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Abstract

Population genetics theory is primarily based on mathematical models in which spatial

complexity and temporal variability are largely ignored. In contrast, the field of

landscape genetics expressly focuses on how population genetic processes are affected by

complex spatial and temporal environmental heterogeneity. It is spatially explicit and

relates patterns to processes by combining complex and realistic life histories,

behaviours, landscape features and genetic data. Central to landscape genetics is the

connection of spatial patterns of genetic variation to the usually highly stochastic space–

time processes that create them over both historical and contemporary time periods. The

field should benefit from a shift to computer simulation approaches, which enable

incorporation of demographic and environmental stochasticity. A key role of simulations

is to show how demographic processes such as dispersal or reproduction interact with

landscape features to affect probability of site occupancy, population size, and gene flow,

which in turn determine spatial genetic structure. Simulations could also be used to

compare various statistical methods and determine which have correct type I error or the

highest statistical power to correctly identify spatio-temporal and environmental effects.

Simulations may also help in evaluating how specific spatial metrics may be used to

project future genetic trends. This article summarizes some of the fundamental aspects of

spatial–temporal population genetic processes. It discusses the potential use of simula-

tions to determine how various spatial metrics can be rigorously employed to identify

features of interest, including contrasting locus-specific spatial patterns due to micro-

scale environmental selection.
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Introduction

Computer simulations have had a rich and influential

history in the fields of population genetics, evolution,

ecology, and conservation. Particularly important are
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stochastic space–time simulations, which are probabilis-

tic and in which data change in response to changing

model states or inputs over time. Such simulations can

incorporate stochasticity, spatial heterogeneity, individ-

ual variation, adaptive traits, historical effects and many

other complexities in ways that would be intractable for

mathematical models. They also allow system-level

dynamics and patterns to emerge from parameteriza-

tion of individual behaviour. Because random events

and traits of individual organisms are key drivers of

population dynamics and evolutionary processes, simu-

lation approaches to understanding complex natural

systems were adopted as soon as sufficient computing

power became available (Turner et al. 1982; Grimm &

Railsback 2005). Simulation models have been used in

genetics decology for multiple objectives, including

successfully advancing theory (e.g. source–sink dynam-

ics, Wiegand et al. 1999), testing how robust analytical
predictions are to deviations from model assumptions

(e.g. the effects of deviation from an island model on

estimates of Nm, Slatkin & Barton 1989), and evaluating

the performance of statistical tests (e.g. Legendre 2000).

Moreover, their flexibility allows simulations to be tai-

lored to specific, applied cases (e.g. Noon & McKelvey

1992; Taylor et al. 2000; Schumaker et al. 2004; Real &

Biek 2007).

Most simulations fall into two broad categories: gen-

eric and specific. Generic simulations use broad models

and parameters (usually derived from the literature, but

often encompassing a wide range of values) and are

generally used to examine the outcomes of specific

models under a variety of conditions (parameter

options; Fig. 1) or to test the ability of analytical meth-

ods to recover ⁄ estimate the input parameters that went

into a model. In contrast, specific simulations attempt to

mimic a specific observed population or condition
Fig. 1 An example of a flow chart for

Monte Carlo simulation studies that can

elucidate various landscape genetic

effects, by progressively adding compli-

cations to specifications. Initially, Moran

I statistics may be used, but any other

spatial metric could also be studied.

Each step (right hand side boxes) uses a

suite of sets of replicated simulations to

address how dispersal, density and ulti-

mately landscape features may affect

spatial genetic structure, SGS, in

increasingly complex processes of land-

scape genetics, resulting in increased

knowledge (left hand side boxes). Each

step provides information about how

parameters behave and how much spe-

cific factors may be ignored in pursuit

of general results. Step 1 should define

large areas of parameter space over

which the shape of the dispersal func-

tion has little or no effect on SGS.

Future researchers, for example under-

taking Step 2, could decide whether or

not to ignore dispersal shape and just

arbitrarily choose one, although it

would be prudent to have some dis-

persal shape variants in case there are

interactions between dispersal shape

and density and clustering in affecting

SGS. If there are no interactions, or if

they can be managed, then favourable

conditions are set for dealing with dis-

persal function, density, and clustering

in carrying out Step 3. It is especially

important to have the precise predic-

tions used in Step 1, since with Monte

Carlo simulations it can be difficult to

definitively debug programs.

� 2010 Blackwell Publishing Ltd
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(Gauffre et al. 2008; Novembre & Stephens 2008). They

are generally used to test under what conditions (or

models or parameters) the observed data could have

been generated or to predict what may happen to a spe-

cific population in the future. Both generic and specific

simulations have proven quite useful for population

genetics and landscape ecology.

Landscape genetics, as an amalgam of population

genetics and landscape ecology (Manel et al. 2003;

Holderegger & Wagner 2006; Storfer et al. 2007), can

benefit from simulation modelling approaches, given its

explicit focus on spatial complexity. Indeed, landscape

genetics aims at understanding the processes governing

spatial patterns of genetic variation, in response to envi-

ronmental spatial heterogeneity. Landscape genetic

studies combine the power of increasingly available

spatially referenced multilocus genotypic data (e.g.

Joost et al. 2007; Herrera & Bazaga 2008) with geo-

graphic information systems (GIS) and remote sensing

data, greatly expanding our ability to understand

sources of spatial genetic structure (Manel et al. 2010a).

