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Abstract: We assemble here properties of certain dissimilarity coefficients
and are specially concerned with their metric and Euclidean status. No
attempt is made to be exhaustive as far as coefficients are concerned, but cer-
tain mathematical results that we have found useful are presented and should
help establish similar properties for other coefficients. The response to
different types of data is investigated, leading to guidance on the choice of an
appropriate coefficient.

Résumé: Ce travail présente quelques proprietés de certains coefficients de
ressemblance et en particulier leur capacité de produire des matrices de dis-
tance métriques et euclidiennes. Sans prétendre étre exhaustifs dans cette
revue de coefficients, nous présentions certains résultats mathématiques que
nous croyoens intéressants et qui pourraient &tre é&tablis pour d’autres
coefficients. Finalement, nous analysons la réponse des mesures de ressem-
blance face a differents types de données, ce qui permet de formuler des
recommandations quant au choix d’un ceefficient.

Keywords: Cheice of coefficient; Dissimilarity; Distance; Euclidean property;
Metric property; Similarity.

1. Intreoduction

In this paper we gather together some results matnly on the metric and
Euclidean properties of dissimilarity coefficients, but also some other proper-
ties. Only a fraction of the coefficients available in the literature are studied
here, although the major types are included. The mathematical apparatus
for establishing the results is presented and should help others investigate
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coeflicients that we have not discussed. Previous work has been somewhat
diversified but includes papers by Bloom (1981), Faith (1985), Gower
(1971, 1985), Hajdu (1981), Legendre, Dallot and Legendre (1985}, Legen-
dre and Legendre (1983a), Orloci (1978), Spdth (1980), Wolda (1981).
Here we attempt a more unified approach so that this paper may be viewed
as an exposé, both of methods for establishing mathematical properties of
the coefficients and also of how the information obtained may be used to
guide the choice of a coefficient in particular applications.

2. Basic Results

We consider an n X » dissimilarity matrix D with elements d,; where
d;, = 0 forall i

Definition 1. D is said to be metric if the metric (triangle) inequality
d;, + dy 2 d; holds for all triplets (7, /,k).

Some simple but important properties follow from this definition. Con-
sideration of the triplet (i,j,f) shows that &,> 0 for all pairs (/,/). Con-
sideration of (i,j,7) and (/,/,j} shows that 4,2 d, and d,;> d,;,. Hence all
melric dissimilarity matrices are symmeltric with non-negative elements.
Suppose d; = 0; then considering the triplets (i, k,j) and (j,k.i) yields that
dy = d, for all k. This is a basic property of metrics that can be
strengthened to show that if two items are similar (4, close to zero) then
any third item, k, will have a similar relation to both of them {i.e., d, and
d, will differ only slightly). Of course Euclidean distance, being a metric,
shares this property, suggesting that it might be interesting to investigate
what might be meant by the closest Euclidean approximation to . When
the metric inequality holds, it is trivial to construct a Euclidean triangle with
sides d,;, dy and d; but when »> 3 it is not true that every metric D has a
Euclidean representation. A standard counter-example for » = 4 is given by

the following metric dissimilarity matrix P:

Py 0

P, ; 0

P, 2 0

P, 1.1 1.1 1.1 0 (1)

P P, Py Py

where P, P;, P; form an equilateral triangle of side 2 and P, is equidistant
(1.1 units) from P, P, and P;. The geometry is illustrated in Figure 1.
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Figure I. An example of a sct of distances that satisfy the metric inequality but which have no
Euclidean representation.

[t is easy to see that if the configuration is to be Euclidean then the smallest
distance P, can be from the other vertices is when it is coplanar with them
and at their centroid, giving a minimal distance of (2+/3)/3 = 1.15, which is
greater than 1.1. Thus P is metric but not Euclidean. This type of example
will be used often in the following to show that certain metric dissimilarity
coefficients can give rise to non-Euclidean configurations.

Failing an exact Euclidean representation, every metric dissimilarity
matrix may be represented by a symmetric graph with vertices
P(i=12,...,n) such that the length of P, P, is d;,, so that P, and P,
coincide when d; = 0.

We now state some simple theorems. Proofs are simple and are omit-
ted.

Theorem 1. If'D is non-metric then the matrix with elements d,, + ¢ (i#j) is

metric, where c2 Max | d, +d, — d, |.
NN

Theorem 2. [fD is meiric then so are the matrices with elements:
(i) dy+
(i) d,}/’ where r= 1} i # j

Gi)  d, [ (d, + )

where ¢ is any real constant.
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These results may be used to infer the metric property for other
matrices, given that it is true for D. Note that the transformations are
monotonic and that these results raise the general question of what func-
tions f(d,) preserve the metric property. In section 5 we discuss further
some monotenically related coefficients.

Often the validity of the triangle inequality for all triplets (i,/,k) of D
has to be established @b inito and this can be troublesome. Certain pro-
cedures and results will now be discussed that have been found helpful
when investigating the validity of the metric inequality.

A useful device, suggested independently by several workers, is to try
to establish the existence of a fourth item (/, say)} that has the property
d;2 d; and d, = dy. It follows that d; + dy > d; + dy=> d, provided
the inequality holds for (j,k,/). It is often easy to establish the inequality
for a special triplet (j,k,{) when it is difficult for the general triplet {/,/, k).
This approach has been found especially useful when D comprises a set of
dissimilarity coefficients based on binary variables (see below). A bonus is
that if the triangle inequality can be shown to be invalid for (j,k,/) then
one has a ready-made counter-example showing that 4, is not a metric. For
convenience of reference this simple result is stated as a theorem:

Theorem 3. If for every triplet (i j k) an | can be found such that d; =z dy
and d, 2 dy then D is metric iff (j, k,1) is metric.

As a variant, which includes theorem 3 as a special case, we note that it
is enough to find an / such that d,, + dy 2 d, + dy and (j,k,!) is metric.

Further properties of D come from investigating whether or not it has a
Euclidean (or other) distance representation.

Definition 2. D is said to be Euclidean if n points P.(i=1,2,...,n) can
be embedded in a Euclidean space such that the Euclidean distance between
P.and P; is d;. This, of course, implies that 4; must be non-negative.

We use the notation I for a unit matrix, 1 for a vector of units and A
for the matrix with elements — # d,f Necessary and sufficient conditions
for D to be Euclidean are given by the following theorem:

Theorem 4. D is Euclidean iff the matrix (1 —1sYA (I — s1) is positive-
semi-definite (p.s.d.) wheres'l =1,

Gower (1982) gives a discussion and proof of this result, which for the
special cases s = 1/n and s = ¢, (a vector with 1 in its i-th position, else
zero) was proved by Schoenberg (1935). It is easy to show that if the result
is true for one choice of s (say s = e;) it is true for every valid choice of s;
see Gower (1984b).
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An equivalent statement to theorem 4 is that D is Euclidean iff
x' A x2 0 for all vectors x such that x'1=0.

If D is Euclidean it is also metric. Further, D is metric if and only if
every triplet (i,7,k) generates a 3 x 3 Euclidean matrix. Thus D is metric if
and only if:

I-1s) | — #d? 0  — ¥di| (I-sl1)
— hqr — %di 0

is p.s.d. for all triplets (i,j, k). Writing a, = — % d} and choosing s = e,
shows that

0 0 0

0 — 2a, a,— a; — a,

0 a,' - a!' _ak - 20‘,—

must be p.s.d. Expanding the non-trivial minor, expressing the result in
terms of the original distances and allowing for a scaling factor gives the
condition

2d}di + 2d}d + 2didf ~ di — di — d}> 0 )

for D to be metric. This quantity is the square of four times the area of the
triangle P, P;F;. The advantage of this form over the simple triangle ine-
quality is that i,/,k enter into (2) symmetrically and therefore their order is
irrelevant. Thus we have:

Theorem 5. D is meiric {ff d; is non-negative for all pairs (i,j) and condition
(2) is satisfied for all triplets (i . j, k).

Often similarity s, the complement of dissimilarity, is of interest. If
s; = 1 — d;, we define a similarity matrix 8 = 11’ — D, so that A has ele-
ments — % d = — % (1 — 5,)2. Normally, but not necessarily, this would
require that 0 <d; <1 which implies that 0 <s; <1 and, since d; = 0, we
also have s;=1. Now if 8 is p.s.d., any decomposition of the form
S = XX’ gives a matrix X of real coordinates such that the squared distance
between the i-th and the j-th rows of X is 2 (1 — s;), which is never nega-
tive when d;; is non-negative. Hence under these circumstances, the dis-
similarity matrix with elements \/d_,, is Euclidean, because it is generated by
the real coordinates given by the rows of X. Thus we have:
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Theorem 6. {f'S is a ps.d similarity matrix with elements 0 <s,; <1 and
s, =1, then the dissimilarity matrix with elements d,= (1 — s.)Y? s
Fuclidean.

Note that theorem 6 gives only a sufficient condition for /1 — s, to be
Euclidean. Conditions on S, more simple than those for theorem 4, for the
result to be necessary are not known. For example, the similarity matrix

l 0 .72
0 172 (3)
J20.72 1

is not p.s.d. but yields a real Euclidean triangle with sides /.28, V.28 and 1,
however this matrix cannot be constructed from any of the definitions of
similarity discussed below. Fortunately for many similarity coefficients, S
may be shown to be p.s.d. and hence the question of necessity becomes
irrelevant.

