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Abstract 

Using spatial analysis methods such as spatial autocorrelation coefficients (Moran's I and Geary's c) and 
kriging, we compare the capacity of different sampling designs and sample sizes to detect the spatial 
structure of a sugar-maple (Acer saccharum L.) tree density data set gathered from a secondary growth 
forest of southwestern Qurbec. Three different types of subsampling designs (random, systematic and 
systematic-cluster) with small sample sizes (50 and 64 points), obtained from this larger data set (200 
points), are evaluated. The sensitivity of the spatial methods in the detection and the reconstruction of 
spatial patterns following the application of the various subsampling designs is discussed. We find that 
the type of sampling design plays an important role in the capacity of autocorrelation coefficients to detect 
significant spatial autocorrelation, and in the ability to accurately reconstruct spatial patterns by kriging. 
Sampling designs that contain varying sampling steps, like random and systematic-cluster designs, seem 
more capable of detecting spatial structures than a systematic design. 

Abbreviations: UPGMA = Unweighted Pair-Group Method using Arithmetic Averages. 

Introduction 

The spatial component is of prime importance in 
the planning of any field ecological study. Ecol- 
ogists have to answer the following questions: At 
what scale is the system going to be studied? 
What quadrat size should be used? How far apart 
should the sampling stations be located? The 
answers to these questions depend to a large 
extent on the purpose of the study, and to the 
knowledge that can be acquired during pre- 
sampling campaigns (pilot studies) about the spa- 
tial distribution of the variables of interest. 

Ecologists are interested in adequate descrip- 
tions of spatial distributions for three different 
reasons. One is that spatial heterogeneity plays a 
central role, implicitly or explicitly stated, in most 
ecological theories. This point has been made in 
some detail in a companion paper by Legendre & 
Fortin (1989), and also by Legendre et aL (1989). 
A second reason is that modelling requires that 
the dependent variable's range of variability be 
sampled adequately, which can only be done from 
knowledge of the spatial distribution of the values 
of that variable; for instance, a model's dependent 
variable distribution area can be stratified into 
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geographic zones that are homogeneous in terms 
of the values of that variable, following which 
each zone can be sampled with equal intensity. 
Furthermore, proper descriptions of the spatial 
structures of the variables to be included in a 
model can help formulate or support hypotheses 
concerning possible causal mechanisms deter- 
mining the dependent variable's spatial distribu- 
tion. A third reason is that when the purpose of 
the study is to estimate population parameters, 
such as the mean, the variance, or the total 
amount of resource represented by the variable in 
a given area, stratified sampling can be cheaper 
than either random or systematic sampling to 
attain a given level of precision of the estimation. 
Notice however that random or systematic 
sampling, even though possibly more expensive to 
carry out, are still adequate to achieve an unbiased 
estimation of the parameters of interest, because 
in random or systematic sampling designs each 
point in the geographic distribution area has a 
priori the same probability of being included in the 
sample. A good way of stratifying is to divide the 
area into geographic zones where the variance, or 
the coefficient of variation of the variable of inter- 
est, are approximately equal; following that, 
sampling is carded out more intensively in the 
zones where the values are more variable, and less 
so in more homogeneous ones. For all these 
purposes, a variable's spatial structure has to be 
described adequately, which can be done using 
structure functions such as correlograms and 
variograms, maps, and other spatial analysis 
methods described for instance by Upton & 
Fingleton (1985), Legendre & Fortin (1989), and 
other authors. 

