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The scope of the present paper is twofold: first, we want
to point out the differences between the concepts of
heterogeneity and heteroscedasticity, their partially
common etymology being responsible for much confu-
sion; secondly, we will brush over the statistical and
ccological perspectives on heterogeneity and its quanti-
fication, and will outline the statistical methods of data
analysis that are available to ecologists to study it. One
widcely spread ecological perspective, at least in land-
scape ecology, is based on the dictionary definition of
“heterogencous™: consisting of dissimilar or diverse in-
gredients or constituents, mixed. From a statistical
viewpoint, however, heterogencity, when applicd to the
distribution of the values taken by a random variable, is
the opposite of homogeneity, which refers to sameness
or similarity; the degree of similarity implied by the
term “homogeneity” may vary from a minimum of a
single common attribute, as in the cquality of means, to
the extreme of total sameness, that is, equivalence of
distributions. In a spatial context, the acceptation given
to the word “heterogeneity” primarily depends on the
type of spatial pattern of concern; for a point pattern, it
refers to density of points and their distribution in
space, while for a surface pattern, it concerns instead
the values taken by a qualitative or quantitative var-
iable. The ccological and statistical aspects of spatial
heterogeneity are compared; in particular, the discus-
sion from an ecological viewpoint will focus on funda-
mental aspects of spatial heterogeneity and its func-
tional role in ecosystems, combined or not with tempo-
ral variability. While heterogencity is a term commonly
used by both ecologists and statisticians, heteroscedas-
ticity is a purely statistical concept which concerns a
particular type of heterogeneity restricted to inequality
of variances. Difficulties generated by heteroscedastic-
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ity in statistical data analyses and solutions taking it into
account are briefly reviewed. Finally, a box of statistical
tools is assembled to help ecologists quantify spatial
heterogeneity.

“Spatial heterogeneity may be viewed from dynamic
or static and observer oriented or ecological entity ori-
ented perspectives” (Kolasa and Rollo 1991).

“Synonyms for this condition [equality of varianccs]
are homogeneity of variances or homoscedasticity ...
the converse condition (inequality of variances among
samples) is called heteroscedasticity” (Sokal and Rohlf
1981).

The importance of heterogeneity in ccology lies in its
ubiquity as a feature of ecosystems and in the number of
questions it raises, for which answers are not readily
available. One of these questions still is: what is hetero-
geneity? So, the idea of sorting through the often vague
concepts of ecological heterogeneity seems to be timely,
especially if the competing definitions can be referenced
against an ecologically clear and statistically correct op-
erational definition, and even if heterogeneity turns out
to have more different aspects than could be covered in
a whole book. It follows that our paper primarily in-
tends to clarify the meaning of heterogeneity when com-
pared to heteroscedasticity, their partially common cty-
mology being responsible for much confusion; we will
also comment on the implications of these concepts in
analysis of variance, experimental design, and other
aspects of statistical data analysis, in particular in the
spatial context. From a statistical viewpoint, the empha-
sis will be on the heteroscedasticity problem, which is
relevant when discussing how to quantify spatial hetero-
geneity, because that statistical viewpoint can poten-
tially bring much to the ongoing ecological discussions
about patches, scaled pattern, one- and two-dimen-
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Table 1. Results of the bibliographical research carried out into the occurrence of “spatial heterogeneity” and “heteroscedasticity”
(and synonyms) in both the ecological and the statistical literaturcs.

Database “Spatial” “Heterogeneity” “Spatial “Heteroscedasticity” “Incquality of

heterogencity™ variances” or
“Heterogeneity of
variances”

BIOSIS,

CURRENT

CONTENTS and

SCISEARCH 64953 41239 837 107 -

MATHSCI 6108 459 28 308 10

sional gradients, predictability, and others. With this in
mind, we attempt to relate the statistical and ecological
viewpoints, and to review the problem in a way useful
and accessible to ecologists interested in quantifying
heterogeneity.

We first performed an intensive bibliographic survey,
looking for “spatial heterogeneity”, “heteroscedastic-
ity”, “heterogeneity of variances” or “inequality of var-
iances™ in the titles, keywords and abstracts of papers in
two sets of journals: ecological, biological and medical
on the one hand, mathematical and statistical on the
other. The bibliographic databases consulted are: in the
bioscicnces, BIOSIS PREVIOUS (BIOSIS, covering
1969 to the present), CURRENT CONTENTS
SEARCH (The Institute for Scientific Information or
ISI. covering the current 6 months to 1 year) and SCI-
SEARCH (ISI, covering 1974 to the present); and in
mathematics, MATHSCI (The American Mathematical
Association or AMS, covering 1959 to the present).
Results are summarised in Table 1. First, they reveal
that. in combination or not, spatial structuring and het-
erogeneity are crucially relevant to ecologists, while
spatial heterogencity only arouses a mild interest among
statisticians. Secondly, “hcteroscedasticity” is clearly
more frequently used than its synonyms, “heterogeneity
of vartances™ and “inequality of variances”, and more in
the statistical literature than in the ecological. Among
the 107 papers itemised for “heteroscedasticity” in
BIOSIS, CURRENT CONTENTS and SCISEARCH,
a majority are also listed in MATHSCI as biomathe-
matical or biostatistical contributions. Finally, spatial
heterogeneity seems to be nearly as popular in ecology,
proportionally to the occurrences of “heteroscedastic-
ity”, as heteroscedasticity is in statistics (considering the
occurrences of “spatial heterogeneity”).

What does “‘heterogeneity” mean?

Generally speaking, “homogencity” refers to sameness
or similarity, and consequently “heterogeneity” alludes
to dissimilarity and unlikeness. This section aims at
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providing a concise overview of the biological and statis-
tical concepts and views about heterogeneity, and their
common, divergent and specific aspects.

Classically in ecology, hetcrogeneity refers to being
composed of parts of different kinds; it is distinct from
variability, which indicates changes in the values of a
given quantitative or qualitative descriptor (Kolasa and
Rollo 1991). This distinction is not as sharp as may
appear at first glance, and meanings essentially depend
on a choice of approach (e.g., Naecem and Colwell 1991,
Shachak and Brand 1991). When compared to homoge-
neity, viewed as the absence of variation, the concept of
ecological heterogeneity is intuitively clear, but as we
scrutinise it, our initial impression fractures into com-
plexity. In fact, ecological heterogeneity can be viewed
from a wide variety of inclusive, exclusive, comple-
mentary, or overlapping perspectives, that are a source
of heterogeneity in the definitions of the concept itself
(Kolasa and Rollo 1991).

The first major dividing line concerns the spatial and
temporal dimensions that are conventionally used for
classifying types of heterogeneity in ecology. Temporal
heterogeneity and its main differences from spatial het-
erogeneity are only briefly described here, the next
section being devoted to the spatial aspects.

Ecological processes operate at a variety of time
scales; for example, forest trees have life spans of dec-
ades, annual crops grow during less than a year, and
stream insects may have only a few days of adult life
(Risser 1987). Formally, temporal heterogeneity is simi-
lar to spatial heterogeneity in that it concerns the pres-
ence of variation (sometimes opposed to uniformity),
except that it refers to many points in time and only one
in space. Despite this apparent similarity, temporal het-
erogeneity is not equivalent to spatial heterogeneity.
Actually, if two sites presenting temporal heterogeneity
differ in their temporal variation, the result will be
spatial heterogeneity; but the reciprocal is not necessar-
ily true: two locations differing at any given moment in
time may be either homogeneous or heterogeneous
temporally (Kolasa and Rollo 1991; see also Nacem and
Colwell 1991).

General measures of heterogeneity are sometimes
not widely known (Kolasa and Rollo 1991); this is why
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one of the forthcoming sections is devoted to the prob-
lem, and aims at proposing a panel of solutions. Avail-
able measures fall into the category of absolute mea-
sures, objectively defined on statistical grounds without
consideration for properties of the (eco)system. The
variance associated with a mean abundance estimation,
for instance, provides such a primary measure to exam-
ine heterogeneity changes across scales (Greig-Smith
1952, Kershaw 1957, Goodall 1974, Ripley 1987); re-
lated techniques of blocking quadrats and critiques di-
rected towards them have been compiled by Turner et
al. (1990).

These measures are “unidimensional” in the sense
that heterogeneity is cvaluated as a single value, be-
tween some minimum (often zero) and some maximum
(Kolasa and Rollo 1991). This does not mean, however,
that heterogeneity has to refer to a single variable —
although it often does, as when measuring the variance
of a single variable over the sampling units. In principal
component analysis, for instance, an eigenvalue is 4
mcasure of the heterogeneity associated with a principal
component, which is a linear combination of different
variables. Other multivariate measures of variation are
the trace of a multivariate variance-covariance matrix,
and Wilks’ lambda statistic which measures the hetero-
geneity among several groups in a multidimensional
space.