Simulations are especially useful and relevant to the

challenges of landscape genetics based on several con-

siderations. First, fitness and dispersal variability

among individuals have numerous critical consequences

for the dynamics, structure, and evolution of popula-

tions. Second, because landscape genetics focuses on

the effects of landscape properties on genetic structure

(Storfer et al. 2007), it is appropriate that models explic-

itly and realistically incorporate spatial heterogeneity

and local interactions. Third, population history can

also have strong effects on the structure of natural pop-

ulations (Knowles 2009), confounding attempts to eluci-
Table 1 Sequences of developments in population genetics, populati

tial to spatially explicit

Level Population genetics Population biology Statis

Aspatial Gene drift,

Gene flow,

Gene mutation

Demography

(Leslie matrix)

Regr

summ

Spatially

implicit*

Wright’s Island

Model

Metapopulation Regr

envir

Spatially

explicit†

Isolation-by-distance,

Isolation-by-barrier;

stepping-stone

Spatially explicit

landscape +

individual based

models (IBM) ‡

Univ

SAR,

weig

STAR

etc. m

maps

*Models or methods where it is implicit that there are variations over

space.
†Models or methods where individuals or populations are assigned to
‡While spatially explicit population-based models continue to contribu

based models.
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date more contemporary landscape effects. Finally, the

applied nature of many landscape genetic investiga-

tions, for example in conservation biology (Bruggeman

et al. 2009), means that practitioners often grapple with

‘real world’ questions in complex, nonideal, and idio-

syncratic systems. All of the above elements can be dif-

ficult or impossible to accommodate in purely

mathematical modelling frameworks, whereas the flexi-

bility and generality of simulations allows considerable

complexity and biological detail to be included.

The historical progression of models and statistical

methods in ecology and genetics, from aspatial to spa-

tially implicit (where it is implicit that there are varia-

tions among individuals or populations over space, but

the locations or the spatial relationships among them

are not specified) to spatially explicit (Table 1), has led

landscape genetics to a modelling framework which

both is spatially explicit (i.e. spatial locations of individ-

uals are monitored) and incorporates realistic landscape

features and heterogeneity in a meaningful way. In this

article, we review many relevant theoretical develop-

ments and examine the general roles that stochastic

space–time simulations could play in landscape genetics

(i.e. ranging from developing analytical models, testing

hypothesis, making predictions, studying a specific or

applied system, to comparing statistical methods). We

then identify specific outstanding biological questions

and critical processes that should be addressed, using

simulation-based approaches. We review existing com-

puter programs and suggest guidelines for future simu-

lation studies in landscape genetics. Throughout the

article, focus is maintained on continuous space pro-

cesses or approximations of them, rather than discrete
on biology, spatial statistics and landscape genetics, from aspa-

tical geography Landscape genetics

ession,

ary statistics

ession with

onmental variables

ariate: spatial: CAR,

autologistic, geographical

hted regression; spatio-temporal:

MA, hierarchical Bayesian state-space,

ultivariate: PCNM ⁄ Moran eigenvector

, Mantel tests

Spatially explicit

landscape +

IBM + genetics

locations, but locations are not assigned to specific places in

specific locations or the distances between them are defined.

te to these fields, the trends appear to be toward individual
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population models, for two reasons. First, most existing

theoretical population genetic results on continuous

models are paralleled by those for discrete populations

(e.g. Epperson 2003). Second, salient features of discrete

population models can be accommodated in continuous

models by including a clustering factor (e.g. Barton &

Wilson 1995) without the often arbitrary delineation of

populations.
Historical context and existing theoretical results
relevant to simulations in landscape genetics

In order to understand the future of simulation studies

in landscape genetics, it is helpful to review the past

developments of models and results in the fields of

population genetics, landscape ecology, and statistical

geography (Table 1).
Population genetics

In population genetics, spatially explicit studies of

genetic structure began with Wright’s (1943) model of

isolation by distance (IBD), in terms of decreasing levels

of inbreeding within increasingly large areas (Table 1).

Malécot (1948) reformulated Wright’s model in terms of

pairwise probabilities of identity by descent, which pre-

saged modern methods. Both used simple Wright–

Fisher discrete-generation lifecycles with added mating

by proximity. Subsequently, several hundred mathemat-

ical papers, some with variant models or approaches

(see e.g. Nagylaki 1989 for a review), developed many

important mathematical relationships about the

expected values of spatial metrics in stochastic spatial–

temporal population genetic processes (e.g. Nagylaki

1986; Soboleva et al. 2003). However, it also became

clear that the most mathematically difficult processes

are those that exist in two spatial dimensions, especially

at fine spatial scales; precisely the cases that are of most

interest in landscape genetics today. It appears likely

that with the added complexity of processes in land-

scape genetics, purely mathematical models will not

lead to analytical solutions.

A second wave of theoretical studies relevant to sim-

ulations of landscape genetics began when relatively

fast computers became available, starting with Turner

et al. (1982) simulating Wright’s approach (and using

F-statistics) and Sokal & Wartenberg (1983) beginning a

series of Monte Carlo simulation studies of the same

models, but using Moran’s I-statistics (which are closely

related to other pairwise measures of identity by des-

cent, Barbujani 1987; Hardy & Vekemans 1999). Since

then, simulation studies have generally kept all of the

assumptions required for discrete-generation life cycles

and the assumption that individuals existed on points
of a lattice. They also usually modelled isotropic dis-

persal, represented very large populations (typically

10 000 diploid individuals), and included stochastic dis-

persal and stochastic Mendelian segregation. These

types of simulation studies have well characterized the

amount of spatial genetic structure that is expected

based on basic dispersal characteristics under simple

IBD processes. Importantly, they have also shown that

realizations of IBD are themselves highly stochastic, or

‘noisy’ (e.g. Epperson 2003). We can expect even noisier

correlations to be measured in empirical samples. It

should also be noted that IBD can form the basis of null

hypotheses for the operation of landscape factors rather

than the usually unrealistic null hypothesis of a random

distribution (Sokal & Wartenberg 1983; Fig. 1). Further,

it has been shown recently that noise-to-signal ratio, as

measured for example by coefficients of variation of

Moran’s I, tends to increase with spatial scale (Epperson

submitted), which has implications for how best to

design sampling schemes (e.g. sample within or beyond

the range of IBD) in simulation studies, and how to

combine spatial scales in statistical measures. For exam-

ple, the detection or characterization of the effects of a

particular landscape variable on spatial genetic struc-

ture may require greater numbers of replicate simula-

tions, samples, or loci for larger scales. Similar general

relationships between spatial scale of genetic structure

and scale of movement (Anderson et al. 2010) could be

expected in more complex landscapes, although some-

times altered.