Ecologists may also be interested in spatial 
structures because they intend to carry out tests 
of classical inferential statistics, based upon data 
obtained through some geo~graphic distribution 
area. The problem, described in some detail by 
Legendre & Fortin (1989), is that classical hypoth- 
esis testing makes the assumption that the obser- 
vations (elements) are independent from one 
another, while this condition is not met by data 
that are autocorrelated through space. Indeed, the 
very existence of a spatial structure in the sam- 

piing area implies that any ecological phenomenon 
found at a given sampling point may have an 
influence on other points located close by, or even 
some distance away. Thus, even though the obser- 
vations are independent from the point of view of 
the probability of any particular geographic loca- 
tion to be sampled, their values at neighbouring 
points may not be independent from one another, 
which violates the assumption of independence of 
the observations. Contrary to the advocacies of 
several authors (for instance Cochran 1977; 
Green 1979; Scherrer 1982), sampling designs 
cannot alleviate this problem. In this context, spa- 
tial analysis becomes a prerequisite to hypothesis 
testing for data gathered through space. It may be 
used to demonstrate that there is no significant 
spatial autocorrelation at the given sampling 
scale, in which case classical statistical tests of 
hypothesis can be used; or it may indicate that 
other methods should be used for testing. 

In order to adequately plan a pre-sampling 
study, or a full-scale sampling program from 
which spatial structures will be analyzed, it is 
essential to know how the properties of different 
sampling designs can affect the sensitivity of spa- 
tial analyses in detecting significant spatial auto- 
correlation or in reconstructing spatial patterns 
by mapping. Different sampling designs have dif- 
ferent properties, advantages and disadvantages. 
As mentioned above, simple random sampling 
allows one to obtain a representative sample of 
the statistical population, when the purpose is to 
estimate population parameters (Cochran 1977; 
Scherrer 1982). The major disadvantage of simple 
random sampling is that it is often very difficult to 
carry out in the field because of difficulties in 
positioning the sampling stations. Systematic 
sampling, on the contrary, is much easier to con- 
duct in the field; furthermore, it is regarded as 
appropriate for detecting spatial or temporal 
autocorrelation, if and only if the sampling step 
(interval between successive samples) is right 
(Cochran 1977). These two sampling designs do 
not necessitate prior knowledge of the variable 
subjected to sampling and of the properties of the 
area under study. Other types of design such as 
stratified sampling, regression sampling, cluster 



sampling, usually require previous knowledge of 
the behaviour of the variable in the study area, 
which can only be obtained from pre-sampling 
(pilot) studies; Legendre etal. (1989) discuss 
methods for designing full-scale sampling pro- 
grams from the results of such preliminary sam- 
plings. 

There are two types of considerations that may 
influence the choice of the sampling design: sta- 
tistical and nonstatistical. The former include the 
accuracy of the estimation and the type of statis- 
tics that have to be used afterwards, while the 
later include financial, time, equipment and per- 
sonnel constraints, as well as data processing 
limitations (McCall 1982). Unfortunately, in a 
majority of instances, the nonstatistical conside- 
rations will determine the sampling design and the 
sample size. Systematic sampling is often pre- 
ferred to simple random sampling because of its 
simplicity in the field (Scherrer 1984). Sample size 
is often limited by financial and time constraints. 
However, there is a lower limit to the sample size 
which is dictated by the subsequent statistical or 
numerical analyses. Usually, the number of 
samples must be an inverse function of the homo- 
geneity of the area under study. 

In plant ecology, there is a long tradition of 
studies on the importance of sample size, sam- 
piing design, and their effects on the gathering of 
data (Greig-Smith 1952, 1964, 1979). The sensi- 
tivity and robustness of multivariate ordination 
techniques, under different sampling designs, 
have been tested by Mohler (1981, 1983), Minchin 
(1987) and Podani (1984, 1987). These studies 
have shown that the performance of ordination 
techniques varies under different sampling pat- 
terns (Minchin 1987), and that the 'optimal' 
sample size varies with the method used (Podani 
(1987) and Podani (1984, 1987). These studies 
have shown that the performance of ordination 
techniques varies under different sampling pat- 
piing designs, have been conducted (McBratney 
et aL 1981 ; Webster & Burgess 1984; McBratney 
& Webster 1986). These studies, however, were 
concerned mostly with the behaviour of kriging, 
which is a mapping interpolation method, under 
types of sampling designs that are more common 
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in soil sciences than in plant ecology (McBratney 
etaL 1981). 