Measuring heterogeneity through a single synthetic
mcasure does not mean that it cannot be decomposed
according to spatial or temporal axes of variation. Two-
dimensional correlograms and periodograms have been
proposed that allow the spatial autocorrelation or var-
iance to be decomposed between the X and Y geo-
graphic axes, in the case of anisotropic spatial phenom-
ena; for the same reason, variograms are often com-
puted in several directions (see Legendre and Fortin
1989 for a review). Spatiotemporal correlograms were
also developed for modelling spatiotemporal processes
(Cliff and Ord 1981). Finally, Mantel correlograms have
been proposed by Sokal (1986) and Oden and Sokal
(1986) for measuring the variability associated with mul-
tivariate data sets, decomposing it according to distance
classes and using Mantel’s (1967) statistic as a multiva-
riate autocorrelation coefficient; Mantel correlograms
may also be computed in prespecified directions.

While the previous approach based on “measured
heterogeneity” is most accessible and convenient, critics
pointed out its low biological relevance. A species’ per-
spective, in which communities result from species’ re-
sponses to abiotic and biotic constraints imposed onto
the landscape (e.g., Milne 1991), is usually biologically
much richer. The resulting alternative approach is la-
belled “functional heterogeneity”, which is defined as
the “heterogeneity an ecological entity (individual, pop-
ulation, species, or multispecies) perceives and re-
sponds to” (Kolasa and Rollo 1991). Whereas measured
heterogeneity is a product of the observer’s perspective,
functional heterogeneity provides the perspective of the
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ecological entity and its multidimensionality results
from the interaction among scales relevant to the eco-
logical entity and its environment. Thus functional het-
erogeneity is not the same for different groups of orga-
nisms living in the same environment, because pro-
cesses concerning these different groups act at different
temporal or spatial scales: in the sea for instance, the
mean time required for doubling the biomass is of the
order of 1 day for phytoplankton, 10-40 days for zoo-
plankton, 100-900 days for fish, and 120-500 days for
mussels; spatially, the horizontal scale characteristic of
patches is of the order of 0.1-1 km for phytoplankton
and zooplankton, and 1-100 km for fish (Legendre et al.
1986). The question of perceptual shift at different spa-
tial, temporal, and organisational (individuals, popula-
tions) scales is investigated by King (1990), Allen and
Hoekstra (1991), and Chesson (1991), among others.
Habitat complexity may be an important component of
heterogeneity for some ecological entities but does not
constitute a class of heterogeneity of its own. Measured
heterogeneity converges toward functional heteroge-
neity as our knowledge of the system increases and with
it, our ability to use measures of heterogeneity to reflect
its relevant properties (Kolasa and Rollo 1991).

Landscape is yet another facet of heterogeneity. By
definition, landscape is heterogeneous, that is, it con-
sists of dissimilar or diverse components or clements;
for instance, a typical rural landscape may include sev-
eral agricultural croplands, pastures, woodlands,
streams, farmsteads, and roads (Risser 1987). In addi-
tion to that spatial heterogeneity, landscape is also tem-
porally heterogeneous, and the resulting mixture of eco-
logical processes operating at different spatial and tem-
poral scales provides the material that environmental
managers act upon. Heterogeneity, landscape and dis-
turbance (anthropic or natural) are related in that a
portion of the heterogeneity in the landscape at any one
time is caused by disturbance. Heterogeneity may act as
a stabilising factor, when environmental heterogeneity
increased by a disturbance alters the impact of a later
one of the same magnitude; conversely, heterogeneity
may also enhance the spread of a disturbance (Risser
1987).

The number of aspects of ecological heterogeneity
turns out to be much larger than what can be covered in
a paper, or even in a single book, so that the present
section only concerns fundamental aspects; illustrations
of the interaction between heterogeneity and scale,
patchiness, and environmental gradients will be given in
the next section. Other ecological issues related with
heterogeneity are discussed in detail in the excellent
monographs edited by Turner and Gardner (1990) and
Kolasa and Pickett (1991), and in the papers of Meente-
meyer and Box (1987) and Risser (1987), among others;
some salient material from these sources has been used
in the present and the next sections.

Another meaning sometimes given to the concept of
heterogeneity in community ecology is that of Peet
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(1974), following Good (1953); these authors call “het-
erogeneity” the mean species diversity, which combines
the number of species and their relative abundances.
This use is fortunately not widespread and did not take
root.

Before switching to the statistical viewpoint, let us
mention other meanings that have been associated to
homogeneity and heterogeneity in mathematical pop-
ulation ecology and community theory, with a mathe-
matical or statistical, or even a physical connotation;
some persist to this time, others have disappeared. For
example, models have been described as homogeneous
with respect to space and time if their parameters did
not vary with respect to the spatial and temporal dimen-
sions. Homogeneity has been used to connote unifor-
mity, constancy, equilibrium, and stability (among
others), temporally and spatially. In particular, the
Committee on Nomenclature of the Ecological Society
of America defined homogeneity to mean “uniform or
regular spacing of individual organisms” (Mclntosh
1991); we will show in a further section that this defini-
tion is restricted to the point pattern aspect of spatial
heterogeneity, but does not apply to surface patterns. In
yet another perspective, incompatible with the previous
one, a distribution of individuals at random,
independently of one another, has been called homoge-
neous in statistical ecology; the absence of spatial asso-
ciation is then the criterion of homogeneity, or lack of
pattern, while heterogeneity is assimilated to pattern.
Mclntosh (1991) gives a full historical account of the
terms related to heterogeneity, as indexed in ecology
journals since the turn of the century.

From a statistical perspective, heterogeneity is a con-
cept that refers to statistical distributions; there are as
many definitions of heterogeneity as there are param-
eters for a statistical distribution, each of these defini-
tions relating to the object to which heterogeneity ap-
plies. A collection of statistical populations is said to be
homogeneous with respect to a given characteristic or
set of characteristics if the populations are identical with
respect to that characteristic or set; for example, homo-
geneity of means holds if population means are all
equal, regardless of whether other population attributes
are shared. So, the degree of similarity implied by the
term “homogeneity” may vary from the minimum of a
single common attribute, as in the equality of means, to
the extreme of total sameness, that is, equivalence of
the populations. The opposite of homogeneity with re-
spect to a certain characteristic is “heterogeneity” with
respect to that characteristic (Glaser 1983).

Mean values (or variability measures, or correlation
coefficients, ...) are heterogeneous if they are not all
equal, so that heterogeneity and nonstationarity may be
confounded, mean values as well as covariance and
correlation functions being sometimes called homoge-
neous for stationary time series or spatial processes
(Ripley 1981). The intuitive idea of statistical stationar-
ity (sometimes loosely called uniformity) is that the
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statistical properties of the data series or set will not be
affected if all the sampling points are moved by some
distance over the landscape. Strict stationarity concerns
the whole statistical distribution, whose parameters
must all remain the same through this translation; it
differs from second-order or weak stationarity, which is
restricted to constant and finite values for the mean and
variance, and (auto)covariance values only depending
on the distance between two sampling points. Weak
stationarity is required in the analysis of (auto)corre-
lograms; for semi-variance or variogram analysis, the
assumption of second-order stationarity can be replaced
by a weaker hypothesis known as the intrinsic hypothe-
sis, which says that the increments between all pairs of
points located a given distance apart have a zero mean
and a finite variance that remains the same in the vari-
ous parts of the area under study (Jongman et al. 1987,
Legendre and Fortin 1989). Semi-variance analysis will
be developed in a further section and recommended as a
statistical tool for ecologists interested in the quantifica-
tion of spatial heterogeneity.

Point/Summary: Space and time provide a first divid-
ing line for classifying heterogeneity in ecology, by de-
fining nonequivalent aspects. Measured heterogeneity
is a product of the observer’s perspective, that somehow
simplifies and summarises the organisational aspect or
functional heterogeneity, that ecological entities ac-
tually perceive, relate to, and respond to. Landscape is
heterogeneous in that it consists of dissimilar or diverse
components or elements. From a statistical viewpoint,
populations are heterogeneous, or homogeneous, with
respect to a set of characteristics (or possibly a single
one) depending on whether they are different, or not,
with respect to that set. In that perspective, stationarity
and the intrinsic hypothesis arc related to homogeneity
in time series and in spatial data analysis.