In addition, IBD simulation studies have revealed the

spatial genetic effects of mutations (Epperson 2005),

random immigration and simple natural selection

(reviewed in Epperson 2003), as well as some knowl-

edge about clines due to microenvironmental gradients

and local adaptation (Sokal et al. 1997). Some knowl-

edge has also been gained regarding the effects of barri-

ers to gene flow (e.g. Dupanloup et al. 2002; Guillot

et al. 2005; Latch et al. 2006; Gauffre et al. 2008; Mur-

phy et al. 2008; Frantz et al. 2009) and other environ-

mental heterogeneities (Travis & Ezard 2006; Real &

Biek 2007). In future contributions to landscape genet-

ics, these types of simulations could be modified to

incorporate more realistic life cycles, move away from

the assumption of a (full) lattice, and include landscape

features (Fig. 1).

Landscape genetics is becoming increasingly multilo-

cus (e.g. Manel et al. 2010a), yet little is known about

how multilocus genotypes behave in spatio-temporal

systems. One two-locus simulation study produced

some rather surprising results (Epperson 1995): the level

of linkage disequilibrium (LD), was very small popula-

tion-wide, whether or not the two loci were linked,

although LD was quite large at smaller spatial scales.
� 2010 Blackwell Publishing Ltd
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We may expect that LD will generally change with spa-

tial scale in more realistic landscapes as well, and that

the relationship of LD with recombination rates will be

complex. Such complexity could confound multilocus

characterizations in simulation studies, for example of

marker-trait associations in a landscape setting (Manel

et al. 2010a). Finally, although much of the focus has

been on pairwise measures, it should be noted that sim-

ulation studies can also determine spatial patterns in

terms of genetic diversity measures such as heterozy-

gosity and FST (e.g. Miller & Lacy 2005; Landgruth and

Cushman 2009).
Landscape and population ecology

Some of the earliest simulations in ecology were of for-

est stand dynamics (e.g. Botkin et al. 1972), but they

quickly expanded into wildlife and fisheries manage-

ment, movement ecology, theoretical ecology, conserva-

tion biology, metapopulation biology, and other

ecological subdisciplines (e.g. Fahrig & Paloheimo 1988;

Noon & McKelvey 1992; Palmer 1992; Turner et al.

1993; Zollner & Lima 1999; Tracey 2006). The advent of

the field of landscape ecology (Turner 1989), coupled

with increased availability of remote sensing data and

computing power, fuelled the development of spatially

explicit population models (Turner 1995; Table 1) and

landscape disturbance models (LANDIS, He & Mlade-

noff 1999). Some were population-oriented, but increas-

ingly such simulators follow individuals through their

lifetimes, with daily to yearly updates, keeping track of

sex, age, and events such as birth, mating, dispersal,

and death (e.g. VORTEX, Lacy 1993; Miller & Lacy

2005), with transitions between life stages determined

by Leslie matrices (Caswell 2000; Table 1). In more

advanced simulators, individuals interact with habitat

patches, other individuals, stressors, barriers, and ⁄ or

other landscape elements, allowing the effect of chang-

ing landscape features on populations to be studied

(e.g. Schumaker 1996; Schumaker et al. 2004). Increas-

ingly, such models are incorporating adaptive behav-

iour (e.g. Railsback & Harvey 2002; Goss-Custard et al.

2006). Although many are constructed for specific pur-

poses, some are designed as general and user-configura-

ble tools (e.g. HexSim; Schumaker 2009). Simulations

have also been used to incorporate both environmental

control and spatial autocorrelation in spatially explicit

predictions of community composition (e.g. Legendre

et al. 2002, 2005).

Individual-based models (IBM) are beginning to com-

bine stochastic ecological and genetic processes in a

spatially explicit setting, as is required for landscape

genetics (Table 1). By focusing explicitly on individuals,

such models are freed from the Fisherian view of popu-
� 2010 Blackwell Publishing Ltd
lations and statistics (e.g. using the normal distribution

and a ‘random sample’ to estimate a population mean),

and instead their results can be directly compared to

spatial distributions of individual genotypes in empiri-

cal studies. For example, AMELIE (Kuparinen & Schurr

2007) is a plant population model that focuses on indi-

vidual plant genotypes and incorporates flexible life his-

tories, reproductive systems, and demography, with

user-defined pollen and seed dispersal kernels. CDPop

(Landguth & Cushman 2009) simulates dispersal, mat-

ing, and genetic exchange as probabilistic functions

based on distance matrices rather than fixed kernels.

These matrices are in turn derived from landscape eco-

logical models, for example, least-cost path models

which impose ‘costs’ imposed by movements through a

‘resistant’ landscape (Balkenhol et al. 2009; Spear et al.

2010). This provides a framework that allows compari-

son of multiple alternative models of landscape resis-

tance directly with IBD and isolation by barriers into

panmictic populations, enabling linkage between empir-

ical analysis and simulation modelling. The modelling

framework is specifically designed to provide a simula-

tion framework that is directly amenable to causal mod-

elling approaches for evaluating alternative landscape

resistance hypotheses (e.g. Cushman et al. 2006).
Statistical geography

Developments in spatial statistics and stochastic space–

time process theory originally designed for general vari-

ables in statistical geography (Table 1) also have impli-

cations for analysing simulations in landscape genetics.

The simplest model, known as Space–Time Autoregres-

sion Moving Average (STARMA; Haining 1979), hap-

pens to subsume stepping stone models of genetic drift

and migration (Epperson 1993); hence STARMA theo-

rems and results are directly applicable to population

genetics. The formal STARMA concept of a well-defined

lag structure (Hooper & Hewings 1981) or spatial ‘regu-

larity’ (Epperson 2003), the degree to which spatially

determined interactions among locations are repeated

and scaled up over the landscape, dictates that spatial

statistical analyses are more complicated in systems

with less spatial regularity. Here it should be noted that

spatial statistical modelling can be applied to somewhat

irregular structures, for example, by using spatial eigen-

function analysis (Borcard & Legendre 2002; Dray et al.

