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patterns of trait variation, for instance, phylogenetic 
eigenvector maps (PEM, Guénard et al. 2013, see also 
Diniz-Filho et al. 1998, Garland and Ives 2000, Desdevise 
et al. 2003, Ollier et al. 2006, Pavoine et al. 2008, Hardy 
and Pavoine 2012, Swenson 2014 for related approaches, 
and Diniz-Filho et al. 2015, for further evaluation of PEM’s 
properties in representing processes underlying trait evo-
lution). Phylogenetic eigenvector methods produce sets 
of explanatory variables that have been used in regression 
models to predict species traits like, for instances, toler-
ance to toxic substances (Guénard et al. 2011) or metabolic 
costs (Guénard et al. 2015). Since any phylogenetic eigen-
vector can be regarded as a set of values of an underlying 
phylogenetic eigenfunction, and because we can calculate 
values for given nodes or other points on the phylogeny, 
PEM can be used to make predictions for related species 
that are outside of the model’s training data. Phylogenetic 
modelling provides modellers with a way to optimise 
information use by making a synthesis of the common 
features shared by multiple related species. That synthesis 
allows one to impute unknown species traits from that of 
phylogenetic relatives. It is therefore especially useful in 
cases when information is difficult to obtain or when many 
species are involved.
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Numerical habitat modelling (NHM; also known as species 
distribution models: SDM; Elith and Leathwick 2009) seeks 
to explain and predict the distribution of organisms as a 
function of the environment (Guisan and Zimmermann 
2000, Boisclair 2001, Guisan and Thuiller 2005). Species 
distributions result from the interactions between spe-
cies traits and environmental conditions (Dirnböck and 
Dullinger 2004, McGill et al. 2006). A numerical habitat 
model can be build empirically after surveying the distri-
bution of a species and that of the environmental (abiotic 
and biotic) conditions, exploring the resulting data for the 
presence of relationships. Building habitat models for multi-
ple species classically involves repeating the exercise multiple 
times, each time producing a single model adapted to the 
requirements and particularities of a single species. Since 
life is so diverse (5  3 million species, of which 1.5 million 
species are named; Costello et al. 2013), obtaining habitat 
models for any large number of species quickly becomes an 
impractical endeavour.

Species traits (e.g. physiological, behavioural) are 
structured with respect to phylogeny because they are the 
product of evolution (Felsenstein 1985, Pillar and Duarte 
2010). Methods now exist that allow model builders to 
predict trait values using among-species phylogenetic 
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In this paper, we describe an empirical approach to model community structure using phylogenetic signals. That approach 
combines information about the species (i.e. traits and phylogeny) with information about the habitat (i.e. environmental 
conditions and spatial distribution of sampling sites) and their interactions to predict the species responses (e.g. the local 
densities). As an application, we use the approach to model fish densities in rivers. In the model, the different species and 
size classes were described using a functional trait, body length, and phylogenetic eigenvectors maps whereas the sites 
were described using water velocity, depth, substrate composition, macrophyte cover, degree-days, total phosphorus, and 
spatial eigenvector maps. The model (estimated using a regularised Poisson-family generalised linear modelling approach) 
fitted the data well (likelihood-based R2

adj  0.512) and showed fair predictive power (likelihood-based cross-validation 
R2  0.283) to predict the density of fish pertaining to 48 species totalling 143 combinations of species and size classes 
in 15 unregulated Canadian rivers. Using the model as a baseline to estimate the effect of flow regulation on community 
composition, we found that, with few exceptions, the densities of most fish species were lower in regulated than in unregu-
lated rivers. Phylogenetics have been proposed to study community structure, but this is, to our knowledge, the first time 
phylogenetic information is used explicitly for numerical habitat modelling. We expect that models of that type will be in 
increasing demand now that development projects are routinely assessed through impact studies.
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In addition to directly predicting trait values, PEM can 
be used to model phenomena that are the outcome of com-
plex interactions between species traits and other factors. For 
instance, PEM have been used to model species tolerances of 
multiple species of a phylogeny to multiple organic pesticides 
(Guénard et al. 2014) and heavy metals (Malaj et al. 2016). 
In these studies, descriptors of among-compound variability 
in toxicity (e.g. toxic mode of action) were used alongside 
phylogenetic eigenvectors. Since habitat selection is a behav-
ioural trait associated with the physiological requirements of 
each species and given that we can quantify habitat suitabil-
ity as being a function of environmental variables, numerical 
habitat modelling is another area that may benefit from the 
PEM analytic framework.