Spatial heterogeneity: an ecological
paradigm

Spatial heterogeneity is a concept whose definition de-
pends on the nature of the underlying pattern. For a
point pattern, heterogeneity concerns the distribution
or dispersion of individual organisms or ecological enti-
ties through space; a point pattern process concerns
physical points distributed in space, representing a dis-
continuous phenomenon, for instance individual plants
and animals. In this context, spatial heterogeneity
(called infra- or underdispersion, or super- or over-
dispersion) means density variation, compared to the
variation expected from randomly spread organisms;
the next section will show that both over- and under-
dispersion are aspects of heterogeneity, as opposed to
homogeneity which means absence of spatial variation
in the intensity of the generating point process. For a
surface pattern process, which is spatially continuous,
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spatial hcterogeneity refers to the variability among
subregions, for one or several qualitative or quantitative
variables taking values in a spatially continuous man-
ner; examples are the geological group to which belongs
cach map pixel (qualitative), or air temperature (quan-
titative). The emphasis in the present section will be on
the functional aspects of spatial heterogeneity from an
ecological perspective, and in the next one, on its meas-
urement from a statistical viewpoint. Their connection
will be established in a further section.

Spatial heterogeneity may be associated with ecologi-
cal information. Actually, high environmental hetero-
geneity interferes with competition (Powell and Ru-
cherson 1985) and consequently it may allow higher
species diversity to be maintained (Hunter 1987, Sogard
et al. 1989, Pringle 1990); it reduces the impact of
predation (Kaiser 1983, Bryan and Wratten 1984, Gilin-
sky 1984, Holt 1984, Webb and Willson 1985) and para-
sitism (Nachman 1981), increases population stability
(Weider 1984, Dempster and Pollard 1986, Niemela et
al. 1986, Lodge et al. 1988, Williams 1988) and helps
maintain intraspecific genctic polymorphism (Pritchet-
tewing 1980, Smith et al. 1983, Desalle et al. 1987,
Weider 1989, Bell and Lechowicz 1992, Lechowicz and
Bell 1992). Spatial heterogeneity is also functional in
ecosystems through its interaction with population dy-
namics (Cantrell and Cosner 1991) and habitat parti-
tioning within lake communities (Lodge et al. 1988).
More fundamental aspects and theoretical models are
discussed by Pacala and Roughgarden (1982), Downing
(1986), Pacala (1987), and Hastings (1990). In the anal-
ysis of earth sciences data, one is often primarily in-
terested in the anomalies in mean values and in the
zones of high variability, that will allow to locate the
high grade veins in a mineral deposit or the imperme-
able laycrs that condition flow in a petroleum reservoir
(Isaaks and Srivastava 1989). In all those cases, spatial
heterogeneity is undoubtedly of interest per se.

While naturc is clearly heterogeneous, the scale at
which spatial heterogeneity manifests itself varies
widely for different physical and chemical character-
istics such as air pressurc, irradiation, soil or ionic com-
position, water temperature, pH, current speed, and so
on (Frost et al. 1988, Baker 1989, Allen and Hoekstra
1991); the same applies to different ecological compart-
ments of ecosystems (Legendre et al. 1986: examples
given in the previous section). So, scale is a crucial
aspect of spatial heterogeneity. Shifts of scale, for an
ecological entity, may lead from perceived homogeneity
to heterogeneity, and vice versa; the information con-
tained at one level of resolution may look like noise at
another. In some cases, there may be a duality in nature
between small-scale heterogeneity and large-scale ho-
mogeneity, for instance in the distribution of microor-
ganisms in marine ecosystems (Bianchi et al. 1989). The
fincness of the scale defines the degree of resolution;
following tradition in ecology, scale will be used here in
the common meaning of the term, that is, small scale
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refers to small measurement units; a geographer’s defi-
nition is the opposite, scale representing the degree of
spatial reduction (ex. 1:250000, Meentemeyer and Box
1987).

Spatial heterogeneity has been observed at cell- (Ben-
son et al. 1985, Conway and Weiss 1985, Hall and
Yeoman 1986, Franzen et al. 1988, Williford ct al.
1990), micro- (Washitani et al. 1989), small- (Smith
1986, Romano and Laborde 1987) and large-scales
(Carpenter 1990), in freshwater (Neilson and Stevens
1987, Pinel-Alloul et al. 1988, Horne and Commins
1989), brackish (Legendre and Troussellier 1988) and
marine environments (Mukai 1987, Kennely 1989,
Mitchell et al. 1990, Perez and Canteras 1990), in bota-
ny (Soriano et al. 1987) and forestry (Nunezfarfan and
Dirzo 1988, Matlack and Good 1990), in community
(Urabe 1989) and landscape ecology (Plowright and
Galen 1985, Mader 1988).

To undertake a field study as efficiently as possible, it
is necessary to choose its scale thoughtfully (Legendre
et al. 1989, Turner et al. 1990). When scale differences
are not considered, quantitative and interpretational
errors abound (Milne 1991). To avoid them, ccologists
have to identify the characteristic scales at which regu-
larities or anomalies are likely to occur, and finally, the
dominant scales at which operating processes control
the landscape or community (Frost et al. 1988, Leg-
endre ct al. 1989). In occanography for instance, Bi-
anchi et al. (1989) studied the distribution of microor-
ganisms through a biological window whosc size de-
pends on such biological processes as growth and
predation; Barry and Dayton (1991) point out the im-
portance of the unresolved issue of scale coupling be-
tween biotic and abiotic components in marine systems.

A good understanding of the discontinuities and mod-
ulations that are associated with spatial heterogeneity,
in many forms and combinations, provides an invalu-
able help to ecologists who are looking for characteristic
scales and predictable elements of a system (Allen and
Hoekstra 1990). There is a triumvirate of discontinuities
that may contribute to spatial heterogencity; it consists
of the deterministic, stochastic, and chaotic components
(Kolasa and Rollo 1991). According to these authors,
deterministic spatial heterogeneity is geometrically
equivalent to design; for instance, a pattern of equally-
spaced dots or stripes, all of the same size. The nature
of that deterministic heterogeneity is however quite rel-
ative with respect to resolution or perception and pro-
cessing or cognition of environmental signals, because
even an absolutely deterministic complex design may
appear random to organisms that have cognitive sys-
tems too simple to decode them. In such a case, a
relative scale that transforms space on the basis of func-
tional relationships would be appropriate, instead of an
absolute scale involving distance, direction, shape, and
geometry (Meentemeyer and Box 1987). There follows
a change of scale during the transition from determinis-
tic to stochastic spatial heterogeneity or vice versa, lead-
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ing to a dissipation of information. Geometrically, sto-
chastic spatial heterogeneity is represented as patchi-
ness, characterised by the absence of association of the
variation across scales. Among others, Chesson (1991)
reviews the effects that among-patch and within-patch
heterogeneity may have on ecological systems, and Kot-
liar and Wiens (1991) use intra-patch and inter-patch
information when deciding where to delineate patches.
In the analysis of patchy heterogeneity, there is a level
of resolution where patch size becomes so fine that an
individual or a species stops responding to it; this is the
“grain”, for that given group of organisms. Finally,
spatial heterogencity may involve chaotic variation, that
may look like randomness although it is deterministi-
cally generated. In population dynamics for instance,
chaos may emerge as an unstable and unpredictable
oscillation that corresponds to the solution of the dis-
crete version of the Lokta-Volterra equations for the
highest values of growth rate and density dependence,
lower values corresponding to equilibrium and stable
deterministic cycles. Chaos differs from noise in that it
shows the same degree of variation recursively at what-
ever scale it is examined (Gleick 1987, Glass and
Mackey 1988). This property of repeated variation at
finer and finer scales has a geometrical analogue known
as the fractal dimension (Mandelbrot 1982, Frontier
1987). Fractal gcometry may generate complex patterns
that can be dissected into infinitely small scales; at each
level, the pattern differs but always shows the same
relative variability. Among the applications of fractal
theory to ecology, Frontier (1987) mentions the contact
zones among interacting parts of an ecosystem, and the
trips and trajectories of mobile organisms; they respec-
tively result in enhanced fluxes of energy, matter, or
information, and diversified contact points between or-
ganisms and a heterogeneous environment, and among
individuals in predator-prey systems. In particular, frac-
tal strategies (e.g., lake shoreline, tree forest, com-
pound leaves) may have an underlying fractal geometry
and the bchaviour of organisms living in such envi-
ronments (fish, birds, caterpillars) may be dominated
by this paradigm.

Spatial heterogeneity is not confined to the outdoors.
Despite the sophistication of modern growth chambers,
growth conditions cannot be uniformly controlled dur-
ing experiments in vegetation science (Potvin et al.
1990a). The size of the heterogeneous structures varies
with species and measured variables. In growth cham-
ber experiments, Potvin and Tardif (1988) recognised as
potential sources of variability: the fluctuations over
time of the conditions within chambers, the differences
among chambers, and the interaction of these two ef-
fects.

