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Robustness against autocorrelation in time-series data is investigated for two tests of normality: the 
Kolmogorov-Smirnov test, in the class of normality tests using statistics based on the empirical cu- 
mulative distribution function, and the Shapiro-Wilk analysis-of-variance test, which regresses the 
ordered sample values on the corresponding expected normal order statistics. For a Gaussian first- 
order autoregressive process, it is shown by simulation that: 1. for short series, both tests are conservative 
for some range of negative values of first-order autocorrelation, and too liberal for medium-to-high 
positive and high negative values; 2. for moderate sample sizes, both tests are no longer conservative, 
but remain too liberal asymmetrically for high negative and positive values of first-order autocorrelation; 
3 .  the Kolmogorov-Smirnov test, which traditionally suffers from lack of power in comparisons with 
the W test of Shapiro and Wilk, is more robust against autocorrelation in time-series data, whatever 
the sign of the first-order autocorrelation. We illustrate that these results also apply to spatially auto- 
correlated data along a transect. 

KEY WORDS: Autocorrelation, Kolmogorov-Smirnov test, normality, robustness, sample data, 
Shapiro-Wilk test. 

1. INTRODUCTION 

Standard techniques of statistical inference are most often concerned with sets of 
observations drawn from independently and identically distributed random vari- 
ables - that we will refer to as "random samples" in order to avoid lengthly 
repetitions, while autocorrelation in sample data may impair the ability to use these 
same tests in real-case studies and can alter the conclusions of statistical analyses 
performed without allowance for it. Autocorrelation is a nuisance in that it produces 
a bias when estimating variances and correlation coefficients, and does not provide 
minimum-variance unbiased linear estimators. This is well-known for such methods 
as the analysis of variance (Box, 1954; in time: Milliken and Johnson, 1984, Ch. 
27; Crowder and Hand, 1990, Section 3.6; in space: Bartlett, 1978; Griffith, 1978; 
Legendre et al., 1990), regression analysis (in time: Durbin and Watson, 1950, 
1951; Walker, 1971; in space: Cliff and Ord, 1981, Section 8.2; Cook and Pocock, 
1983), and correlation analysis (in time: Diggle, 1990, Section 8.3; in space: Bivand, 
1980; Clifford et al., 1989). Fortunately, valid statistical inference does not always 
require independence of the observations as a necessary condition; for instance, 
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the necessary and sufficient condition for valid unmodified F testing in analysis of 
variance models allows for limited forms of dependence and heteroscedasticity 
(Huynh and Feldt, 1970; Rouanet and LCpine, 1970) although in most cases, un- 
modified F tests are not valid for autocorrelated sample data. 

Goodness-of-fit tests for autocorrelated sample data are a problem of interest 
not fully explored by statisticians. Despite its practical importance, there is little 
literature about it. The distribution of Pearson (1900) chi-square statistic under the 
hypothesis of normality and its power were studied by simulation for stationary 
time-series processes by Gasser (1975). Testing the fit to a specified normal law 
through the chi-square statistic, Moore (1982) theoretically demonstrated that when 
large samples of time-series data come from a general Gaussian stationary process, 
positive correlation among the observations cannot be told apart from lack of 
normality. Gleser and Moore (1983) extended these results to stationary processes 
satisfying a positive dependence condition, for the Kolmogorov (1933) and Smirnov 
(1939) and the Cram& (1928) and von Mises tests, in the class of normality tests 
based on the empirical cumulative distribution function. More recently, Pierce 
(1985) demonstrated that any normality test performed on residuals in time-series 
autoregressive models of some well-specified order has the same limiting null dis- 
tribution as the random-sample standard case when the parameters are estimated 
from the data. 