Phylogenetically-explicit habitat modelling brings new 
perspectives with respect to producing multiple single species 
models. Rather than modelling single species and repeating 
the exercise for each species of interest, phylogenetic models 
target a group of species using estimated evolutionary inter-
relationships (i.e. the phylogeny). Rather than being the 
direct focus of modelling, columns of species data table are 
seen as a sample representing a larger population of poten-
tial species. Examples of such species may encompass spe-
cies present at the study sites but not sampled for logistic or 
conservation reasons, potentially invasive species that have 
not yet reached the study site, locally extirpated species that 
have been targeted for reintroduction, extinct species, and 
colonising ancestral species. Phylogenetic habitat modelling 
can therefore handle tasks like, for instance, modelling the 
habitat of rare or endangered species, modelling the invasion 
of alien species, exploring habitat restoration scenarios, or 
testing biogeographic colonisation hypotheses.

In the present study we present a framework to develop 
multiple-species, phylogenetically-explicit habitat models. 
As an example, we employed that framework to model the 
habitat of river fish communities. Since fish is a diverse 
group (≈ 32 000 species; Froese and Pauly 2015) that 
has evolved over the last 530 million yr, this application 
scenario will help demonstrate how habitat models can 
be improved by using phylogenetic patterns of habitat 
preference.

Methods

Modelling approach

The modelling approach used in the present study is com-
putationally similar to that described in Guénard et al. 
(2014) for toxicity modelling; it is applied here to the con-
text of habitat modelling. Instead of predicting the tolerance 
of multiple species to a set of toxic substances using their 
chemical descriptors, the model predicts the distribution of 
multiple species in a range of sites using environmental and 
spatial descriptors. At the core of that approach is a bilin-
ear regression model, which is a multivariate model (i.e. a 
model with multiple response variables arranged in a matrix) 
using two tables of descriptors (Gabriel 1998; Fig. 1). In 
the present study, the first table (X) contains descriptors of 
the species (or other target units, for instance combinations 
of species and size classes), which correspond to the rows 

of the response matrix, and will hereafter be referred to as 
the row (or species) descriptors. The second table (Z) con-
tains descriptors of the variation among the sampling sites 
(e.g. rivers, forest, lakes, microcosms), which correspond to 
the columns of the response matrix, and will hereafter be 
referred to as the column (or habitat) descriptors. A bilinear 
model is represented as follows:

Y XBZ ET= +  (1)

where Y  [yi,j] is an n  m matrix (n: number of species, m: 
number of sampling sites) response variables whose elements 
yi,j are the response of species i to the conditions found in 
site j; X  [xi,k] is an n  p design matrix with a constant (all 
ones) column vector followed by p – 1 species descriptors; 
Z  [zj,l] is an m  q design matrix with constant column 
vector followed by the q – 1 site descriptors; B   [bk,l] is a 
p  q matrix of bilinear regression coefficients; E  [ei,j] is 
a matrix of residuals; and T denotes matrix transposition. 
Since the first columns of both X and Z are constant vectors, 
the leftmost column vector of B (bk,1) contains the marginal 
(or main) effects of the species descriptors, the uppermost 
row vector of B (b1,l) contains the marginal effects of the 
site descriptors, while element b1,1, which is the common 
element of the latter two vectors, is the intercept of the 
model. All elements of B other than those of the first row 
and column are interaction terms between species and site 
descriptors. It is noteworthy that a multivariate regression 
is obtained by taking Z as being an identity matrix. Such 
practice amounts to using a design matrix without a con-
stant vector and including as many column descriptors as the 
number of columns in the response matrix Y (q  m). When 
q  m, as is the case for most implementations of bilinear 
models, the latter is more parsimonious than a multivariate 
regression model.