Point/Summary: The definition of spatial heteroge-
neity depends on the nature of the underlying pattern:
for a point pattern, it refers to the distribution of indi-
viduals through space, and means density variation with
respect to that expected for randomly spread organisms;
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for a surface pattern, it refers to the among-subregion
variability, for one or several qualitative or quantitative
variables taking values in a spatially continuous man-
ner. Spatial heterogeneity is functional in ecosystems.
Scale, defined as measurement units. is a crucial aspect
of spatial heterogeneity; shifts of scale may lead from
homogeneity to heterogeneity, and vice versa. To un-
dertake a field study in an efficient way, a thoughtful
choice of observation scale is necessary; to accomplish
this, a good understanding of the deterministic, stochas-
tic and chaotic discontinuities that are associated with
the system’s spatial heterogeneity is of invaluable help.

Spatial heterogeneity: the statistical
perspective

In the present section, we will show that for a point
pattern, both ecologists and statisticians agree to define
spatial heterogeneity as a density variation among sub-
regions or sites; we will show in particular that under-
and overdispersion correspond to well-defined types of
variation in the intensity of the underlying point pro-
cess, while organisms randomly dispersed in space cor-
respond to the absence of such a variation. For a surface
pattern, we will illustrate the fact that the diverse facets
of spatial heterogeneity, viewed in a statistical perspec-
tive, may give interesting insights to ccologists in the
observation and measurement of spatial heterogeneity.

The most commonly used statistical model of refer-
ence for spatial point patterns is the Poisson process; it
is characterised by an intensity, i.e., the occurrence rate
(or expected number per area unit) of points in space
(for example, the presence or absence of ecological
entities in a system), which is constant over the entire
plane. It follows that points spatially dispersed at ran-
dom under the Poisson model correspond to spatial
homogeneity: first, by the absence of variation in the
intensity of the underlying Poisson process; then, by the
absence of variation in the expected number of points in
subregions of the same size; and finally, by the corre-
sponding lack of pattern. The other assumptions under-
lying the Poisson process are: there is no interaction
among subareas, and no tendency for neighbouring ar-
eas to be similar; and the presence of an object (species)
at any point (site) is not influenced by the presence or
the absence of objects at nearby locations. Recently,
Hurlbert (1990) showed that the variance:mean ratio,
which is characteristically equal to 1.0 for the Poisson
distribution (based on counts of points in several areas
of the same size), is useless as a measure of departure
from pure randomness, though it is widely recom-
mended as such (see for instance Greig-Smith 1986);
indeed, he showed that computed unicornian distribu-
tions (named after the recent discovery of the montane
unicorn, whose populations provided the basis for his
study) all yield a variance:mean ratio of 1.0, while the
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A Fraction (a + b)

Lake border

Forest border

B Fraction (a)

Lake border 2

Forest border

Fig. 1. Three-dimensional maps for two types of spatial heterogeneity for a surface pattern. The data arc from Borcard and
Legendre (unpubl.); they respectively correspond to fractions (a + b) and (a) from partitioning the variation of Oribatid specics
abundance data into independent components, as described in Borcard et al. (1992). A — Heterogeneity of means: in this example
(gradient type), the mean increases from the bottom (forest border) to the top (lake border) of the figure, while the variance
remains relatively constant; fraction (a + b) plotted here corresponds to the environmental component of the species abundance
variation. B — Heteroscedasticity, or heterogeneity of variances: in this example (two-level type), the variance is lower in the
portion ncar the forest border than in the part near the lake, while the mean remains relatively constant; fraction (a) plotted here
corresponds to the non-spatial part of the environmental component of variation.

montane unicorn populations under study show differ-
ent patterns of aggregation, none of which correspond-
ing to a Poisson distribution. We will pursue this dis-
cussion of aggregation indices in a further section.
During the early decades of the 20th century, many
ecologists clung to the 19th century view (Hensen 1884)
that ecological communities are homogeneously distrib-
uted through space (McIntosh 1991), despite clear dem-
onstrations to the contrary (Moberg 1918, Hanson
1934); nowadays, random patterns resulting from a
Poisson process look uninteresting and unlikely ever to
occur in nature. The first two major departures from the
Poisson scheme result from assuming that the intensity
of the process is not a constant but a random variable;
they are the true and apparent contagion, or generalised
and compound Poisson processes. Because they can
yield the same spatial distribution of points, they are
hardly distinguishable in practice. Notwithstanding, a
generalised Poisson process occurs when the number of
objects in observed clusters is assumed to follow a gen-
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eralising distribution (for instance a binomial); on the
other hand, if the number of objects per quadrat follows
a simple Poisson process whose intensity varies from
quadrat to quadrat, the final distribution is Poisson
compounded with some other distribution specifying its
intensity (Cliff and Ord 1981, Upton and Fingleton
1985, Ripley 1987). Related kinds of processes are,
among others, the Poisson cluster process, also called
centre-satellite, and the doubly stochastic Poisson pro-
cesses (Matérn 1971).

To complete our demonstration, there remains to
show that underdispersion also corresponds to noncon-
stancy in the intensity of the underlying point process.
Actually, the intensity in that case is not a constant, but
a function taking either null or infinite values, depend-
ing on whether the point at which it is evaluated corre-
sponds, or not, to a point of a predesigned regular grid.
Consequently, the expected count of points in any given
area is equal to zero, or not, depending on whether the
considered subregion contains, or not, at least one point
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of the grid. In less extreme regular patterns (Diggle
1983), underdispersion is characterised by points dis-
tributed more or less regularly around the nodes of
some predesigned grid, because of some associated reg-
ulating mechanism operating to encourage their cven
spatial distribution.

The fit of the Poisson model to data would have to be
studied for a whole range of spatial scales before homo-
geneity could be inferred. One approach to the analysis
of point patterns is to sample small zones in the plane
and to count the number of individuals occurring in
each one. These sample zones are commonly known as
quadrats. Quadrats may be contiguous, usually laid at
equal intervals, either on a regular grid or more often in
transects, or they may be positioned at random in the
study area. A risk underlying the use of quadrats is that
any detected spatial pattern may be dependent upon
quadrat size, although this can be alleviated to some
extent for contiguous quadrats (Greig-Smith 1952, Gé-
rard 1970, Diggle 1977, Cliff and Ord 1981, Ripley
1981, Ver Hoef and Glenn-Lewin 1989). To avoid this
difficulty, nearest-neighbour distances, which are the
distances from each individual to others located nearby,
may be studied, when the locations of all individuals in
the plane are known. Thesc measurements, and related
applications to the analysis of field experiments, may be
found in Clark and Evans (1954), Thompson (1956),
Bartlett (1978), Freeman (1979), Aplin (1983), Wilkin-
son et al. (1983), Upton and Fingleton (1985), Besag
and Kempton (1986), and Delincé (1986).

For a surface pattern, the ecological and statistical
aspects of spatial heterogeneity may be distinguished.
In the ecological literature, spatial heterogeneity essen-
tially refers to variation over space of the observed
values of a qualitative or quantitative descriptor (e.g.,
outdoors: Smith 1972, Kolasa and Rollo 1991, Lechow-
icz and Bell 1992; in controlled experiments: Potvin and
Tardif 1988, Potvin et al. 1990a); the environment is
considered heterogeneous when that descriptor takes
different values at different locations. The statistical
viewpoint is somewhat different in that it specifies types
of heterogeneity depending on the characteristic or set
of characteristics concerned (Glaser 1983). Tradition-
ally, much attention has been devoted to the hetero-
geneity of distribution parameters such as mean or var-
iance; in particular, the next section will be focused on
heterogeneity of variances. To decide statistically be-
tween homogeneity and heterogeneity, tests were de-
veloped under parametric or nonparametric assump-
tions (e.g., Sokal and Rohlf 1981): for normally distrib-
uted data, the well-known Student’s t test of equality of
two means with equal but unknown variances, the F test
for the homogeneity of variances, Wilks’ lambda statis-
tic for the heterogeneity among several groups in a
multidimensional space, the comparison of main effects
and interactions in the analysis of variance (ANOVA),
and the assessment of parallelism or coincidence by
ANCOVA between lines or surfaces fitted by regres-
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sion. In a spatial context, autocorrelation, when com-
bined with heterogeneity, can alter the conclusions of
all the statistical tests above, if they are performed
without allowance for it; the effect of spatial auto-
correlation is to reduce the number of degrees of
freedom that are actually associated to the t or F test
statistics, for instance (Cliff and Ord 1981, Dutilleul
and Legendre 1991a, b, Dutilleul and Potvin, unpubl.,
Legendre, in press).

