Discrimin). In each figure, 4 panels (a to d) and one table (e) are shown. In panels
(a) to (d), discriminant axis 1 is the abscissa and axis 2 is the ordinate. Panel (a) shows the
canonical weights of the variables; panel (b) shows the variables at angles representing their
correlations relative to the first two discriminant axes; in panel (c), the eigenvalues of the first
four discriminant axes are shown. Panel (d) shows the sonar return clusters based on their video-
assigned habitat types; for each habitat cluster, the nametag is located at the cluster centroid. In
panel (e), the classification table compares the habitats assigned by discriminant analysis
(columns) to the video-assigned habitats (rows). PCC is the percentage of correct classification.
In panels (d), the Limp and Clam habitats are always visually well-separated from the other
habitat clusters. The habitat assignations in the contingency tables of Figs. B1, B2, B4, and B5
also differentiate these two major groups. It is only in Figs. B3 and B6, which describe echoes
acquired between 7 and 10 m of altitude, that most echoes are correctly assigned.

All selected VI variables described in panels (a) and (b) of Figs. B1 to B3 have, at one altitude
range or another, shown a high canonical weight or correlation with one of the axes. This
behavior suggests that VI is a good variable set for habitat classification. When the VE variables
are used (Figs. B4–B6), the "Skew" and "DRSx" variables, which always have strong correlations
and canonical weights with the axes, played influential roles in our discrimination results. They
allowed us to identify the sonar signatures of the five dominant habitats found in a hydrothermal
vent field, 2200 m below the sea surface.
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FIG. B1. Table of variables VI, subtable 1–4 m.
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FIG. B2. Table of variables VI, subtable 4–7 m. 
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FIG. B3. Table of variables VI, subtable 7–10 m.    
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FIG. B4. Table of variables VE, subtable 1–4 m.
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FIG. B5. Table of variables VE, subtable 4–7 m.    
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FIG. B6. Table of variables VE, subtable 7–10 m. 
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