This paper describes the effect of the number of 
samples and of the sampling design (i.e., relative 
position of the samples) in terms of the ability of 
various designs to identify spatial structures and 
to produce accurate maps, using a data set of 
sugar-maple tree densities from a secondary 
growth forest in southwestern Qurbec. It is a 
companion to the paper by Legendre & Fortin 
(1989) describing methods that can be used to 
study the spatial structure of biological popu- 
lations and communities. In this study, we will 
subsample this real vegetation data set, simulating 
various sampling designs. This will allow to evalu- 
ate the effect of these various sampling designs 
and intensities on the estimation of spatial struc- 
tures, on the one hand, and on the other the 
sensitivity of different methods used in the spatial 
analysis of ecological structures. The interest of 
this study lies in that it is based upon real vege- 
tation data; its weakness, compared to Monte- 
Carlo simulation studies, resides in the fact that 
only one real extensive data set is available and 
will be subjected to the various subsampling 
designs and intensities. 

Spatial analysis methods 

Spatial autocorrelation coefficients have been 
introduced by Moran (1950) and Geary (1954). 
Geographers (Cliff & Ord 1981) have used them 
to analyze epidemiological data; population 
geneticists (Sokal & Menozzi 1982), to study gene 
frequencies and gene flow; recently they have 
been applied to the study of ecological data 
(Jumars 1978; Sokal 1979; Gloaguen & Gauthier 
1981; Bouxin & Gauthier 1982; Sakai & Oden 
1983; Fortin 1985; Sokal & Thomson 1987; 
Legendre & Troussellier 1988; Legendre & Fortin 
1989). 

Moran's I and Geary's c coefficients are used 
to measure the degree of spatial autocorrelation 
displayed by a quantitative variable, and to test 
the null hypothesis (Ho) that there is no significant 
spatial autocorrelation (positive: aggregation; 
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negative: segregation). Since these coefficients 
compare values for pairs of points, the set of 
available point pairs is divided into a number of 
distance classes. This number of classes is left to 
the user. Like Pearson's correlation coefficient, 
Moran's I is based on the computation of cross- 
products of centered data. Geary's c is a distance- 
type coefficient, summing squared differences 
between adjacent pairs of values. Spatial auto- 
correlation analysis should not be performed with 
fewer than ca 30 localities, because the number of 
pairs of localities in each distance class would 
then become too small to produce significant 
results (Cliff & Ord 1981; Legendre & Fortin 
1989). Formulas for computing the coefficients as 
well as the standard error of the estimated statis- 
tics can be found in Cliff& Ord (1981), in Sokal 
& Oden (1978) and in Legendre & Legendre 
(1984). 

A correlogram is a plot of autocorrelation 
coefficient values in ordinate, against distance 
classes in abscissa. Correlograms provide evi- 
dence for the autocorrelation intensity, the size of 
the zone of influence and the type of spatial pat- 
tern of the variable under study. The shape of a 
correlogram gives indications about the spatial 
pattern of the variable, as well as about the under- 
lying generating process (Sokal 1979; Legendre & 
Fortin 1989). Inference about the underlying 
generating process can be made from the shape of 
the correlogram only when the correlogram is 
globally significant; Oden (1984) and Legendre & 
Fortin (1989) show how to compute such a global 
test, whose aim is to correct for simultaneous 
multiple testing. 