2006). Regularity considerations, together with the high

stochasticity or noisiness of space–time population

genetic processes, also dictate that spatial genetic rela-

tionships must be replicated in a spatially regular way

many times or insufficient statistical power will result,

although to some degree this could be offset by using

large numbers of genetic markers (Anderson et al. 2010).
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Researchers can design, control and contrast spatial reg-

ularity in simulations and statistics, in order to improve

statistical characterization of the effects of landscape

features on spatial genetic structure.

STARMA theory, as well as simulations of IBD, has

also shown that the manner in which stochastic inputs

enter a system can have profound effects on spatial

genetic structure. Inputs can occur through chance

effects of dispersal distances and through genetic trans-

mission, and it is critical that simulations include both.

The distances that genes disperse (based on the inher-

ent and biological tendencies of movements of individ-

ual animals or plant propagules) are typically

represented by exponential or more complex long-tailed

(large variance) distributions (e.g. Gregory 1968; Klein

et al. 2003). In addition, at least for diploids, genetic

transmission, or the process by which genes are trans-

mitted from parents to offspring is also highly stochas-

tic, even if following simple mating rules and

Mendelian segregation. Further, genetic transmission in

diploids can produce stochastic events that arise at loca-

tions rather than during movements (in STARMA,

genetic drift vs. stochastic migration). Hence, it is criti-

cal that simulation studies in landscape genetics repre-

sent the appropriate ploidy level.

In addition, STARMA studies show that the manner

in which stochastic events are propagated or ‘percolate’

(O’Neill et al. 1988) through the system largely deter-

mines the spatial genetic structure (Epperson 1993).

Most critical perhaps is the effective number of spatial

dimensions (i.e. whether habitat is essentially linear or

arrayed in two or even three dimensions). Stochastic

inputs in systems with one dimension tend to propa-

gate less effectively and tend to produce higher

expected correlations (Epperson 1993), but have greater

variability in correlations, that is, are noisier (Fix 1994)

than in two- or three-dimensional systems. Thus for

example when gene flow is channelled through a corri-

dor on a two-dimensional landscape, the spatial genetic

structure in and near the corridor would differ and

resemble that of a one-dimensional migration system.

Terrestrial plants and animals can usually effectively

occupy only one or two dimensions, whereas aquatic

plants and animals, as well as soil-dwelling organisms,

could occupy three-dimensional habitats. Thus it is

important that both actual and effective spatial dimen-

sionality are properly considered in simulations; for

example, existing lattice-based models could be easily

modified to 1D or 3D habitats.

It is also important to point out that the relationships

among movement, life history characteristics, and spa-

tial genetic structures depend on the fact that the latter

build over time and generally do not arise instanta-

neously (e.g. spatial ARMA; Haining 1979). However,
available evidence indicates that most spatial genetic

autocorrelation is generated over surprisingly short

time periods, roughly 20 or so generations, as was

shown most clearly in a coalescence analysis of IBD

(Barton & Wilson 1995). Furthermore, changes in land-

scape structure, such as a new barrier, can change spa-

tial genetic structure within as few as five generations

(Murphy et al. 2008). Such considerations are particu-

larly important when attempting to use simulations to

distinguish effects of contemporary gene flow from his-

torical events or processes in simulation studies.

Gene flow is generally considered solely as a

‘smoothing’ or homogenizing force (e.g. Wright 1965).

However, both STARMA theory (e.g. Bennett & Hain-

ing 1985) and simulations (Epperson 2007) show that

dispersal also can be the cause of spatial autocorrelation.

There are circumstances where an increase in the rate

of dispersal can increase the amount of autocorrelation

(Epperson 2007).
General roles of simulations in landscape
genetics

Testing model assumptions

One of the most crucial roles of simulations is in testing

the robustness of process models to their assumptions,

that is, the predictive capabilities of mathematical and

analytical models, and the power of statistical methods,

when applied to complex ‘real-world’ systems. Any

model (analytical, simulation, and otherwise) makes

simplifying assumptions (Box 1979), unless it were ‘an

entire reconstruction of the actual system—whereupon

it ceases to be a model’ (Burgman & Possingham 2000).

Simple models remain useful, however, for capturing

some salient aspects of complex systems or problems

(Grimm 1999), developing theory, testing hypotheses,

and for making predictions. More complex models tend

to be more difficult to understand and derive general

lessons from. Simulation studies can be structured to

sequentially determine whether simple models (and

their assumptions) are adequate for specific questions

or whether additional complexity is necessary to draw

conclusions about a particular type of system, by

sequentially adding components or violating assump-

tions (see, e.g. Fig. 1).

For example, simple models of IBD with two spatial

dimensions originally assumed an animal model with

equal movement of the sexes (Wright 1943). Variant

simulations have shown that summary measures of dis-

persal, particularly the total variance of parental

dispersal distances as figured in Wright’s neighbour-

hood size, Ne, are strongly predictive of global spatial

autocorrelation. Predictive ability holds true even if
� 2010 Blackwell Publishing Ltd
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sexes differ greatly in dispersal ability or if plant mod-

els of propagule dispersal are used instead (Epperson

2007). Other studies have shown that the shape of the

dispersal curve is usually not important (most recently

by Lee & Hastings 2006). In addition, nonuniform den-

sity of individuals scarcely affects spatial genetic mea-

sures. However, when there is extreme clustering of

individuals, global autocorrelation is (mildly) affected

(Doligez et al. 1998). These results for IBD should not

necessarily be taken to mean that these factors can

always be safely ignored, especially where other simpli-

fying assumptions are also violated.