Bilinear models can be easily estimated using readily-avail-
able software packages by first transforming it into ordinary 
(i.e. single-response) equation systems. That transformation 
is achieved using vectorisation (i.e. the operator ⟨⟩, which 
takes a matrix and transforms it into a single column vector 
by stacking its columns) and the Kronecker product (⊗) as 
follows:

Y Z X B E= ⊗( ) +  (2)

The resulting equation system can be solved using linear 
models in the normally-distributed case, using generalised 
linear models GLM in some non-normal cases, or even using 
generalised additive models (GAM; Hastie and Tibshirani 
1990), artificial neural network (ANN; Lek and Guégan 
1999) in the non-linear cases.

Model estimation

We estimated the bilinear regression model using elastic net 
regularisation (Zou and Hastie 2005), to ensure that the 
resulting model was general, rendered dependable predic-
tions, and avoided over-fitting. The method we implemented 
consisted in applying different values of penalty to different 
groups of row and column descriptors and their interactions 
using a factorial design matrix approach described in details 
in the Supplementry material Appendix 1, Details on model 
estimation. It is implemented by estimating a global elastic 
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adjust it using the approach proposed by Ezekiel (1930) as 
follows:

R
nm
nm v

Rlike like
2 21

1
1∗ =

−
−

−( )( )
( )

 (4)

where n is the number of degrees of freedom of the model 
(i.e. the number of non-zero regression coefficients, includ-
ing the intercept). That formula, corresponds to that of the 
adjusted R2 for the equivalent multiple regression model 
outlined in Eq. 2.

Types of predictions

Bilinear models can provide three types of predictions; we 
propose the following nomenclature to refer to them. We 
refer to the case where one makes predictions for unknown 
rows but known columns as ‘row predictions’. It would 
happen, for instance, when predicting the density of some 
species that are not in the training data set for some rivers 
in the training data set. Such predictions would be useful 
when one is interested in predicting the density of an incom-
ing invasive species in the eventuality that it would reach 
the rivers under study. On the other hand, we refer to the 
case where one makes predictions for unknown columns but 
known rows as ‘column predictions’. It would happen, for 
instance, when predicting the density of some species in the 
training data set for some rivers that are not in the training 
data set. For instance, one may be interested in predicting 
the densities of a set of widely-distributed reference species in 
potentially impacted rivers from densities observed in a set of 
reference rivers. Finally, we refer to the case where one makes 
predictions for unknown rows and columns as ‘full predic-
tions’. In the present study, it would happen when predict-
ing the density of some species that are not in the training 
data set for some rivers that are not in the training data set. 
While full predictions are potentially the most useful, they 

net shrinkage between 0 and  ∞ for all the coefficients 
and factors between 0 and 1 for the different groups of 
descriptors.

We proposed that regularisation approach because the 
number of model coefficients of a bilinear model can be 
very large, especially when phylogenetic and spatial eigen-
functions are involved. Most regularisation methods enable 
model to be estimated with large numbers of coefficient, 
possibly outnumbering sample size. Analytically, models 
involving regularisation are also simpler to optimise than 
models involving variable selection (e.g. forward stepwise) 
as the former resort on a continuous process driven by 
continuous variables (i.e. the penalty parameters). Elastic 
net (and lasso) regularisation also enables to effectively 
withdraw variables from a model (i.e. by estimating its 
coefficient to be numerically 0) while conserving their 
influences on other collinear variables that may themselves 
not be effectively deselected from the model. For instance, 
the marginal effect of a variable may be estimated to be 
0 whereas its effect on the interaction terms in which it 
is involved will remain. Besides our choice of the elastic 
net regression, any other dependable method of model 
estimation can be used.