Spatial ecological structures can also be 
analyzed with the help of density contour maps. 
In the present study we produced interpolated 
maps by kriging, which is a geostatistical method 
developed by mining engineers (Matheron 1973; 
David 1977; Journel & Huijbregts 1978). Kriging 
is a method of interpolating that makes use of the 
spatial autocorrelation structure of the variable. It 
is used in soil science (McBratney & Webster 
1986; Burrough 1987), in forestry (Bouchon 
1974; Marbeau 1976; Fortin 1985; Legendre & 
Fortin 1989) and in other fields. Kriging uses a 

structure function, called a semi-variogram (or 
simply a variogram), to give weights to the various 
data points located in the vicinity of each point to 
be estimated. Kriging assumes that the data are 
stationary, or in other words, that they contain no 
significant trend (Journel & Huijbregts 1978; 
Legendre & Fortin 1989). However, when the 
data are not stationary, kriging can be used with 
a relaxed assumption, the intrinsic hypothesis, 
which implies that increments between all pairs of 
points located a given distance d apart have a 
mean of zero and a finite variance, that remains 
the same in the various parts of the area under 
study. When the data are very non-stationary, 
other forms of kriging can be used, that base these 
weights on so-called 'intrinsic random functions 
of order k' instead of the variogram. Depending of 
the number of neighbouring points used for the 
estimation (interpolation), kriging is said to be 
local (estimation based on a few neighbouring 
points) or global (estimation based on all data 
points). The semi-variance function used to com- 
pute a variogram is closely related to Geary's c 
coefficient (Legendre & Fortin 1989), but con- 
trary to Geary's c it cannot be tested for signifi- 
cance. 

Variograms and kriged maps were obtained 
using the GEOSTAT computer package (Geostat 
Systems International Inc., 4385 St-Hubert, 
Suite 1, Montr6al, Qu6bec, Canada H2J 2X1). 
The spatial correlograms were computed using 
the 'R package' (Legendre 1985). 

Materials and methods 

Data presented in this paper were gathered during 
a multidisciplinary ecological study of the ter- 
restrial ecosystem of the Municipalit6 R6gionale 
de Comt6 du Haut-Saint-Laurent (Bouchard 
et al. 1985) in southwestern Qu6bec. In an area of 
approximately 0.5 km z, a systematic sampling 
design was used to survey 200 vegetation quadrats 
(Fig. la) each 10 by 20 m in size. The quadrats 
were placed at 50 m intervals along staggered 
rows separated also by 50 m. Trees with more 
than 5 cm diameter at breast height (DBH), 
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Fig. I a. Position of the 200 vegetation quadrats, systemati- 
cally sampled in southwestern Qu6bec during the summer of 
1983. b. Spatial correlograms of the sugar-maple densities 
(Acer saccharum L.). Abscissa: distance classes; the width of 
each distance class is 57 m. Ordinate: Moran's I and Geary's 
c statistics. Black squares represent significant values at the 

= 5 ~o level, before applying the Bonferroni correction to 
verify the overall significance of the correlograms; white 
squares are non-significant values, c. Contour map of sugar- 
maple densities obtained by kriging. Abscissa and ordinate 
are in m. From Fortin (1985). 

identified a species level, were tallied in classes of  
5 cm. In this study, we use only the sugar-maple 
(Acer saccharum L.) tree densities, sampled in 
these 200 quadrats. 

This sugar-maple tree density data set has been 
used as the reference in this study. Subsamples 
were drawn from the set of  200 quadrats, in order 
to examine if the spatial analysis methods manage 
to identify or reconstruct spatial structures cor- 
rectly using fewer data points. Since the reference 
locations of  the quadrats follow a systematic 
sampling design and the smallest distance among 
quadrats is 50 m, so the smallest distance availa- 
ble in the subsamples is also 50 m. In fact, since 
the smallest sample size recommended for cor- 
relogram analysis is around 30, and we want to 

study the behaviour of  the spatial analysis methods 
when given less than 100 observations, subsample 
sizes of  50 and 64 quadrats were used. These two 
subsample sizes were the ones that we could fit 
onto the reference grid (Fig. la) using systematic 
sampling. Since we were not able to construct 
other replicates of  the systematic subsample, we 
replicated none of  the three subsampling designs 
(below) and were left with a single study of  the 
behaviour of  the spatial analysis methods, which 
of  course forbids any statistical testing of  the 
observed differences. 