In the present paper, we investigate by simulation the effect of positive and 
negative dependence among observations on two major normality tests, with re- 
spect to sample size, when the null hypothesis of a normal univariate marginal 
distribution is correct. The emphasis is on time, but a few illustrations of the effect 
of spatial autocorrelation will also be given. We selected a version of the Kol- 
mogorov-Smirnov test adapted to account for the estimation of one or more pa- 
rameters from the sample data (Stephens, 1974), and the analysis-of-variance 
omnibus test of Shapiro and Wilk (1965) which regresses the ordered sample values 
on the corresponding expected normal order-statistics. These tests are based on 
quite different approaches, using the empirical cumulative distribution function on 
the one hand and the least-squares estimation in the normal probability plot on 
the other; both were designed for the random-sample case. The question is: to 
what extent are these tests robust against autocorrelation, i.e. within what range 
of dependencies among observations do they remain valid? We performed our 
investigation of robustness through simulations, which are the procedure usually 
adopted in null percentage point and power studies, because of the hardly tractable 
mathematics underlying the complex effect of autocorrelation on both of these 
statistics. In Section 2, we briefly overview the historical background of the plethora 
of normality tests. We describe our simulation design in Section 3.1, and present 
and discuss our numerical results in Section 3.2. In Section 4, we propose a general 
solution that may help overcome the nuisance of autocorrelation, when present, 
on tests of normality. 

2. TESTS OF NORMALITY: A BRIEF OVERVIEW 

Karl Pearson may be regarded as having initiated the modern theory of testing for 
departures from normality. First, he showed how deviations from normality could 
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be measured through the standard third and fourth moments of a distribution, 
respectively used to estimate skewness and kurtosis (or peakedness) (Pearson, 
1895). Secondly, he developed the chi-square test, although not specifically to test 
for deviations from normality (Pearson, 1900). Pearson's chi-square test of nor- 
mality contrasts the observed numbers of observations in each of the categories 
into which the distribution is discretised, with the numbers expected if the popu- 
lation from which the data are sampled is normal with known mean and variance. 
This test is well adapted for the cases where the distribution is discontinuous and 
where the parameters must themselves be estimated from the sample data; in all 
other cases, however, it is actually not very sensitive because it does not take into 
account the ordered nature of the data and should not be used routinely (see e.g. 
Stephens, 1974 and D'Agostino, 1982). 

For a random sample X,, . . . , Xn of size n, a general procedure using statistics 
based on the empirical cumulative distribution function F,(x) was developed to 
test for departures of fit from a specified parametric distribution, which can be 
used in particular for the normal law. Function Fn(x) is defined as the proportion 
of sample values smaller than or equal to x, and is an estimate of the theoretical 
cumulative distribution function F(x). Many statistics measuring the discrepancy 
between Fn(x) and F(x) have been proposed to test for fit. Three of the leading 
ones are: the Cramer (1928) and von Mises statistic 

the Kolmogorov (1933) and Smirnov (1939) statistic 

with 

and 

and the Anderson and Darling (1954) statistic 

When F(x) denotes the normal distribution function, large values of those statistics 
indicate nonnormality. All three of these discrepancy measures were primarily 
designed for the random-sample case where the hypothesised distribution function 
F(x) is completely specified, i.e. for a simple null hypothesis. So they are not of 
much practical interest, despite a higher power in comparisons with the chi-square 
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test. Using them when one or more parameters are not specified and must be 
estimated from the sample data, i.e. with a composite null hypothesis, produces 
very conservative tests. From earlier suggestions of Lilliefors (1967) and van Soest 
(1967), Stephens (1974) developed adjustments of the significance values that are 
valid for stated probabilities of type I error. 

An alternative to formal statistical tests is provided by a graphical procedure 
called normal probability plotting, that was developed as an informal technique 
for judging deviations from normality. The objective is to plot the ordered sample 
values versus the inverse of a normal cumulative distribution function in such a 
way that if the underlying population is normally distributed, the graph will be a 
straight line. Some illustrations of how these deviations from linearity indicate the 
degree and type of nonnormality may be found in D'Agostino (1982), for instance. 

Research into normality tests received some impetus with the introduction of 
the so-called analysis of variance W statistic by Shapiro and Wilk (1965). The 
innovation consisted of quantifying the information contained in the normal prob- 
ability plot; they defined W as the F-ratio between the estimated variance obtained 
by weighted least-squares of the slope and the classical sample variance, to judge 
the adequacy of the linear fit 