The bilinear habitat model was estimated using a Poisson 
GLM. We therefore proposed a generalised, likelihood-
based, coefficient to assess the model predictive power. It was 
calculated as follows:

R
L L

L Llike
perfect el

perfect null

2 1= −
−
−

log log
log log

mod  (3)

where Lperfect is the likelihood of a saturated model, i.e. one 
predicting the observations exactly, Lnull is the likelihood of 
the null model, i.e. the one involving only the mean of the 
observed values, and Lmodel is the likelihood of the model 
being assessed. For an ordinary least-squares regression 
model (i.e. a Gaussian generalised linear model: GLM), 
the log-likelihood corresponds to the sum of squares and 
therefore log Lperfect always takes the value 0 (no residu-
als). In that particular case, the ratio log Lmodel/log Lnull is 
equal to the ration of the sum of squares around the model 
and around the mean, so that R2

like becomes numerically 
identical to a coefficient of prediction. For other families 
of GLM, log Lperfect will often take values other than 0, 
yet R2

like will nevertheless give an assessment of the predic-
tive power that attributes the value 0 to models that are 
no better than the null model (i.e. which is the mean of 
the observed values) and the value 1 to models predicting 
the response perfectly, while producing negative values for 
very poor models (Fig. 2). The parameters of the penalty 
model (i.e. ca, cl, and cx) were estimated as those maxi-
mising the cross-validation R2

like (i.e. with predicted val-
ues compared to target values from observations that were 
not used to estimate the model) using gradient descent. 
We used the Broyden–Fletcher–Goldfarb–Shanno (BFGS) 
algorithm (see Nocedal and Wright 1999, for a description) 
for that purpose. When Lmodel is calculated using fitted 
rather than predicted values, R2

like is the ordinary R2 and it  
will always grow with the number of observations (i.e. 
Lmodel  Lnull for fitted values). To use R2

like as a determi-
nation rather than a prediction coefficient, we propose to 
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Figure 2. Metric of model performance used in the present study, 
which is 1 minus the ratio of the logarithms of two likelihood 
ratios. The first likelihood ratio is the likelihood of a model predict-
ing the response perfectly compared to that of the model being 
assessed; it is divided by a second likelihood, which is the likelihood 
of a perfect model compared to that of the null model (i.e. with a 
single constant term). The value of the metric is smaller than or 
equal to 1 and will take a negative value when the cross-validated 
model likelihood is below the null likelihood.
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Two types of row descriptors were used (see Supplementary 
material Appendix 1, Data processing, for further details). The 
first type was represented by a single trait, namely the median 
total length of the size class (TL), whereas the second type 
involved 47 phylogenetic eigenfunctions (number of species – 
1, referred to as PE1 through PE47). Also, the model involved 
14 spatial eigenfunctions (number of rivers – 1, referred to as 
SE1 through SE14) as a second type of column descriptors in 
addition to the environmental descriptors mentioned earlier. 
On top of these marginal effects, the bilinear model had 282 
terms representing interactions between the phylogeny (47 
eigenfunctions) and the environmental descriptors, six terms 
representing interactions between fish size and the envi-
ronmental descriptors, 658 terms representing interactions 
between phylogeny and space, and 14 terms representing 
interactions between fish size and space. For the present sce-
nario, interactions between phylogeny and the environment 
allowed the model to assess how evolution shaped the physi-
cal habitat requirements of the species whereas interactions 
between fish size and environment allowed the model to rep-
resent the influence of body size on habitat selection. On the 
other hand, interactions between space and phylogeny allow 
the model to represent potential phylogeographic patterns 
whereby fish evolved as they spread across the landscape after 
the last glacial age, whereas interactions between space and 
fish size allowed the model to represent potential geographic 

are also the most demanding for the bilinear model because 
they represent entirely new information. In the application 
that follows, full predictions were used when estimating the 
parameters of the regularisation model.

Application scenario

As a demonstration of the practical utility of the approach, 
we used phylogenetic habitat modelling to assess the effect 
of flow regulation by hydroelectricity production companies 
on fish species in rivers. That data set, had previously been 
used by Guénard et al. (2016a), who analysed the effect of 
water regulation on total fish density and species richness. 
Here it has been analysed in greater details to describe fish 
community structure in river sampled over a broad geo-
graphic range and make specific predictions for regulated 
sites. For that demonstration, we built a spatially-explicit 
phylogenetic habitat model using data from the 15 unregu-
lated rivers in the Hydronet river data set (Supplementary 
material Appendix 1), including the estimation of the regu-
larisation model parameters by cross-validation. We used 
the resulting model to exemplify potential applications of 
phylogenetic habitat models, by estimating reference densi-
ties for fishes of different sizes in the 13 regulated rivers of 
the data set, in order to detect alterations of fish density and 
community structure that were potentially triggered by flow 
regulation.