Three subsampling designs were used to com- 
pare the ability of  the methods to detect spatial 
patterns. The simple random sampling and sys- 
tematic sampling designs were used because they 
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Fig. 2 a. Position of the 50-point random subsample, b. Spa- 
tial correlograms of the sugar-maple densities (Acer sac- 
charum L.). Abscissa: distance classes; the width of each 
distance class is 51 m. Ordinate: Moran's I and Geary's c 
statistics. Symbols as in Fig. 1 c. Contour map of sugar- 
maple densities obtained by kriging. Abscissa and ordinate 
are in m. From Fortin (1985). 

are often favoured by ecologists, not requiring any 
previous knowledge about the spatial distribution 
of the data. Systematic-cluster sampling design 
was also used because it allows different sampling 
steps to be present in the same data set (see 
below). The simple random samples of 50 and 64 
quadrats were drawn at random from the 
reference set of  200 quadrats using subroutine 
GGSRS of the ISML subroutine package (Figs 
2a and 3a). The systematic and systematic-cluster 
samples were designed by hand to fit the map and 
are shown in Figs 4a, 5a, 6a and 7a. With such 
small subsample sizes, some methods such as 
two-dimensional spectral analyses (Renshaw & 
Ford 1984; Legendre & Fortin 1989) could not be 
used. 

From the sugar-maple reference data set of  200 

samples, both Moran's I and Geary's c 
coefficients were computed; 20 distance classes, 
each 57 m wide, were used to construct the cor- 
relograms (Fig. lb). These two correlograms were 
used as references for comparisons with the cor- 
relograms obtained from the subsamples (com- 
puted also with 20 distance classes). The reference 
data set (200 quadrats) was also used to compute 
273 interpolated values by local kriging (13 
columns × 21 rows, 50 m apart)under a spherical 
model, basing the interpolation at each point on 
the 25 neighbouring points (see Journel & 
Huijbregts 1978 for details); this produced the 
reference contour map of sugar-maple densities 
(Fig. lc). The maps obtained from the different 
subsamples, also using 273 interpolated values, 
were then compared to this reference map. 
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Fig. 3 a. Position of the 64-point random subsample, b. Spa- 

tial correlograms of the sugar-maple densities (Acer sac- 
charum L.). Abscissa: distance classes; the width of each 
distance class is 55 m. Ordinate: Moran's I and Geary's c 

statistics. Symbols as in Fig. 1 c. Contour map of sugar- 
maple densities obtained by kriging. Abscissa and ordinate 
are in m. From Fortin (1985). 

Results and discussion 

The spatial correlograms computed for the ran- 
dom and systematic subsamples are presented in 
Figs 2b, 3b, 4b and 5b. Most Moran's I correlo- 
grams were globally significant, since they pos- 
sessed at least one value that was significant at the 
Bonferroni-corrected level ~ ' =  5~o/number of 
simultaneous tests (Legendre & Fortin 1989; 
Oden 1984). The only one that did not pass this 
global and rather stringent test of significance was 
the correlogram resulting from 64 systematic 
points. The only Geary's c correlogram that was 
globally significant (Bonferroni-corrected test) 
was from the 64-point random subsample, the 
others (except Fig. 5b) showing significance for 

individual values only. The correlogram obtained 
from the 64-point systematic subsampling was 
almost a perfect example of a random pattern, 
demonstrated by an absence of significant auto- 
correlation at any distance class. Only the cor- 
relograms (Moran's I and Geary's c) computed 
from 64 random points (Fig. 3b) had shapes 
similar to the reference correlograms (Fig. lb; 
discussion below), although almost all subsample 
correlograms had their highest coefficient values 
in the first distance class. 