2 (Xi - X)2 
i =  1 

where Xi I . . . I X,', are the order statistics and the coefficients w, (i = 1, 
. . . , n) are the optimal weights for a population assumed to be normally distrib- 
uted. So W can be viewed as the square of the correlation coefficient obtained 
from the normal probability plot. Small values of W indicate nonnormality. Critical 
values for levels ct=0.01, 0.02, 0.05, 0.10 and sample sizes between 3 and 50 are 
given in Shapiro and Wilk (1965). Royston (1982a) extended W for sample sizes 
up to 2000. Extensive simulation studies indicated that W has good power properties 
against a wide range of nonnormal distributions for a variety of sample sizes, and 
is therefore a very sensitive omnibus test statistic (Shapiro et al., 1968). When 
carried out without adjustment for the composite null hypothesis, normality tests 
using statistics based on the empirical cumulative distribution function have suffered 
in comparisons with W (Shapiro and Wilk, 1965); with the appropriate adjustment, 
the powers of modified W2* and A2* are comparable to that of W (Stephens, 1974) 
but no single test is optimum for all possible deviations from normality. For sup- 
plementary power results related to normality tests, good surveys are Stephens 
(1974,1982), Pearson et al. (1977), D'Agostino (1982) and Royston (1982a), among 
others. From a practical point of view, the user may still prefer using statistics 
based on the empirical cumulative distribution function (W2*, D*, A**) because a 
different set of coefficients w, (i = 1, . . . , n) is required for each n when computing 
W, although algorithms are available to compute the exact or approximate expected 
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normal order statistics (Royston, 1982b) and the W significance values for any 
sample size between 3 and 2000 (Royston, 1982~). 

3. LACK OF ROBUSTNESS AGAINST AUTOCORRELATION 

3.1. Simulation Design 

When the null hypothesis of a normal univariate marginal distribution is correct, 
to what extent are Kolmogorov-Smirnov D* as modified by Stephens (1974) and 
Shapiro-Wilk W tests robust against autocorrelation, i.e. what is the range of their 
respective validity in the presence of dependencies among observations? With this 
aim, we adopted an approach often used in null percentage point and power studies, 
and performed our investigation of robustness through simulations, for a variety 
of autocorrelation values and sample sizes, because of the complex effect of au- 
tocorrelation which induces bias in variance estimations in both of these statistics. 
Autocorrelated sample data were generated from the following first-order auto- 
regressive (AR(1)) processes. 

Let us define the well-known temporal stationary first-order autoregressive pro- 
cess by 

and the symmetric nearest-neighbour autoregression model along a spatial transect 
by 

X s = ~ ( X s - l + X , + , ) + ~ s  with ( p ( < 0 . 5  (2) 

(Bartlett, 1978). To generate values of a normally distributed white noise E with 
zero mean and unit variance, we used the SAS (Statistical Analysis System) random 
number function RANNOR which applies the Box-Muller transformation. 

The procedure adopted for simulating n-size samples of temporally autocorre- 
lated data from (1) obeys the following straightforward algorithm: 

Initialisation: generate (call RANNOR) and set X1 = 
Step 2: generate e2 and compute X, = pXl + E,; . . . 
Step 1000+n: generate E ~ ~ ~ + ~  and compute X1OOO+n = pX999+n + E ~ ~ ~ ~ + ~ ;  
End: retain as the n-size sample the set (Xi; i = 1001, . . . , 1000 + n) of 

autocorrelated data in order to avoid influences of the origin of the simulated time 
series. 

The procedure adopted for simulating spatially autocorrelated data along a tran- 
sect, following equation (2), is somewhat different even if the basic idea remains 
to simulate more than n ,  say 50 + n, autocorrelated data (Xi; i = 1, . . . , 50 + 
n) and then, retain as n-size sample the set (Xi; i = 25 + 1, . . . ,25  + n) in order 
to avoid edge effects. Let V denote the covariance matrix of 50 + n spatially 
autocorrelated data from (2). With slight modifications, we derived matrix V from 
the covariance matrix given in Cliff and Ord (1981, Section 6.2) for a two-dimen- 
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sional simultaneous first-order autoregressive process. If e = (el, . . . , E ~ ~ + , , )  de- 
notes a vector of 50 + n generated values of E, then the transformation 

performed with the SAS matrix algebra procedure, provides the desired 50 + n 
spatially autocorrelated data. 

