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Abstract

This article presents a new implementation of hierarchical clustering for the R language
that allows one to apply spatial or temporal contiguity constraints during the clustering
process. The need for contiguity constraint arises, for instance, when one wants to parti-
tion a map into different domains of similar physical conditions, identify discontinuities in
time series, group regional administrative units with respect to their performance, and so
on. To increase computation efficiency, we programmed the core functions in plain C. The
result is a new R function, constr.hclust, which is distributed in package adespatial.

The program implements the general agglomerative hierarchical clustering algorithm
described by Lance and Williams (1966; 1967), with the particularity of allowing only
clusters that are contiguous in geographic space or along time to fuse at any given step.
Contiguity can be defined with respect to space or time. Information about spatial con-
tiguity is provided by a connection network among sites, with edges describing the links
between connected sites. Clustering with a temporal contiguity constraint is also known
as chronological clustering. Information on temporal contiguity can be implicitly provided
as the rank positions of observations in the time series. The implementation was mirrored
on that found in the hierarchical clustering function hclust of the standard R package
stats (R Core Team 2022). We transcribed that function from Fortran to C and added the
functionality to apply constraints when running the function.

The implementation is efficient. It is limited mainly by input/output access as massive
amounts of memory are potentially needed to store copies of the dissimilarity matrix and
update its elements when analyzing large problems. We provided R computer code for
plotting results for numbers of clusters.
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1. Introduction: Constrained clustering in R

Hierarchical cluster analysis consists in assigning elements to clusters as a function of their
similarity (or equivalently, their dissimilarity; from here, we will only mention the latter;
Legendre and Legendre 2012). Simply put, its purpose is to assemble objects described by
variables into the groups where they most likely belong, or to highlight disparities among
them by estimating breakpoints where the differences among objects are the strongest.
Situations arise where application of the dissimilarity criterion alone does not lead to a sat-
isfactory clustering solution (reviewed by Murtagh 1985). In many studies, there sometimes
are well grounded reasons to force the clusters to be composed of contiguous sites (Legendre
and Legendre 2012). For instance, one may wish to relate the results of clustering to causal
factors that are geographically-located and known to be spatially autocorrelated (e.g., geo-
logical variables). One may also want to delineate ecological regions, administrative units,
or resource distribution networks. Another goal may be to cluster sites based on environ-
mental conditions, constrained by spatial contiguity, for the purpose of designing a stratified
sampling campaign. Also, scientists may be interested in testing the hypothesis that sites
form patches for the variables under study; this can be done by comparing unconstrained
and constrained clustering solutions using the Rand (1971) index. Other examples where
clustering result comparisons may be helpful for testing hypotheses are given by De Soete,
Carroll, and DeSarbo (1987) in fields such as molecular evolution, psycholinguistics, cognitive
psychology, and the evolution of languages. When observations form a time series, one may
want to segment it with respect to the dissimilarities among the observations while taking
their positions along the series into account in order to identify breakpoints representing im-
portant changes along the series. Finally, one may want to partition a set of geographic sites
on a map into local clusters whose members are also contiguous in space, or the pixels of a
geographic raster into groups of various shapes made of pixels carrying similar information.
When undertaking such goals with regular, unconstrained clustering algorithms, clusters may
end up being spatially disjoint because of irregularities in the spatial distributions of data
values. Also, geographical singletons may become included in clusters that are geographically
remote. This may be inappropriate when the objective of the analysis is to delineate geo-
graphically compact areas for management or administrative purposes. Applying a constraint
of contiguity to the clustering procedure helps in solving these problems.
Constrained hierarchical clustering produces solutions that are generally less variable than
those of their unconstrained counterparts. By reducing the space of possible solutions, it forces
different clustering strategies to yield compact groups of largely similar elements (Legendre,
Dallot, and Legendre 1985). In research involving field data, observations are often made
during a short time at several points on a surface. Observations repeated in time can also be
made at a single site or on a single object; they produce a time series. In such circumstances,
grouping observations that are also found in the same geographic area, or in the same time
interval, provided that they are also similar enough to the other observations in the cluster,
often produces more interesting results than not paying respect to the temporal or spatial
relationships among the elements selected by the survey design.
In the present paper, we will focus specifically on hierarchical agglomerative clustering. Here,
we will describe software developed to perform hierarchical agglomerative clustering on the
basis of a dissimilarity matrix while applying contiguity constraints defined by a list of edges
linking pairs of points (sometimes called “links” in layman’s term). The software is written in
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plain C with an R interface and a plot method to display results. It is available from package
adespatial (Dray, Bauman, Blanchet, Borcard, Clappe, Guénard, Jombart, Larocque, Legen-
dre, Madi, and Wagner 2022), which is available on the Comprehensive R Archive Network
(CRAN) at https://CRAN.R-project.org/package=adespatial. It works along with ex-
isting software available in R to manipulate spatial and temporal data, estimate contiguity,
and process clusters, thereby providing users with a tool chain to carry out all aspects of the
analysis.

2. Models and software
Hierarchical agglomerative clustering consists in iteratively merging pairs of elements (from
singletons onward to clusters involving more and more observations) that are, at any given
point of the clustering process, the least dissimilar, until all elements are found in a single,
large cluster. Whereas least dissimilarity is a straightforward criterion for choosing which
elements are next to be merged, there are multiple ways of recalculating the dissimilarities
of the newly formed clusters with respect to the other elements that remain to be clustered.
Many approaches have been proposed, each carrying its own assumptions, calculation time,
and allowing for adaptations to analyses devoted to answer particular types of questions.
A general theory of hierarchical clustering was developed by Lance and Williams (1966, 1967).
These authors showed that all potential combinatorial strategies can be obtained by using
a single linear equation to recalculate dissimilarities following the merging of two elements.
The software described in the present paper extends Lance and Williams general approach
to hierarchical clustering with spatial or temporal contiguity constraint. The algorithm with
constraint implemented in our R function was described conceptually by Legendre and Leg-
endre (2012), Section 13.3.2; it is illustrated in Figure 1. We began the development of our
constrained clustering function by transcribing function hclust of the stats R package from
its original implementation into a new function in plain C. The hclust function uses Fortran
code originally contributed to STATLIB by F. Murtagh (Department of Computer Science,
University of Huddersfield). We also integrated more recent code enhancement featured in
R package flashClust by Langfelder and Horvath (2012), which consists in caching each ob-
servation’s nearest neighbor indices and associated dissimilarities and updating them only
when necessary. That approach notably enhanced computation speed during unconstrained
clustering. We then programmed a new version of that function to apply constraints to the
clustering process and wrapped the resulting C functions into R computer code. We used a
dissimilarity caching approach similar to that proposed by Langfelder and Horvath (2012) to
enhance computation speed for the constrained clustering case.