From theorem 6 it follows that to show that the matrix with elements
(1 — s,) is itself Euclidean, as an alternative to theorem 4, it is sufficient to
show that the similarity matrix £ with elements 1 — (1 — s,}? is p.s.d. Thus
¥ =285 — §*S, where * represents the Hadamard (i.e., element-by-element)
product. This is a result worth noting but although we have often found it
possible to prove S to be p.s.d. we have never been able (o show £ to be
p.s.d. Certainly Table 2 shows that it is not enough for S to be p.s.d. to
guarantee that ¥ is p.s.d., although that the converse holds has now been
proved by Zegers (1986).

Corollary: [f /1 — s, is not a metric, or is a non-Euclidean metric, then S is
not p.s.d. If 1 — s, is not @ metric, or is a non-Euclidean metric, then £ is not
p.s.d.

There are two theorems giving simple monotonic transformations that
carry general dissimilarity matrices into Euclidean distance matrices. These
are:

Theorem 7. [f'D is a dissimilarity matrix, then there exist constanis h and k
such that the matrix with elements
(i) (d] +2m)'? is Euclidean (Lingoes 1971)
and (i) d, + k is Euclidean (Caittiez 1983)[ ' 7 7
For (i), h=z — A, the smallest eigenvalue of
Ay=({I—117n) A (1 — 11/n)
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For (i) k= w ,,, the largest eigenvalue of

0 24,
—1 —44,

where A is defined as for Ay but with elements — % d,; rather than— Y% dj.

Charlton and Wynn (personal communication) discuss the very general
transformations that take a Euclidean matrix into other Euclidean matrices.

Many dissimilarity measures are based on an #» X m data-matrix X and
have the form

H

drj = Z f(xir" xir)
r=1
where f(x;,, x;) =0 and f(x,, x,) = flx,, x,)2 0. Thus dissimilarity is
evaluated for each of the m characters separately and combined assuming
independence. When d,; has this form and is metric, then f(x,, x,) must
be metric for every suffix r. This follows from considering data for which
X, = x,, for all i and s#r. Hence to prove that d,; is metric it is necessary
and sufficient for each dimension r to satisfy the metric inequality indepen-
dently of the other dimensions.

"
Theorem 8. Let f(x,, x,) = a,,, then: if d;= ¥, a,, is mewric then so is

r=1

H
dyy= (3, «})V2, and conversely.
=1

Proof. I d, is a metric, it is metric for each dimension r. Thus from
theorem 4 for every triplet (i,j,&) the matrix:

0 - %aﬂr - ’/za,:i,,
A, =(I-Ny | — %al, 0 — thal |l I-Nyp
— Vzai, - Vzafzkr 0

is p.s.d., where Ny = (1,1,1)' (1,1,1)/3. Now

0 - % ([.52 — % d:%c?
A= (T-Ny | — #dh 0 , — %di,| (I1— N;)
— hdi, ~ %dio 0

17
= Y A, and so is p.s.d. But this is the condition for d,;; to be a metric.

r=1
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TABLE 1

Notation for Occurrences of all 2x2 +/- Combinations for
Sampling Units i and j

Unit i J Frequency

+ + a

iJ
+ - b

Combination 13
- + c

ij
- - d

i3
Total m

Conversely, if 4, is a metric, it is metric for every dimension r, which
implies that A, is p.s.d. for all dimensions r. It follows that

Ia."fr%_l"lafkrl? |a,ikr|

and summing over r shows that 4, is a metric. ®

It is not known whether theorem 8 remains valid for the general “*Min-

M

kowski” form d,, = (¥, «f)V%, although, of course, it does when
r=1

&y = k KXip = X l

Corollary: When d,;, is not a metric then neither is d,;; and conversely.

3. The Coefficients S; and 7,

Consider two binary variables / and j with the following frequencies for
the four combinations, as in Table 1.
We define
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a+d a
S= = -
and 7, a+6(b+c)

P a+d+0 b+ )

where, for simplicity, the suffixes i and j have been dropped. As we see in
Table 2, these coefficients are of special importance because for various
non-negative values of # they include many of the well-known similarity
coefficients. To avoid the possibility of negative similarity coefficients we
shall confine our discussion to non-negative values of 8. The metric and
Euclidean properties of the dissimilarity coefficients 1~ S,, 1 — 7, and
V1= 84 /1 — T, depend on 8. We shall see that for values of # near zero
these coefficients are not metric but for all § 2 8, they become metric and
for values of 82 8> 04, /1 — Sy and /1 — T, become Euclidean. Thus
we shall be concerned with finding the threshold values 8 ., and @ ¢.

Theorem 9. 1 — S, is metric for02 1 and~/1 — S, is merric for0 2= 1/3. If
0 <1 then 1 — S, may be non-metric and if 6 <1/3, \f1 — S, may be non-
metric.

Proof. The proof is based on theorem 3. We consider three general sam-
ples, 1, 2 and 3 (correspending to /, j and k) and a fourth non-general sam-
ple 4 {corresponding to / of theorem 3), with frequencies given in the fol-
lowing table:

1 10111000

2 11010100 (4)

3 11100010

4 11110000

Frequency ABCDFEFGH
Wedefinem=4A+B+C+D+E+F+G+ H.

Writing ¢ = ¢ — 1, these give the following dissimilarities 1 — 5,:
8,=6B+CH+E+F)/{m+é(B+C+E+ F)
$3=0(B+D+E+G)/{m+e¢ (B+D+ E+ G}
853=0(C+D+F+G/{m+¢ (C+ D+ F+ G}
du=0(C+ F)/ {m+e¢ (C+ P}

54=0D+ G) m+¢ (D+ G
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It is trivial to show that 8,2 8, and 8,32 &3y and hence that
8,5+ 832 854 + 834 [t follows from theorem 3 that to show that the dis-
similarities between the general samples 1, 2 and 3 satisfy the metric ine-
quality, it suffices that the inequality be satisfied by the special samples 2, 3
and 4. We have that

A=824+834—823 (5)

9« 6 8la+p)
m+da m+¢ B m+ ¢pla +8)

where « = C + F and 8 = D+ G. A is certainly non-negative for 2 1
(i.e., = 0), so that | — §, is metric when 82 1. The following gives an
example of where the metric inequality fails. Take a = m/2, B = m/2 and
A=RB=E= H=10. Then

which is certainly negative for 0 <8 <1 (recall we are concerned only with
non-negative values of ).

A similar argument establishes when /1 — 8, is a metric. Equation
(5) is replaced by:

r / f 88 B 6l + )
A= m+q‘>a+ m+¢ B .\/m+¢(a+,6) ' (©)

Consider those vaiues of «, 8 for which « + 8 = k, a constant. Depending
on the value of ¢, the minimum of the sum of the first two terms on the
right-hand side of (6) occurs (i) whena =k, 8=0and a =0, 8=k or
(ii) when a = 8 = k/2. In case (i) A'> 0 and /1 — §; is metric; thus we
have only to consider those values of ¢ for which case (ii) gives the
minimum. Then

/ # k / g k
A= 2 -~ 7 *
= 2m+ o k m+d k

which is non-negative when
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4m+ o k)2 2m+o¢ k

3k—2m

e B>
1.e = 3k

Now m2 o + 8 = k so that A’ is certainly non-negative for all values of &,
and hence /1 — S, is metric, when 6 1/3. Even when § <1/3, A" may
still be positive but the examplea = 8 = m/2, A = B= E= H = 0 gives

which is negative when @ <1/3, showing that non-metric examples can
always be constructed for 8 <1/3 and hence that 8 ,, = 1/3 for the dissimi-
larity coefficient /1 — S,. ®

Theorem 10. 1 — T, is metric for8 2 1 and~f1 — T, is metric for82 1/3. If
8 <1 then 1 — T, may be non-metric and if® <1/3, \/1 — T, may be non-
meiric.

Proof. The proof is similar to that of theorem 9 but requires a little more
care, With T,, the previous frequencies for samples 1, 2, 3 and 4 yield
modified formulae for &,;, 8,3, 843, 8,4, 834 wWhich gives A =8,, + 834 — 833
as:

0 o g8 Ol +8)

A= T Di6a TYTCreE 7410+ p)

(1)

(where y = A4 + B) from which it is trivial to show that Az 0 when 8= 1.
When C=D=m/2and 4 = B=FE= F= G= H=0then

Ao

-1

which is negative when 0 €8 <1 (recall we are concerned only with non-
negative values of 8).
For /1 — T,, corresponding to (7) we have:

S A T AR B AR Y
A 'y+,8+9a+ vy+a+88 v+ 6+ 8) - 8)
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Consider the values of «, 8 for which « + 8 = &, a constant. Depending
on the value of ¢, the minimum of the sum of the first two terms on the
right-hand side of (8) occurs (i) when a =k, 8=0and a =0, 8=k or
(ii) when a = 8= k/2. In case (i) A'’> 0 and /1 — T, is metric; thus we
have only to consider those values of ¢ for which case (ii) gives the
minimum. Then

9 k 0 k
A'>7'\/ —\/
= 2y + (1 +0)k y+6 k

which is non-negative when

4y +0 K)z 2y + (1 +8)k

. k — 2y

e, Bz ———

ST

Thus +/1— 7, is metric when 8> 1/3. The example C= D= m/2,
A=B=F=F=G= H=0gives

which is negative for 0 <8 <1/3 (recall we are concerned only with non-
negative values of §), ®

Theorems 9 and 10 establish the thresholds 8, for 1 — Sy, /1 — g,
1— T, and /1 — T,. In particular they show that 1 — §3, 1 — 84, 1 — S5,
1— 8¢ 1— 8y (=20- Sy) and+/1 — S; of Table 2 are metric, as well as
giving alternative derivations of results that follow from the p.s.d. properties
established in section 4.