Three flow regulation strategies used by hydroelectric-
ity production companies were studied: run of the river 
(abbreviated RR; five rivers), storage (ST; five rivers), and 
flow spiking (FS, also known as ‘hydropeaking’; three  
rivers). A typical RR facility consists of a small reservoir 
(i.e. water storage sufficient for a few days of production) 
from which water flows constantly through either turbines 
or spillways, generally producing little effects (if any) on the 
downstream flow (Bratrich et al. 2004). A typical ST facility 
has a large reservoir (i.e. several months of water storage at 
mean flow), which induces a temporal shift of natural runoff, 
an attenuation of seasonal high flows, and an enhancement 
of low flows. A typical FS facility has a large reservoir like 
that of ST facilities, but implies frequent (sometimes once 
or twice daily), rapid (within minutes) and important 
(many folds) fluctuations of downstream flow caused by the 
operation of dam release structures, which are designed to 
produce power only at times of day when selling electricity  
is the most profitable (Cushman 1985, Flodmark et al. 
2004).

Model data encompassed 143 response variables, each 
of which representing the density of a particular combina-
tion of fish species and size class sampled in the 28 rivers 
(15 unregulated  13 regulated; see Supplementary mate-
rial Appendix 1, Data collected, for further details about the 
Hydronet river data). The combinations of species and size 
classes involved a total of 48 species (Fig. 3) and each species 
was represent by one to nine size classes. The data set also 
included six environmental variables: water depth, z (cm); 
water velocity, v (cm s–1); substrate median grain size, D 50 
(cm); proportion of macrophyte cover, MC (%); number of 
heating degree-days, DD (°C d); and total phosphorus, TP 
(mg l–1).

Figure 3. Phylogeny of the fish species observed in the 28 rivers 
(obtained from Hubert et al. 2008) after removing the species that 
were not observed during the surveys.
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Predictions for regulated rivers

Observed fish densities ranged from 0 (1419 observa-
tions out of 1859, or 76.3%) to 18.5 fish ⋅ (100 m2)–1 
for the regulated rivers and the densities predicted for 
the regulated rivers using information on unregulated 
rivers ranged from 0 to 15.8 fish ⋅ (100 m2)–1. All spe-
cies observed in the unregulated rivers were also present 
in the regulated river and only site predictions were thus 
performed in the present application example. The differ-
ence between observed and predicted fish density ranged 
from –15.8 to 14.5 fish ⋅ (100 m2)–1 (Fig. 5; paired t-tests, 
see Appendix – Assessing the effect of flow regulation for 
details). We found statistically significant effects of flow 
regulation for 17 species out of 48 using paired t tests 
obtained by pooling the different size classes (Table 2). 
Flow regulation was found to have a negative effect on 
the density of most fish species for which an effect was 
detectable (RR: 16/17 species, ST: 11/17 species, FS: 4/17 
species). A notable exception to that general observation 
was a positive effect of ST and FS dams on brook trout  
S. fontinalis densities.

It is noteworthy that environmental variables such as 
flow velocity and water depth may be associated, to some 
some degree, with flow regulation. Such an outcome is suit-
able when assessing the effect of flow regulation in order to 
isolate, as much as possible, that latter effect among that of 
other possible factors contributing to the observed difference 
in fish density.