2.1. The Lance and Williams algorithm
The general theory of hierarchical agglomerative clustering developed by Lance and Williams
allows one to implement all combinatorial strategies using a single four-parameter linear
equation to calculate dk,h, the dissimilarity between any given element k and a newly formed
cluster h obtained after merging clusters i and j as follows:

dk,h = αidi,k + αjdj,k + βdi,j + γ|di,k − dj,k|, (1)

where di,k, dj,k, and di,j are the dissimilarities between elements i and k, j and k, and i and
j, respectively, and αi, αj , β, and γ are the four parameters of the equation whose values

https://CRAN.R-project.org/package=adespatial
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Figure 1: Summary of the spatially-constrained clustering procedure applicable to all combi-
natorial methods. Dissimilarities in panel B are computed from the data in panel A. Spatial
connections (edges in graph C) are translated into a contiguity matrix in D, where NAs (NA
means “not available” in R and other computer languages) indicate absence of connections.
The Hadamard product B ∗ C produces NAs in matrix E, identifying unconnected pairs of
sites, which will not be allowed to cluster. Objects are labelled 1 to 9 in the example. At the
start of the clustering process, each object is in a separate group in vector F. The grey square
showing the lowest dissimilarity, in matrix E, determines the next fusion of objects or groups.
The group membership vector F is then updated by attributing the same identifier to the
two objects or groups that have clustered. Matrices B and D are also updated to account for
that fusion. Matrix E is recomputed, ready for the next fusion of objects or groups. Modified
from Figure 13.25 of Legendre and Legendre (2012).

implement the different clustering strategies. These parameters may be constants or some
functions of the number of elements in the clusters (Table 1).
To present the constrained Lance and Williams algorithm, we created a simple example with
only six observation sites spread on a map and connected by a seven-edge network (Figure 2).
That data set involves a single response variable from which the Euclidean distance matrix
among sites was calculated (Table 2).
To implement the constrained hierarchical clustering in an efficient way, we provided the
information about contiguity as an edge list instead of a binary connection matrix such as
in Figure 1 (panel D). It takes the form of a two-column integer matrix L. Each row of L
represents an edge, with the two values referencing the vertices (singletons or clusters) that
are linked. The algorithm operates from list L and the dissimilarity matrix (Table 2). It
first identifies the edge with the smallest dissimilarity, ignoring any non-contiguous pairs of
points. In our example, that edge is L5. The vertices at both ends of the edge are merged at
the level of dissimilarity observed between them (here 0.9). In a non-constrained hierarchical
clustering, the first elements to be merged would have been 1 and 6 as they are the pair
with the smallest dissimilarity (0.1) in the full dissimilarity matrix. However, they are the
most geographically distant sites and will only merge much later in the constrained clustering
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Method αi αj β γ

Single-linkage 1/2 1/2 0 −1/2
Complete-linkage 1/2 1/2 0 1/2
UPGMA ni

nh

nj

nh
0 0

WPGMA 1/2 1/2 0 0
UPGMC ni

nh

nj

nh
−ninj

n2
h

0
WPGMC 1/2 1/2 −1/4 0
Ward’s min. variance ni+nk

nh+nk

nj+nk

nh+nk
− nk

nh+nk
0

Flexible 1−β
2

1−β
2 −1 ≤ β < 1 0

Table 1: Common hierarchical clustering strategies are obtained by assigning specific values
to the four-parameter Lance and Williams model (Equation 1), which is used when calculating
the dissimilarity between any given element k and a newly formed cluster h made by merging
elements i and j. Here, ni, nj , and nk refer to the number of observations in clustering
elements i, j, and k, respectively whereas nh = ni + nj .

Distances
1 2 3 4 5

2 1.3
3 3.6 4.9
4 1.5 2.8 2.1
5 0.6 1.9 3.0 0.9
6 0.1 1.2 3.7 1.6 0.7

Links
From To Dissimilarity

L1 1 2 1.3
L2 1 3 3.6
L3 2 3 4.9
L4 3 4 2.1
L5 4 5 0.9
L6 3 6 3.7
L7 4 6 1.6

Table 2: Dissimilarities between the six elements used as an example and the edges involved
in their contiguity relationships.

procedure. The new cluster formed is referenced with the smallest of the two indices (here
4) and all references in L to the largest of the two indices are changed to the smallest one
(Table 3). The updated dissimilarities dk,h with new cluster h = {4, 5} are obtained for
elements k ∈ {1, 2, 3, 6} as follows (Table 3, Figure 3A, B):

d1,h = 1 + 1
2 + 1d1,4 + 1 + 1

2 + 1d1,5 − 1
2 + 1d4,5 + 0|d1,4 − d1,5| = 1.10,

d2,h = 1 + 1
2 + 1d2,4 + 1 + 1

2 + 1d2,5 − 1
2 + 1d4,5 + 0|d2,4 − d2,5| = 2.83,

d3,h = 1 + 1
2 + 1d3,4 + 1 + 1

2 + 1d3,5 − 1
2 + 1d4,5 + 0|d3,4 − d3,5| = 3.10, and

d6,h = 1 + 1
2 + 1d6,4 + 1 + 1

2 + 1d6,5 − 1
2 + 1d4,5 + 0|d6,4 − d6,5| = 1.23.