In the statistical analysis of spatial data, Ripley (1981)
mixed up homogeneity and stationarity, when defining
stationarity under spatial translation, by referring to
both the mean and the (auto)covariance functions, and
consequently also to the variance; Ripley’s definition
did not take root, and we highly recommend to specity
the type of (spatial) heterogeneity of concern and to
distinguish (spatial) heterogeneity of the mean from
that of the variance, for example. Fig. 1 illustrates the
differences between such types of spatial heterogeneity,
the ecological background being that of the Borcard et
al. (1992) paper. Both types will be referred to as spatial
heterogeneity in an ecological sense, because the ob-
served values are not constant and show the presence of
variation across the area under study; from a statistical
viewpoint, though, the first type (Fig. 1A) will be called
gradient-type heterogeneity of means, and the second
(Fig. 1B), two-level heterogeneity of variances or heter-
oscedasticity. In a sense that we might call biostatistical,
“gradient” is used here to mean a spatial structure re-
sulting from the monotonic variation of a variable in
space. This acceptation is intermediate between the
mathematical sense, that strictly speaking refers to a
function of several variables and is defined as the vector
of its first derivates corresponding to the slopes of var-
iation; and the ecological gradient, characterising major
correlations of the community structure with environ-
mental variable(s) that change monotonically in geo-
graphic space (e.g., Whittaker 1967). True gradients in
mean (Fig. 1A) are different from false gradients in
mean, which are the subject of spatial autocorrelation
analysis; Legendre et al. (1990) and Legendre (in press)
explain the difference between these two types of gra-
dients. Both of them may also be considered as spatial
heterogeneity in the ecological sense.

In practice, the calculation of a few descriptive statis-
tics (mean and variance, for example) within moving
windows, which are local neighbourhoods of a given
size moving through the area under study, produces
smoothed maps which are frequently used to investigate
anomalies. A summary of more statistically-oriented
methods, allowing to describe spatial patterns in eco-
logical analysis, will be given in a further section, in the
form of a statistical toolbox for ecologists.

Point/Summary: For a point pattern, ecologists and
statisticians agree to define spatial heterogeneity as den-
sity variation among subregions. The most commonly
used statistical model of reference for spatial point pat-
terns is the Poisson process. Two major departures from
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it, that are in better correspondence with reality, are the
true and apparent contagion (generalised and com-
pound Poisson processes), that allow the intensity of the
underlying point pattern to vary across space. For a
surfacc pattern, ecological and statistical aspects can be
distinguished; the statistical viewpoint specifies differ-
ent types of spatial heterogeneity depending on the set
of characteristics concerned. A panel of tests are avail-
able to statistically decide between homogeneity and
heterogeneity. From the statistical perspective, there
are a multiplicity of facets to spatial heterogeneity for a
surface pattern, which can provide potential insight to
ccologists in the identification of the ones that are of
concern for them, instead of maintaining a global but
superficial perception of the concept.

Heteroscedasticity: a purely statistical
concept

An important precondition for valid statistical inference
is the equality of variances in a set of samples (Scheffé
1959, Winer 1971, Steel and Torrie 1980, Sokal and
Rohlf 1981, Mead 1988). It is the case for instance: for a
t test of equality of two means (but there is a modified
form of the test when the condition is not met); for the F
test in a more-than-two-sample analysis of variance; in a
spatial context, for the estimation of correlograms and
variograms — although in the case of variograms, the
“intrinsic hypothesis” is restricted to the constancy
(over the study area) of the variance for the variable of
interest, for pairs of points located a given distance
apart, instead of the “weak stationarity hypothesis™ that
requires, for the analysis of correlograms, the constancy
over space of the variance (and the mean) of the var-
iable itself (Jongman et al. 1987, Legendre and Fortin
1989). Synonyms for the condition of equality of var-
iances are homogeneity of variances or homoscedastic-
ity. The converse condition, that is, the inequality of
variances among samples, is called heteroscedasticity
(Sokal and Rohlf 1981, Dudewicz 1983, Glaser 1983,
Isaaks and Srivastava 1990). Depending on the authors
(Table 1), different terms may be used: “inequality of
variances” (Box 1954a, b, Scheffé 1959), “heterogeneity
of variances” (Winer 1971, Steel and Torrie 1980, Scher-
rer 1984) or “heteroscedasticity” (Scherrer 1984, Ken-
dall et al. 1987); Kendall et al. (1987) restrict the use of
homoscedasticity to the constancy of the conditional
variances in the bivariate normal distribution.

Point/Summary: Heteroscedasticity is a purely statis-
tical concept which refers to heterogeneity or inequality
of variances. It is an important precondition for valid
statistical inference, in particular for the estimation of
spatial correlograms and variograms.
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Statistical solutions to heteroscedasticity:
an outline

Standard techniques of statistical inference are most
often concerned with sets of observations drawn from
independently and identically distributed random var-
iables, referred to as “random samples™. In real-case
studies, heteroscedasticity in sample data may impair
the validity of tests designed for random samples and
can alter the conclusions of statistical analyses per-
formed without allowance for it. It follows that experi-
menters have often been cautioned that the assumption
of equal variability should be investigated prior to as-
sessing treatment effects in their experimentation
(Schefté 1959, Winer 1971, Steel and Torrie 1980, Sokal
and Rohlf 1981, Mead 1988). Several univariate tests
for homoscedasticity have been proposed (e.g., Winer
1971, Sokal and Rohlf 1981); for instance, the Bartlett
(1937) o? test for homogeneity of variances, the Hartley
(1950) F,,, test, and the log-ANOVA or Scheffé's
(1959) test. The latter is less sensitive to departures
from normality but none is unilaterally more powerful
than the others. In the multivariate case, approximate
likelihood-ratio %* tests also exist for assessing the ho-
mogeneity of variance-covariance matrices among sam-
ples of observation vectors prior to performing multiva-
riate ANOVA (MANOVA) and discriminant analysis,
under the hypothesis that the multivariate statistical
population is normally distributed (e.g., Winer 1971,
Morrison 1976).

Standard statistical procedures have trouble dealing
with unequal variability among samples. A first alterna-
tive would be to perform a variance-stabilising trans-
formation (e.g., logarithmic, square root, or power
transformation), or else to combine Bartlett’s ¥° homo-
geneity-of-variance statistic with the Box-Cox normalis-
ing transformation (Sokal and Rohlf 1981). Unfortu-
nately, if one of the original population distributions is
normal, a transformation will make it nonnormal: trans-
formation methods do not handle this problem except in
special cases (Dudewicz 1983). A second alternative
requires the experimenter to have control over the de-
sign of his experiment (Hurlbert 1984, Dutilleul, in
press), even if such a control may be difficult or impos-
sible at the scale of the landscape (Gardner and Turner
1990). The solution here lies in adequate experimental
designs that allow to quantify spatial heterogeneity
when it is a characteristic of interest; cxperimentation in
nature adds controlled variability on top of natural
heterogeneity, while good experimental designs com-
bined with appropriate analysis of the results help to
separate and understand sources of variation such as
spatial heterogeneity in mean and variance (Fig. 1,
A-B). Recommended designs are reported in the next
section for spatial heterogeneity at small scale, patches
or mosaics, and one- and two-dimensional gradients. A
third alternative is developed at the end of the present

OIKOS 66:1 (1993)



section; it requires, as a preliminary, a short introduc-
tion to the analysis of repeated measures, that follows.

In repeated measurement designs, observations are
taken at different times on a given set of experimental
units that are plants or animals whose physiological
state may be quite different at the beginning and at the
end of the measurement period; the transposition from
time to space results from the correspondence of re-
peated measures on the same individual plant or ani-
mal, with values observed at neighbouring locations.
Thus, the nonrandom assignment of treatment levels
across time or over space, which are then considered to
be a factor, influences the variances and covariances of
the variables observed on the experimental units. Con-
sequently, two of the usual assumptions of ANOVA,
that are homoscedasticity and independence of observa-
tions, may be violated. Valid statistical inference fortu-
nately does not require them as necessary conditions,
and the two alternative approaches, univariate and
multivariate, are summarised in Crowder and Hand
(1990) and Potvin et al. (1990b), for instance. In partic-
ular, a necessary and sufficient condition for valid un-
modified F testing in analysis-of-variance models allows
for limited forms of heteroscedasticity and autocorrela-
tion (Huynh and Feldt 1970, Rouanet and Lépine 1970,
Crowder and Hand 1990). That validity condition,
called circularity or H.-F. (named after Huynh and
Feldt), is a restriction of the geostatistical intrinsic hypo-
thesis (Dutilleul and Legendre, unpubl.}; it applies to
repeated measures on the samc experimental unit,
across time (individual plant or animal) or space (neigh-
bouring locations), and requires the variances to be
equal for all pairwise differences between repeated
measures on the same individual, or between values
observed at different locations, whatever the time in-
terval or distance separating them. For example, in the
case of four measures on a 2 X 2 grid, the following
covariance matrix is circular:

1.0 0.5 1.0 1.5
0.5 2.0 1520
1.0 1.5 3.0 2.5
1.52.025 4.0

In this matrix, the variance of the difference between
the first and second measures (values at two contiguous
locations) is the sum of the variances minus twice the
covariance, that is, 1.0 + 2.0 — (2 x 0.5) = 2.0; this
calculation leads to the same result for all pairs.
Finally, when spatial heterogeneity and treatment ef-
fects are respectively considered to be a nuisance and
the characteristic of interest, the H.-F. condition may
not be satisfied while the experimental design has not
been accommodated to spatial heterogeneity; an ulti-
mate solution is then provided by the pioneering, multi-
purpose work of Box (1954a, b) on the effects of hetero-
scedasticity and autocorrelation on the distribution of
ANOVA statistics. Box suggested a conservative test
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that uses an F distribution with fewer degrees of free-
dom than those classically (i.e., without modification)
associated to the respective ANOVA sums of squares.
Box’s correction factor, called epsilon, is a measure of
how far a covariance matrix deviates from the H.-F. or
circularity condition; it can be estimated as described by
Crowder and Hand (1990); this estimation is available
in several computer packages, including SAS. In the
one-way classification, moderate heteroscedasticity
among samples affects the test for unequal sample sizes
(Box 1954a); in the two-way classification, moderate
inequality of variances among columns (or rows) of the
data matrix has but a small effect, and first-order serial
correlation within rows (or columns) has a large effect
on the comparison of means among rows (or columns)
(Box 1954b).

Box’s correction technique for ANOVA testing is not
widely spread yet among landscape ecologists (see for
instance Sklar and Costanza 1990). An example of its
application is provided by Dutilleul and Potvin (un-
publ.) in the analysis of reaction norms, where the
estimation and testing of the stability-variance compo-
nents used to quantify the genotype-by-environment
interaction may be altered by the heterogeneity of envi-
ronmental variances and genetic correlations. In an
ANOVA approach, Dutilleul and Potvin (unpubl.) pro-
pose a panel of test corrections based on Box’s epsilon,
whether genetic correlations are considered to be a
nuisance or an interest in the assessment of genotype-
by-environment interactions; they also derive related
transformations that are based on (the inverse of the
square root of) the sample covariance matrix of what
they call a “genotypic profile”, defined as the vector of
mean phenotypic responses of the concerned genotype
in various environments. In conclusion, these authors
recommend combining a transformation removing envi-
ronmental heteroscedasticity with testing of the geno-
type-by-environment interaction, corrected for the ge-
netic correlations.

Point/Summary: Numerous statistical tests of homos-
cedasticity are available, in both the univariate and the
multivariate cases, prior to assessing homogeneity of
means. Statistical solutions to heteroscedasticity are
provided by transformation methods, experimental de-
sign, and corrected testing. Methods developed in the
analysis of repeated measures allow to manage both
heteroscedasticy and autocorrelation, and help over-
come their nuisance.

Quantification of spatial heterogeneity: a

statistical toolbox for ecologists
The final part of our review is devoted to relating the
ecological and statistical views in order to reach a better

quantification of spatial heterogeneity. It is divided in
two subsections, corresponding to the main division we
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retained for characterising and quantifying spatial het-
erogeneity: the point and surface patterns. Our first
subsection is less developed than the second one, about
surface patterns, for which we used the Oribatid data
set of the Borcard et al. (1992) paper as our case study.
Both subsections are completed by references to a num-
ber of statistical textbooks and review papers, in order
to reduce the amount of mathematical detail to its sim-
plest expression.

The point pattern case

One can hardly expect a single index to serve well both
as a measure of departure from the Poisson distribution
(randomness) and as a measure of aggregation, because
overdispersion only provides one of the two main al-
ternatives to spatial point-pattern homogeneity; the
other, underdispersion, corresponds to regular spacing
of the points. In a classical approach (see for instance
Downing 1991), organisms that are spatially aggregated
are those that show more variability in space than would
be expected from either a random or a regular spatial
distribution. Hurlbert’s (1990) study of unicornian dis-
tributions, mentioned above, shows that the variance:
mean ratio is of little value as a measure of departure
from randomness. The problem is not with the Poisson
process itself as a model of reference, but rather with
the variance:mean ratio; that this ratio be equal to 1.0
is a necessary condition for a spatial distribution gener-
ated under a Poisson process, but it is not a sufficient
condition in the sense that other spatial distributions
(for instance the unicornian) are also characterised by
that property. As an alternative, Hurlbert suggested a
simple way of measuring departures from a Poisson
distribution. based on an index defined as the degree of
overlap or concordance of the observed distribution to a
Poisson with same mean; he also showed that this index
is not more useful as an index of aggregation than the
variance:mean ratio is. The measure of aggregation
recommended by Hurlbert (1990) is the Morisita index
defined in terms of the probability for two randomly
selected individuals to be found in the same quadrat;
this definition may be extended to more than two indi-
viduals. Hurlbert’s conclusion is that a plot of the result-
ing generalised index as a function of the number of
individuals is to be preferred to the condensation of all
the information into a single index value.

There exists a plethora of indices of spatial aggrega-
tion, that were primarily defined as simple ratios of
either the sample standard deviation or variance of
quadrat counts to their sample mean (with the Poisson
process as reference), and whose variants (the Morisita
and Lloyd indices among others, and the parameter of
the negative binomial distribution as an alternative to
the Poisson distribution) try to compensate for some
systematic variation of the sample mean across space
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(e.g., Ripley 1981, Downing 1991). What would consti-
tute a widely applicable index of spatial aggregation,
providing both a measure that actually corresponds to
the definition of spatial aggregation, and reliable values
that can be compared among populations? Except for
the one advocated by Hurlbert (1990), the answer to
this fundamental question remains unclear. Few indices
work generally enough to allow comparisons; some of
them lead to directly conflicting interpretations (Down-
ing 1991); and without exception, they failed to survive
close examination (Ripley 1987).

The use of aggregation indices may be completed by
the analysis of nearest-neighbour distances, although
these concern more specifically the detection of scale.
Even if scale is a crucial aspect of spatial heterogeneity,
one may argue that nearest-neighbour distances do not
provide, as such, a direct quantification of spatial heter-
ogeneity; this is why they are not discussed in detail
here. Blocking of quadrats and looking at how the var-
iability of counts varies with the size of the quadrats also
provide fruitful information about spatial scales. Good
presentations and criticisms of both methods are given
by Pielou (1977), Upton and Fingleton (1985), Ripley
(1987), and Turner et al. (1990). Methods based on
distances among individual organisms are useful only
under particular circumstances (Pielou 1977). On the
contrary, quadrat counts can always be used, and more
information on the spatial pattern can be extracted if
several quadrat sizes are used, although it is negligible
compared to the information lost when the position of
the quadrats is ignored (Ripley 1987); Ripley also dem-
onstrated that L-plots, that he defined, are very useful
in describing the ecologically features of a spatial pat-
tern, where L is a function of scale on the basis of
distances between all pairs of points.

The surface pattern case

Among the statistical methods that we recommend for
quantifying spatial heterogeneity, we will distinguish
the ones that apply whether the heterogeneity concerns
the mean or the variance of the variable of interest,
from those that are specifically designed for one of these
two types of heterogeneity. The methods discussed be-
low are essentially relevant for quantitative or semi-
quantitative variables; only a few apply to qualitative
variables.

Mapping

If we are interested in fitting nonperiodic large-scale
spatial heterogeneity in the mean (see for example Fig.
1A), trend surface analysis is perhaps the simplest and
oldest method used by ecologists (for a review, see
Jongman et al. 1987, Legendre and Fortin 1989, or
Turner et al. 1990); it consists of separating, by regres-
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Table 2. Experimental designs to accommodate three types of spatial heterogeneity, when spatial heterogeneity is a characteristic

of interest or a nuisance. Modified from Dutilleul (in press).