Generally for our subsamples, Moran's I 
detected significant spatial autocorrelation more 
efficiently than Geary's c. Considering the fact 
that the variable's spatial distribution is non- 
stationary in our data-  Fig. lc shows bumps in 
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Fig. 4 a. Posi t ion o f  the  50-point systematic subsample. 
b. Spatial correlograms of  the sugar-maple densities (Acer 
saccharum L.). Abscissa: distance classes; the width of  each 
distance class is 55 m. Ordinate: Moran's I and Geary's c 

statistics. Symbols as in Fig. 1 c. Contour map of  sugar- 
maple densities obtained by kriging. Abscissa and ordinate 
are in m. F r o m  Fort in  (1985). 

its right-hand part, and a relatively flat area on the 
left, this result may indicate a greater power of 
Moran's I test of significance to detect the pres- 
ence of autocorrelation when the condition of 
stationarity, or the intrinsic hypothesis (which is 
a relaxed form of the stationarity hypothesis), is 
violated; this result should be checked by 
Monte-Carlo simulations. 

Since the variograms and Geary's c correlo- 
grams are two distance-type coefficients, the 
variograms are not be presented here, while the 
interpolated maps produced by local kriging are. 
As in the spatial correlograms, the interpolated 
maps derived from the random subsampling 
designs (50 and 64 points) brought out the most 
important features of the spatial structure (Figs 2c 
and 3c), since the three high-density patches were 

in approximately the same position as on the 
reference map (Fig. lc). With systematic sub- 
sampling (Figs 4 and 5), only the 50-point sub- 
sample detected a spatial structure (Fig. 4c); this 
pattern is somewhat distorted compared to the 
reference map. As it was the case for the spatial 
correlograms, the 64-point systematic subsample 
led to a flat variogram displaying no spatial struc- 
ture, so that only a flat map could have been 
produced by kriging. 

In both the spatial correlograms and the kriging 
methods, it is not the number of points that seems 
to make the difference, but rather their relative 
location in space. Kriging was very good at recon- 
structing maps of spatially autocorrelated varia- 
bles even when the variogram, like Geary's c cor- 
relogram, displayed only weak evidence of spatial 
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Fig. 5 a. Position of the 64-point systematic subsample. 
b. Spatial correlograms of the sugar-maple densities (Acer 
saccharum L.). Abscissa: distance classes; the width of each 
distance class is 55 m. Ordinate: Moran's I and Geary's c 
statistics. Symbols as in Fig. 1. 

autocorrelation. In our simple random sub- 
samples, the closest points were 50 m part, while 
in the systematic subsamples the smallest dis- 
tance between points was 100 m. The simple ran- 
dom samples seem to carry more information 
about the spatial structure than the systematic 
subsamples, because they are more likely to 
contain different lag steps which may reflect 
several different harmonics of the spatial pattern; 
this is not the case with systematic sampling. So 
with an aggregated spatial pattern, the same num- 
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ber of points can lead to a better analysis or 
reconstruction of the spatial structure when they 
are not evenly spaced, as it was the case in our 
random subsamples; if the sampling step of a 
systematic subsample is too large to detect the 
spatial pattern, or if the location of the samples is 
not in phase compared to the existing spatial 
structure, the analysis can miss the spatial struc- 
ture completely. Because the 50 points in our 
systematic subsampling design are in phase with 
the spatial structure, the methods were able to 
detect significant spatial autocorrelation and to 
reconstruct a meaningful (although distorted) 
map by kriging, while the 64-point systematic sub- 
sampling did not lead to the same result, despite 
the fact that it contained more data points. 