It is noteworthy here that d1,h and d2,h are recalculated, whereas neither vertices 1 or 2 could
merge with cluster h at the next step. This calculation is nevertheless mandatory because the
updates are incremental, proceeding at any give step on the basis of the updates performed
at all previous steps.
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Figure 2: Fictive map designed to illustrate the constrained clustering algorithm. Grey
areas represent obstacles defining the limits of the fictional study area where observations
were made at six sites (vertices labelled 1 through 6). They are connected by seven edges
(labelled L1 through L7) between pairs of neighboring sites. There are no edges 1-4, 1-
5, 1-6, and 5-6 because these vertices are separated by obstacles. Edges 2-4, 2-5, and 3-5
were omitted because they would be redundant with combinations of shorter edges between
immediate neighbors. A single response variable is used in this example; its values are shown
in red atop each observation point. Clustering will proceed using the matrix of Euclidean
distances among sites computed from that variable. It will be constrained by the seven edges.

In the next clustering step, vertex 6 merges at dissimilarity of 1.23 (in Table 3) with the
cluster formed previously and now referenced with index 4. The updated dissimilarities dk,h

with cluster h = {4, 6} are obtained for elements k ∈ {1, 2, 3} as follows (Table 4, Figure 3C):

d1,h = 2 + 1
3 + 1d1,4 + 1 + 1

3 + 1d1,6 − 1
3 + 1d4,6 + 0|d1,4 − d1,6| = 0.57,

d2,h = 2 + 1
3 + 1d2,4 + 1 + 1

3 + 1d2,6 − 1
3 + 1d4,6 + 0|d2,4 − d2,6| = 2.42, and

d3,h = 2 + 1
3 + 1d3,4 + 1 + 1

3 + 1d3,6 − 1
3 + 1d4,6 + 0|d3,4 − d3,6| = 3.87.
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Distances
1 2 3 4 5

2 1.30
3 3.60 4.90
4 1.10 2.83 3.10
5 — — — —
6 0.10 1.20 3.70 1.23 —

Links
From To Dissimilarity

L1 1 2 1.30
L2 1 3 3.60
L3 2 3 4.90
L4 3 4 3.10
L5 4 4 —
L6 3 6 3.70
L7 4 6 1.23

Table 3: Updated dissimilarities and edge list after the first two vertices have been merged.
The cluster resulting from merging two vertices is referenced using the smallest of the two
indices and the data associated with the largest index are discarded. An edge with both
ends having the same index indicate that it is internal to a cluster (i.e., the vertices at both
of its ends are members of the same cluster) and that it can be disregarded by subsequent
agglomerative steps.

Distances
1 2 3 4 5

2 1.30
3 3.60 4.90
4 0.57 2.42 3.87
5 — — — —
6 — — — — —

Links
From To Dissimilarity

L1 1 2 1.30
L2 1 3 3.60
L3 2 3 4.90
L4 3 4 3.87
L5 4 4 —
L6 3 4 3.87
L7 4 4 —

Table 4: Updated dissimilarities and edge list after the second step, where a third vertex (6)
merged with the cluster formed previously. The resulting cluster is still referenced as 4 and,
6 is discarded.

We note that after updating the edge list, edge L6, which was previously going from 3 to
6, is now going from 3 to 4 because all references to 6 have been changed to 4. The third
step of the process involves merging vertices 1 and 2 at dissimilarity of 1.30 (in Table 4),
forming a new cluster that will be referenced as 1. The updated dissimilarities dk,h with
cluster h = {1, 2} are obtained for elements k ∈ {3, 4} as follows (Table 5, Figure 3D):

d3,h = 1 + 1
2 + 1d3,1 + 1 + 1

2 + 1d3,2 − 1
2 + 1d1,2 + 0|d3,1 − d3,2| = 5.23 and

d4,h = 1 + 3
2 + 3d4,1 + 1 + 3

2 + 3d4,2 − 3
2 + 3d1,2 + 0|d4,1 − d4,2| = 1.61.

In the fourth step, clusters 1 and 4 are the least dissimilar but cannot merge because vertex
3 still sits between them. Vertex 3 is less dissimilar to cluster 4 than it is to cluster 1 and
thus it merges with the former at dissimilarity of 3.87. The updated dissimilarities dk,h with
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Figure 3: The exemplary scenario contained six vertices at the beginning of the process
(panel A). The five agglomerative constrained clustering steps are shown in panels B to F.

cluster h = {3, 4} are obtained for element k ∈ {1} as follows (Table 6, Figure 3E):

d1,h = 1 + 2
4 + 2d1,3 + 3 + 2

4 + 2d1,4 − 2
4 + 2d3,4 + 0|d1,3 − d1,4| = 2.67.

Finally, the two clusters generated by the constrained clustering procedure will merge at
dissimilarity of 2.67, completing the clustering process (Figure 3F). It is noteworthy that
this dissimilarity value is smaller than that observed at the previous step. This will produce
a level reversal if the resulting tree is displayed as a dendrogram (Figure 4). All sorting
strategies except complete-linkage may produce reversals in constrained clustering (Murtagh
1985; Kaufman and Rousseeuw 2005).
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Distances
1 2 3 4 5

2 —
3 5.23 —
4 1.61 — 3.87
5 — — — —
6 — — — — —

Links
From To Dissimilarity

L1 1 1 —
L2 1 3 5.23
L3 1 3 5.23
L4 3 4 3.87
L5 4 4 —
L6 3 4 3.87
L7 4 4 —

Table 5: Updated dissimilarities and edge list after the third step, where a new cluster is
formed by merging 1 and 2.

Distances
1 2 3 4 5

2 —
3 2.67 —
4 — — —
5 — — — —
6 — — — — —

Links
From To Dissimilarity

L1 1 1 —
L2 1 3 2.67
L3 1 3 2.67
L4 3 3 —
L5 3 3 —
L6 3 3 —
L7 3 3 —

Table 6: Updated dissimilarities and edge list after the fourth step, where 3 merged with 4,
forming a new four-element cluster now referenced as 3 (the smallest index).
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Figure 4: Results of constrained clustering often contain branch reversals due to fact that
merging at a given step may occur at a smaller dissimilarity than that of the previous step
because of the constraint. A dendrograms is not the most adequate way of displaying con-
strained clustering results.