The parameter values used when simulating autocorrelated sample data are: for 
process (I) ,  n = 20,51, 100,200 and p = - 0.9 to +O.9 by steps of 0.1; for process 
(2), n = 20 and /3 = -0.45, -0.4 to f 0 . 4  by steps of 0.1, +0.45. For sample 
size n = 20 and for each p value in the time domain, 5000 samples were simulated 
(1000 for each /3 value in the space domain); for other sample sizes and each p 
value, 2500 samples were simulated. Different sets of pseudo-random numbers 
were generated for each simulation, to avoid dependence among results. 

Kolmogorov-Smirnov tests were performed using the VERNORM procedure of 
the "R" package (Legendre and Vaudor, 1991) when the sample size was n = 20, 
and by the UNIVARIATE procedure of SAS Version 5 for higher sample sizes; 
SAS Version 5 does not allow to compute the Kolmogorov-Smirnov test for n I 
50. For all sample sizes, Shapiro-Wilk tests were carried out through the UNI- 
VARIATE procedure of SAS Version 6. Both tests were performed on the same 
simulated samples. 

3.2. Results and Discussion 

For a given sample size, the results are presented in terms of the observed signif- 
icance level, that is, the proportion of times the normal null hypothesis is rejected 
among the (1000,2500 or 5000) tests performed on the simulated data; the abscissa 
represents the first-order autocorrelation or autoregression coefficient values. 
When the null hypothesis of a normal univariate marginal distribution is correct, 
which is the case here because of the normality of the E,'S and consequently of the 
X,'s, one would expect to observe significance levels equal to the nominal prob- 
ability of type I error (a = 0.01, 0.05, or 0.10), whatever the first-order autocor- 
relation or autoregression coefficient value; it should be kept in mind, however, 
that both tests were designed for the random sample case. We used Royston (1982~) 
algorithm to compute the significance values of W. 

Figure 1 reveals interesting and, to some extent, somewhat surprising features 
of the behaviour of statistics D* and W in the presence of autocorrelation in time- 
series sample data. First, both statistics are too liberal for medium-to-high positive 
autocorrelation values. This was expected from the theoretical asymptotic results 
of Gleser and Moore (1983); to our knowledge, quantitative results have never 
been published for the Kolmogorov-Smirnov and the Shapiro-Wilk tests, and in 
particular not for small samples. We have found this first feature to be present in 
small (n = 20) as well as moderate ( n  = 51, 100, 200) sample sizes. Secondly, the 
behaviour of both statistics for negative first-order autocorrelation values, i.e. in 
the presence of autocorrelation which is negative at odd time lags and positive at 
even lags, is asymmetrical with respect to positive values, for all the sample sizes 
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that we considered. The justification has to be found in the reduction in induced 
bias when estimating variances, due to the alternation of negative and positive 
autocorrelation values at odd and even time lags. Finally, the surprising but most 
striking result comes from the conservative behaviour of both tests for short series, 
shown for n = 20 in Figure 1 (a) and (b) in the range of negative values of first- 
order autocorrelation between - 0.4 and -0.8. This feature disappears with both 
tests for moderate sample sizes (n = 100 and more). 

The comparison between D* and Win terms of robustness against autocorrelation 
in time-series data suggests that the Kolmogorov-Smirnov test, which traditionally 

(a) n = 20 

First-order autocorrelation values 

(b) n = 20 

First-order autocorrelation values 

Figure 1 Kolmogorov-Smirnov (a)-(c)-(e)-(g) and Shapiro-Wilk (b)-(d)-(f)-(h) tests of normality, per- 
formed for simulated time series arising from a Gaussian AR(1) process: observed significance levels 
as a function of the first-order autocorrelation values. The nominal significance levels considered are: 
circles, a = 0.01; squares, a = 0.05; triangles a = 0.10. The computed Kolmogorov-Smirnov tests 
account for the estimation of two parameters from the sample data, following Stephens (1974). 
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-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

First-order autocorrelation values 
(d) n = 51  

First-order autocorrelation values 

(e) n = 100 
0.7 . 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

First-order autocorrelation values 

Figure 1 Continued 
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(f) n = 100 
0.7 , 

First-order autocorrelation values 
(g) n = 200 

First-order autocorrelation values 

(h) n = 200 
0.8 , 

0.7 . 
0.6 . 
0.5 . 
0.4 . 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 

First-order autocorrelation values 

Figure 1 Continued 
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First-order autocorrelation values 