Other simplifying assumptions about mating system

and subtler aspects of life history are yet to be much

explored in landscape genetics, many of which could be

addressed through simulation modelling. These

assumptions include: (i) that individuals do not vary in

salient characteristics such as behaviour, (ii) that space

and spatial processes are homogeneous (e.g. see Slatkin

1993; Rousset 1997), (iii) that demographic stochasticity

(e.g. Engen et al. 2005) is inconsequential, and (iv) that

populations are at equilibrium. In reality, individuals

are often irregularly distributed across heterogeneous

landscapes and face spatial heterogeneity in habitat

quality, stressors, dispersal barriers, and dynamic inter-

actions with predators, prey and competitors. Individu-

als may vary in genetic traits and in experience and

learning, between sexes and during their life cycles

(DeAngelis & Mooij 2005). Often-assumed genetic equi-

librium is the exception, particularly in landscapes

recently altered by human activities. Instead, phenom-

ena such as fluctuating population sizes, range expan-

sions, genetic bottlenecks, and recent contact zones are

the norm. In such complex and contingent situations,

simulation modelling offers a way to test how far appli-

cations of an analytical model can be stretched before it

must be revised or discarded in favour of more com-

plex or alternative modelling approaches (Slatkin &

Barton 1989).

There is ample empirical evidence that subtle aspects

of life history can alter spatial genetic structure. For

example, in plants, different age groups can have differ-

ing spatial genetic structures, due to population self-

thinning (Epperson & Alvarez-Buylla 1997) or during

the early phases of population establishment (Epperson

2000); clonal reproduction can also drastically alter spa-

tial genetic structure (e.g. Chung & Epperson 1999). In

animals, it has been shown that home range and territo-

riality, natal habitat bias (e.g. Sacks et al. 2004), and

social and feeding behaviour (e.g. Blanchong et al.

2006) can all come into play. Finally, although spatial

genetic structure for systems with only one effective

spatial dimension have been well-characterized theoreti-

cally, it appears underappreciated that many real land-
� 2010 Blackwell Publishing Ltd
scapes, while essentially mostly existing in two (or

possibly three) spatial dimensions, have areas where

processes behave more as if they were in a single spa-

tial dimension (Rousset 1997; McRae 2006). As noted,

spatial genetic structures are strongly influenced by the

effective number of dimensions.
Characterizing properties of statistical estimators

Another important role for simulation studies is in

characterizing the properties of statistical estimators.

Examples of questions or analyses include (i) tests for

departure from spatial randomness, (ii) measures of dis-

tances over which there is positive autocorrelation, (iii)

identification of specific locations of populations or

individuals that comprise nonrandom associations, (iv)

study of demographic variables (sex, ages, etc.) that are

associated with structure, and (v) identification of land-

scape features associated with spatial genetic structure.

Analyses that have been developed for (i–iv) include

exploratory type analyses, model-based analyses and

clustering methods. The degree of sophistication in

methods has increased over time (Table 1) in accor-

dance with the complexity of the research questions,

and we can expect further increases. It is unlikely that

appropriate statistics will have simple sampling distri-

butions; hence generally their properties must be deter-

mined from simulations.
Applications to real systems

Lastly, simulations are of practical use when analysing

landscape genetic data in real systems. By tailoring sim-

ulations to specific cases, they can address why field

data collected to test a hypothesis may have spatial

genetic distributions that differ from theoretical predic-

tions. Hence they can be used to help decide whether

or not to reject a hypothesis or determine if the assump-

tions of the mathematical models were substantially

violated, if important processes were not considered, if

the field sampling scheme was inappropriate, or if the

utility of the genetic markers used was limited. Simula-

tion can also help determine whether observed spatial

genetic structure can be attributed to contemporary vs.

historical isolating events, or provides evidence of

recent range contraction or expansion (Currat & Excof-

fier 2004; Leblois et al. 2006; Wegmann et al. 2006;

Cornuet et al. 2008). Many applied disciplines (e.g.

wildlife management and conservation) can benefit

from directly conducting simulations, such as under-

standing causal relationships between landscape

features and gene flow. Managers could input the

current state as an initial condition together with all

known demographic and landscape parameters (with
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appropriate levels of uncertainty) into models and run

them to forecast spatial patterns under projected land-

scape and climate change. Simulations may also be

used to optimize sampling schemes in advance of con-

ducting empirical studies; for example, a manager of a

system might consider doing a simulation study before

investing time and resources into collecting data on

landscape features and genetics.
Outstanding issues in landscape genetics

Critical aspects of biological realism

Landscape genetic studies could and ultimately should

often involve a very large array of biological (includ-

ing genetic) as well as landscape variables and

parameters. As landscape genetic models add the

effects of landscape features on biological processes

such as individual dispersal and mating systems they

must integrate these with the biological realism of

individual behaviour and population dynamics. As

noted, individual-based and other spatially explicit

simulation modelling generally allow a systematic and

theoretic relaxation of assumptions from ideal models,

such as Wright–Fisher systems, with increasing bio-

logical realism and a variety of spatial dependence

structures (e.g. Fig. 1).

Although landscape genetics generally focuses on

how gene flow and spatial genetic structure are affected

by landscape features, there are many other ecological

and evolutionary processes affecting spatial genetic

structures that could be investigated in a landscape

simulation study. Genetic metrics used by landscape

geneticists as dependent variables are typically based

on variances in gene frequencies among populations

[Wright’s (1965) fixation indices] or pairwise genetic

correlations (Cockerham 1969), including spatial genetic

correlations between individuals (Cockerham 1973).

Accordingly, models are needed that explicitly account

for the manner in which genes are transmitted among

individuals within and among groups, and for differen-

tial probabilities of dispersal among groups, (e.g. sex-

bias or bias based on different population sizes, Scrib-

ner et al. 2001), leading to greater accuracy in estima-

tion (Chesser 1991a,b, 1998; Sugg & Chesser 1994; Sugg

et al. 1996).

In this context, for animals, an emerging view in

landscape genetics is that it is essential to integrate

information regarding behavioural ecology (Sugg et al.