The Euclidean properties of S, and 7; are investigated in the remainder
of this section. We first prove the existence of the Euclidean threshold # ..

Theorem 11. If</1 — S; is Euclidean then so is~f1— S, for all 2 0. If
1 = Ty is Euclidean then so isN/1 — Ty forallp 2 6.

Proof. Both similarity coefficients may be written in the form
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which may be manipulated into:

_X8/d n_g-f%y__x 4
R"’_x+9y[1 (a qb)x+9y]

Expanding shows that the similarity matrices R, and R, are related by:
R, = (%Rg*{ll'+¢ R, +¢ 2R + I R+ ]

where y = 1 — 8/¢ and * denotes the Hadamard product and R? = R*R
etc. Schur’s theorem states that if A and B are both p.s.d. then so is their
Hadamard product (see e.g., Mirsky 1953, p. 421). Tt follows that, provided
6> 0 G.e.,y>= 0), then R, is p.s.d. whenever R, is p.s.d. ®

Theorem 12. /1 — S, is Euclidean for82= 8= 1. /1 — T, is Euclidean for
9> 80y= % 1— 8, may be non-Euclidean. 1 — T, may be non-Euclidean.

Proof We show in section 4 that S,_, is p.s.d. and that T,/ is p.s.d. It
follows from theorem 11 that 8 <1 for /1 — S, and that 8 <1/2 for
~1— T,. The true values of 85 cannot be less than the corresponding
values of € 4.

These bounds may be made precise by examining a special example.
This consists of a configuration consisting of two regular simplices, side /,
each one of n — 1 vertices, sharing n — 2 of these vertices. The two extra

vertices, | P, and P, are distance apart 24, , where
hy_y= -2(("1'1_%2)) is the aititude of the {n—1)-simplex. The

configuration is clearly non-Euclidean if we can arrange that the distance
dq;, between Py and P,, is greater than 24, . With §; we can choose (see

Appendix 1) s,= all other similarities equal to 1/ (1 +80), ie,
I=/1— 5= I i 7 Thus the condition for nor:-Euclideanarity is:
9 20n — 1)
1> 146 (n—2)

or
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n—2
n

g <

When n= 3, 8 <1/3 gives a non-Euclidean configuration which is con-
sistent with the result that 8> 1/3 gives a coefficient that is metric (and
hence is Euclidean for three points). When » =4, then # </ is non-
Euclidean (though metric for € > 1/3). In general this example gives a
non-Euclidean configuration for values of # which depend on n. As n
increases a non-Euclidean configuration can be found for & arbitrarily close
to unity. We have already pointed out at the beginning of this proof that a
result in section 4 shows that for /1 — S,, 8 <£1; therefore ¢, =1 for
V1= S,

For T, the same example gives = 0 and all other similarities equal
1/ (1 +20), ie, I=~/1—-T,= 1 3_929 . Thus the configuration is

non-Euclidean when

29 2(n —1)

> 5% w2
, n—2
ie. 8 < P

Thus a non-Euclidean configuration can always be found for & < # and, as
stated above, we show in section 4 that ~/1 — 7T, is Euclidean for 6 2 /.
This shows that 8 p = #for~/1 — T,.

Appendix Il gives examples to show that 1 — S; and 1 — T, need not
be Euclidean for any value of 6. @

The properties of 1 — S, and (1 — S,)V? are special cases of those for
(1 — 5,0V, where ¢ is allowed any positive value, and we would expect 8 ,,
and 8, to decrease with increasing values of r. The above examples are
easily adjusted to show that this is nearly, but not quite, so. A’ of the above
gquations now becomes:

b B Ny 8B Ny __8l+B) iy
A (n+an) +(ﬂ+¢ﬁ) (n+q5(a+B)) ) ()]

Depending on the value of ¢, the minimum of the sum of the first two
terms on the right-hand side of (9) occurs (i) when « = k, 8 =0 and
a=0,8=kor (i) when a = B8 = &/2. In case (i) A’> 0 and (1 ~ §,)""
is metric. In case (ii) the minimum value of A’ is



Metric and Euclidean Properties of Dissimilarity Coefficients 19

0k 8 k
A= (—2 8y (28 Uy
(2n+qbk) (n+d>k)

which is non-negative only when

2-2
201

4

921+I

The term in parenthesis is negative when ¢> 1 and therefore, because
k < n, the condition is clearly satisfied for all values of k. The worst possi-
bility is when k= n giving 62 1/ (2~ 1), = 1 as a condition for
(1— §,)"" to be metric. The example a =8 =n/2, A= B=E=H=10
is non-metric for # <1/ (2'— 1) establishing # 4, precisely. However when
t <1, the term in parenthesis is positive and by taking k=1 and »
sufficiently large, non-metric examples can always be constructed for any
value of 8.

Similarly for (1 — T,)"’ the same result is obtained, i.e., that the
coefficient is metric when #> 1/ (2'— 1) provided r> 1, otherwise when
t <1 non-metric examples can be found for any 8.

The example in Appendix 1 may be used to give bounds for Euclidean
properties. Thus non-Euclidean configurations of (1 — SV are given
when:

6 e on—1 6 11
i> 2 " s> )

This gives:
g= 1/ 27— 1) (10)

for Euclideanarity.
Similarly the threshold given by the same example for (1 — Ty} is

= 1/ 2027 1)) . (11)

Although when = 2, (10) and (11) agree with the exact bounds discussed
above, we cannot ascertain that these bounds are attained for other values of
t. Indeed an example in Appendix II shows that the bound of infinity is
reached when ¢ = log 4/ log 3 = 1.26 and possibly for some greater value of
t less than two.

All the results of this section are summarized in Figure 2.
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F R e LT L LR

Euclidean
2
1 . \\\.\\
Non_metric \\“\\::\\\-\\
1 2 3 H 5 4

Figure 2. Properties of (1 — S,)/" and (1 - T,)V'. The solid line gives the boundary between
non-metrics and metrics, the same boundary for both coefficients. The dotted lines give the
boundaries between metrics and Euclidean metrics, the lower line for (1 — T,)"' and the
upper for {1 — S,)V’. These dotted lines are partly conjectural with only the points for ¢ = 1, 2
and o being known. For 1> 2 they give a lower bound, possibly attained, for both
coefficients. When ¢ <2 there is a cut-off at not less than + = log 4/ log 3. Whether the true
curves approach the true cut-off asymptotically, or as shown in the diagram, is not known.

4. Some Special Cases

We may speak loosely of a coefficient S as being non-Euclidean or
non-metric. This means that for some data the resulting dissimilarities are
not Euclidean or are not metric. Conversely when S is said to be Euclidean
or metric the corresponding dissimilarities are Euclidean or metric for all
data, except possibly when the calculation of the coefficient includes some
process for handling missing values (see for instance Gower 1971; Legendre
and Legendre 1983a). In this section we shall be concerned with establish-
ing whether or not some well-known dissimilarity coefficients are or are not
metric or Euclidean.

We shall examine d; = 1 — s, and \/d; separately. The results of sec-
tion 2 can be used systematically and Figure 3 illustrates a sequence of steps
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15§ psd.?

No, or

Don’t know

Is vd a metric? Jd is a
Euclidean metric

Jd is not @ Can a non-Euclidean
a metric example be constructed ?
Don't
Yes
know
vd is a non-Euclidean metric

and § cannot be psd.

Figure 3. Strategy for determining metric and Euclidean properties of ﬂ; The answer to
each question is one of Yes (Y}, No (N}, or Don’t Know (DK). The possibilitics A and B
have never arisen but if they did, partial information may be available. For example B would
imply that \/?,, is 4 metric that is possibly Euclidean, while with A it may be possible to find an
example showing that at least J?J; is not Euclidean. A similar strategy may be used for inves-
tigating d;; itself, replacing § by L. But with all examples tried, the DK branch has always been
given to the question *'Is  p.s.d.?"" (see text).

that we have found satisfactory. If S can be shown to be p.s.d. then \/_J; 18
metric and Euclidean (theorem 6) and nothing further is required. If S is
not p.s.d. then we can try to show that \/?,, is metric {e.z., theorem 3) or
find an example to establish that it is not metric, in which case nothing
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more is to be done. If, however, S is not p.s.d. but \/d_,, is a metric then it
may also be Euclidean. Fortunately in every such case we have examined
we have always found an example to show that \/d_,, is not Euclidean, thus
settling the gquestion, but the theoretical possibility remains that \/?,, is
Euclidean and this might be established through theorem 4.

To examine the properties of d; itself we can again use the strategy of
Figure 3, now starting with the matrix £ of section 2 (theorem 6). In all
the cases examined we have never been able to show directly that T is or is
not p.s.d. but because non-Euclidean examples can be found for every
coefficient considered it follows from theorem 6 that X is not p.s.d. Thus
for d,; the first step given in Figure 3 turns out to give no information and
we have to proceed directly to the second step.

4,1 Similarity Coefficients for Binary Variables

As in Table 1 we denote presence/absence by +/— and use the standard
notation ¢ for the number of {+,+) matches, b for (+,—), ¢ for {(—,+) and
d for (—,—). Table 2 is an expanded version of a similar table given by
Gower (1985). Tt lists the metric and Euclidean properties of many well-
known dissimilarity coefficients and indicates how the given results were
obtained. Note that in Table 2, the suffixes in §,, 5;, 53 ,... are cardinal
numbers, used solely for reference, that do not correspond te values of 8 in
S, of section 3. Table 2 gives, when relevant, synonyms for the reference
numbers in terms of S, and 7,.

