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Abstract
1. Multiscale codependence analysis (MCA) quantifies the joint spatial distribution of 

a pair of variables in order to provide a spatially explicit assessment of their rela-
tionships to one another. For the sake of simplicity, the original definition of MCA 
only considered a single response variable (e.g. a single species). However, that 
definition would limit the application of MCA when many response variables are 
studied jointly, for example when one wants to study the effect of the environment 
on the spatial organisation of a multi-species community in an explicit manner.

2. In the present paper, we generalise MCA to multiple response variables. We con-
ducted a simulation study to assess the statistical properties (i.e. type I error rate 
and statistical power) of multivariate MCA (mMCA) and found that it had honest 
type I error rate and sufficient statistical power for practical purposes, even with 
modest sample sizes. We also exemplified mMCA by applying it to two ecological 
datasets.

3. The simulation study confirmed the adequacy of mMCA from a statistical stand-
point: it has honest type I error rates and sufficient power to be useful in practice. 
Using mMCA, we were able to detect variation in fish community structure along 
the Doubs River (in France), which was associated with large spatial structures in 
the variation of physical and chemical variables related to water quality. Also, 
mMCA usefully described the spatial variation of an Oribatid mite community 
structure associated with a gradient of water content superimposed on various 
smaller-scale spatial features associated with vegetation cover in the peat blanket 
surrounding Lac Geai (in Québec, Canada).

4. In addition to demonstrating the soundness of mMCA in theory and practice, we 
further discuss the strengths and assumptions of mMCA and describe other poten-
tial scenarios where it would be helpful to biologists interested in assessing influ-
ence of environmental conditions on community structure in a spatially explicit 
way.
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1  | INTRODUCTION

Multiscale codependence analysis (MCA; Guénard, Legendre, 
Boisclair, & Bilodeau, 2010) is a statistical method to estimate the 
joint spatial structures of pairs of variables by quantifying to what 
extent they fluctuate in unison, following the same trends in space, 
which are described by an orthonormal set of geographic structur-
ing variables called spatial eigenvectors (described in particular by 
Blanchet, Legendre, & Borcard, 2008; Borcard & Legendre, 2002; 
Dray, Legendre, & Peres-Neto, 2006; Griffith, 2000; Griffith & Peres-
Neto, 2006). Any mention to space in the present paper may equally 
apply to time or space-time data and processes. These structuring 
variables can be calculated from regularly or irregularly-spaced 
points. This aspect is important for applicability to ecological data-
sets where sampling may often not be regular along a transect or on a 
grid. The interest of MCA for the analysis of ecological data lies in the 
fact that natural processes are almost always operating at particular 
spatial scales and, consequently, the ecosystem features that derive 
from these processes are also generally structured in space. Hence, 
the assessment of the structures emerging from spatiotemporal or-
ganisation is now widely recognised as a cornerstone paradigm to 
understand ecological processes (Cottenie, 2005; Legendre, 1993; 
Wagner & Fortin, 2005; Wiens, Stenseth, Van, Horne, & Ims, 1993). 
For instance, landscape ecology is concerned about how the spatial 
organisation of environmental features of the landscape structures 
the functioning of ecosystems (Forman, 1995; Forman & Godron, 
1986).

Multiscale codependence analysis was initially developed as a 
way of incorporating spatiotemporal information about environmen-
tal conditions in modelling the distribution of a species. In its original 
definition, MCA was presented as a method applicable only to single 
response variable. That limitation does not reflect the impossibility 
of calculating multivariate codependence but, rather, a choice done 
in that early version of the method for the sake of simplicity. It is 
expected, however, that MCA could be utilised in a much broader 
range of applications if it could handle multivariate response data. 
Ecosystems are often characterised by their species content for dif-
ferent target groups of organisms, which are multivariate data. There 
is therefore a need for statistical methods that allow scientists to 
quantify the join spatial trends of community structure (or some 
other similar multivariate ecosystem response) and environmental 
conditions.

The objective of the present study is to develop a multivari-
ate implementation of MCA, assess its statistical properties (type 
I error rate and statistical power) using a Monte-Carlo simulation 
study, and present a few examples of applications to help read-
ers figure out its relevance and the practical interpretation of its 
results. Monte-Carlo simulations were performed for a variety 
of sample sizes using both parametric and permutation testing 
whereas the examples encompassed case scenarios from river fish 
ecology and wetland ecology.

2  | MATERIALS AND METHODS

2.1 | Computation of multivariate MCA

To quantify the joint spatial dependence of a response and an ex-
planatory data table, MCA requires a set of spatial eigenvectors 
(Borcard & Legendre, 2002; Dray et al., 2006; Griffith & Peres-Neto, 
2006; U) suitable to represent spatial patterns of variation in the data 
(Guénard et al., 2010). These variables have to be centred (i.e., their 
values have to sum to 0) and orthonormal (i.e., their cross-product 
to one another u⊤

i
uj = 0 for all i ≠ j, and the sum of squares u⊤

i
ui = 1 

for all i, where ⊤ denotes the matrix transpose). In short, these vari-
ables represent a suite of potential spatial patterns of various shapes, 
such as gradients, ridges, and bumps, and sizes ocurring at different 
locations along a sampled transect or surface. By combining spatial 
eigenvectors in a linear equation, one put together a representation 
of the multiple features of a landscape. To understand how to com-
pute spatial  eigenvectors, see the documentation file of the func-
tion  of the  adespatial package in R (Dray et al., 2016; available at  
https://cran.r-project.org/web/packages/adespatial/adespatial.pdf).  
Readers who want to understand spatial eigenvectors could 
see the video course “Multi-scale modelling of the spatial struc-
ture of ecological communities” by P. Legendre on the Web at  
 http://adn.biol.umontreal.ca/numericalecology/Trieste16/day5.html.