Type of spatial In the absence of treatment

In the presence of treatment assignment

heterogeneity assignment

Spatial heterogeneity is of

Spatial heterogeneity and treatment
effects are both of interest

Spatial heterogeneity is a
nuisance and treatment

interest effects are of interest
Small-scale 1 classification factor (plots) Complely randomised design
with more than 1 observation with 1 observation
per plot per plot
Patches cf. Small-scale Randomised complete block design

with more than 1 block
per patch

with 1 or more than 1 block
per patch

Environmental gradient: cf. Small-scale

Randomised complete block design

- one-dimensional

with more than 1 observation
per treatment per block

with 1 observation
per treatment per plock

- two-dimensional cf. Small-scale

Latin square design

with more than 1 observation
per cell or multiple Latin squares

with 1 observation
per cell

sion, the large-scale trend (that we called “true gra-
dient” in mean in a biostatistical sense, above) from the
residual variation. The trend is then represented in the
model by a deterministic function of the geographic
coordinates of the sampling locations, that may be lin-
ear or a polynomial of higher degree in the simplest
cases, an orthogonal polynomial or a spline function in
more sophisticated cases; in the case of Fig. 1A, a
polynomial function of the second or third degree would
be sufficient. Interpolated mapping, either by linear
interpolation among nearest neighbours using methods
such as locally weighted averaging, by techniques based
on Dirichlet tessellations or Delaunay triangulations, by
kriging or by kernel estimation, is more appropriate to
fit small-scale spatial heterogeneity in mean (“false
gradient” in mean). All those methods and others are
reviewed by Ripley (1981), Upton and Fingleton
(1985), Jongman et al. (1987), Isaaks and Srivastava
(1989), among others. In the very special case of peri-
odic large-scale spatial heterogeneity in mean, trend
surface analysis, using cosine and sine waves as explana-
tory functions in the regression model instead of a poly-
nomial, provides a Fourier series modelling that can be
represented by a two-dimensional periodogram (de-
scribed for instance by Legendre and Fortin 1989, and
Turner et al. 1990). If the periodic spatial heterogeneity
of concern is on the variance instead of the mean,
spectral analysis and the estimation of a two-dimen-
sional spectral density function, whose integration over
a range of frequencies provides the associated variance,
are recommended here, as their one-dimensional ver-
sions are in time series analysis (e.g., Priestley 1981).
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Experimental design

There are different meanings associated with the ex-
pression “experimental design”. The meaning retained
here is the one commonly used in experimentation
(Winer 1971, Steel and Torrie 1980, Mead 1988). It
differs from that of Fahrig (1990) in simulation experi-
ments, who studied by simulation the effects of each
parameter over its plausible range in the model.

Spatial heterogeneity of the landscape (or green-
house, etc.) must be studied before treatments are as-
signed in a controlled experiment, so that the constancy
of the system’s properties over space can be evaluated.
The information collected, when combined with the a
priori knowledge of the experimenter about his experi-
mental material, helps design the experiment, or vali-
date or invalidate a preexisting design. On the other
hand, the variability due to spatial heterogeneity may
be of interest, aside from any field experiment concern-
ing treatment effects.

We illustrate hereafter how experimental design can
be accommodated to spatial heterogeneity in nature,
whether it is a nuisance or a characteristic of interest,
combined or not with assessment of treatment effects.
There are obviously no recipes to accomplish this; no
single design can best accommodate all experiments,
and judgment must be exercised every time. Dutilleul
(in press) gives an overview of the kind of consider-
ations that must be taken into account and of the com-
promises entailed by those considerations; his analysis-
of-variance approach to the quantification of spatial
heterogeneity is based on the adequate design of eco-
logical field experiments, according to the type of heter-
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ogeneity of concern (at small scale, patches, one- or
two-dimensional gradients). Our purpose here is to
summarize the basic guidelines of Dutilleul’s paper, to
which we refer for detail.

When spatial heterogeneity in nature is of interest, it
can be taken into account by one or several, fixed or
random classification factors in an ANOVA model, de-
pending on whether it concerns the mean or the var-
iance of the variable under study. Accurate estimations
of that spatial heterogeneity are then provided by the
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Fig. 2. Geary’s all-directional spatial correlograms computed
for: A and B, the two maps plotted in Fig. 1; C and D, fraction
(a), over each of the two halves of the area mapped in Fig. 1B;
E, fraction (a), over the whole area, with narrower distance
classes than in B, for the short distances only. Equal-frequency
distance classes are used. Black squares represent significant
values at the a = 5% level, under the randomisation assump-
tion, without applying a correction for multiple testing, which
would be required to test the overall significance of the corre-
logram; white squares correspond to nonsignificant values.

sums of squared differences between sample means at
different levels of the classification factors, or by the
variance components associated with the classification
factors; absence of spatial heterogeneity can be tested
by assessing the absence of effects of the classification
factor concerned, eventually correcting the test for spa-
tial autocorrelation. In the presence of treatment as-
signment, spatial heterogeneity in nature can be told
apart from controlled spatial heterogeneity in mean,
represented by treatment effects. Spatial heterogeneity
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in nature is seen as a nuisance to the assessment of the
absence of treatment effects, which are the character-
istics of interest, when the associated variability is not
adequately removed from the effective error of the
model, resulting in the inflation of the error mean
square used in F testing and the undervaluation of the
associated power.

Recommended designs are summarised in Table 2.
For patches and one- or two-dimensional gradients, and
in the presence of treatment assignment, they require a
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Fig. 3. Experimental variograms computed for: A and B, the
two maps plotted in Fig. 1 respectively; C and D, fraction (a),
over each of the two halves of the area mapped in Fig. 1B; E,
fraction (a), over the whole area, with narrower distance
classes than in B, for the short distances only. Equidistant
distance classes are used.

principle called blocking, that differs from quadrat
blocking and whose application criteria are more re-
stricting; it allows avoiding spurious treatment effects
and inflated error mean square. Blocking results from
the a priori idea most experimenters have of which
experimental units are likely to behave similarly, and
the exploitation of that knowledge to allocate the treat-
ments to experimental units more fairly; groups of simi-
lar experimental units or “blocks” should essentially
include a roughly equal number of experimental units

165



for each treatment. The simplest and most frequently
used blocking is the randomised complete block design
(Winer 1971, Steel and Torrie 1980, Sokal and Rohlf
1981, Mead 1988), in which each block is divided into as
many subblocks of equal size as there are treatments;
within each block, treatments are randomly assigned to
the subblocks. When the underlying spatial pattern is
clearly patchy, or has been detected to be so, the plots
must be matched as far as possible with the patches, and
the number of subplots per plot must be adapted to the
physical size of the patches. When spatial heterogeneity
due to a one-dimensional “true gradient” in nature and
treatment effects are both of interest, the various plots
or blocks of subplots must cover the whole gradient in
order to capture the systematic change. In the case of a
two-dimensional gradient, it is recommended to divide
the experimental field into row and column blocks of
subplots in order to account for changes along its two
axes; the resulting design is the Latin square (Sokal and
Rohlf 1981, Mead 1988).

Variograms and correlograms

Two final quantification methods essentially concern
spatial heterogeneity in variance; they are outlined
hereafter, and illustrated using the Oribatid data set of
the Borcard et al. (1992) paper. Both of these methods
are based on the same statistical function, defined, over
each given distance class or over the average distance
within each class, as the sum of squared differences
between all pairs of observations belonging to the class
under consideration:

2 (y;— YJ)Z

(i,j) € distance class d

where y, and y; respectively represent the observed val-
ues of the variable under study for sampling locations i
and j, separated by a distance belonging to distance
class d. Under the intrinsic hypothesis (zero mean and
constant variance of the increments y; — y;), the sum of
squares above provides, up to a multiplicative constant

1 1
—or
n, ng

crements between sites located the said distance apart.

Both methods use the above statistic as their numer-
ator. When computing the semi-variance, that statistic
is divided by 2n,, where n, represents the number of
pairs in the given distance class; a semi-variogram, often
called “variogram” for convenience (Jongman et al.
1987, Isaaks and Srivastava 1989), is a plot of the semi-
variance statistic against the various distance classes or
against the average distance within each class. In
Geary’s ¢ autocorrelation coefficient (Cliff and Ord
1973, 1981, Legendre and Fortin 1989), the semi-var-
iance statistic is further divided by the variance of all the
observed values in the study. We preferred using

, an estimation of the variance of the in-
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Geary’s ¢ coefficient instead of another well-known au-
tocorrelation coefficient, Moran’s I, because the former
represents a standardised variance, while the latter
measures a correlation (Legendre and Fortin 1989). Au-
tocorrelation coefficients are also available for nominal
data (Cliff and Ord 1973, 1981, Sokal and Oden
1978a,b) and for multivariate data (Oden and Sokal
1986, Sokal 1986). Geary’s ¢ correlograms and the ex-
perimental variograms for the data mapped in Fig. 1A
and B are plotted in Fig. 2A and B and in Fig. 3A and
B, respectively; the “R package” (Legendre and Vau-
dor 1991) was used for computing Geary’s c statistics,
and GEO-EAS (Englund and Sparks 1988) for the
semi-variances.