Following these considerations, we decided to 
try a systematic-cluster sampling design with 50 
and 64 points (Figs 6a and 7a). This new sam- 
pling design contained clusters of two samples, 
located 50 m apart; the clusters themselves were 
spaced 100 m from one another. The idea behind 
this was to capture different lag harmonics of a 
spatial structure, when no prior information was 
available about it, without the difficulties involved 
in implementing a random sampling design. In the 
same way, Oliver & Webster (1986) suggested an 
unbalanced nested design to capture the spatial 
variation at different scales of observation. Spa- 
tial autocorrelation coefficients and kriging were 
computed for these new subsamples (Figs 6b and 
7b). The only correlogram with overall signifi- 
cance (Bonferroni-corrected test) was Moran's I 
for 64 points, which had the same general shape 
and intensity as the reference correlogram 
(Fig. lb). The contouring map interpolated by 
kriging from the 64 points gave a map more simi- 
lar to the reference than the one from 50 points 
(Fig. 6c). Both the 50-point and 64-point inter- 
polated maps (Figs 6c and 7c) were rather good 
when compared to the reference map (Fig. lc), 
and represented the sugar-maple spatial structure 
far better than the map obtained after systematic 
subsampling (Fig. 4c). 

U P G M A  classification of the Moran's I cor- 
relograms was performed, as suggested by Sokal 
(1986), to measure similarity among the sub- 
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Fig. 6 a. Position of the 50-point systematic-cluster sub- 
sample, b. Spatial correlograms of the sugar-maple densities 
(Acer saccharum L.). Abscissa: distance classes; the width of 
each distance class is 53 m. Ordinate: Moran's I and Geary's 
c statistics. Symbols as in Fig. 1 c. Contour map of sugar- 
maple densities obtained by kriging. Abscissa and ordinate 
are in m. From Fortin (1985) 

sample correlograms, the reference correlogram, 
and a flat correlogram in which all Moran's I 
values are equal to 0.0. The UPGMA classifi- 
cation (Fig. 8) was based upon a Manhattan dis- 
tance matrix computed among correlogram value 
vectors. Two distinct groups of correlograms 
were found: a first group with the reference cor- 
relogram (200 points), the 64-point systematic- 
cluster sampling and the 64-point random sam- 
pling correlograms; and a second group with the 
flat correlogram and the 64-point systematic 
design. The 50-point systematic-cluster, the 
50-point systematic and the 50-point random 
sampling correlograms did not form clusters. This 
classification showed that the 64-point random 
and systematic-cluster designs were the sub- 

sampling designs most efficient in reproducing the 
spatial structure of the 200-point reference data 
set, while the 64-point systematic design was the 
worst. Shape differences between the last three 
correlograms explain why they did not cluster 
with the reference correlogram or with the flat 
correlogram. In fact, both the 50-point sys- 
tematic-cluster and the 50-point systematic cor- 
relograms had lower values of autocorrelation in 
the first than in the second distance class, while 
all other correlograms had higher values in the 
first distance class. The 50-point random sam- 
pling correlogram differed from all others in that 
it contained the longest sequence of significant 
positive values for Moran's I coefficient. 

It would be interesting to compare statistically 



219 

o o 

o 

• ° ° 0 0 °  O •  

° ° ° • 0 ° o 0  • 0 0 0 0 °  0 •  

o o 
0 •  o • 

o • 

o o • •  

° o  o 

• • ° o • ; • • o  

• o • • 
o • * • 

• •°°• °••o 
• • o • 

o • • 
0 0  o • o • 
o 0 • ° o  
o • • 

o • • * • 

G,* 

~3  

B7 

61 

I 4 

12 

o 1.0 
m 

0~e.a 

~ . 4  

o.z 

F J , i i i i i , 
z 4 6 ~ lo lz 14 16 i~ 26 

D i s t a n c e  c l a s s e s  

900 .0  

800 .0  

700 .0  

GO0.0 

500 .0  

400 .0  

300 .0  

200 .0  

lOO,O 

0 -0  

0 .0  100,0 200 .0  300°0 400,0 

0 .0  100.0 ~00.0  ~100 -0 400.0  

GO0,0 600 ,0  

900 .0  

800 ,0  

7C0.0 

600 ,0  

500 ,0  

400.0  

300,0  

200 .0  

tO0.0 

0 .0  
500 ,0  500 .0  

C 

Fig. 7 a. Position of the 64-point systematic-cluster sub- 
sample, b. Spatial correlograms of the sugar-maple densities 
(Acer saccharum L.). Abscissa: distance classes; the width of 
each distance class is 53 m. Ordinate: Moran's I and Geary's 
c statistics. Symbols as in Fig. 1 c. Contour map of sugar- 
maple densities obtained by kriging. Abscissa and ordinate 
are in m. From Fortin (1985) 