Figure 2 Kolmogorov-Smirnov (open squares) and Shapiro-Wilk (dark squares) tests of normality, 
performed for simulated time series arising from a Gaussian AR (1) process: observed significance 
levels as a function of the first-order autocorrelation value. The Kolmogorov-Smirnov tests account for 
the estimation of two parameters from the sample data, following Stephens (1974). 

suffers from lack of power, is equally or more robust than Shapiro-Wilk's, de- 
pending on the sign or size of the first-order autocorrelation value. Figure 2, which 
presents the results for small sample size (n = 20) and nominal significance level 
a = 0.05, shows that both statistics behave in the same way when the data display 
a small or moderate amount of positive autocorrelation, while the Kolmogorov- 
Smirnov statistic is less biased than Shapiro-Wilk's for negative and high positive 
first-order autocorrelation values. 

Similar results are found with spatially autocorrelated data sampled along a 
transect. For n = 20 and a = 0.05 in particular, the D* and W tests remain too 
liberal for moderate-to-high positive autoregression coefficient values and too con- 
servative for some range of negative values between - 0.1 and - 0.45, with a smaller 
bias for D* (see Figure 3). The liberal behaviour of both statistics vanishes for high 
negative values of autoregression. 

4. CONCLUDING REMARKS 

We have explored the consequences of applying tests of normality designed for the 
random-sample case, to variables that are autocorrelated in time or in space along 
a transect. We have clearly shown that such applications may have misleading 
results: confusion between nonnormality and autocorrelation, conservative or lib- 
eral results. A way of overcoming the problem is to state the null hypothesis in 
terms of the normality of the generating process e of the autocorrelated variable 
X under study, instead of the normality of the variable itself, because the former 
induces the latter. This suggests the following solution to the problem: one could 
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Autoregression coefficient values 

Figure 3. Kolmogorov-Smirnov (open squares) and Shapiro-Wilk (dark squares) tests of normality, 
performed for simulated one-dimensional spatial data arising from a Gaussian symmetric nearest- 
neighbour process: observed significance levels as a function of the autoregression coefficient value. 
The Kolmogorov-Smirnov tests account for the estimation of two parameters from the sample data, 
following Stephens (1974). 

remove the effect of the autocorrelation and go back to the random-sample situ- 
ation; this can be accomplished by identifying the autocorrelation structure in time 
or space, followed by a linear transformation based on the square root of the 
inverse of the estimated covariance matrix. We recently proposed a solution of this 
type to a specific, but not restricted, ecological problem in time-series analysis 
(Legendre and Dutilleul, 1991). In spatial analysis, the appropriate theory should 
be developed (Cliff and Ord, 1981, Ch. 7) in order to provide valid statistical 
models allowing for spatial autocorrelation; this may represent the long-term so- 
lution. For tests of normality in particular, the question of the effect of spatial 
autocorrelation in two-dimensional processes is too often ignored (as for instance 
in Griffith, 1987, Ch. 3); the results presented in this paper suggest that such 
processes should be investigated next. 

The present paper was concerned with the comparison, in terms of robustness 
against autocorrelation, of the Kolmogorov-Smirnov D* statistic as modified by 
Stephens (1974) on the one hand, and the Shapiro-Wilk W statistic on the other. 
From a practical point of view, our results may be summarised as follows: for some 
range of negative first-order autocorrelation or autoregression values, in small 
sample sizes, both statistics lead to rejecting the null hypothesis of normality in 
too few cases when it is true - which is not a major concern since the probability 
of committing a type I error is not increased; what is of concern, of course, is that 
the probability of a type I1 error is increased with nonnormal data. For small and 
moderate sample sizes, both tests incorrectly reject too often the normality hy- 
pothesis when the data are highly positively autocorrelated, and to a lesser extent 
also when they are highly negatively autocorrelated; this means that high positive 
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or negative correlation among the observations cannot be told apart from lack of 
normality. The numerical results we presented for small and moderate sample sizes 
push the balance in favour of D*, whose properties are as good as or better than 
those of W, and counterbalance the slightly poorer power reported for D* in the 
random-sample case. This may give new impetus to the use of goodness-of-fit 
statistics based on the empirical cumulative distribution function when autocor- 
relation is present in the sample data. 
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