Although they are built from the same variance statis-
tic, semi-variance and Geary’s ¢ analyses require to be
valid somewhat different assumptions about the under-
lying surface pattern. As mentioned above, the intrinsic
hypothesis of variogram analysis is weaker than the
second-order stationarity condition required by spatial
correlogram analysis. In the case of Geary’s ¢ autocor-
relation coefficient, second-order stationarity is re-
quired because an overall estimation of the variance is
used in the denominator of the coefficient, and it ap-
pears again in the formula for estimating the variance of
¢ when performing the test of significance (which is not
available in variogram analysis). The result is a greater
validity of variogram analysis, compared to correlo-
grams; this is counterbalanced by the ability of testing
the significance of the semi-variance in Geary’s ¢ analy-
sis. In Fig. 1, fractions (a + b) and (a) clearly do not
satisfy the second-order stationarity condition, so that
the corresponding correlograms in Fig. 2 suffer from
lack of statistical confidence in the significance of the
observed values; in the case of fraction (a + b), the
pattern of both statistics (Figs 2A and 3A) is however
typical of a gradient in mean. Even the intrinsic hy-
pothesis is violated by the increments, because of the
nonzero mean for fraction (a + b), and a nonconstant
variance for fraction (a). Spatial heterogeneity in the
variance of fraction (a) motivates further discussion be-
low.

Concerning the statistical assessment of the signif-
icance of correlogram ordinates, both Moran’s I and
Geary’s ¢ are asymptotically normally distributed as the
number of observations increases, as originally demon-
strated by Cliff and Ord (1973), followed by Sokal and
Oden (1978a,b), Cliff and Ord (1981), and Legendre
and Legendre (1983) among others; I and ¢ are tested
for significance as standard normal deviates; and these
properties approximately hold for regular grids of mod-
erate size. Moments of I and ¢ may be evaluated under
either of two assumptions: normality, where observa-
tions are supposed to be independently drawn from a
normal population; randomisation, under which the ob-
served value of I or c is considered relative to the set of
all possible values which I and c could take on if the
indices identifying observations were repeatedly ran-
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domly permuted, whatever the underlying distribution
of the population. For instance, the significance of the
sample autocorrelation values of Geary’s ¢ (and Mo-
ran’s I), as computed in the computer package that we
used, is based on the randomisation assumption, that
Sokal and Oden (1978a) argued to be more reasonable
for most applications in systematics. There is no con-
straint of equal spacing of the data to the use of I and c.

We complete this section with the rules concerning
the interpretation of Geary’s ¢ spatial correlogram and
the variogram, and their application to Figs 2 B-E and 3
B-E. The first rule concerns the interpretation to give to
the statistics themselves: Geary’s ¢ and the semi-var-
iance. By definition, they are based on the sample var-
iance of increments, so that they are functions of spatial
autocorrelation, and the weaker spatial autocorrelation
is for all distance classes, the more constant both statis-
tics are expected to be over the distance range; they also
provide measures for quantifying spatial heterogeneity
by partitioning variance into distance classes, in a way
similar to that by which the spectral density function
allows a variance partitioning of a time series in the
frequency domain (Priestley 1981). The second rule
results from the first, at least for Geary’s c. For this
coefficient, the more distant the correlogram ordinate is
from the 1.0 value, the more significant it is; ¢’s values
smaller (greater) than 1.0 correspond to positive (nega-
tive) spatial autocorrelation. For the semi-variance,
there are three parameters that are important in the
adjustment of a theoretical model to an experimental
variogram, required for kriging; for a full description of
these models and of kriging itself, that falls beyond the
scope of this paper, we refer to the monographs of
Cicéri et al. (1977), Journel and Huijbregts (1978),
Jongman et al. (1987), Isaaks and Srivastava (1989),
and the review paper of Legendre and Fortin (1989).
We limit our description to the basic parameters that
are: the “range” of influence of the spatial structure,
which is the distance where the variogram stops in-
creasing; the “sill”, which is the ordinate value of the
flat portion of the variogram (if any), where the semi-
variance is no longer a function of distance and corre-
sponds to the sample variance; and eventually, the
“nugget effect”, that refers to variograms that do not go
through the origin of the graph, but display some
amount of variance even at distance zero. This last
effect may be caused by the sampling variance, or it may
suggest that sampling has not been performed at the
right spatial scale. In view of Figs 2 B-E and 3 B-E, a
great similarity of pattern is observed, as expected,
between each Geary’s ¢ correlogram and the corre-
sponding variogram. The only difference lies in the
distance classes used for the computations: equidistant
classes for the variograms (an average distance is finally
used by GEO-EAS for each class) and equifrequential
classes for Geary’s correlogram; although the corre-
logram could have been computed from equidistant
classes, we chose equal-frequency classes here to retain
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the same power for the statistical tests throughout the
range of distance classes. In order to overcome spatial
heterogeneity in variance of fraction (a), we divided the
studied area in two parts: the portion near the forest
and the one near the lake. The resulting Geary’s corre-
lograms and variograms (Figs 2 C-D and 3 C-D) show
the following: the “range” of fraction (a) near the lake is
about 0.6 m, which is smaller than for the part near the
forest, around 1.0 m; the magnitude of the variogram
ordinates, and in particular the “sill”, is in direct rela-
tion with the heterogeneity of the variances (Figs 3
C-D); in concordance with the observations about the
“range”, spatial autocorrelation is significant up to ap-
proximately 0.75 m near the forest, but only for the very
first distance class near the lake (Figs 2 C-D); significant
autocorrelation at further distance classes, in relation
with semi-variance values observed above or below the
sill, corresponds to the association, negative or positive,
between peaks and troughs, providing some pseudo-
periodicity (Cicéri et al. 1977, Jongman et al. 1987); this
last feature was clearly visible near the lake, but not
near the forest (Fig. 1B). The presence of a mixture of
two spatial structures is reflected in Figs 2B and 3B, and
also in Figs 2E and 3E, for a refined range of short
distances. One should finally note that all these vario-
grams are characterised by the absence of nugget effect;
if a trend surface had to be fitted to fraction (a) over the
whole area, a weighted least squares method of estima-
tion (Draper and Smith 1981, Montgomery and Peck
1982), using as weights the inverse of the sample var-
iances computed over each half of the area, would be
recommended. An ecological interpretation of the spa-
tial structure of this Oribatid community in relation
with environmental gradients is given in Borcard and
Legendre (unpubl.).

Point/Summary: For a point pattern, measures of de-
parture from randomness are distinguished from mea-
sures of spatial aggregation; while there exists a pleth-
ora of aggregation indices, only a few, and perhaps only
one, are approved unanimously; the use of aggregation
indices may be completed by the analysis of nearest-
neighbour distances and quadrat blocking, but even
these methods are subject to criticism. For a surface
pattern, quantification methods of spatial heterogeneity
in mean are provided by trend surface and spectral
analysis, and more or less sophisticated interpolation
methods such as moving average or kriging, depending
on the scale — large or small — of the heterogeneity; the
experimenter’s knowledge about his experimental ma-
terial, combined with premanipulation or control, must
be an important source of information during the design
of an experiment; no single design can best accommo-
date all experiments and judgment must be exercised
every time. Quantification methods of assessing spatial
heterogeneity in variance are provided by the analysis
of semi-variance and of Geary’s ¢ spatial autocorrela-
tion coefficient; they are built on the same variance
statistic but require somewhat different validity assump-
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tions, allowing or not significance testing of their ordi-
nates.

Conclusion

Heterogeneity is a contemporary subject of concern for
ecologists, that one can view from a variety of perspec-
tives; some of them have been thoroughly explored,
while many others have not. A good understanding of
the concept and of its chief aspects are required, either
for its fruitful study when spatiotemporal heterogeneity
is a characteristic of interest, or for removing it effi-
ciently when it is a nuisance. The primary objective of
our paper was to review the ways heterogeneity is con-
strued in both the ecological and statistical literatures
with emphasis on space; in particular, we wanted to
understand its structural and dynamic aspects in ecosys-
tems, and describe the various forms it can take in a
statistical perspective. Our contribution has been in the
distinction between the point and surface patterns of
spatial heterogeneity, the relation between the ecologi-
cal perspective of spatial heterogeneity for a point pat-
tern and the statistical Poisson model, and the enlight-
enment of the multiple facets spatial heterogeneity can
present for a surface pattern.

The confusion between heterogeneity and heterosce-
dasticity, induced by a partially common etymology, has
motivated to pursue our review and synthesis of the
statistical and ecological perspectives of spatial hetero-

geneity, and to discuss the problems of its quantifica-

tion. First, we emphasised the purely statistical nature
of heteroscedasticity, strictly defined as the inequality
or heterogeneity of variances. Secondly, we outlined
the statistical solutions to heteroscedasticity: transfor-
mation methods, - experimental design, and corrected
testing, with emphasis on space for the latter. We also
argued that, combined or not with dependence of obser-
vations or autocorrelation, heteroscedasticity does not
always impair our ability to perform, without modifica-
tion nor lack of validity, standard methods of statistical
inference. We completed the connection of the ecologi-
cal and statistical views with a statistical toolbox for
ecologists interested in quantifying spatial heteroge-
neity, whose key tools are a panel of aggregation indices
for point patterns; and mapping, experimental designs,
variograms, and correlograms for surface patterns.
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