Discussion

In the present study, we described a modelling approach 
whereby phylogeny, in the form of phylogenetic eigen-
functions, and space, in the form of spatial eigenfunc-
tions, can be used in numerical habitat modelling (NHM) 
to obtain models describing the distribution of multiple 
species (and size classes) in the landscape. We have also 
shown a regularisation method to address the issue of the 
numerous parameters that such a method involves; most 
of which described the interactions of row descriptors with 
column descriptors of the sites-by-species response table. 
Other regularisation methods exist besides elastic net 
regression (e.g. AIC-based variable selection; basis pursuit 
denoising; Dantzig selector, Candes and Tao 2007) and it 
may be worthwhile to investigated their potential useful-
ness for phylogenetic NHM. The implementation of that 
approach was exemplified by modelling the distribution 
of a broad array (48 species) of freshwater fish species in 
a set of rivers covering a broad ( 3400 km) geographic 
range across Canada. Different study have proposed 
methods to use phylogeny to reach various goals such as 
predicting species traits (Bruggeman et al. 2009, Swenson 
2014), testing hypotheses about community structure 
(Ives and Helmus 2011). However, this is the first time, to 
our knowledge, a phylogeny is used explicitly for NHM. 
We preferred to use phylogenetic eigenvectors instead of 
other approaches (Martins and Hansen 1997, Garland 
and Ives 2000) on the basis of its relative simplicity and 

patterns in variation of each trait (e.g. areas in which fish are 
bigger, on average, than in other areas).

The sample size and the number of descriptors in the 
model were large and, in the context of that particular data 
set, it was impractical to perform leave-one-out cross-valida-
tion to calculate predictive power and estimate the parameters 
of the regularisation model. Instead, we defined 12 cross-
validation groups that were combinations of three groups of 
river data (each containing five unregulated rivers) and four 
groups of species data (each with 12 species). We obtained 
the river data groups by picking one river out of three in an 
order going from the westernmost to the easternmost rivers 
whereas the species data groups were obtained by picking 
one species out of four in the order that they appeared in 
the reference phylogenetic tree. We used that systematic data 
selection approach because it helped obtain more repeatable 
estimates of model predictive power compared to using, for 
instance, randomised sub-sampling. Given the relatively 
small number of rivers, this approach helped ensure that the 
sites used to make predictions had neighbouring sites rep-
resenting their area and that the species used for prediction 
had relatives to represent their kind in the model. Also, a 
systematic cross-validation approach helps estimate regulari-
sation parameters (Supplementary material Appendix 1, Eq. 
2) by gradient descent as randomised sub-sampling would 
inevitably introduce noise in the objective function (R2

like) 
and hamper convergence.

Calculations

All calculations other than sequence alignment and tree esti-
mation were performed using the R language for statistical 
computing (R Development Core Team). Package codep 
(Guénard et al. 2010) was used to calculate spatial eigen-
functions, package glmnet (Friedman et al. 2010) was used 
to calculate elastic net regressions, and package ‘MPSEM’ 
(Guénard et al. 2013) was used to calculate phylogenetic 
eigenfunctions.

Data available from the Dryad Digital Repository: 
< http://dx.doi.org/10.5061/dryad.60n52 > (Guénard et al. 
2016b).

Results

Phylogenetic habitat model (unregulated rivers)

Fish density ranged from 0 (1569 observations out of 2 
145, or 73.1%) to 23 fish ⋅ (100 m2)–1 for the unregu-
lated rivers (log Lperfect  –274.81, log Lnull  –1646.18;  
Fig. 2; Lperfect and Lnull are defined in Eq. 3; Fig. 4). The 
estimated values of ca and cl were 0.0435 and –1.066, 
respectively, and the full prediction R2

like of the cross-
validated model was 0.283 during parameter estimation; 
see Table 1, for the other regularisation parameters. The 
R2

like
* (Eq. 4), which is calculated using the fitted values 

of the model, was 0.512, and the fish densities found using 
the model ranged from 1.0 ⋅ 10–5 to 6.4 fish (100 m2)–1  
(Fig. 4c).
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Fish habitat model