The tree resulting from constrained clustering can be cut at any level to obtain partitions
with anywhere from two to n clusters, where n is the number of vertices. That process is
fast because obtaining the tree, which is the most computationally intensive task, has already
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Figure 5: Partitioning of the tree obtained from the spatially constrained clustering of the
example into two, three, four, and five groups. Because the number of elements was very
small, groups often contained a single observation point. That situation will generally not
occur when the number of observations is larger.

been done; obtaining a suite of partitions with different numbers of groups is a light task in
comparison. For instance, we found the task of cutting the tree to be ≈ 20 times shorter than
performing the clustering when n was a few hundreds; the factor increased to ≈ 100 with n
in the few thousands. It is thus quick to represent multiple partitions into different numbers
of clusters on a map or along a time series (e.g. Figure 5).
Whereas an unconstrained, hierarchical agglomerative clustering algorithm based on the
Lance and Williams approach would iterate, unhampered by contiguity, through each and
every pair of points or clusters, to find the pair with the smallest dissimilarity in the original
or updated dissimilarity matrix, a constrained algorithm only needs to consider the dissimilar-
ities corresponding to contiguous pairs. This makes a constrained hierarchical agglomerative
clustering generally faster procedure than its unconstrained counterpart, provided that the
former is implemented in code that takes advantage of the smaller number of dissimilarities
that is has to consider to proceed.
The linear equations underlying the different classificatory sorting strategies outlined in Lance
and Williams (1966, 1967, Table 1) were implemented in a modular manner in the C com-
puter code, as a set of updating functions that are referenced by addresses using a function
pointer. We used that approach to allow one to implement alternative sorting strategies,
e.g., by changing parameter values or adding more linear equations, with minimum pro-
gramming effort. Since the constrained agglomerative clustering program described here also
includes features to perform unconstrained hierarchical agglomerative clustering identical to
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that performed by function hclust from the standard R package stats, any alternative sorting
strategy added to it would also become available to perform regular, unconstrained hierar-
chical agglomerative clustering without further programming effort; see the C language code
and comments for instructions about how to add new updating functions.

3. Illustrations
The constrained hierarchical agglomerative clustering program described in this paper is avail-
able in R package adespatial (Dray et al. 2022). For software developers, a development pack-
age specific to the features discussed in the present article and called constr.hclust (Legendre
and Guénard 2020) is available from GitHub at https://github.com/guenardg/constr.
hclust or can be downloaded from https://numericalecology.com/Rcode/.
Let us begin these illustrations by loading the necessary R packages adespatial, magrittr
(Bache and Wickham 2022), spdep (Bivand, Pebesma, and Gomez-Rubio 2013), and vegan
(Oksanen et al. 2022):

R> library("adespatial")
R> library("magrittr")
R> library("spdep")
R> library("vegan")

Package adespatial implements the new constrained hierarchical agglomerative clustering
function constr.hclust; magrittr will provide us with the forward pipe operator %>%, which
allows us to pass results among chains of function calls and avoid parenthesis embedding;
spdep will allow us to obtain a neighborhood graph using Delauney triangulation later in the
examples, and package vegan contains the data set for the first example.
Function constr.hclust, which carries on the constrained hierarchical agglomerative clus-
tering methods, has a total of seven arguments, namely:

d A dissimilarity matrix of class ‘dist’.

method The agglomeration method to be used (Table 1).

links A list of edges (or links) connecting the points.

coords The coordinates of the observations (data rows) in the dissimilarity matrix d, which
are used for data plotting purposes.

beta The beta parameter for beta-flexible clustering.

chron A boolean indicating whether a chronological clustering should be calculated.

members NULL or a vector with length size of d.

As mentioned earlier, function constr.hclust was developed by using function hclust from
R package stats as a template. Consequently, its first two arguments correspond to those
of that function. The two functions have an argument d, which is mandatory and used
to pass a dissimilarity matrix and an argument method to specify the sorting strategy to

https://github.com/guenardg/constr.hclust
https://github.com/guenardg/constr.hclust
https://numericalecology.com/Rcode/
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be used. Argument method can be given the same textual values as for function hclust,
but has “ward.D2” as its default value, whereas hclust’s default value for this argument is
"complete". The classificatory strategies associated with the different values of argument
method are listed in Table 1. All other arguments can be omitted. Argument links allows
the user to pass an edge list, argument coords to pass the geographic Cartesian coordinates
of the clustered elements, argument beta to pass the β parameter used in flexible clustering,
and argument chron to trigger chronological clustering. Argument members has the same
function as in hclust and allows one to resume clustering computation from an among-
cluster dissimilarity matrix with vector members giving the number of observations in each of
the clusters. The default value, NULL, corresponds to the general case where d is a dissimilarity
matrix among observations.
β-flexible clustering is a form of agglomerative clustering that was described by Lance and
Williams in the two papers where they described the general algorithm for agglomerative
clustering (Lance and Williams 1966, 1967). This clustering strategy always produces cophe-
netic matrices that are ultrametric in the case of unconstrained clustering; the corresponding
dendrograms are without reversals, which are often found in agglomerative centroid methods.
Reversals can be obtained in constrained clustering even with β-flexible clustering.
When argument links is omitted and argument chron is FALSE (the default), function
constr.hclust performs in an identical way to hclust (notwithstanding the different de-
fault value for argument method), with β-flexible clustering as an additional functionality not
found in hclust. When links is provided, a constrained clustering is performed, whereas
when chron = TRUE, a chronological clustering, where the constraint is simply the sequence
of observations, is calculated (in that case, argument links, if not omitted, is not used). In-
formation from argument coords is stored into the object returned by constr.hclust, ready
to be used later for displaying the results on a map from the constrained or chronological
clustering.
For constrained hierarchical clustering, it is commonly assumed that the graph described by
the links is entirely connected (i.e., it involves no disjoint set of vertices). If this assumption
is not met, the process described previously cannot merge all clusters into a single entity. If
function constr.hclust is provided a graph that is not entirely connected, it will merge the
disjoint sets two-by-two at the end of the process, while returning a missing value (NA) as the
dissimilarity at which disconnected clusters have been merged. This behavior was necessary
to remain consistent with ‘hclust-class’ objects, which expect n−1 merging events (where n
is the number of observation), while also remaining consistent with the theory of constrained
clustering, which stipulates that only connected entities are allowed to merge. Function
constr.hclust issues a warning to the user upon encountering disconnected clusters.