1996) with other aspects of the mating system and

social structure that influence gene transmission (Clober

et al. 2009). Demes may themselves be structured into

sub-units (social group, family, clan, etc.), characterized

by specific mating systems (monogamy, polygamy, pro-
miscuity, etc.), and connected by possibly sex-specific

dispersal patterns. Factors that affect individual varia-

tion in reproductive success are complex and can

change over time (Scribner & Chesser 2001). Various

social systems have evolved in many animal species to

make it common for males and ⁄ or females to disperse

away from natal areas. In some cases, observations on

genetic transmission (e.g. parent–offspring genotyping)

can be combined with spatial population genetics

(Robledo-Arnuncio et al. 2006), and these could be

further combined with landscape features in order to

more fully characterize biological processes.

For plants, species exhibit a wide variety of mating

systems, including regular systems of frequent self-fer-

tilization, negative assortative mating due to various

kinds of incompatibility systems, and biparental

inbreeding due to the clustering of related individuals

within small neighbourhoods (e.g. Clegg 1980). Cur-

rently, it is largely unknown how spatial variations in

these processes and environmental heterogeneity influ-

ence spatial genetic structure. In summary, future simu-

lation studies of landscape genetics could profitably

incorporate a very large array of biological as well as

landscape variables.
Statistical properties

Landscape genetics could further use simulations to

provide precise results on the statistical properties of

the various spatial statistics [e.g. Moran’s I, Wombling

(Womble 1951), landscape metrics] as used to evaluate

the effects of landscape features (Fortin et al. 2003) on

connectivity and genetic demographic parameters (e.g.

migration rates, effective population size, mating sys-

tem). This can be done by determining how such

parameters affect spatial distributions of genetic varia-

tion (in contrasting sets of replicated simulations) and

testing the various spatial metrics now available (many

of these are discussed in other papers, e.g. Storfer et al.

2010) or those that will become available in the future.

One of the strongest examples from existing work is the

relationship between shortest distance spatial autocorre-

lation of genotypes, I1, and overall amounts of dispersal

in large continuous populations undergoing IBD, where

a monotonic decrease of I1 with increasing variance of

dispersal distances is found (Epperson 2007). Together

with the values for stochastic and statistical variances

(Epperson 2003), it is possible to estimate the dispersal

variance from values of I1 observed in nature and deter-

mine the uncertainty of such estimates. In many other

cases, it should be possible to set up multifaceted

stochastic spatial–temporal processes (i.e. containing

several, possibly interacting specific biological processes

and landscape features) and statistically characterize
� 2010 Blackwell Publishing Ltd
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spatial measures designed to detect or measure said

processes and features (Fig. 1). Most critically, studies

could determine the type 1 and type 2 error rates of

hypothesis tests constructed from spatial measures (e.g.

Murphy et al. 2008; Legendre & Fortin 2010).

It is essential to evaluate the effects of landscape pat-

terns on spatial population genetic processes across a

wide range of appropriate spatial scales (Murphy et al.

2010; Anderson et al. 2010; Manel et al. 2010b).

Contrasting sets of simulations could be used to exam-

ine how mismatched scales (e.g. grain vs. support; see

Anderson et al. 2010) at the organismal, sampling, and

analysis levels affect conclusions drawn from the analy-

sis. Each organism will respond to environmental con-

ditions at characteristic scales depending on its ecology,

vagility and behaviour (Thompson & McGarigal 2002).

In landscape genetic analyses incorrect specification of

the thematic content, resolution, grain and extent over

which organisms experience and respond to environ-

mental variation may result in error in attribution of

observed patterns in spatial genetic structure (Anderson

et al. 2010). Recently, Cushman & Landguth (2010)

used the CDPop model to evaluate how misspecifica-

tion of the ‘thematic resolution’ and spatial grain of

landscape patterns affects ability to detect and attribute

effects of landscape on patterns of gene flow processes.

They found that error in specifying the scale of land-

scape patterns can greatly impair the ability of land-

scape genetic analysis to correctly identify driving

processes.
Theoretical modelling of landscape effects on
adaptation and natural selection

Another set of important advances in landscape genetic

simulation centres on the addition of selection to simula-

tion models (Balkenhol et al. 2009), allowing exploration

of the combined effects of gene flow and selection in

complex landscapes, in order to better understand both

evolutionary and ecological genetic processes. Previous

studies used simple models that track both demography

and the evolution of quantitative traits to study adapta-

tion along a species range (e.g. Kirkpatrick & Barton

1997). More recently, Kramer et al. (2008) simulated

adaptation by coupling an ecological and a genetic

model tailored to European beech (Fagus sylvatica L.),

with the aim of predicting how current management

will affect adaptation. Gavrilets & Vose (2005, 2007) and

Gavrilets et al. (2007) constructed an individual-based

model to study speciation via local adaptation in spa-

tially heterogeneous habitats. Neuenschwander et al.

(2008) introduced an individual-based program to

simulate the effect of selection and other genetic

processes in structured populations located in hetero-
� 2010 Blackwell Publishing Ltd
geneous habitats; however, landscape was not explicitly

incorporated.

It is relatively straightforward to add selection to

individual based models, in the form of spatial layers

indicating differential mortality or fecundity as func-

tions of the underlying environment and individual

genotypes. Selection and gene flow can be combined by

integrating presently separate simulators of IBD (e.g.

Epperson 1990) with simulators of landscape spatial

structure with multiple variables and at multiple spatial

scales using principal coordinates of neighbour matri-

ces, PCNMs (Borcard et al. 2004; Fig. 1; PCNM eigen-

functions are a special case of Moran’s eigenvector

maps, or MEM, Dray et al. 2006). PCNM can model the

effects of many environmental variables, including both

abiotic and biotic, as well as landscape features or envi-

ronmental heterogeneity. Such simulation programs

could also be combined with simulators of different

degrees of habitat fragmentation and matrix quality

(Bender & Fahrig 2005).

Further, selected (or functional) diversity arises from

adaptive evolution due to natural selection, whereas

diversity at neutral genetic loci is determined solely by

the effects of genetic drift, mutation, or migration.