Univariate MCA quantifies the strength of the association be-
tween a response variable (y) and an explanatory descriptor (x) at a 
spatial scale described by a spatial eigenvector (ui) using a codepen-
dence coefficient Cui ;y,x

, which is the product of the (Pearson) correla-
tion coefficients between the response variable and the spatial 
eigenvector with that of the explanatory descriptor and the same spa-
tial eigenvector. When both the response variable and the descriptor 
are centred on their means (ȳ = x̄ = 0), codependence is defined as 
follows:

When variables y and x are both strongly correlated with a given 
ui, Cy,x;ui

 has a large absolute value and its sign depends on whether the 
two correlations involved have the same sign (two positive or two neg-
ative: Cy,x;ui

> 0), or different signs (Cy,x;ui
< 0; Figure 1). To test Cui ;y,x

 
for statistical significance, Guénard et al. (2010) proposed to use the 
τ statistic, defined as the product of two Student's t statistics corre-
sponding to the two correlations coefficients whose product is Cui ;y,x

 
(eq. 6 in Guénard et al., 2010). From Springer (1979), the probability 
density function of the τ statistic corresponds to the following definite 
integral:

where z is the value of the product statistic, θ is the variable to be 
integrated in the domain [0, ∞], and tν() is the probability density func-
tion of Student's t distribution with ν degrees of freedom. For the pur-
pose of the present study, we will use the abbreviation MCA(u) when 

(1)Cui ;y,x
=

u⊤
i
y

√
y⊤y

u⊤
i
x

√
x⊤x

.

(2)τν(z)=2 ∫
∞

0

tν(x)tν(z∕θ)

θ
dθ,

https://cran.r-project.org/web/packages/adespatial/adespatial.pdf
http://adn.biol.umontreal.ca/numericalecology/Trieste16/day5.html
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referring specifically to the original method applicable to univariate 
response data and mMCA when referring specifically to its multivari-
ate generalisation described below, whereas MCA will refer to either 
of these analyses.

To implement multivariate support in MCA, we propose to replace 
the left portion of Equation 1 with the square root of the multivariate 
determination coefficient (R2) of the regression between a matrix of 
response variables Y and a spatial eigenvector ui as follows:

where trace() denotes the trace of the matrix, i.e. the sum of its diago-
nal elements. We kept only the absolute value of the cross-product 
u⊤
i
x in the right portion of Equation 3 because its sign depends on 

that of the relationship between x and ui, which is not informative 
in the multivariate context. By extension of the τ statistic used in 

MCA(u), we propose to test the multivariate codependence coeffi-
cient of mMCA using the product of two Fisher–Snedecor F statistics 
as follows:

where n is the sample size, k is the number of columns of Us, and Us 
is a matrix containing spatial eigenvectors that have previously been 
tested for significance (if any), in addition to the one being tested (i.e. 
ui). The probability density function of the ϕ statistic corresponds to 
the following definite integral (Springer, 1979):

where z is the value of the product statistic, θ is the variable to be in-
tegrated in the domain [0, ∞], Fa,b(…) is the probability density function 

(3)Cui ;Y,x
=

�
trace((uiu

⊤
i
Y)⊤(uiu

⊤
i
Y))

trace(Y
⊤
Y)

�u⊤
i
x�

√
x⊤x

.

(4)

ϕui∈Us ;Y,x

= (n−k−1)2
trace((uiu⊤i Y)

⊤(uiu
⊤
i
Y))

trace((Y−UsU
⊤

s
Y)⊤(Y−UsU

⊤

s
Y))

|u⊤
i
x|2

(x−UsU
⊤

s
x)

⊤
(x−UsU

⊤

s
x)

(5)ϕν1,ν2
(z)=∫

∞

0

Fν1,ν1ν2 (θ)F1,ν2 (z∕θ)

θ
dθ,

F I G U R E  1    Explanatory diagram showing how multivariation multiscale codependence analysis (mMCA) works using an environmental 
descriptor x and two response variables y1 and y2 (lowermost plots). The variables are made-up of the sum of three components associated with 
spatial eigenvectors u1 (second plot row), u5 (third plot row), and u4 (fourth plot row; in decreasing order of codependence), which the rest being 
their mean and noise (i.e. variation not spatially-structured; topmost plots). The coefficients associated with these components are the operands 
of the multiplication in the numerator of Equation 1. Large absolute value of these coefficients means that the variables follow the same spatial 
trend (in direct or opposite direction, see below). For standardisation, the coefficients products are divided by the sums of square deviations 
of the variables about their mean (lowermost formulae on the right). The coefficients so standardised very between −1 and +1. Variables both 
following the eigenvector in the same direction (e.g. y2 and x with respect to u1, y1 and x with respect to u4; calculation details are on the right) 
yield positive codependence coefficients (Cui ,yj ,x

), whereas C < 0 when both variables follow eigenvectors in opposing direction (e.g. y1 and x with 
respect to u1, y2 and x with respect to u5). The multivariate codependence coefficient (Cui ,Y,x

) is strictly positive and synthesise all the univariate 
coefficients associated with the same environmental variable and spatial eigenvector (see main text for computation details)
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(x − x )T(x − x ) = 1.84

(y1 − y1)T(y1 − y1) = 1.61

(y2 − y2)T(y2 − y2) = 3.09

Cu1, y1, x = (0.9 ⋅− 1.2) 1.61 ⋅ 1.84 = − 0.63

Cu1, y2, x = (− 1.3 ⋅− 1.2) 3.09 ⋅ 1.84 = 0.65

Cu1, Y, x = 0.646

Cu5, y1, x = (− 0.7 ⋅− 0.5) 1.61 ⋅ 1.84 = 0.2

Cu5, y2, x = (0.9 ⋅− 0.5) 3.09 ⋅ 1.84 = − 0.19

Cu5, Y, x = 0.194

Cu4, y1, x = (0.4 ⋅ 0.3) 1.61 ⋅ 1.84 = 0.07

Cu4, y2, x = (− 0.7 ⋅ 0.3) 3.09 ⋅ 1.84 = − 0.09

Cu4, Y, x = 0.082
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of the Fisher–Snedecor F distribution with a degrees of freedom in 
the numerator and b in the denominator, ν1 is the number of degrees 
of freedom corresponding to the number of linearly independent 
columns in Y (and thus the rank of cov(Y)), and ν2 is the number of 
residual degrees of freedom associated with the sampling sites (i.e. 
ν2 = n − k − 1).