3.1. First application example: Borcard’s Oribatid mite data

As a first illustration, we will use constrained clustering to find the ecological boundaries in
the Oribatid mite microfauna data sampled in a peat moss mat. This data set was originally
described by Borcard, Legendre, and Drapeau (1992) and Borcard and Legendre (1994). It
originates from a faunistic survey performed on the peat mat surrounding Lac Geai, Québec,
Canada (WGS84 geodesic coordinates: +45.995424; −73.993691). A total of 70 peat moss
cores were sampled in a plot 2.5 m wide along the forest edge by 10 m in length toward
the open lake water. Core numbering starts at the edge of the forest and ends at the water
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edge. For each core, Oribatid mite specimens (Phylum: Arthropoda, Class: Arachnida,
Subclass: Acari) were identified into 35 morphospecies (i.e., taxonomic species identification
based entirely on morphological differences from related species) and counted.
Let us begin the example by loading the necessary data sets files, from package vegan, as
follows:

R> data("mite", package = "vegan")
R> data("mite.xy", package = "vegan")

These files contain:

mite The number of individuals from each morphospecies in each core (or site).

mite.xy When standing on the edge of the forest and looking towards the lake, the x (short
side) and y (long side of the study area) coordinates of the core samples with respect
to the lower left corner of the plot.

There are many ways of obtaining the edge list. For the sake of this example, we will use a
Delauney triangulation with removal of the edges whose lengths are above a certain threshold,
which we will set to 1.5 m. First, a neighbour list is obtained from the coordinates using
function tri2nb, which is then converted to a spatial weight list using function nb2listw.
The argument style = "B" given to nb2listw means that the edges will all be assigned a
constant weight of 1. Finally, function listw2sn is used to convert the spatial weight list into
a list of edges. These operations can be performed into a single line of R code as follows:

R> mite.edge <-
+ mite.xy %>%
+ tri2nb %>%
+ nb2listw(style = "B") %>%
+ listw2sn

The resulting graph had outer edges that were very long (connecting marginal locations by
long edges) and fairly parallel to nearby inner edges. To help in removing them, we calculated
the length of each edge as the Euclidean distance between the locations at the end of the edges
as follows:

R> names(mite.edge)[3L] <- "distance"
R> mite.edge$distance <-
+ mite.xy %>%
+ dist %>%
+ as.matrix %>%
+ .[mite.edge[,1L:2L] %>% as.matrix]

Here, column weight was renamed distance and assigned the Euclidean distances. Then,
edges with distance > 1.5 m were discarded from the edge list as follows:

R> mite.edge %<>% .[.$distance <= 1.5,]
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Figure 6: Map of the 2.5 m wide by 10 m long plot of peat mat sampled by Borcard et al.
(1992), with the spatial contiguity network of edges obtained by Delauney triangulation that
was used for the first application example (the plot is rotated 90◦ in the counterclockwise
direction). Core #1 is in the lower-right corner of the map near the forest edge; core #70 is
in the lower-left corner near the open water edge of the plot.

An edge list may also be obtained from some underlying theory or process, or by known
connections among sites (e.g., hydrographic network, roads, power lines, underground pipe
network) resulting in a more or less densely connected network. Any approach can be used
as long as any given observation point is indirectly connected to all other points. The upper
density limit of a connection network is attained when all observation points are directly
connected to all other points; there is then no spatial contiguity constraint.
For this example, let us cluster the cores with respect to their species composition. A suitable
dissimilarity metric to analyze species composition (or presence/absence) data should not
consider the joint absences (or null abundances) of a species at two sites as an evidence for
similarity as much as their joint presences (or abundances > 0), as the Euclidean distance
would do; see Legendre and Legendre (2012) for discussions of double-zero symmetric and
asymmetric coefficients. To compute the dissimilarity matrix, we used the Hellinger distance,
which is a double-zero asymmetrical coefficient appropriate for the analysis of community
composition data. It is obtained by computing the Euclidean distance of the square-rooted
relative abundance data (mite$fau). This distance can be computed directly by function
dist.ldc of the R package adespatial as follows:

R> mite.hel <- mite %>% dist.ldc("hellinger")

Info -- This coefficient is Euclidean

Constrained hierarchical agglomerative clustering is obtained using function constr.hclust
as follows:

R> mite.chclust <- constr.hclust(d = mite.hel, links = mite.edge,
+ coords = mite.xy[, c(2, 1)])

Here, clustering is carried out using the dissimilarity matrix mite.hel, with mite.link pro-
viding the edge list and mite.xy the site coordinates. The sorting strategy is left to the de-
fault value (“ward.D2” to obtain Ward agglomerative clustering; that default is different from
hclust’s default value, which is “complete”). A suite of figures showing spatially constrained
partitions into two, three, five, and seven groups can be obtained as follows (Figure 7):



Journal of Statistical Software 15

Index

N
A

1m

A

Index

N
A

1m

B

Index

N
A

1m

C

Index

N
A

1m

D

Figure 7: A set of four maps showing partitions of the sites into two (A), three (B), five (C),
and seven (D) clusters, with points and segments of different colors. Fine black dotted
segments are edges with vertices in different groups.

R> par(mfrow = c(4, 1), mar = c(0.5, 0, 0.5, 0))
R> cols <- c("turquoise", "orange", "blue", "violet", "green", "red",
+ "purple")
R> parts <- c(2, 3, 5, 7)
R> for (i in 1L:length(parts)) {
+ plot(NA, xlim = c(10, 0), ylim = c(-0.1, 2.5), xaxs = "i", yaxs = "i",
+ asp = 1, axes = FALSE)
+ arrows(x0 = 9.85, x1 = 8.85, y0 = 0.1, y1 = 0.1, code = 3,
+ length = 0.05, angle = 90, lwd = 2)
+ text(x = 9.35, y = 0, labels = "1m", cex = 1.5)
+ plot(mite.chclust, parts[i], links = TRUE, plot = FALSE,
+ col = cols[round(seq(1, length(cols), length.out = parts[i]))],
+ lwd = 4, cex = 2.5, pch = 21, hybrids = "single", lwd.hyb = 0.25,
+ lty.hyb = 3, xpd = TRUE)
+ text(x = 9.75, y = 2.25, labels = LETTERS[i], cex = 2.5)
+ }
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Figure 8: A set of four maps showing partitions of the sites into two (A), three (B), five (C),
and seven (D) clusters obtained without a spatial contiguity constraint.