For both d and +/d, three properties are listed — (i) metric or not, (ii)
Euclidean or not, and (iii} whether or not the similarity matrix is p.s.d.
Each result is indicated by a Y (for Yes) or an N (for No). The remarks at
the beginning of this section indicate that not all eight combinations can
occur. For example if the answer to (iii) is Y then so must it be to (i) and
(ii). Similarly if the answer to (i) is N so must it be to (ii) and (iii). This
leaves only the four possibilities (YYY), (NNN), (YYN), and (YNN). Of
these, although (YYN) is theoretically possible, as we have indicated with
the 3 x 3 matrix following theorem 6, it has never occurred with any of the
coefficients that we have examined. The other three possibilities all occur in
Table 2. The resulis have all been obtained in one of three ways.

(a) By showing that S is p.s.d.
(b) By showing that d,, is not a metric
(c} By showing that although d; is a metric it is not Euclidean.
To establish (b) requires only a single counter-example and these are listed

in Appendix II. To establish {c) requires proof of the metric inequality,
usually by theorem 3, followed by a non-Euclidean example — again listed
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TABLE 2

Properties of Similarity Coefficients Amongst Binary Variables

-3 1-s

Coefficient Synonyms m m

Metric Fuclidean E p.s.d. | Metric Euclidean 5 p.s.d.
bs;
€5y ;-g-;;;i ¥9 N Np Yg Y5 v13
83 a‘+§+c To=1 y10 Ne N2 Yg Yg 713
54 B—;g:—g_‘_d Sa=1 y9 Na Ng Yg Y y13
85 m Tg=2 ¥10 Na N2 Yo Yo ¥13
se 3 +2?;3c)+ < [ se=2 ¥9 Na No g g ¥13
57 m Tg=1 Na Ny No Y Y5 ¥13
S8 arireeyTd |Se ¥a N1 N2 ¥9 Nl2 N5
Sg a;f‘;:;;d 254-1 ¥9 Ne Nz 6 g ¥13
sic (2 + af—c] Ne Ny Ny ya Ng N5
s gl@ s e e M Ny | e Mg ¥
S12 J7av) are) ya N Ny ¥g 5 ¥13
513 e (azg) @by M K2 e Y6 vis
S14 ¢(a+b)(;g;}?§+b)(d+c> ye M Nz Y6 6 ¥i3
815 % Ne Ny N2 Ne Ng N5

2 The result follows from a counter-example given in Appendix IL

b §, is referred to in section 5 (1 - §,) may be negative so its metric 2nd Fuclidean

properties are irrelevant.

¢ As given in_the defining column, self-similarities for S, need not be unity so that

(- 52) and

defined 1o have unit self-similarity (see text),

(1 - 8,) ate not even metrics. The results given in the table are for §,

NOTE: Superfices refer to theorems in the text used to establish primary resulis. Suffices

of § are reference numbers, while suffices in

columns 1 - 6 refer to columns of this

table from which the result follows directly: eg. N, in column (3) means that I is

not psd.

because column (2) states that rhe coefficient is non-Euclidean.
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in Appendix II. To establish (a), i.e., the p.s.d. property of S, is the pur-
pose of the following theorem.

Theorem 13. Matrices of the coefficients S, S3, S4 Ss. Se, 57, So, S12, Si3s
and S4 are p.s.d.

Proof. The proof requires the use of some standard results of algebra.
These are:

I. X’'X is p.s.d. for all real X.
IL. Schur’s theorem, that if A and B are p.s.d., then so is A*B.
IHI. A is p.s.d. iff all principal minors are non-negative.

IV.  The sum of a set of p.s.d. matrices is itself p.s.d.

These are mostly well-known results; references are given by Gower (1971)
with short proofs of I and IV and also a simplified proof of II for symmetric
matrices, which is all that is required here.

P.s.d. property of coefficients 5,, S, and S,: By scoring u for + and v
for — in Table 1 and using result I, shows that the matrix with elements
w?a; + uvb; + c;) + v' d; is ps.d. Setting w = 1, v=— 1 immediately
shows that 8¢ is p.s.d. Setting ¥ = 1, v = 0 shows that A, the matrix with
glements g, is p.s.d. Because A/ m does not have a unit diagonal, the
corresponding dissimilarity is not a metric. S, is defined to be A/ m except
on the diagonal, where it is defined as unity. Therefore A/ m differs from
5, only by a non-negative diagonal matrix

X X X,
diag(l—-i,l———z,...,l——") where x; is the number of
m m m

occurrences of + for the i-th unit. It follows from IV that S, is p.s.d. Set-
ting u = 0, v = 1 shows that D (elements ;) is p.s.d. and hence {from IV)
A+ Dis ps.d. and so is S;= (A + D)/m. Note that S, is the same as
Sy~ |-

P.s.d. property of coefficients S;, S; and S, We may write

S;=8,+8,*Y D/m’ which is p.s.d. from repeated uses of II and IV.
=1
Similarly Ss= ¥, S{7/2" and S¢= ¥ S{7/2' which repeated use of II and
i=1 =1
IV shows to be p.s.d. Note that S; and Ss are the same as Ty _ | and T, . 5,
respectively, and S; is the same as §, . 5.
P.s.d. property of coefficient S;: To prove that S, is p.s.d. is more del-
2a,
X + x;
number of occurrences of + in the J-th unit. Thus S;= 2A*X where

icate. We notice that for S;, §;; = where x; is, as above, the
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x; = 1/ {x; + x,). Since A is p.s.d. it is sufficient to show that X is p.s.d. It
is easily verified that

)2

xJ+xj-

2" ﬂ X;
i=1

Thus for non-negative x; we have that det X=> 0 with equality only when
x;= x;. By replacing n by 1, 2, ..., n — l it is clear that the result is valid
for all principal minors of X and hence, by lII, X is p.s.d. and so is §;. Note
that S; is the same as T, . /.

P.s.d. property of coefficients S;,, S|; and Sy, The scores for the i-th
unit, i.e., column 1 of Table 1, may be scaled by an arbitrary factor s~ 1If
we set v =1, v=0and s, = /x;{m — x;}, the ’standard deviation’ of the
i-th unit, then result I gives that the matrix with elements

a;

Vxim = x) x,(m — x;)

is p.s.d. Multiplying by D shows that S,; is p.s.d. Similarly we may subtract
an arbitrary constant &, from the i-th column. Setting k; = x;/m, the mean,
then result I gives the product-moment correlation matrix for binary vari-
ables, which is well-known to have the form S, of Table 2 and which must
be p.s.d. Finally, setting u=1, v=10, kK, =10, 5, = -\/;, shows that S, is
psd. ®

4.2 Dissimilarity Coefficients for Quantitative Variables

Table 3 is an expanded version of a similar table given by Gower
{1985). It lists many of the standard distance coefficients and states whether
they are metric or not, and Euclidean or not. The frequent use of modulus
operators is to take count of possible negative values for quantitative vari-
ables. Although direct observation of negative values is rare in practice,
they can easily arise when data are standardized to have zero mean or are
transformed, say, to logarithms (see also section 5.3). It is therefore desir-
able to examine the coefficients separately, first when all values are non-
negative and then when negative values are admissible. This explains the
two sets of columns in the table. For dissimilarity coefficients with quantita-
tive variables we have, for the most part, considered only the basic
coefficient D; and not JD,.
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It is immediate that D,, D,, D; and D, are all metric whether or not
negative values are included, because D, is the Minkowski metric of which
the others are special cases. D) and D, are in the basic form of the
Euclidean metric. The quantities r, appearing in the definitions of D,, D,
and D, are arbitrary except that, when this is not otherwise irrelevant, they
must be positive. Usually r, is taken to be either the standard deviation or
the range of the k-th variable, but other possibilities exist. Gower (1971)
showed that \/173 was Euclidean when r, was taken as the range, but need
not be Euclidean when r, is taken as the standard error.

The quantities x; might be restricted to the values 1 and 2 or 0 and 1,
which may be regarded as formal scores for the states — , + of binary vari-
ables. The values 1, 2 substituted into the formulae of Table 3 give results
proportional to 1—S8, in every case, except for Dy (which becomes
(6 + c) (da +3(b+ ¢} +24)) and Dy (which becomes
(b+¢) Qa+b+c)+ d). Of course, it is Df, D}, Di and DZ, not
the coefficients themselves, that are proportional to 1 — S;. The values of
0, 1 also produce results proportional to | — S, for D¢, D7, D;, D}, but
for Dg give 1 — §; and for Dy give 1 — §;; all other values are indeter-
minate, leading to terms in zero-divided-by-zero. Apart from the interest of
these correspondences, the above results immediately allow some of the
non-Euclidean findings of Table 2 to be transferred to Table 3.

Thus binary versions of D;, D, {(with r= 1}, Dg, D; and D,y are
equivalent to 1 — 8§, and hence these coefficients are non-Euclidean. Simi-
larly Dy is equivalent to | — §; and hence is non-metric, and depending on
the scoring used, Dy is equivalent to 1 — S; and hence is non-Euclidean.
Thus D;, D4, and Dy to D, are non-Euclidean and remain so when nega-
tive values are permitted, while D is non-metric for positive and negative
values.

The indeterminacies induced by allowing zero scores are avoided by
ignoring double-zero terms in the coeflicients of Table 3 and dividing by the
remaining number of matches rather than by p. This process is similar to
that used in the definitions of those coeflicients of Table 2 that are not func-
tions of the number of negative matches 4. The resulting coefficients in
Table 3 are then all equivalent to 1 — §; (except Dg which is equivalent to
1 — §,;) but we have not further investigated the properties of coefficients
defined in this way, although such coefficients are useful (see section 5.1).

it remains to show that D, Dy, D;, Dg, and Dy are metrics, at least
for positive values. This is done in the following theorem.