The assumptions related to testing ϕui∈Us ;Y,x
 are the union of 

those of the multivariate regression of Y against ui with those of the 
linear regression of x against ui. Notably, residuals of both Y and x 
with respect to ui (and other eigenvectors in Us, if any) have to be 
(multivariate) normally distributed and their variances should be ho-
mogeneous along the range of values in ui. In cases where the nor-
mality assumption (for either Y or x, or both) is not met or difficult 
to ascertain (e.g. when sample size is too small to reliably assess the 
probability distribution), testing may be done using Monte-Carlo per-
mutations. It is also noteworthy that while the τ statistic was signed 
and allowed one to perform both one-way or two-way inference 
tests, the ϕ statistic in strictly positive and tests the null hypothesis 
(H0) of no codependence against multiple two-way alternative hy-
potheses (i.e. H1: presence of codependence of any sign depending 
on particular responses yj in Y).

The five-step testing procedure originally proposed for MCA(u) 
equally applies to mMCA and goes as follows:

1.  Compute the vector [CU;Y,x] of the codependence coefficients.
2.  Sort values of [CU;Y,x] in descending order.
3.  Select the spatial eigenvector umax, associated with the highest 

codependence coefficient Cumax;Y,x
 among those that have not been 

tested (i.e. umax is not a member of Us at that point).
4.  Calculate ϕui∈Us ;Y,x

 and its associated probability (P) using the theo-
retical distribution or by permutation.

5.  Test the significance of umax by comparing its p-value to a predeter-
mined significance level α. If significant, incorporate umax perma-
nently in Us and proceed again from step 3 to test another 
coefficient. If non-significant, stop here.

That method ensures that we highlight the best codependence 
coefficients, but since many eigenvectors are generally tested (some-
times as many as the sample size minus one), it comes at the price 
of inflated type I error. As for MCA(u), that issue can be addressed 
by considering all possible inference tests as a family of indepen-
dent tests (eigenvectors being orthogonal) and apply a correction to 
transform the probabilities of single tests (i.e. testwise p-values) in 
probabilities for the whole family of tests (i.e. familywise p-values). 
We propose using a sequential version of the Šidák correction Sˇidák, 
1967; Wright, 1992), the same method used by Guénard et al. (2010) 
for MCA(u).

Assessing goodness-of-fit in mMCA proceeds similarly as for 
MCA(u): a matrix of coregression coefficients (BU;Y,x) is obtained for 
each response variables yi (column of Y) as follows:

where n is the number of spatial eigenvectors (columns of U) and m is 
the number of response variables (columns of Y; BU;Y,x has dimensions 
n × m). Standardised coregression coefficients are likewise defined as 
follows:

The function to make predictions for a new descriptor vector xnew 
(centred to 0 mean) is obtained by rearranging Equation 6 as follows:

where s is the set of indices of the spatial eigenvectors found to be 
suitable to make predictions (notation 

∑∈s

∀i
 means “the sum for all i 

within set s”), while fitted values (Ŷ) are obtained as an orthogonal 
projection of the observation Y unto the k-dimensional space spanned 
by the k selected structuring variables in set s:

When set s is empty (i.e. no eigenvector was suitable), Ŷ = 0 and 
all predicted or fitted responses are equal to their means. As in MCA(u), 
it is possible to use multiple descriptor variables in mMCA as long as 
they are involved with a mutually exclusive set of spatial eigenvec-
tors (e.g. a descriptor x1 may influence Y following the spatial variation 
patterns described by u1 and u3 at the same time as a descriptor x2 
influences Y following spatial patterns described by u2 and u4, but x2 
cannot be involved with either u1 or u3 because x1 has already taken 
them). That exclusiveness condition guarantees that the component of 
the response brought by the different descriptors are orthogonal and 
can be combined in an additive manner.

2.2 | Simulation study

We ran Monte-Carlo simulations to estimate the type I and II error 
rates (i.e. the probability of rejecting the null hypothesis when it is 
true and that of failing to reject it when it is false, respectively) gener-
ated by mMCA when it was applied to pairs of variables Y (multivari-
ate) and x (univariate). Simulations were performed using parametric 
testing for normal random deviates and by permutation testing for 
non-normal random deviates simulating species abundances. These 
non-normal deviates were generated as the floor-rounded integers of 
the exponential of random normal deviates with M = 0 and SD = 1.5. 
That approach generated a zero-inflated distribution. We regarded 
that distribution as a fair approximation of that often encountered for 
species abundances in the wild.

The procedure consisted in generating transects of N evenly 
spaced sampling locations, by assigning sets of pseudo-random 
numbers to an N × M response data matrix Y and to a descriptor 
vector x with N elements. We used seven different sample sizes (N) 
between 10 and 1,000, which we each combined with four different 
numbers of species (M) between 1 and 500 (Table 1), resulting in 28 
different conditions which were all analysed using parametric tests, 
whereas samples with sizes up to 100 were also analysed using (6)

BU;Y,x=

[
bui ;yj ,x

]
=

[
u⊤
i
yj

u⊤
i
x

]
, i=1,2,3,… ,n; j=1,2,3,… ,m,

(7)βU;Y,x=
[
βui ;yj ,x

]
=

[√
x⊤x

y⊤
j
yj

u⊤
i
yj

u⊤
i
x

]
, i=1,2,3,… ,n; j=1,2,3,… ,m.