the interpolated values of the various subsampling 
designs to the reference interpolated values. This 
might be done by comparing the 273 interpolated 
values on the various maps obtained by kriging, 
since these 273 locations are the same on all 
maps. However, since we had only one replicate 
of each subsampling, confidence intervals cannot 
be computed; true testing would have required 
more subsamples for each design. So, the com- 
parison was done by computing Spearman's cor- 
relation coefficients between the 273 interpolated 
values of each subsample map and those of the 
200-point reference map. Spearman's coefficient 
was used here only as a measure of the resem- 
blance between sets of interpolated points; since 
each subsample is drawn from the full set of 200 
points and thus is not independent from it, these 
coefficients were not tested for significance. The 

results (Table 1) show that there are three dif- 
ferent qualities of reconstruction, differing both by 
the sampling design and by the number of 
samples. As mentioned above, only a fiat map 
could have been produced by kriging for the 
64-point systematic sampling, so this case is 
excluded from the comparison. The worst recon- 

Table 1. Spearman's r for pairwise comparisons between the 
interpolated values for each of the subsample maps and the 
interpolated values for the reference map. 

Subsample Spearman's r 

64 systematic-cluster 0.8950 
64 random 0.8761 
50 systematic-cluster 0.8349 
50 random 0.8200 
50 systematic 0.7825 
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Fig. 8. Dendrogram of the U P G M A  classification of the 
various Moran's  I correlograms: the reference correlogram 
(200 REF), the different subsamples' correlograms (R = ran- 
dom, S = systematic, S-C = systematic-cluster), and a ran- 
dom structure correlogram (FLAT). 

struction was from the 50-point systematic sub- 
sample; next come the reconstructions from the 
two other 50-point subsamples, random and sys- 
tematic-cluster; the best reconstructions were 
from the random and systematic-cluster 64-point 
subsamples. These results agreed with the find- 
ings of the comparison of correlagrams, for the 
best types of sampling designs. On the other hand, 
kriging did better than spatial autocorrelation 
coefficients with the 50-point random and sys- 
tematic-cluster subsamples, since one can recog- 
nize the major features of Fig. lc on Figs 2c and 
6c; so, kriging seems to be less affected than 
spatial autocorrelation coefficients by small 
sample sizes. 

Conclusion 

The first conclusion that can be drawn from our 
subsampling experiments is that the type of 
sampling design is very important for the accuracy 
of the detection of spatial patterns both by spatial 
autocorrelation coefficients and by kriging, and 
that sample size can be critical for spatial auto- 
correlation coefficients. We have shown in par- 
ticular that sampling designs that draw informa- 
tion at several spatial scales, such as our random 
or systematic-cluster designs, can bring out more 
information about the spatial structure than a sys- 
tematic design. The problem with a systematic 
design may be the inadequacy of the sampling 
step, or the fact that the samples are out of phase 
with the existing spatial structure. In any case, 
when no previous knowledge of the spatial struc- 
ture is available, a sampling design using several 
different sampling steps is to be recommended. 
This conclusion has also been reached by Boehm 
(1967), Podani (1984) and Oliver & Webster 
(1986). 

Our second conclusion is that Moran's I is 
more sensitive and efficient at detecting spatial 
autocorrelation than is Geary's c, at least with 
non-stationary data. Indeed, Moran's I correlo- 
grams displayed a significant spatial structure for 
most of the subsamples (except in one of the 
systematic designs), while Geary's c correlograms 
failed to do so in most instances. This result 
should be checked by Monte-Carlo simulations. 
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