The partitioning highlights the spatial variation in mite species composition as one proceeds
from the water (on the left) to the forest (on the right). The first partition takes place at about
40% of the water-forest distance (A: first panel from the top down). The second partition (B:
second panel) is concomitant with a change in the peat composition (see Borcard and Legendre
(1994), Figure 1: the change occurs from the Sphagn. 1 to the Sphagn. 2 peat types). The
five-group partition (C: third panel) separates the sites closest to the open water, and the four
sites closest to the forest edge, from the three central groups of sites. Finally, the seven-group
partition (D: fourth panel) shows a group of five sites (with Sphagn. 1 substrate), and a
group of three sites (with bare peat) separating from the central clusters. Clustering without
a spatial contiguity constraint (i.e., one where any points is free to cluster with any other
point), also with method = “ward.D2”, yielded a different result, though the partitions also
seem to feature increasing spatial organisation as the number of clusters increases (Figure 8).

The example illustrates the fact that, because of its hierarchical nature, agglomerative clus-
tering always results into subgroups that are embedded into higher-level clusters. In addition,
because of the constraint of spatial contiguity, each group formed is geometrically compact
since its member sites are connected by contiguity edges.
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3.2. Second application example: Tiahura fish transect
As our second example, we will use the Tiahura fish transect data described and analyzed
by Galzin and Legendre (1987). It consists of presence/absence data for 280 fish species
observed at 22 sites along a 1020 m long coast-to-sea cross-reef transect located in front of the
Tiahura village, near the northwestern corner of the high volcanic island of Moorea in French
Polynesia (WGS84: −17.4934, −149.8680). Each fish survey site was 50 m long. Species
presence/absence data were recorded by a diver trained in underwater fish identification.
The transect began on a coral sand beach, followed by a zone of detritic sediments, then
a dying reef flat, followed by a zone of coral patches. That relatively flat area ended into
a 100 m wide channel, 9 m deep, followed by a barrier reef 490 m wide, which ended in a
slightly elevated reef ridge, followed by the outer slope in the Pacific Ocean. The survey was
terminated at depth of ≈ 25 m; this is the maximum depth allowing scuba diving for any
length of time without having to perform decompression stops. See Galzin and Legendre
(1987) for further details about the transect and the survey method.
The data set also includes a data matrix of fish traits (we did not use them for this example)
and a matrix of environmental variables observed at the sites. We used the latter along with
the clustering results to highlight possible factors affecting changes in population structure.
The presence/absence Tiahura fish data set are contained in an R data file, which is loaded
as follows:

R> data("Tiahura", package = "adespatial")

The file contains the following information:

Tiahura$fish A 22 sites (rows) × 280 species (columns) data matrix indicating presence (1)
or absence (0) of each fish species at each site.

Tiahura$species Names of the 280 fish species.

Tiahura$trait Five categorical variables describing behavioral traits of the 280 fish species
(not used in this example).

Tiahura$habitat Ten environmental variables describing the habitat at the 22 survey sites.

Tiahura$reef A data frame with 6 rows (sections) and 3 columns describing the different
sections of the transect.

We will perform clustering on dissimilarities obtained as D =
√

1 − S where S is the Jaccard
index of similarity (Legendre and Legendre 2012), which is obtained from function dist.ldc
found in R package adespatial as follows:

R> tiah.jac <- Tiahura$fish %>% dist.ldc(method = "jaccard")

Info -- D is Euclidean because the function outputs D[jk] = sqrt(1-S[jk])

Because the transect is a linear arrangement of study sites, we are using the argument for
chronological clustering (chron = TRUE) to automatically create connections between imme-
diate neighbors. This argument dispenses us from explicit edge calculation. We have, of
course, to check and make sure that the sites are in the correct order in the data file. The
clustering is obtained as follows:
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R> tiah.chclust <- constr.hclust(d = tiah.jac,
+ coords = Tiahura$habitat[,"distance"], chron = TRUE)

The constrained clustering results are displayed as follows (Figure 9):