(8)Ypred(xnew)=

∈s∑

∀i

ui
{
(u⊤

i
xnew)bui ;Y,x

}
,

(9)Ŷ=

∈s∑

∀i

{
uju

⊤

j

}
Y.
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permutations tests. The grand total of simulated conditions, includ-
ing those with parametric and permutation tests, was therefore 44. 
Each conditions was tried 10,000 times; 440,000 simulations were 
thus done.

Each simulation trial consisted in testing the pseudo-random data-
set for the statistical significance of a single, randomly-picked spatial 
eigenvector. The resulting p-value was used to assess type I error rate. 
Then, we took the fitted values associated with the spatial eigenvector 
tested previously (Ŷ and x̂), standardised them to a variance of 1, 
added to them some amount of normally-distributed pseudo-random 
deviates with mean 0 and variance 1 (�(0, 1)), and tested the resulting 
variables (referred to as Ỹ and x̃, respectively) to assess, this time, the 
type II error rate. The amount of noise added to the fitted values was 
chosen by independently drawing two pseudo-random numbers be-
tween 0 and 1. The first number was used to set the signal-to-noise 
ratio (snr) of the trial as snr = r1√

1− r2
1

, while the second number was 

used to distribute the snr between Ỹ and x̃ as follows:

That approach is similar to that used by Guénard et al. (2010) to 
assess the type II error rate of MCA(u), with adaptations to multiple 
response variables. Here, we standardised the total variance of the fit-
ted response matrix (Ŷ) to a value of 1 prior to their combination with 
random deviates, but let the variances fluctuate among individual col-
umns (ŷj). Also, to obtain numerically exact snr values, Guénard et al. 
(2010) used random deviates with variance of exactly 1. We deemed 
that last step unnecessary in the present study since the snr value is 
never known in real data; we can only obtain an estimate of the popu-
lation variance rather than its exact value.

2.3 | Illustrative examples

We used two well-studied dataset to illustrate the application of 
mMCA. The first dataset was collected by Verneaux (1973) and con-
sists of 30 sites sampled along a 453 km transect in the Doubs, a river 
located in eastern France, in which 27 fish species were observed (the 
response variables) and 11 explanatory quantitative variables (the de-
scriptors) were measured. These descriptors were the river slope (slope, 
‰), mean minimum discharge (flow, m3/s), pH, hardness (hardness, i.e. 
Calcium concentration, mg/L), biological oxygen demand (BOD, mg/L), 
dissolved phosphate ([PO3−

4
], mg/L), nitrate ([NO−

3
], mg/L), ammonium 

([NH+

4
], mg/L), and oxygen ([O2], mg/L). Spatial eigenfunctions were 

calculated on the basis of the distance from the source of the river (in 
km, as the fish swim). Fish count data were Hellinger-transformed into 
square-rooted profiles of relative species abundances before analysis. 
As in previous published studies of this dataset, site 8, where no fish 
were caught, was excluded from our analysis.

The second dataset was collected by Borcard and Legendre (1994) 
and consisted of 70 cores mostly consisting of Sphagnum mosses, sam-
pled from a rectangular plot, c. 2.5 m × 10 m, located on the peat mat 
surrounding Lac Geai, which is a bog lake located on the territory of 
the Station de Biologie de l’Université de Montréal in Saint-Hippolyte, 
Québec, Canada (latitude +45.9954, longitude −73.9936). The dataset 
consists of a response table of abundances (counts) of 35 morpho-spe-
cies of Oribatid mites (Acari) and a second table containing five envi-
ronmental variables: two quantitative (substratum density, g/L; water 
content of the substratum, in % of volume) and three qualitative (sub-
strate composition, seven classes; presence and abundance of shrubs, 
three ordered classes; micro-topography the peat, two classes). For 
the analysis, the qualitative variables were transformed into 12 (i.e. 
7 + 3 + 2) binary (dummy) variables, yielding a grand total of 14 descrip-
tors. Spatial eigenfunctions were calculated using the geographic (i.e. 
Euclidean) distances between the sampling sites in the rectangular plot.

2.4 | Computer package

The R computer package “codep”, originally developed for MCA(u), 
has been updated to support mMCA from version 0.6-5 onward. It 
is freely available online for multiple computer platforms from the 
Comprehensive R Archive Network (cran: https://cran.r-project.org/).

3  | RESULTS

3.1 | Simulation study

3.1.1 | Type I error rate

The type I error rates obtained from the simulation study were close 
to the significance levels of the test. The expected rejection values 
under the null hypothesis of absence of codependence are the signifi-
cance levels. This was true for all significance levels tested and all sim-
ulated sample sizes (N and M), for both the parametric (Figure 2) and 
permutation (Figure 3) tests. For N = 10 sites and M = 1 to 5 species, 

(10)Ỹc= r1r2Ŷ+

√
1− r2

1

√
1− r2

2
�(0,1),

(11)x̃c= r1

√
1− r2

2
x̂+

√
1− r2

1
r2
2
�(0,1).