Theorem 14. Coefficients Ds, Dy, D5, Dy and Dy are metric for positive
values of the variables but, with the exception of D4, are not metric for negative
values.
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TABLE 3

Properties of Dissimilarity Coefficients Amongst Quantitative Variables

27

u
|

Positive wvalues Negative values
only permitted
Coefficient N (2) {3 (4)
Metric Euclidean | Metric Euclidean
1 P o
3] > kfl(xik—xjk) Y Y Y Y
2 1 P 2 2
03 > kil(xik~xjk)/rk ¥ Y Y Y
N R Y N+ Y Ne
O I LI 2
B LT sttty Nt Y N2
P ooy ik ok T 2
p (x,, -x. ye
2 L ‘(‘}%Jk—)z yl4 Y N8 N3
P k=1 ik jk
p Ix..—x.1
Dg R lxlkerJkl yl4 Nt Na N3
P -1 ik Tk
p Ix.,—x.1
Dy 1z I_;(%:Jl‘.—l— yl4 Nt yl4 No
Py % T ¥y
P
| —_
kf] xik xjkl
g S Nt N1 N Ny
P
E | - |
op Ak Tk
Dy = vl4 N Na N3
kil Max(xlk,xJk)
p Min{x., ,%x..)
Dip 1 E (1— W;L%) yld Na Na N3
P k=1 ik' " ik

NOTE: Explanation as for Table 2, except that + denotes results that follow from Table

2 when the continuous variables are replaced by binary wvalues.



28 J.C. Gower and P. Legendre

Proof. Appendix Il gives counter-examples that show that D, Dg, Dy and
Dy, are non-metric when negative values are permitted.

Coefficients D and D;: From theorem 8 we see that the metricity of
Ds follows from that of Dy, if we can prove it for Dg, and that it is sufficient
to establish this for a single variable of Dg. Suppose a variable takes the
values xi,x,,x3 for three sampling units; then without loss of generality we
may assume x;2 x;2 x3. The contributions to Dy are then

Xy — X3 Xy ™ Xy X1 — X3
d23= — ,d]3= —= and d12= -
xZ+X3 x|+x3 xl+X2

It is trivial to show that d,;2 dy; and that d|;2 ;. It follows that 4, and
dy; are the two shortest sides of the triangle and that the metric property is
valid for all permutations provided d|, + dy;2 dy3. Simple algebraic mani-
pulation gives

_ (X2 e X}) (x1 - X3) (xl - Xg)
B (Xz + X3) (X] + X3) (X] + Xz)

dyy +dp— dy

which is positive and hence Dy is metric and, by theorem 8, so is Ds.

Coefficients D, and D,;: For Dy and D, it also suffixes to investigate
the properties of a single variable. For positive values, D; is the same as Dy
and hence is metric. With negative values of x[,x,,x3, it is sufficient in D
to consider the case where only one value x; (say) is negative. This is
because D; is invariant to changes of ail the signs of x,, x; and x, so that
three negative values have the same effect as three positive values, and
hence define a metric, while by changing signs, two negative values give the
same result as one negative value. Writing x; = — x; the contributions to
D become:

- *

xX)— x3  x1+ x3 X, + xa
s > and -

X1+X2 x1+x3 X2+X3

In these terms we require only that x;> x; which causes no loss of general-
ity. Thus in this case the two longest sides both equal unity, showing that
the metric property is preserved with I}; even for negative values.

With x,2 x;2 x32 0, Dy gives:

X7 — Xy X1 — X3 X]— Xy
dpy= 22 4= 22 ond dyp=
23 X3 » W13 x 12
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with dy32 dy; and d,32 d),, showing that d; is the longest side. Thus

(X2 - X]) (Xl - Xz)

dyy+ dyz— djz=
X1 X3

which is positive and D, is metric for positive values.

Coefficient Dy: The remaining coefficient, Dy, is less easy to handle
because the separate summations of numerator and denominator imply that
it does not suffice to establish the metric result for a single variable. The
following argument, a variant of theorem 3, starts by noting that every vari-
able must belong to one of the six classes: A4(x2 x;:2 x3),
B(X]? X3> Xz), C(Xz) X]? X3), D(Xz? X3? X]), E(X}? X]? XQ), and
F(x;2 x32 x;). The following table gives the sums of every variable in
gach class for each of three units. The suffixes serve the dual purpose of
distinguishing the sums for the different units and indicating their rankings.
Thus C, is the sum of all variables of type C for the second unit and
Ciz Gz Gy

Unit A B C D E F
1 A, B, C, D3 E, F
3 A4, B, C; D, E F
4 4, B C D, E F

The table also shows the sums for a constructed fourth unit, the values
always being those of the middle values of the other three units. When all
the values in the tables are positive we have that:

B,—-B C-C, D -D, E—-E
2 3+ 1 2+ 1 2+ 2 3
B, o D, E,

dy =

Ay —A ¢, - C E,—-E F—- F
1 —A4s | & 3, B : 0 2

D= T C, E, F
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Cl—C2+C2—C3 C]—C3= (CQ_C';) (C]_C2)>
C C, C, C, G, z

and similarly for the terms in £, £; and F;. Tt follows that dyy + duy> dy
so that units 2, 3 and 4 satisfy the metric inequality. Further:

Ay — A4 B, — B c,-C D—-D £E,— E h—-F
1 2, & 3y M 2 3, 2 3,2 3

A B C Dy £y Fy

Because

B,—- B, B, — By Dy — Dy D -D,
= =
B[ = Bz and D] = D[

we have that dy = dyy. Similarly d3,2 d34. Thus
dip + di32 dy + dyz dy

establishing the metric property for Dy Note that this result does not
require that all observations be positive, only that all the sums in tables as
above should be non-negative. @

It remains to show that D is Euclidean for positive values. Consider
the similarity matrix with elements

4x'k X’,‘k

27

S!’i =

1
p X + Xy )

It follows from theorem 6 that D)5 is Euclidean if S is p.s.d. It is sufficient
to establish the result for a single variable, i.e., for a matrix with elements

4x; x,
S, = ————
T+ x)?

Now the matrix with elements x; x; is x X’ which by I is p.s.d. The proof
that 8; is p.s.d. included a proof that X with elements 1/ (x; + x;) is p.s.d.
Because S = 4(x x)* X*? it follows from II that S is p.s.d. and hence that
D; is Euclidean,
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5, Choice of Coefficient

None of the properties listed in the previous sections — or in the
present one, for that matter — is conclusive in choosing a coefficient. A
coefficient has to be considered in the context of the descriptive statistical
study of which it is a part, including the nature of the data, and the intended
type of analysis. The purpose of this section is to discuss, within this con-
text, how the known properties of coefficients influence an appropriate
choice.

The nature of the data strongly influences the choice of a coefficient.
Table 2 lists coefficients appropriate for binary variables, and Table 3 those
for quantitative variables. Under certain circumstances, quantitative data
may best be treated as binary as when dichotomizing noisy quantitative vari-
ables {(Legendre and Legendre 1983b), or when the pertinent information,
for the purpose one has in mind, depends on a known threshold value. For
example, when classifying river areas according to their suitability for grow-
ing edible fish as judged by threshold levels of pesticides and heavy metals,
the data should be coded in binary form, as falling above or below the
tolerated toxicity level, despite the fact that the measurements themselves
are quantitative.

It may be appropriate to treat different variables differently; at least
three coefficients have been described that handle mixtures of different
kinds of variable (Estabrook and Rogers 1966; Gower 1971; Legendre and
Chodorowski 1977). Other mixed coefficients are easily constructed by com-
bining coefficients from Tables 2 and 3, either with, or without, differential
weighting. Some coefficients may at times give negative values of similarity
(Sy, Si4, and S)5). Translated into dissimilarities, these coeflicients produce
values larger than one, as with D;. Most analyses are unaffected, but suit-
able scaling is needed when these coefficients are combined with other
binary similarity coefficients. The relationships between binary and quantita-
tive coefficients, described in section 4.2, can be used with profit to handle
mixtures of binary and quantitative variables. This can be done most easily
with coefficients, like D, to D; and D,e, where each variable-comparison is
divided by a normalizing factor, depending upon this variable alone, before
summing. The equivalence between binary and quantitative coefficients tells
us what binary coefficient is mimicked by each quantitative coefficient, in
such combinations of variables.

The method of analysis itself may limit the choice of coefficient. Thus
a matrix of resemblance is often analyzed by a clustering or ordination
method which may be either ordinal or metric. Metric methods often have
a geometric rationale that implies that a metric and possibly a Euclidean
coefficient should be chosen, thus disfavoring non-metric coefficients
(Gower 1984a). Table 2 (column 5) and Table 3 (columns 2 and 4) list the
coefficients that are fully Euclidean. Notice however that the treatment of
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missing values {e.g., Gower 1971, Legendre and Legendre 1983a) may des-
troy the metric and Euclidean properties listed in Tables 2 and 3. The
definitions of metric D and Euclidean D given in section 1 require that the
coefficients be Euclidean and/or metric for a/f data. However it is a general
observation that constructed non-Euclidean matrices tend to be pathological
and only slightly non-Euclidean. Thus in matrix (1), section 2, the distance
of P, from the other vertices is constrained to have length between 1 and
1.15 units if it is to be metric but not Euclidean. A simple monotonic
transformation often restores Euclideanarity. For example theorem 7 shows
that simple additive constants can always be found to make a coefficient
Euclidean, and Table 2 shows that it often suffices to replace d by vd; the
close of section 5.1 indicates further results of this kind. Well-defined
measures of non-metricity and non-Euclideanarity need development and
their values ascertained for data, using the various coeflicients.