Recent advances in genotyping techniques associated

with increasing computational capacities and new statis-

tical methods, including the use of simulation models,

afford many opportunities to determine the effects of

landscape features on contrasting spatial structures for

functional vs. neutral genetic variation (Holderegger

et al. 2006; Holderegger & Wagner 2008; Manel et al.

2010a,b). Awareness of the plausible trajectories of

population change is increasingly important in situa-

tions of accelerated anthropogenic changes in popula-

tion connectivity, demographic structure and abundance

(Manel et al. 2010a).
Integration of simulation studies with an empirical
study of selection

By integrating simulations with empirical data on large

numbers of genetic markers, it may become possible to

statistically detect loci under natural selection (Black

et al. 2001; Luikart et al. 2003), especially important loci

responsible for local adaptation, in a non-model species

(Manel et al. 2010a). As noted above, the effects of evo-

lutionary forces such as genetic drift or migration are

replicated across all selectively neutral loci. In contrast,

natural selection can result in an atypical pattern of var-

iation at comparatively few loci, which can be inter-

preted as a possible signature of selection (Schlötterer

2003; Nielsen 2005; Storz 2005; Vasemägi & Primmer

2005). Correlative and other methods based on atypical

differentiation of such loci have been developed to
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identify signatures of selection throughout the genome

without prior information regarding the traits or genes

involved in the adaptation process (Vitalis et al. 2001;

Schlotterer 2003; Beaumont & Balding 2004; Joost et al.

2007; Storz 2005; Foll & Gaggiotti 2008; Manel et al.

2010a,b). This approach offers a practical means to

investigate selection in heterogeneous landscapes.

Further, complex suites of contrasting simulations could

ultimately provide an estimator of the probability that

any particular gene is responding to environmental

selection rather than being selectively neutral, in part

by determining the proper ‘experiment-wise’ error

rates.
Modelling uncertainty

Simulation results could be used to evaluate uncertainty

in estimated model parameters as a source of variation

for model predictions. One important first step to

understand model behaviour is to elucidate relation-

ships between variation in parameters and the resulting

variation in model outcomes. Similar needs are present

for sensitivity analysis—for example, determining the

relative importance of contributions of different param-

eters to the variation in model outcomes (Saltelli 2000;

Fieberg & Jenkins 2005; Cariboni et al. 2007).
Future simulation studies

Future simulation programs that have the power and

flexibility required for addressing issues in landscape

genetics will likely develop along several lines. These

could include both the somewhat simpler models that

are based on discrete or overlapping generations as well

as more complex IBM-type models that operate in essen-

tially continuous time. The former focuses more on spa-

tial patterns of genetic variation accumulated in time,

and the latter is a somewhat more mechanistic approach

(Klein et al. 2003). Most useful approaches will include

limited dispersal, since some limits to dispersal almost

always pertain to study organisms and such limits are

intrinsic to processes that determine spatial genetic

structure. Less obvious perhaps is that generally the dis-

tances that individuals (or propagules for plants) dis-

perse should be simulated as highly stochastic, as for

example determined by a kernel that controls the pro-

grammed probability density function (or possibly prob-

ability mass function) for dispersal distances (Fig. 1).

Future simulation programs should also allow some

relaxation from the lattice assumption and the uniform

density it mimics (but see Doligez et al. 1998). How-

ever, this should be done carefully, since other com-

plexities can then come into play, such as spatially

based conspecific competition, which can be extremely
complicated to model in and of itself and would further

complicate efforts to model microenviromental selec-

tion. Competition may also conflict with factors that

regulate the overall size of a population. Significant

improvements in simulated realism which avoid such

issues may be achieved by employing methods that use

point locations such as graph-theoretic approaches

(Urban & Keitt 2001; Garroway et al. 2008) or by using

sparse lattices (Doligez et al. 1998). In addition, dis-

persal modelling must incorporate more complex dis-

persal rules, especially location-dependent rules, which

can be constructed to represent partial or complete bar-

riers to gene flow or corridors (for examples), yet main-

tain inherent dispersal characteristics. Models should

allow some age-structure and similar deviations from

discrete-generation assumptions. Finally, it should be

recognized that the simulated state of spatial genetic

structure may depend on its initial condition, how

much time has passed, and the timing of changes in

environment (see Anderson et al. 2010).

Landscape variations in habitat suitability and com-

plex distributions of microenvironments that may also

act differentially on different genotypes are critically

important aspects of landscape genetics, and the future

for simulations that combine these is promising. One

very generalizable method for modelling spatial distri-

butions of environmental factors at multiple spatial

scales is the principle coordinate analysis of neighbour

matrices (PCNM) approach (Borcard & Legendre 2002;

Dray et al. 2006). We are currently building programs

that combine PCNM with simulations of modified

lattice-based IBD processes (Fig. 1), using R (R Devel-

opment Core Team 2008). These programs are multiall-

elic, allow either animal or plant mating systems

(including self-fertilization), and include mutations and

immigration events. Studies conducting such simula-

tions could make significant progress in separating IBD

effects from environmental effects on spatial genetic

structure, a significant problem in landscape genetics.

Similarly, such computer programs could be further

combined with simulations of different degrees of

habitat fragmentation and matrix quality (Bender &

Fahrig 2005). Further, by contrasting theoretical spatial

structures for loci subjected to environmental selection

with those for loci that are neutral but undergoing all

of the other same demographic features, it may be

possible to develop methods for detecting natural

selection. In addition, selection models should include

multilocus selection, and should allow for epistasis and

pleiotropy. Computer programs that incorporate all of

the features discussed above would provide an

important complement to the other approaches.