T A B L E  1   Conditions of simulations for type I and type II error 
rates: the number of sampling sites, the testing method used 
(parametric of permutations), and the number of species simulated 
on the sampling sites. 10,000 trials were performed for each set of 
conditions for a total of 440,000 simulations

Number of 
sites (N) Test Number of species (M)

10 Parametric 1 2 3 5

10 Permutations 1 2 3 5

25 Parametric 1 3 5 10

25 Permutations 1 3 5 10

50 Parametric 1 5 10 20

50 Permutations 1 5 10 20

100 Parametric 1 10 20 50

100 Permutations 1 10 20 50

250 Parametric 1 20 50 100

500 Parametric 1 50 100 250

1,000 Parametric 1 100 250 500

https://cran.r-project.org/
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the permutation test was somewhat conservative, the simulations 
producing fewer spurious signal detection events than expected for 
the smallest α significance levels (0.01 and 0.005). The N = 10 sample 
size is lower than what would be found in real studies, and statistical 
power is extremely low under such conditions.

3.1.2 | Statistical power

Statistical power increased as N increased (parametric test: Figure 4; per-
mutation test: Figure 5), with a comparatively smaller but noticeable pos-
itive influence of M. Also, permutation tests carried out on non-normal 
deviates were slightly less powerful than the parametric test computed 
on normally distributed data, but the method remained entirely fit for 
practical purposes. For instance, for a statistical power of 0.95, the per-
mutation test detected a signal with snr = 0.53 for N = 50 and M = 20, 
and snr = 0.96 (a roughly equal amount of signal and random noise) for 
N = 25 and M = 5. For the same statistical power and under the same 
two (N, M) combinations, the parametric test could detect comparatively 
weaker signals (i.e. smaller snr) on average: 0.36 and 0.60, respectively. 
For species abundance data, which seldom (if ever) conform to the nor-
mal distributions, the permutation test will be the preferred method be-
cause it carries fewer assumptions than the parametric test.

3.2 | Illustrative examples

3.2.1 | Doubs River

The first sampling site was located 300 m from the source of the 
Doubs River and the last one was 453 km from it, with distance 

between neighbouring sites ranging from 1.9 to 34.4 km (average: 
16.17 km). The first explanatory variable found to be significant by the 
mMCA test was flow and it was associated with the scale of the first 

F I G U R E  2    Simulation results, type I error rates, parametric test. Estimated mean rejection rates (with 95% confidence limits) for the null 
hypothesis of no codependence between response variables and a single explanatory variable, for different sample sizes. Abscissa: number of 
sites and response variables (called species). Simulated data were normally-distributed. Rates are shown for six different α significance levels, 
namely, 0.9 (▴), 0.5 (•), 0.1 (■), 0.05 (∆), 0.01 (◯), and 0.005 (□). 10,000 dataset were simulated for each result shown
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F I G U R E  3    Simulation results, type I error rates, permutation test. 
Estimated mean rejection rates (with 95% confidence limits) for the 
null hypothesis of no codependence between response variables and a 
single explanatory variable, for different sample sizes. Abscissa: number 
of sites and species. The simulated species data were over-dispersed 
counts obtained by generating random normal deviates with a mean of 
0 and a standard deviation of 1.5, exponentially-transforming them, and 
truncating them to the lowest integer. Rates are shown for six different 
α significance levels, namely, 0.9 (▴), 0.5 (•), 0.1 (■), 0.05 (∆), 0.01 (◯), 
and 0.005 (□). 10000 dataset were simulated for each result shown
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spatial eigenvector (that with the largest eigenvalue. The second one 
was BOD and it was related to the fourth spatial eigenvector. Then, 
[NH

+

4
], related to the third spatial eigenvector, and finally, [O2], at the 

scale of the second spatial eigenvector (Table 2).
The first principal component of the fish community structure (PC1) 

was positively associated with a species having preference for small and 
well-oxygenated streams or rivers (TRU, a Salmonid), which was found 
in the upstream portion of the watershed, as opposed to the more tol-
erant species found in large and more oxygen-depleted reaches located 
in the downstream portion of the watershed (Figure 6a). The sum of the 
four components of the spatial codependence corresponds to a slight 
increase in PC1 loadings in the first 150 km from the river source, fol-
lowed by a steep decrease from 150 to 300 km, and a plateau from 
300 km to the river mouth (Figure 6b). That figure, which shows a way 
of representing the influence of the MEM eigenfunctions along a river, 
could also be used to represent the results of mMCA analysis of tran-
sects or time series.

The second principal component (PC2), was associated with spe-
cies having good tolerance to oxygen deprivation, yet showing low 
propensity to high [NH+

4
]. This was not the case for the salmonid spe-

cies (TRU), which had a high positive loading on PC1. The sum of the 

components corresponds to a decrease in PC2 loading between 0 and 
100 km followed by a rather sharp increase between 100 and 200 km, 
then an even sharper decrease between 200 and 310 km, and, finally, 
an increase from 310 km to the river mouth (Figure 6c).

A notable feature of the results, which was also previously noted 
in other studies using these data, is that sites 23, 24 and 25, located 
immediately before and after the city of Besançon (304 to 327 km 
from the river source along the abscissa of Figure 6c), are polluted 
sites. The effect of these three sites on the spatial patterns of com-
munity variation is readily visible on PC2 and is driven by the BOD and 
[NH

+

4
] variables at the spatial scales represented by MEM4 and MEM3, 

respectively.
Any other principal component associated with a substantial por-

tion of the community variation could have been analysed similarly 
with respect to spatial codependence.