Even with those methods, like classical scaling/principal coordinates
analysis, that seem to require a Euclidean coefficient, a modest departure
may be inconsequential. Cailliez and Pagés (1976). and Sibson (1979) have
shown that ignoring ’small’ imaginary dimensions is often acceptable.
Nevertheless to know that a matrix is p.s.d. is helpful (Table 2, columns 3
and 6) since some algorithms for spectral decomposition would otherwise
fail.

Although criteria have been proposed for choosing among clustering
methods (e.g., Baker 1974; Blashfieild 1976; Cunningham and Ogilvie 1972;
Everitt 1974; Fisher and Van Ness 1971; Hubert 1974; Jardine and Sibson
1968; Legendre and Legendre 1983a; Rand 1971; Sibson 1971; Williams et
al 1971a, 1971b), it is often considered that different methods focus on
complementary aspects of the geometry of the set of objects. High resolu-
tion and linearity of the measure of resemblance (see section 5.3) are desir-
able properties when clustering.

5.1 Families of Coeflicients

Binary coefficients (Tables 2 and 4) may be classified by the way they
deal with negative matches. In Table 4, the coefficients §,, 5;, 53, S5, S,
S10. and S|,, do not involve 4 and hence ignore negative matches; they are
sometimes termed asymmetric, or asymmetrical. The other coefficients are
symmetric in g and 4 and so treat positive and negative matches equally.
Indeed, our +/— notation may not refer to presence/absence but to qualita-
tive values of equal status, such as black/white; in taxonomy the difference
is often unclear, as when ‘‘white’’ indicates the absence of a gene that con-
trols the state ‘‘black.”” In ecological applications, coefficients that do not
regard double absence as an indication of similarity are relevant when the
absence of a species from two sites may correspond to extreme but opposite
conditions, both prohibiting growth. However the double absence may
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represent the same unfavorable condition at both sites. That those who use
these coeflicients must decide what is appropriate in each instance, and for
which variables or species, is basic to the process of choosing a coefficient
appropriate to a given problem (section 5.4).

Similarly, some quantitative coefficients (Table 3) exclude double zeros
from the comparison in both the numerator and the denominator (Dg, D).
In other instances (Ds, Dy, D7 and D), double zeros lead to indeterminacy
of the coefficient. When frequencies of zero represent the same kind of
common absence of condition that, with binary variables, leads one to reject
negative matches, these coefficients are appropriate, but it is necessary then
to skip double zeros in their computation. This is equivalent to interpreting
0/0 as zero in the numerator, and counting p as the number of variables in
the comparison not presenting double-zeros, as described in section 4.2.
Care has to be taken that instability is not introduced by pairs of values
which, although non-zero, are very small. Finally double zeros may be
excluded in D, to D, simply by defining p as the number of variables not
presenting a double-zero, for this pair of objects, but we have not investi-
gated whether the resulting dissimilarities remain metric.

The coefficients (1 — ;)" and (1 — S,)’ of section 3 may be written

(1—THV' =@/ (x+e)V
and
(1—S)Y' =@/ (y +0)

where x=a/ (b+¢) and y=(a+ d) (b+¢). Thus the first
coefficient, which includes S5, S5 and S; as special cases, decreases its value
with x, and increases with @ and with r. All the coefficients of this set are
monotonically related and will give the same result when used with order-
invariant methods. These are methods like single, complete, or
proportional-link linkage cluster analysis, or any form of non-metric multidi-
mensional scaling, that use only the ordinal and not the absolute values of
the data. Another way of putting this is that for order-invariant methods, all
the coefficients of the class are equivalent to x, which is also §|, sometimes
used itself as a coefficient (Kulczynski 1928). Similar remarks apply to the
set of coefficients (1 — S,)"/, which includes S, S and Sg that are
equivalent to y. This series includes So= (28, — =01 -2/ (3 + 1))
which is also monotonically related to y. Yet Figure 2 shows that the metric
and Euclidean properties of both general coefficients vary substantially with
¢ and ¢. In Table 6, coefficients within each of these two families will be
treated as equivalent, except for Sy because of its non-Euclidean behavior.
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TAELE 4

Properties of Similarity Coefficients for Binary Variables

Results from the OCCAS

Coefficient Negative Resolution Non- c.vV.
matches linearity
$1 ﬁ—g E 0.773 1.377 178.3
So m_bféﬁ E 0.056 0.016 28.9
83 T E 0.083 0.024 28.9
s =4 I 0.056 0.016 28.9
Sg m E 0.075 0.039 52.7
s ;%fg)-q 1 0.062 0.028 4.9
S7 m E 0.086 0.030 35.0
sg #fc)ﬂi I 0.043 0.012 28.5
Sg 9;—52{% I 0.111 0.032 28.9
si0 222 + =] E 0.073 0.026 36.2
$11 %[ﬁg pto cf—d v 1 0.054 0.015 28.6
S12 m E 0.081 0.026 32.0
513 ¢(a+b)(a+:‘;(d+b)(d+c) 1 0.076 0.023 29.7
S14 J(a+b)(afgf(’§+b)(d+c) 1 0.109 0.029 26.4
S15 :g:';z 1 0.133 0.118 88.3

3 Negative matches included (I) or excluded (E).

5.2 Quantitative Dissimilarity Coefficient Types

Another criterion governing the choice of a coefficient has been
developed by Legendre, Dallot and Legendre (1985). It consists of
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classifying the coefficients of resemblance for quantitative variables into
three types, according to how they weight a given difference for variables
with different ranges of variation. This classification is, of course, only
relevant for data tables that are dimensionally homogeneous (e.g., financial
currencies, frequencies {counts), standardized data). Such tables mostly
contain only non-negative values, and the following argument is developed
in terms of frequencies. The problem of negative values found in
transformed data is examined in section 5.3.

Type-1. Suppose the same difference is found, between two objects,
for a variable bearing high frequencies, and also for one with much smaller
frequencies. In type-1 coefficients both variables contribute equally to the
distance. The coeflicients D, Dg and Dy of Tables 3 and 5 belong to this
group as will any coeflicient whose denominator is constant or is a separate
summation from the numerator. Thus with Dy, using the simple numerical
example shown in Table 5 (‘‘positive values only™), it is easy to verify that
each variable’s difference contributes 10/290 to the sum of terms making up
D¢ With some coefficients, other than those studied in the present paper,
this property holds only when the two vectors corresponding to the sampling
units being compared have the same ‘‘importance,”” the importance
corresponding to different concepts, depending upon the coefficient. It is
the length of the vector in the chord distance and in the geodesic metric,
while it is the sum of the values in the vector, in Renkonen’s {1938) per-
centage similarity, all of which belong to this sub-class of type-1 coefficients.
Table 5 shows that Dy can behave badly when negative values are permitted;
its use should be limited to positive values, unlike D, which can handle
negative values quite nicely.

Type-2a. In coefficients of this class, a difference found between two
sampling units for a variable with high values contributes less to the dissimi-
larity {more to the similarity) than the same difference found between these
units for variables with smaller values (except when the difference is zero).
The Canberra metric, D, as well as its associated forms D and D, belong
to this type; so does D, (Table 5, positive values only). When negative
values are allowed, only D, remains of type-2a, since the four others can be
indeterminate.

Type-2b. In this class are found the dissimilarities for which an equal
difference receives a weight inversely proportional to the variability of the
variable in the whole set of sampling units under study. This is so with D,
and its special cases, D; and D;, where the measure of variability is the
range of variation of each variable over all units. D; to D, are not affected
by negative values. Coefficients of type-2b behave similarly to those of
type-2a but instead of the weight of a variable depending only on the pair of
sampling units being compared, it is defined over all pairs of unit-
comparisons.
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TABLE 5

Properties of Dissimilanity Coefficients for Quantitative Variables

Positive values only Negative values permicteda
Coefficient Test example 1 Type Test_example 2 Type
100 40 20 90 -100 5 0
90 30 10 80 -90 -5 ~-10
b =100 40 20 100 100 20 20
2 1 P 2 H z H 2 2 2
Df — & (x.,-x.,)2 102 10° 107 1 100 107 10° 107 1
1
Py ik " jk
21 7% 2 07 107 10! 107 107 107 107
2 5.k (X500 /TR T00° 40° 20° 2 Too? Too® 20° 200 %
13
1 10 10 10 1o 10 1lo 10
I P Too 40 20 ® Too Too 20 20 *®
P t t t t t t t
t 1 t,t 100 10t 10 10t 10t 10t 10
Mo TR A Toot a0t 20t 2P To0t 100t 20t 20t 2P
(x,,~% .. )2 H 2 2 2 2 2 2
2 1 P UMk 10° 107 10 10° 10° 107 10
D = I e—————p —2 =52 = 2a TSR Ton? e “52indet
P el CopiR ) 190° 70° 30 170° 190 0’ 10
p oIx. . -x. |
1 ik "k 10 10 10 10 _10 10 10 .
Do T I X vk, T 70 30 2® 70 Tso 0 10 ndet
k=1 ik " jk
p Ix., -x.!
1 ik ¥k 10 10 10 10 10 10 10
D7 = B L . T N I LM
P e oyt R 90 70 30 M0 190 10 10
e Kk o 10 10 10 10 10 10
8 T (% K. 290 290 290 -30 30 -30 -30
ik " jk
b B! 10 10 10 o 10 1 10
9 T Max(x % 160 160 160 5 5 5 5
P Min(x, ,x. )
1 ik jk 10 10 10 10 10 10 10 |
Do~ I |l ~5————| T5p Ty 55 2a 7 Tan -+ = indet
P o Max(x; 0% )| 100 30 20 100 -90 5 0
Table 5 (contd)
NegativeC Results from the 0CCAsS
matches
Positive values only Negative values permitted
Coefficient
Resol. Non-lin. C.v. Resol. Non-lin. C.V.
p1(B)d IorE 0.077 0.025 31.9 0.073  0.017 23.8
Dy IorE 0.059 0.019 31.9 0.063  0.021 33.2
D3 TorE 0.054 0.019 35.9 0.056 0.021 38.5
Da(t=4) lorE  0.064 0.023 35.4 0.068 0.023 33.8
D5 E 0.017 0.022  131.7 1.640 3.189  194.4
Dg E 0.029 0.028 9.8 2.044 5.621  275.0
D7 E 0.029 0.028 94.8 1.617 5.573  344.6
Dg E 0.069 0.043 62.0 4.843 2.151  250.9
Dg E 0.065 0.041 63.7 0.917 1.028  112.1
Dio E 0.030 0.025 84.5 - N -

2 Double zeros are not used, because most of these coefficients exclude them.

b The range r is fixed arbitrarily.