R> par(mfrow = c(3, 1))
R> par(mar = c(3, 6.5, 2, 2))
R> dst <- Tiahura$habitat[, "distance"]
R> plot(NA, xlim = dst %>% range, ylim = c(0.5, 5.5), yaxt = "n",
+ ylab = "Partitions\n\n", xlab = "")
R> parts <- c(2, 3, 5, 7, 12)
R> cols <- c("turquoise", "orange", "chartreuse", "aquamarine", "blue",
+ "violet", "pink" ,"cyan" ,"green", "red", "cornsilk", "purple")
R> for (i in 1L:length(parts)) {
+ tiah.chclust$coords[,"y"] <- i
+ plot(tiah.chclust, parts[i], link = TRUE, lwd = 3, hybrids = "none",
+ lwd.pt = 0.5, cex = 3, pch = 21, plot = FALSE,
+ col = cols[round(seq(1, length(cols), length.out = parts[i]))])
+ }
R> axis(2, at = 1:length(parts), labels = paste(parts, "groups"), las = 1)
R> par(mar = c(4, 6.5, 1, 2))
R> plot(x = dst, y = Tiahura$habitat[,"depth"],
+ ylim = Tiahura$habitat[,"depth"] %>% range %>% max %>% c(-300),
+ las = 1, ylab = "Depth\n(cm)\n", xlab = "", type = "l", lwd = 2)
R> for (i in 1L:nrow(Tiahura$reef)) {
+ abline(v = Tiahura$reef[i,2], lty = 3)
+ abline(v = Tiahura$reef[i,3], lty = 3)
+ if ((Tiahura$reef[i,3] - Tiahura$reef[i,2]) < 100) {
+ text(x = (Tiahura$reef[i,2] + Tiahura$reef[i,3]) / 2, y = 2350,
+ labels = toupper(Tiahura$reef[i,1]), srt = 90, adj = 0)
+ } else {
+ text(x = (Tiahura$reef[i,2] + Tiahura$reef[i,3]) / 2, y = -150,
+ labels = toupper(Tiahura$reef[i,1]))
+ }
+ }
R> par(mar = c(5, 6.5, 0, 2))
R> plot(NA, xlim = dst %>% range, ylim = c(0, 1), las = 1,
+ ylab = "Bottom composition\n(proportions)\n", xlab = "Distance (m)")
R> bot <- cbind(0, Tiahura$habitat[,3:10])
R> for (i in 2:9) bot[,i] <- bot[,i] + bot[,i-1]
R> cols <- c("", "grey75", "brown", "grey25", "green", "purple",
+ "lightgreen", "yellow", "white")
R> for (i in 2:9)
+ polygon(x = c(dst, rev(dst)), y = c(bot[,i], rev(bot[,i-1])) / 50,
+ col = cols[i])
R> text(x = c(44, 365, 707, 538, 957, 111, 965),
+ y = c(0.05, 0.47, 0.37, 0.58, 0.42, 0.80, 0.88),
+ labels = colnames(bot)[2:8], xpd = TRUE)
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Figure 9: Upper panel: partitions of the Tiahura fish community structure into two, three,
five, and seven groups along a cross-reef transect. Partitions were obtained by constrained
hierarchical clustering analysis performed on the basis of the Jaccard index and using the
minimum variance sorting strategy (Ward, Jr. 1963). Abscissa: distance in m from the
beach. Middle panel: water depth as a function of the distance from the shore. Lower panel:
substrate composition in each survey site, expressed as the number of times each of 8 substrate
types was observed at 50 points, spaced by 1 m, along a 50 m rope stretched close to the
bottom of each site; the values were in the range [0, 50]. The bottom is classified as stone slab
(grey), sand (brown), coral debris (charcoal), turf and dead coral (green), live coral (purple),
large algae (light green), calcareous algae (yellow), other substrate (white; large echinoderms:
holothuroids and sea stars; sponges, anemones, and alcyonarians).

The partition in two groups shows a first shift in community structure at the reef ridge,
with the reef flat on one side, and the ridge, upper platform, and outer slope on the other
(Figure 9). The three-group partition separates the three sites of the sandy fringing reef near
the beach from the other sites of the reef flat. The five-group partition creates two groups
on the reef flat, the first one with six sites dominated by sandy substrate, the second with
seven sites on a variety of coralline substrate types. The partition into seven groups splits
the cluster of six sandy sites into two groups of three sites separated by the deepest point of
the channel.
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Figure 10: Partitions of the Tiahura fish community structure into two, three, five, and
seven groups along a cross-reef transect without the contiguity constraint. Abscissa: distance
in meter from the beach.

From that point, the following partitions create finer and finer groups. In the twelve-group
partition, for instance, the reef appears to have highly diversified fish assemblages (high β
diversity; see next paragraph), except for the six coralline sites on the barrier reef which form a
fairly homogeneous block of sites. The reef ridge region, in particular, shows a rapid succession
of assemblages. The four sites closest to the ridge (located at site #17) are singletons. The
nine sites, from the beach up to (and including) the channel, are also highly β-diversified: the
12-cluster partition recognized six groups, including three singletons, among these nine sites.
Performing the analysis without the contiguity constraint, also with method = “ward.D2”,
yielded a different result (Figure 10), but the 12-cluster partition differed only by the first two
points, perhaps because the fish community composition is naturally spatially structured.
β diversity is the variation in the species composition of ecological communities among the
study sites. It can be mathematically estimated in different ways. Given a set of sites dissem-
inated throughout a study area, β diversity is high when the sites vary a lot in their species
compositions, and it is low when the sites have fairly or completely similar compositions
(Anderson et al. 2011; Legendre and De Cáceres 2013).
Analysis of the fine partitions can proceed further until all observations are single-observation
clusters. By analyzing where (in spatial studies) or when (in temporal studies) clusters split
at different levels of the criterion, the analysis may help identify processes structured in space
or time that influence the community structure (or other data) used in the analysis.
This example, which involves clustering a series of locations along a transect, features similar
computations for clustering as the analysis of multiple observations performed repeatedly at
the same location, (i.e., a time series). In such a situation, time-constrained hierarchical
agglomerative clustering is referred to as “chronological clustering” and allows one to identify
abrupt change points in the time series.

4. Summary and discussion
Constrained hierarchical clustering methods take into account more information than their
unconstrained counterparts. For spatial or temporal contiguity, the admissible clusters are
those obeying the contiguity relationship. In this paper, we presented a new implementation
of constrained hierarchical clustering using the generalized Lance and Williams algorithm in
the R language and environment. We also illustrated the usefulness of that kind of analysis in
addressing different kinds of problems that arise in science, such as partitioning the elements
of a map, or segmenting observations along transects or time series.



Journal of Statistical Software 21

The examples used in the present paper do not represent an exhaustive enumeration of
what constrained hierarchical clustering can achieve. For instance, constrained hierarchi-
cal clustering would be applicable to three-dimensional or spatio-temporal sampling designs
(e.g., Planes, Lefèvre, Legendre, and Galzin 1993), provided that a suitable distance metric
was used and that the contiguity of the observations was accurately described by an edge list.
If these conditions are met, our constrained clustering program will encounter no difficulty in
computing a solution.
The program introduced here is geared towards flexibility and meant to be a general-purpose
implementation of constrained hierarchical clustering. On the one hand, for specific appli-
cations like, for instance, image segmentation, it may not perform as well as specialized
software (e.g., Li 2011; Sourati, Brooks, Dy, and Erdogmus 2012; Lou, Yang, and Cao 2015).
The latter generally assumes neighboring relationships between contiguous pixels of a square
grid (i.e., an image) or contiguity of elements along a time series (i.e., chronological cluster-
ing) and implements a single classificatory sorting strategy (or a limited number thereof) for
performance reasons. Our function is more flexible and general.