3.2.2 | Oribatid mites

The strongest component of multiscale codependence associated peat 
water content (WaterCont) with the Oribatid community structure at 
the scale of the first spatial eigenvector (MEM1; Table 3). The latter 

F I G U R E  4    Parametric test: estimated 
statistical power (rejection rate) as a 
function of the signal-to-noise ratio (SNR) 
under an α significance level of 0.05 and 
different sample sizes (box legend: number 
of sites N, number of response variables 
M) represented by the different line 
types. Simulations encompass the single 
species (univariate) case (a) as well as cases 
with small (b), large (c), and very large (d) 
numbers of response variables (called 
species) with respect to the number of 
sampling sites. The 95% confidence limits 
of the lines were not shown because they 
were narrower than their line widths
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covers the whole study plot in the north-south direction (i.e. from the 
forest in the south to the northern edge where the peat mat meets 
the open lake water). The second strongest component associated 
community structure with the prevalence of shrubs (Shrub:Many) at 
the spatial scale described by the fourth spatial eigenvector (MEM4), 
which also varies in the north-south direction along the plot, form-
ing a pair of waves having roughly half the wavelength of MEM1. 
The third component associated community structure with the first 
type of peat moss assemblage (Subs:Sphagnum1; peat containing 
Sphagnum rubellum with some S. magellacinum) at the scale of the sec-
ond spatial eigenvector (MEM2), which describes a wave with similar 

wavelength and orientation as MEM1, but offset by approximately a 
quarter of a wavelength (c. 90∘). The fourth and last statistically sig-
nificant component of multiscale codependence pinpoints hummock 
(Topo:Hummock, i.e. elevated landforms) as another driver of Oribatid 
community structure at the scale of the third spatial eigenvector 
(MEM3). MEM3 varies transversely with respect to the north-south 
geographic axis of the plot.

Morpho-species with positive loadings on the first principal 
 component of the mite community structure (PC1; e.g. Sp16, Sp31; 
Figure 7) are found in peat with high water content, few shrubs, while 
having association with substrate composed with Sphagnum rubel-
lum with some S. magellacinum and elevated peat mounds (Figure 8). 
They oppose to the species with negative PC1 loadings (e.g. morpho- 
species Sp13, Sp14, Sp15). The combination of all these separate  
effects highlight that a large amount of species variation occurs along 
an edaphic gradient associated with wetter substrate as one ap-
proaches the open lake water.

On the other hand, species with positive loadings on the sec-
ond principal component of the mite community structure (PC2; e.g. 
morpho-species Sp13, Sp16, Sp23; Figure 7) are found in smaller 
abundances in peat with high water content, but follow similar 
trends with respect to the other descriptors, preferring few shrubs, 

F I G U R E  5    Permutation test: 
estimated statistical power (rejection 
rate) as a function of the signal-to-noise 
ratio (SNR) under an α significance level 
of 0.05 and different sample sizes (box 
legend: number of sites N, number of 
species M) represented by the different 
line types. Simulations encompass the 
single species (univariate) case (a) as well 
as cases with small (b), large (c), and very 
large (d) numbers of species with respect 
to the number of sampling sites. The 95% 
confidence limits of the lines were not 
shown because they were narrower than 
their widths
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T A B L E  2   Statistically significant components of the multivariate 
spatial codependence between fish assemblages (Hellinger-
transformed counts) and descriptors of water quality; permutation 
tests

Scale Descriptor ϕν1,ν2
ν1 ν2 p

MEM1 flow 2,434.3 27 27 .005

MEM4 BOD 30.67 27 26 .01

MEM3 [NH
+

4
] 27.78 27 25 .01

MEM2 [O2] 42.85 27 24 .01
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Subs:Sphagnum1, and elevated peat mounds, compared to mor-
pho-species with negative PC2 loadings (e.g. Sp31, Figure 9). The 
combination of these effects highlights the fact that species were dis-
tributed along an axis partially inclined east-west with respect to PC1. 
This is likely to be due to the fact that species with high positive PC2 
are more prevalent in sites on peat mounds, which are more prevalent 
east of the plot, compared to those with high positive PC1 loadings.

4  | DISCUSSION

In the present study, we defined an extension of MCA for multivari-
ate response datasets, and investigated its statistical properties. The 
method performed as expected, yielding honest inference tests (i.e. 
correct type I error) and having good statistical power, even for rela-
tively modest sample sizes compared to those generally encountered 
in community ecology. Adding species improved statistical power, but 
not as much as adding sampling sites. In that respect, our simulation 

study was sufficiently extensive, covering a wide range of conditions, 
to provide a clear demonstration that multivariate MCA (mMCA) is a 
useful method for practical statistical analysis.

The mMCA method was designed to answer the following ques-
tion: at what scales do we find important species-environment correla-
tions? A somewhat related approach is multiscale ordination (MSO), a 
method developed by Wagner (2003, 2004) and implemented in R in 
package vegan's mso() function (Oksanen et al., 2015).

F I G U R E  6    The statistically-significant spatial components of the codependence between fish community structure (represented as the 
first two principal components of community variation (a); numbers refer to the sites, in order from headwaters (site 1) to river mouth (site 30) 
whereas red labels refer to the species (see Verneaux, 1973, for corresponding Latin names), and four descriptors of water quality in Doubs 
River (France), namely flow: river discharge, BOD: biological oxygen demand, [NH+

4
]: ammonium concentration, [O2]: dissolved oxygen. Panels 

(b) and (c): contributions of the significant MEM spatial components (and their total effect) to the first and second principal components of fish 
community variation, respectively (see R code in supplementary material for details of the calculations used to produce that figure)
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T A B L E  3   Statistically significant components of the multivariate 
spatial codependence between Oribatid mite community structure 
(Hellinger-transformed counts) and micro-habitat descriptors 
(WaterCont: water content of the peat; (Shrub:Many): dummy variable 
representing the highest of three ordered classes of shrub cover; 
(Subs:Sphagnum1): dummy variable representing peat containing 
Sphagnum rubellum with some S. magellacinum; (Topo:hummock): 
dummy variable representing a raised micro-topography. 
Permutation tests