€ Negative matches included (I) or excluded (E).

d D,(B) form of coefficient D, bounded between O and 1 by dividing all values by
the maximum found 1n all three OCCAS.

>



Metric and Euclidean Properties of Dissimilarity Coefficients

TABLE 6

Choice of a Q-mode Coefficient of Resemblance: Decision-making Process

1) Binary data (or treated as such) --- - - gee 2
2) Negative matches included: reject S15 {(problem of linearity); for
metric scaling, prefer metric coefficients 84, Sg and Sg, or the

Euclidean SQRT(1-S) form of Sq, Sg, Sy, 513 and S]4.
2) Negative matches excluded: reject 5] (5 larger than 1; problem of
linearity); for metric scaling, prefer metric coefficients So2, 83 and

85, or the Euclidean SQRT(1-5) form of 52, S3, S5, S7 and S8j]»2.

1) Quantitative data - - e - see 3
3) Positive values only ——-——===—vo — see 4
4) Double-zerces included ————————o . — see 5

5) Type-1 data: D)
5) Type-2 data: D2 to Dg
4) Double-zerces excluded: reject D5 (problem of linearity —— see 6
6) Type-1 data: D;, Dg, Dg; skewed data, with a few extreme
values: avoid D] that would give undue importance to those
data, by squaring.
6} Type-2 data: choose among type-2a coefficients Dg (same as D7)
and D1g, or among type-2b coefficients D2 to Dg.
3) Negative values permitted: same coefficients for double-zeroes
included or excluded ~——————mmm— - see 7
7) Type-1 data: D]
7} Type-2 data: D2 te Iy
1) Mixture of binary and quantitative data: choose among Dz to D7, and Dy,
that divide each variable-—comparison by a normalizing factor, before

summing; go to quantitative data, above,
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With standardized variables (where about half the values are negative)
that call for a type-1 coefficient, D, is the only function, of those listed in
Tables 3 and 5, that seems appropriate. The ‘‘patterns of sensitivity’’ esta-
blished by Faith (1985) point out properties of coefficients similar to the
types described above.

5.3 Resolution and Linearity

Recognizing that resemblance functions may behave differentially with
different data sets, Hajdu (1981) has developed ‘‘ordered comparison case
series’’ (OCCAS) that he applied to a variety of measures of resemblance.
Each OCCAS is made of artificial quantitative data comparing two sampling
units that vary linearly from one case to the next. Thus if for the first unit
the two variates take values p,g then a second unit is considered where the
variates take values of the form rx + u, sx + v so that dissimilarity may be
considered as a function d{p,q,r,s,u,v,x). The effects of “‘linear changes”
given by varying x can then be studied. If one requires linear changes of
this kind to imply linear changes in dissimilarity, then only certain
coefficients will be acceptable. Hajdu considers a range of equally-spaced x-
values x,xs, . . ., x, and for fixed p,q,r,s,u,v defines the differences:

81' = l d(PaqaraS,U,V,le) - d(P,qJ’,S,U,V,X,-) 1 jﬂr i= 1, .. ,([ - 1)

Departure from linearity (termed non-linearity in the following) is defined as
the standard deviation of 8, and a quantity termed resolution is the sample
mean of 8,. When the OCCAS results are monotonically related to the
amount of change, then this mean becomes (d(x,) — d{x;))/ (+ —1). The
ratio non-linearity/resolution (x 100) defines a coefficient of variation which
should be small for a good resemblance function.

High resolution is a property that seems desirable especially in cluster
analysis, and probably more so with order-varying cluster methods like
UPGMA, UPGMC, WPGMA, WPGMC, or flexible clustering. Hajdu
(1981) argues that a coefficient with high resolution makes the clustering
structure more stable and less likely to be modified following small changes
in data values. Linearity, on the other hand, seems desirable mainly for
metric scaling. With nonmetric scaling, linearity is likely to reduce stress,
although the resulting ordination would be little affected.

In practice linearity and resolution are evaluated and averaged over sets
of values p,q,r,s,u,v; the different OCCAS used, the values we considered,
and those of x, are given in Table 7. Note that Hajdu did not consider
negative values or binary variables. The values of resolution and non-
linearity, as well as the coefficient of variation for coefficients [);, D; and
Dy, listed in Table 5, have been computed with equal ranges (r) of 120 for
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TABLE 7

Ordered Comparison Case Series (OCCAS) Used to Test the Response
of Different Ceefficients to Data Series (see text}

(a) Quantitative data, positive values only:
OCCASY (9 comparisons)

object 1 p=100 and q=0

object 2 r= =10, u=100 and s=10, v=0,(x=1...9)
OCCASZ (9 comparisons)

object 1 p=100 and q=0

object 2 r= -10, u=95 and s=0, v=5,(x=1...9)
OCCAS3 (12 comparisons)

object 1 p=100 and q=0

object 2 r=0, u=50 and s=10, v=0,(x=1...12)

{b) Quantitative data, negative values permitted:
0OCCASYl (9 comparisons)

object 1 p=45 and g= -55

object 2 r= -10, u=50 and s=10, v= -50,(x=1...9)
OCCASZ (9 comparisons)

object 1 p~45 and g- -5

object 2 r= —10, u=50 and s=0, v= -50,(x=1...9)
OCCAS3 (12 comparisons)

object 1 p=45 and gq= -70

object 2 r=0, u= -5 and s=10, v= -45,{x=1...12)

{¢) Binary data:

a b < d
0OCCAS]1 (9 comparisons) {45 =+ 5) { 5 = 45) 50 50
OCCAS2 (9 comparisons) {890 - 10} {10 ~» 90 0 50

OCCAS3 (9 comparisons) {90 » 10) (5 345) (5 -+ 45) 50

both variables. With uneven ranges, non-linearity increases (thus affecting
also the coefficient of variation), although much less so in D3, which then
should be preferred for metric scaling. This is probably because a change of
range, as created artificially here, corresponds to making some ratios very
small compared to others in the sum, an effect that is magnified by squaring
(in D,) or higher powers {in D,;}. This family of coefficients deserves more
detailed study.

According to the results in Table 5, D to D, are almost equally suit-
able when a coefficient including double-zeros is sought, with preference for
D, and D;. When doubte-zeres are to be excluded, Dy and Dg should be
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preferred for clustering (high resolution), while all seem equally good for
ordination (linearity). Djs should be avoided when both clustering and ordi-
nation are to be attempted (high coefficient of variation).

The dissimilarities, computed from OCCAS with negative values, are
quite variable (dissimilarity values range from — 29 to + 31 in these
OCCAS); Ds to Dy often fall outside the [0,1] range; all five can become
negative. Their high coefficients of variation (Table 5) are another reason
for excluding them from studies containing negative values. Thirdly, patho-
logical situations can make coefficients Ds to D, indeterminate; in this
respect, D5 is the best one of this group since only double-zeros can bring it
to indeterminacy. This leaves us with coefficients D, to D,, that can be
applied in both the symmetrical and asymmetrical cases. We have pointed
out, however, that negative values are unlikely to correspond to a problem
in which double-zeros are to be excluded. Negative-value problems usually
consist either of raw values of variables that can go on either side of a non-
absolute zero (which calls probably for one of the type-2b coefficients, D, to
D,), or of standardized variables, where a type-1 coefficient scems the most
appropriate, as already mentioned.

The results for binary coefficients are summarized in Table 4. For
binary variables, Hajdu’s scheme is extended to cover many, not just two
variates. For this purpose, three new OCCAS are made up. They are
described in Table 7c by the values attributed to the a.b,c and ¢ com-
ponents that make up these coefficients. In all three tests, (a + & + ¢)
equals 100 and & equals 50. In the first case series, a decreases as &
increases by steps of 5, leaving (@ + #) constant; ¢ and 4 each have the
constant value of 50. The second OCCAS follows the same scheme, except
that here ¢ equals zero. In the third OCCAS, a decreases by steps of 10
while b and ¢ increase equally by steps of 5.

The most striking feature is that S| can take values larger than one,
which corresponds to a negative dissimilarity, making it unsuitable for
metric scaling. If it were not for that, its high non-linearity would also be
sufficient to rule it out as an “‘interesting” coefficient, although it would
produce the same clustering topology as the coefficients of the 7, family
(section 5.1) if subjected to an order-invariant clustering method, as was
pointed out above. All the other coefficients seem suitable for clustering or
ordination, except perhaps S5 which should be avoided in metric scaling for
its lack of linearity in certain cases (OCCAS3) or its lack of resolution in
other cases (OCCAS2).