4.1. Performance

Our constrained hierarchical clustering program operates on a copy of the dissimilarity matrix.
That copy is updated as clusters are merged during the agglomeration process. The number
of non-redundant elements in dissimilarity matrices increases in a quadratic way with sample
size. In practice, we found the amount of computation time and storage required to carry out
the analysis to grow following roughly a power relationship during benchmark tests (i.e., a
linear relationship on a log-log scales; Figure 11), with empirical results consistent with O(n2)
requirements (Murtagh 1985; Langfelder and Horvath 2012). As long as the internal data
types remain the same for the R computing environment, the storage requirements vs. sample
size relationship shown in Figure 11 may hold for various systems (i.e., sets of hardware and
software). However, the computation time-sample size relationship should not be expected
to be consistent among systems as it is influenced by a broad array of different factors such
as the type of hardware used and its configuration, the operating system from which it is
used and its configuration, the build version of the R environment, its software dependencies
(e.g., the compiler used, compiler options), and so on.

4.2. Reversals

Reversals occur when two groups are merged at a dissimilarity value smaller than the dis-
similarity at which any or both of the subgroups were formed (Ferligoj and Batagelj 1982;
Murtagh 1985). In unconstrained hierarchical clustering using monotonic methods, groups
are merged at consistently larger dissimilarities than the ones at which their subgroups were
themselves previously formed; thus monotonic hierarchical clustering methods cannot produce
reversals. In addition, complete-linkage clustering cannot produce reversals in constrained hi-
erarchical clustering. For all the other strategies enumerated in Table 1, reversals may occur
in constrained hierarchical clustering.
It is not clear to us whether reversals really represent a problem regarding the adequacy of the
clustering solution, besides yielding a dendrogram with a somewhat awkward representation.
In constrained clustering, the clusters are usually represented on a map or along a transect
for spatial constraints, along a time series for temporal constraint, on a phylogenetic tree for
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Figure 11: Benchmark results showing the running time and memory usage (on logarithmic
scales) for analyzing data sets having different numbers of observations. The data sets were
randomly generated and consisted of a normally-distributed variable (µ = 0, σ2 = 1) on which
the Euclidean distance was calculated to be used as dissimilarities (argument d of function
constr.hclust) and an uniformly-distributed, two-dimensional plot that was used to calcu-
late a Delauney triangulation and obtain the edge list. The clustering strategy (argument
method of function constr.hclust) was set to “ward.D2”. Computation time is that used
only for the execution of constr.hclust whereas total storage was obtained as 2 × the size of
the dissimilarity matrix + the size of the edge list + the size of the results. Hardware descrip-
tion for these benchmarks is an Intel(R) Core(TM) i5-8250U CPU @ 1.60GHz (i.e., the exact
vendor’s description string) with 8041076 kB of RAM and running Linux release 4.15.0-91-
generic. The amount of RAM used for calculation and computation time follow relationships
with sample size (n) of the form anb, where a and b are empirically-derived constants that we
found to be a = 8.4082 byte and b = 1.9946 for storage and a = 4.9182e-05 ms and b = 2.0009
for running time for the system on which the benchmarks were calculated.

a phylogenetic constraint, or on a network for a network-based constraint. The issue was
raised by Murtagh (1985) that the presence of reversals “makes difficult the interpretation
of partitions and the definition of similarity between classes”. As we previously illustrated, a
reversal arises in constrained clustering when observations with similar values are not neigh-
bors in space; they will merge later in the process when the groups to which they pertain
finally become neighbors in space. This kind of situation is expected for data sets with re-
peated spatial patterns such as waves and bumps; this situation is not uncommon in practice.
Since the process from where the negative dendrogram edges (corresponding to reversals)
occur appears straightforward to us, we cannot conclude that they make the interpretation
of partitions or the definition of similarity between classes more complex. Also, since obtain-
ing a given number of partitions is readily done using the order in which the groups merge
(i.e., by cutting the tree at a given dissimilarity level), we do not see how the fact that some
dendrogram edges are non-positive represents a significant issue during partitioning.
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The exception of complete linkage comes from the fact that in that case, dissimilarities be-
tween the merged groups and other groups is the largest of any or the observations between
the groups. Therefore, it is not possible to encounter a smaller similarity later during the
clustering process (Ferligoj and Batagelj 1982). One could thus resort to complete linkage
clustering when reversals in dendrograms should be avoided at all cost. However, we cannot
think of an example where this situation would present itself. Another possibility would be to
attempt developing alternative strategies to those shown in Figure 1, which would be designed
to avoid reversals.

4.3. Future perspectives and developments

Besides space and time, clustering can be constrained by any network structure related to
other source of knowledge. For instance, one could cluster the response of communities,
quantified as the shifts in their relative species abundances as the environment changes, as
proposed by Legendre (1987), using, for example, the structure of the trophic network as a
constraint. Such an analysis would allow one to obtain a suite of partitions of a community into
groups with related trophic status and whose responses to environmental changes would be
the most consistent. Also, rather than using the classification tree to obtain partitions, it may
be possible to devise approaches to use its topological and edge length information in spectral
decomposition methods similar to those proposed to model directional spatial processes in
ecology (Blanchet, Legendre, and Borcard 2008) or to model phylogenetic variation in species
traits (Guénard, Legendre, and Peres-Neto 2013).

We are hoping that the software developed and presented in the present paper will be useful
to researchers with a clustering problem where applying a spatial contiguity constraint would
be relevant. New clustering strategies may be added in the future. Therefore, we encourage
the reader to keep their software up to date and consult the documentation for recent addi-
tions that may help them in their analyses. We also encourage anyone with suggestions for
improving and enhance the software and its documentation to contact us.

Computational details

The constrained hierarchical clustering analyses featured in this paper were produced with
R 4.2.0 and the package adespatial 0.3-19. Other calculations and generation of the figures
were done with packages magrittr 2.0.3, spdep 1.2-4, and vegan 2.6-2. R and the other
packages used are available from CRAN at https://CRAN.R-project.org/.
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