Combining individual-based models from ecology

and genetics would also increase flexibility in the
� 2010 Blackwell Publishing Ltd
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incorporation of spatial and ecological details and pro-

cesses. Such models may be particularly useful for spe-

cific management questions; an example would be

determining how mortality risks during movement

through novel, human-modified landscapes will influ-

ence gene flow and perhaps selection for new behav-

iours of a species facing future land use and climate

change. Combining genetic simulators, simulators of

landscape spatial structure [e.g. dynamic landscape sim-

ulators such as LANDIS (He & Mladenoff 1999) and

SELES (Fall & Fall 2001; James et al. 2007)], and existing

individual-based movement models can allow tracking

of gene frequencies through time as populations change

and evolve in response to changing conditions, while

retaining high levels of biological detail. Table 2 lists

many of the programs that may be useful (either in

whole or in part) in a simulation study of landscape

genetics. Selection could be added to models such as

CDPop, in the form of spatial layers indicating differen-

tial mortality or fecundity as functions of environmental

factors and individual genotypes.

For example, HexSim and SimuPop (Peng & Kimmel

2005) represent two of the more feature-rich simulators

in ecology and population genetics, respectively. HexSim

is an IBM that incorporates individual experiences that
Table 2 List of many of the relevant softwares

Category Name Description

Nonspatial MS Generate genotypes under W

Ecogene Mating system, dispersal,

Semi-spatial Aquasplatche Simulate genetic diversity in

EasyPop Generate genotypic data with

structure (hierarchical stepp

IBDsim Simulate genotypic data und

Metasim Individual based simulation

population dynamics

quantiNEMO Individual based program to

mutation, selection, recombi

quantitative traits connected

heterogeneous habitat.

SPLATCHE* Simulate genetic diversity of

heterogeneous habitat. Coal

of space equal to habitat

Fully spatial,

without

landscape

heterogeneity

Mostly ‘in house’ Monte Carlo space–time proc

some with additional proces

Fully spatial

with landscape

heterogeneity

CDPop Simulate genotypic data with

mating systems. Based on la

EcoGenetics Simulate stepping-stone dyna

landscape resistance

SimSSD Simulation of spatially struct

spatial autocorrelation and ⁄
structure, with or without in

variables

� 2010 Blackwell Publishing Ltd
affect traits like behaviour and fitness, such as exposure

to modelled environmental stressors like pesticides

(Schumaker 2009). Individual traits are heritable, allow-

ing for incorporation of genetic components. Similarly,

SimuPop is a highly flexible population genetic simulator

that operates on individuals and incorporates realistic

models of mutation, recombination, quantitative traits,

selection, and other processes, and features pedigree trac-

ing and calculation of a wide range of statistics such as

gene frequencies, heterozygosity, and linkage disequilib-

rium measures (Peng & Kimmel 2005). Combining the

strengths of such software packages would allow highly

flexible landscape genetic simulations, including selec-

tive pressures that act on different life history stages, and

providing outputs that can be compared to a wide range

of empirical data (both ecological and genetic).

If various simulation approaches are compared, it

seems likely that modified-lattice types of simulations

and others with more regular structures will be more

amenable to drawing analytical conclusions because of

their relative simplicity and spatial regularity, particu-

larly for large populations. More specifically, they may

allow one to more easily determine basic properties of

the relationship of process parameters and factors to

resulting spatial–temporal genetic structure. On the
Reference

right–Fisher neutral model Hudson (2002)

Degen & Scholz (1998)

linear habitats Neuenschwander 2006

some degree of population

ing stone, IBD)

Balloux et al. (2004)

er isolation by distance Leblois et al. (2009)

framework for complex Strand (2002)

investigate the effects of

nation and drift on

by migration through

Neuenschwander et al. (2008)

sampled genes in a

escent framework with a unit

Currat et al. (2004)

esses of isolation by distance,

ses

Sokal & Wartenberg (1983)

variety of dispersal and

ndscape resistance

Landguth & Cushman (2009)

mics as a function of Hirzel et al., (unpublished)

ured data with or without

or deterministic spatial

fluence of explanatory

Legendre et al. (2002, 2005)
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other hand, individual-based models will likely be more

easily applicable as management tools, especially for

small populations. As such models become more acces-

sible and user-friendly, they may also play an increas-

ing role as heuristic tools; this is because system

dynamics emerge from simple behavioural rules at the

individual level. Users can vary the input parameters

and landscape variables and observe how more com-

plex population-level processes and patterns emerge.

As models of relationships between suites of land-

scape features and measures of genetic differentiation

become more complex, the numbers of variables and

parameters in the models increase and the relationships

among the effects of parameter values may not be lin-

ear. Hence, we can expect complex multidimensional

parameter spaces to be the norm. Future simulation

studies will need to use more efficient designs, in terms

of combinations of parameter values to be simulated,

than they have in the past in order for researchers to

have confidence in the inferences made. Grimm &

Railsback (2005) provide guidelines for model formula-

tion, parameterization, testing, and analysis, and practi-

cal strategies for managing model complexity and data

requirements, conducting sensitivity analyses, and run-

ning large numbers of replicates. Recently, methods for

efficient parameter combination design developed in

computer sciences have been applied to simulations in

the biological sciences (Ragavendran 2009). One of these

methods is the copula approach (Nelsen 2006)—using a

function that defines the joint distribution of sets of

parameter values for variables, based on their univari-

ate marginal distributions. It is used to construct simu-

lation studies that efficiently cover the entire parameter

space, to estimate the strengths of effects of parameters

and to detect linear and nonlinear dependencies among

them. For example, it could be used to determine if dif-

ferent parameter combinations can give similar spatial

structures. Lastly, landscape geneticists can take advan-

tage of emerging model documentation standards

(Grimm et al. 2006) to better convey details about

increasingly complex simulation frameworks.

We believe that the field of landscape genetics could

benefit substantially from a community effort to share

simulated data sets. Access to communal benchmark

simulated and empirical data sets would help standard-

ize developments of new statistical methods for land-

scape genetic studies. As new statistics come on line,

their performance could be directly compared to others,

across a set of data designed to address any given array

of biological processes included in the simulated sto-

chastic spatial–temporal processes. Ultimately, such

data sets could be employed to evaluate uncertainty,

help inform sample design for applications in empirical

studies, and aid management decisions.
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