Scale Descriptor ϕν1,ν2
ν1 ν2 p

MEM1 WaterCont 1,785.1 35 68 .005

MEM4 Shrub:Many 324.4 35 67 .005

MEM2 Subs:Sphagnum1 51.15 35 66 .01

MEM3 Topo:hummock 67.52 35 65 .01

F I G U R E  7    The first two principal components of the Oribatid 
mite community structure. The 70 sites are labelled using numbers 
whereas the 35 morpho-species are labelled as Sp1 to Sp35 (in red). 
The colour scale represents values on the principal components; it is 
used in Figures 8 and 9
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Multiscale ordination was developed to answer a different ques-
tion than mMCA: it tests the hypothesis that the explanatory (e.g. en-
vironmental) variables can account for the spatial correlation observed 
in the response matrix, for example in community composition data. 
The response spatial variation is analysed and represented by a multi-
variate variogram, which includes a test of significance of the variation 
accounted for by the various distance classes. The method can then 
examine, through RDA or partial RDA, if the environmental variables 

are sufficient to explain that spatial variation and leave spatially un-
structured residuals.

mMCA and MSO bring complementary answers to the analysis of 
scale-dependent effects of explanatory (e.g. environmental) factors on 
the response data. Their similarity resides in the fact that both meth-
ods can use spatial eigenfunctions. In the original publications about 
MSO, Wagner used polynomials of the geographic coordinates, not 
spatial eigenfunctions. These eigenfunctions, under the name PCNM, 

F I G U R E  8    Geographic map of the mite data showing the statistically significant spatial components of the codependence between the 
mite community structure and the environmental variables to which it is associated at certain spatial scales, as found by the analysis. The left 
panel shows the 70 sites with colours corresponding to their positions along PCA1 (Figure 7). The following panels show the 70 sites again with 
symbols shaded according to the value of the environmental variable shown at the top of the map, and background colours corresponding to the 
MEM component (positive and negative values in red and blue, respectively) associated with the scale of the mite-environment codependence. 
Values between the sampling locations were calculated from the prediction scores of the MEM for single species, which were then projected on 
the PCA
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F I G U R E  9    Geographic map of the mite data showing the Statistically significant spatial components of the codependence between the 
mite community structure and the environmental variables to which it is associated at certain spatial scales, as found by the analysis. The left 
panel shows the 70 sites with colours corresponding to their positions along PCA2 (Figure 7). The following panels show the 70 sites again with 
symbols shaded according to the value of the environmental variable shown at the top of the map, and background colours corresponding to the 
MEM component (positive and negative values in red and blue, respectively) associated with the scale of the mite-environment codependence. 
Values between the sampling locations were calculated from the prediction scores of the MEM for single species, which were then projected on 
the PCA
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were in their infancy at the time. The analyses reported in the next 
paragraph were the first to use MSO with spatial eigenfunctions, as an 
extension of the method.

Multiscale ordination was used in Borcard, Gillet, and Legendre 
(2011, section 7.5.2) and in Legendre and Legendre (2012, section 
14.4) to analyse the mite data (example of the present paper). MSO 
first showed that the multivariate variogram of the detrended mite 
data was not flat; it displayed significant spatial structure. In a second 
analysis with canonical ordination (RDA) involving the environmental 
factors as explanatory variables, is became clear that the species-envi-
ronment correlation varied with scale, so that a global estimation was 
meaningless unless one controlled for the regional scale spatial struc-
ture causing the problem. This control was obtained by using spatial 
eigenfunctions as covariables in the analysis described in Borcard et al. 
(2011, section 7.5.2). By opposition (present paper), mMCA directly 
computes codependence coefficients and tests of significance for the 
relationships between the spatial eigenfunctions representing the spa-
tial scales and the individual environmental variables.

In the mMCA mite analysis shown in the present paper, we identi-
fied four significant codependence coefficients between spatial eigen-
functions representing the spatial scales and individual environmental 
variables (Table 3). These relationships were represented on maps of 
the sites, separately for ordination axes PCA1 (Figure 8) and PCA2 
(Figure 9).

The three main assumptions underlying mMCA with paramet-
ric tests include (1) multinormality of the residuals of the response 
against the spatial eigenvectors involved as well and normality of the 
residuals of the explanatory variables against these eigenvectors, (2) 
linear relationships between the response and the eigenvectors and 
between the descriptors and the eigenvectors, and (3) homogeneity 
of the residuals’ variances (i.e. homescedasticity). Permutation testing 
relaxes the normality assumptions, leaving assumptions 2 and 3 to be 
satisfied. In the present study, we did not assess the robustness of the 
method when these assumptions are not met. Another future devel-
opment to mMCA would consist in generalising the method for other 
frequency distributions in the exponential family using Iteratively Re-
weighted Least Squares (IRLS), as in generalised linear models (Hastie 
& Pregibon, 1991; Nelder & Wedderburn, 1972). Calculations would 
proceed as in the normally-distributed case described in the Methods 
section, but with IRLS weights.

Fish assemblages in the Doubs were driven by flow quality, which 
varied following the river's course main gradient, but also by chemi-
cal conditions related to water quality (namely BOD, [NH+

4
], and [O2]), 

which varied following large-scale successions. The Brown trout (TRU) 
was the species most responsive to these effect. The analysis high-
lighted that this species was positively associated to NH+

4
-rich waters 

in spite of its well-known reliance on high concentrations of dissolved 
oxygen. NH+

4
 is the form of nitrogen that is readily produced by fish 

through excretion. However, under aerobic conditions any NH+

4
 is 

rapidly oxidised to ammonia (NH3), nitrite (NO−

2
), and finally NO−

3
 by 

ubiquitous bacteria. NO−

2
, which is the intermediate in the nitrification 

process, is toxic to fish as it binds to haemoglobin and hinders oxygen 
transport (see Lewis & Morris, 1986 for a review) and salmonids are 

among the most sensitive fish to that anion. Local conditions affect-
ing the nitrification process by slowing the conversion of NH+

4
 to toxic 

NO
−

2
 may explain that association between [NH+

4
] and fish community 

structure. A larger study involving more extensive sampling may help 
shed light on the effect of nitrification on fish assemblages in river 
ecosystems.