5.4 Summary of the Decision-Making Process
We have seen above that various elements have to be considered in the

choice of a coefficient of resemblance: its mathematical properties, its
behavior when confronted with data sets, the nature of the data, the use that
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will be made of the resemblance matrix, even the degree of confidence that
the user attaches to the various variables. These remarks are summarized in
Table 6.

In that table dissimilarities D, to D, are always presented as equivalent.
In practice, further considerations may narrow down a choice among them.
On one hand we have seen that a unit exponent of this metric may be pre-
ferred when values in the data set are very variable, creating ratios that per-
tain to different orders of magnitude, because these differences are
magnified by squaring (D;) or higher powers (D). On the other hand, one
may prefer using D, (Table 3) for metric scaling. We have seen, however,
that non-Euclideanarity presents little difficulty when imaginary dimensions
can be ignored or a simple monotonic transformation used.

The reader who finds Table 6 enlightening could apply its principles
with profit to his own set of preferred resemblance coefficients. This could
help to develop further criteria facilitating the decision-making process of
the choice of a coefficient.

Appendix I

Construction of an Example with s;,=0, 7,=0 and s; =1/ (1 +0)},
t, =1/ (1 +28) forall (i, j} = (1, 2).

Sample
Number
1 ™ . . . .
2 o 0 . . . .0
3

|
P
ok
— o
—
—_

The above data matrix has # rows and 2" ! columns. The first row has
2772 units and 2" ? zeros; the second row is the complement of the first.
The matrix X has # — 2 rows and 2"7? columns, the entries in the columns
being all the binary numbers from zero to 2772 —1, in any order. Thus
every row of X has 273 zeros and 277 units and every pair of rows has
2"~% matches of zeros and 2”~* matches of units.
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Thus s;,= t;p=0and s;, = sy, = 1/ (1 4+8), 1, = t5, =1/ (1 +28)
for i=1,2. Also s;=1/(0+6) and 1;=1/(0+28) for
(i, ;) = (1, 2) becausc every pair of rows of X has equal numbers of
{0,0),(0,1)(1,0) and (1,1) matches and mismatches. This establishes that
the configuration assumed in theorems 11 and 12 is attainable.

Appendix IT: Counter-examples

We give here some simple examples that demonstrate that various
coefficients are not Euclidean or are not metric.

I1.1 Non-metric Examples for Binary Variable Coeflicients

S, and Sy Unit Numbers I 2 3
Variable I - 4+ +
Variable 11 + - +

This gives di;= 1, d\3=1/3, dy3 = 1/3 which do not satisfy
the metric inequality.

St Unit Numbers 1 2 3 Frequency
Variable 1 + - + U
Variable 11 - + + v
Variable 111 - - = w

This example gives the following for the numbers of the
different combinations occurring for each comparison:

Combination abcd
Comparison (1,2) 0 uvow
Comparison (1,3) u 0 v w
Comparison (2,3) v 00 u ow

With v = v = 1 we have that d;, =1, dy3= 1/4, dy3= /4 s0
that d; is not metric. With # =1, v=2, we have that
diy=1, di3=1/3, dy;=1/6; this shows that /d; is not

metric.
S Using the same example as for 5, gives:
d]z = 1/4 (2 + u + Y )

u+w v+ w
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_ v v
i3 1/4(u+v v+w)
d23=1/4( “ u )

u—+v u-+w

For any non-zero values of «, v, w this gives
di; + dyy— d; = — 1/4 so that d; is not a metric. Taking

u= 12, V= 1, w= 10 giVGS V= 8118, Vdi= .2048
and +/ d;, = .6059 which is (just) non-metric.

Using the same example as for S, and setting u = v=1
gives: djy= 1, d\3= dyy =1 — 1/ /2 which do not satisfy the
metric inequality.

Using the same example as for S, and setting v = v =1,
w=2 gives: dy=1, dy=dyy= 1~ 1/3 which do not
satisfy the metric inequality.

Using the same example as for Sy, and setting w = v= 1,
w =2 gives: d; = 4/3, dy3= dr3=1— 1/ /3 which do not
satisfy the metric inequality.

Using the same example as for 53, and setting
u=v=w=1 {or indeed any non-zero value) gives:
d12= 2, d|3= d23= 0. Hence neither d,-f nor -\/d—, are
metrics.

I1.2 Non-Euclidean Examples for Binary Variable Coefficients

To show that a metric is non-Euclidean we have, with only one excep-

tion, successfully constructed the example discussed at the beginning of sec-
tion 2, where three points form the vertices of an equilateral triangle side /
(say) and a fourth point is equidistant (say, distance m) from the other
three and where m </ /3. Tt would be interesting to know whether or not
the construction of this example is a necessary condition for a non-
Euclidean coefficient. We show here this construction for the general
coefficients S, and 7.

S

Unit Numbers 1 2 3 4 Frequency
Variable I + + + + q
Variable II + - - = 1
Variable 111 - + - - 1
Variable IV - - + - 1
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This example gives the following for the numbers of the
different combinations occurring for each comparison:

Combinations a (b+c d
Comparisons (12),(13),(23) g 2 1
Comparisons (14),(24),(34) q 1 2

Thus / = d12=d]3=d23=29/ (q+1+29)
and m = d[4= d24=d34=9/ (q+2+9)

When 8 <1, 2m </ so that construction is then not even
metric let alone Euclidean. When 62 1 the construction is
metric but is non-Euclidean provided /> m /3. This yields

g> 268 3+1)—-(5+2V3

which for any given 6 is clearly satisfied by choosing g
sufficiently large. Thus non-Euclidean constructions of 1 — S,
exist for all values of #, showing that S,;, S¢ and S, which
correspond to S;.,, Sp-, and S;_ », do not generate
Euclidean dissimilarities. Also because 1 — S5 = 2(1 — §,), it
follows that S4 and §; have the same metric and Euclidean
properties, and therefore that 1 — 55 is also non-Euclidean.

Using the same example as for S, gives:
= d12= d13= d23= 29/ (q + 29)
and m = dyy= dy= d34=6/ (q +8)

This construction is always metric but the condition /> m+/3
now yields

g>26 J3I+1)

which again is clearly satisfied for any @ by choosing ¢
sufficiently large. This shows that S;, S; and §,, which
correspond to Ty_,, Ty_, and T,.,; do not generate
Euclidean dissimilarities.

The example used for S, and T, gives

=026/ (g+1+28)]"
m= 18/ (g +2+8)

which gives a non-Euclidean configuration when
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(1 _ Tg)l/[

2((] +2+8) 1/
ﬁ<umﬂ+2m]

Indeed, for fixed @ the right-hand-side may be made arbi-
trarily close to 2V' by choosing ¢ sufficiently large. Hence for
all @ a non-Euclidean example may be constructed whenever
V3 <2V e,

log 4
< .
log 3
The example for T, gives:
— #g_e_f 1/¢
! [q +26 ]
= 174
m {q o ]
which ai in the previous example is non-Euclidean when
log

< for all values of @, provided ¢ is chosen sufficiently

log 3
large. gNote that in these two examples the value of
t = log 4/ log 3 gives a lower bound on ¢ for non-Euclidean
configurations for all 8; they do not show that a higher bound
does not exist, although theorem 12 shows that the bound
must be less than 7 = 2.

Of the results established above, we have already seen that S
and Sy are not even metric, so that to establish that they are
also non-Euclidean is superfluous. The remaining non-
Euclidean metrics need the special counter-example that is
now described.

Unit Numbers 1 2 3 4 Freguency

Variable 1
Variable 11
Variable 111
Variable IV
Variable V -

+ ++
L+ +
b+ + 1+

+
L+ + ++

— L D LI

This gives

= d12= d13= d23=7/ (q+10)
and m=d14*~“d24=d34=4/ (q+10) .

Because 7> 43 it follows that 1 — S, is not Euclidean.
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The one exception where we have been unable to achieve the
non-Euclidean construction used in ali the above examples is
to show that y/d;; is non-Euclidean for S5 This coefficient
requires the example of Appendix I and the proof of theorem
12. That we have failed to find an example with the usual
construction does not show that one does not exist.

I1.3 Non-metric/Non-Euclidean Examples for Continuous Variable
Coefficients

Ds Consider a variable taking values x; = 5, x, = 10 and x;=— 9 for
three units. Then d,, = 1/3, d;3= 7/2 and dy; = 19 which is clearly
non-metric. Thus Ds is not necessarily metric or Euclidean for
negative values.

Dy The example for D gives the same results for Dg which is therefore
not necessarily metric or Euclidean for negative values.

Dy Clearly for a single variable any pair of negative values gives a nega-
tive denominator and hence a negative and non-metric coefficient.

Dy Consider a variable taking values x; = — 10, x, = — 5 and x, = 10.
Then d,;=— 1, dyj3= 2, dy3= 3/2 in which dy, is not even posi-
tive.

For positive values of the variable consider the example:

Unit Numbers 1 2 3 4
Variable I a b b b
Variable II b a b b
Variable III b b a b
where b2 a.
Then d12= d|3= d23= (2/3) (1 - G’/b)
and dl4= d24= d34= (1/3) (1 - a/b) .

The values of @ and b are immaterial. The example is of the usual
kind and is non-Euclidean because 2> +/3. Thus D) is not neces-
sarily Euclidean, even for positive values.
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