Oribatid mite assemblages in the peat mat surrounding Lac Geai 
were primarily driven by the peat's water content, which varied widely 
following a gradient going from the open water (north) towards the 
forest edge (south), and then by the presence of dense shrubs. The 
effects of peat moss assemblages and landforms were also evidenced. 
The mite morpho-species responded in various ways to variation in 
their habitat structure, probably as a consequence of their traits, such 
as their ability to move up and down in the peat mat, their preferred 
sources of food, and multiple physiological requirements. Had we had 
information about traits for the different species in that dataset, it 
would have been computationally straightforward to project them on 
the principal components for the sake of displaying their prevalence in 
different parts of the sampling plot. In that respect, a future develop-
ment of the codependence method may involve quantifying the spa-
tially explicit relationships between species traits and environmental 
variables (e.g. using bilinear algebra) instead of the relationships be-
tween multiple species responses and the environment, as illustrated 
in the present study.

It is noteworthy that it is possible to nest many local-scale mMCAs 
within a single analysis performed at a larger spatial scale. For instance, 
one may want to analyse the local and regional patterns of codepen-
dence for a mosaic of forested patches spread at the regional scale in a 
landscape. Assuming that each forested patch was sampled at multiple 
locations, one could perform mMCAs on each patch and then nest 
these local mMCAs in a single, regional, mMCA. However, if only a few 
locally-repeated measurements are available to perform local mMCAs 
with reasonable statistical power (e.g. N < 20 for the local samples), 
one should perform a single mMCA.

In the later patchwork scenario, within-patch distances are much 
smaller than among-patch distances. As a consequence, there is a 
gap between the smallest patterns of regional spatial variation and 
the largest patterns of local spatial variation. When a single mMCA is 
used, representing scales of either the regional or local spatial varia-
tion in a discrete fashion, using a set of spatial eigenvectors specially 
tailored for that purpose, gives results that are easier interpret com-
pared to using a single set of spatial eigenvectors. It can be achieved 
by first calculating regional-scale spatial eigenvectors, substituting 
the patch centroid for individual observations. That analysis yields 
a maximum of Np − 1 non-zero eigenvalues (where Np corresponds 
to the number of forested patches), their associated eigenvectors 
being invariant among the sites pertaining to a patch. Then, one can 
calculate the local spatial eigenvectors for each patch. Each of these 
sets has to be padded to match the size of the whole dataset, by 
assigning the value 0 to the elements corresponding to the obser-
vations in the other patches, as shown in Appendix 1 of Declerck, 
Coronel, Legendre, and Brendonck (2011). The local eigenvector 
sets thus padded are appended to the regional eigenvectors. One 
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computes the cumulative sum of the eigenvalues in the same order 
as the eigenfunctions are appended. From that procedure, the max-
imum number of local eigenvectors one can obtain is N − Np, where 
N corresponds to the total number of sites in all the patches. That 
number adds to that of the regional eigenvectors to give a great 
maximum of N − 1 spatial eigenvectors. That number is the same as 
the maximum number of eigenvectors not accounting for the spatial 
scale gap associated with the spatial organisation of the patches in 
the landscape. Other examples where such spatial arrangement can 
be observed are lakes in a landscape, islands of an archipelago, coral 
reefs, etc.

Whereas the two illustrative examples presented in the present 
study featured (Hellinger-transformed) species abundances as the 
response data, any dimensionally homogeneous set of response vari-
ables can be used as well. As for multivariate regression, mMCA im-
plicitly uses the Euclidean metric for distances among the sampling 
units. It is possible to alleviate that apparent limitation using principal 
coordinate analysis (PCoA; Gower, 1966; see Legendre & Legendre, 
2012, for a description) in a similar fashion as in distance-based 
Redundancy Analysis Legendre & Anderson, 1999). Using the principal 
coordinates as a set of response variables in mMCA allows one a great 
flexibility in the type of ecological questions that it can address. For 
instance, one can calculate a distance metric incorporating informa-
tion on both species occurrence and phylogeny, and submit it to PCoA 
to obtain principal coordinates. The resulting principal axes can then 
be used as a response variable in mMCA to evidence how ecological 
drivers intervene on biodiversity at a suite of different spatial scales. 
For example, a distance metric can be obtained by using the inverse of 
the phylogenetic (i.e. patristic) distance among species to weight the 
counts of species occurrence in the calculation of the Jaccard index of 
similarity among sites (see Legendre & Legendre, 2012, section 7.2, for 
a description) and then calculating the corresponding distances. Given 
two pairs of sites with the same total species richness and number of 
coincident species, the aforementioned distance metric would place 
species in the pair with the most phylogenetically different species at 
a greater distance from one another than that in the pair with the most 
phylogenetically similar species. Following a similar approach, metrics 
of site dissimilarity can be developed to help answer a broad array of 
questions in ecology and evolution (e.g. assessing taxonomic or func-
tional diversity).

We are hoping to see many application of mMCA in the near 
future given its usefulness to ecologists and environment scientists 
interested in unveiling the role of the naturally-occurring and anthro-
pogenic phenomena structuring the spatial distribution of species 
assemblages and other environmental responses in the landscape. 
The now impressive number of large-scale (and often geographically 
referenced) dataset now being publicly available on the Internet is an 
opportunity to revisit many hypotheses that might have been left un-
tested by previous studies. The method allows researchers to readily 
test hypotheses that could not have been directly tested before, which 
may allow previously overlooked theories about the functioning of na-
ture to emerge.
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