In addition to predicting the local densities of multiple fish 
species, we also showed how the predictions obtained from a 
phylogenetic model can be used to assess human impacts on 
ecosystems. Models of that type are in high demand now that 
development projects are routinely assessed through impact 
studies. We calibrated a phylogenetic NHM model using 
fish abundances in a set of 15 unregulated rivers to predict 
abundance in a separate set of 13 regulated rivers. With that 
approach, we showed that flow regulation had a deleterious 
effect on most fish species when analysed individually. The 
fish density model allowed us to highlight the many different 
ways in which fish and sites descriptors act and interact to 
describe fish habitat. More precisely, we were able to detect 
a general density deficit associated with flow regulation for 
many species. We regard that result as interesting since it 
has long been known that many ecological processes within 
rivers depend to a large extent on patterns of flow fluctua-
tion and altering the flow regime is thus expected to affect 

ability to assess interaction between the species and site 
descriptors.
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Figure 4. Different combinations of species and size classes found in 15 unregulated rivers, with (A) the median size of each class, (B) the 
observed fish densities, and (C) the densities fitted by the phylogenetic habitat model.

Table 1. Regularisation parameters used for the phylogenetic habitat 
model and estimated by cross-validation (a, l, and ck,l), their associ-
ated effective penalty (lxk,l) and the number of terms that were not 
discarded during elastic net regression (see Supplementary material 
Appendix 1, Details about model estimation, for details).

Model terms

Type ck,l lxk,l Total Selected % selected

Intercept 0 1.722e-1 1 1 100%
Trait –5.676 1.176e-3 1 0 0%
Phylogeny 2.575 3.200e-1 47 1 2.1%
Environment –3.299 1.226e-2 6 2 33%
Space 1.727 2.924e-1 14 1 7.1%
Trait  Env. 2.885 7.785e-4 6 5 83%
Trait  Space –0.265 5.020e-3 14 10 71%
Phylo.  Env. –0.547 7.548e-2 282 22 7.8%
Phylo.  Space 2.718 3.441e-1 658 1 0.2%
Model a  0.511 l  0.344 1029 43 4.2%
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another descriptor). In the present scenario, the marginal 
effect of fish size, which was the only trait used, was discarded 
by the elastic net regression (i.e. its effect was estimated to 
be non-existent). Consequently, fish size was not found, in 
itself, to be a useful variable to estimate fish density. On 
the other hand, we found a marginal effect of the phylog-
eny, involving PE1; this effect pointed out that, on average, 
species of order Cypriniformes (families Cyprinidae and 
Catostomidae) were ≈ 2.5 times more abundant than the 
other species, while Salmonidae were only half as abundant 
as the other species. A likely explanation for that contrast 
may be that Cypriniformes are generally smaller and have 
a greater propensity for schooling. For the site descriptors, 
the marginal effect of the number of heating degree-days 
DD and that of total phosphorus TP were retained by the 
elastic net procedure. Both variables have positive effects, 
indicating that warmer and more TP-rich rivers had greater 
fish densities. We also found a marginal effect of spatial 
eigenfunction SE1; fish density increasing (by 7.8%) from 
the south-easternmost end (Quebec, New Brunswick) to 
the north-westernmost end (Alberta) of the study area in 
Canada.

Interpreting interactions between descriptors

In addition to the marginal effects of the descriptors, bilin-
ear models like the one used here for phylogenetic modelling 
have interaction terms that are the intersections between the 
variables in the matrices containing the row and column 
descriptors. In the present phylogenetic habitat model, we 
found significant interactions between the fish size trait and 
five environmental descriptors (depth z, water velocity v, 
substrate median grain size D50, heating degree-days DD, 
and macrophyte cover MC). All five descriptors interacted 
negatively with fish size, indicating that greater densities of 
larger fish tended to be encountered in cold water, shallow 
and calm rivers having fine substrate sparsely covered with 
macrophyte. Comparatively, warmer, deeper, more agitated 
rivers having coarser substrate covered with more macro-
phyte harboured, on average, greater densities of smaller 
fish. The interaction term between total phosphorus TP 
and fish size was discarded from the model: fish of any size 
seemed to benefit from high TP in the rivers included in 
the model.

We also found fish size to interact with 10 of the spatial 
eigenfunctions, which together indicated that the larger 
fish were more abundant in specific areas, such as the Saint 
Lawrence lowlands and the western part of the study area 
(Alberta), whereas river communities in the north-eastern 
and central parts of the study area (central Quebec and 
Ontario), were dominated by smaller fish.

Many (22) interactions terms were found between phy-
logenetic eigenfunctions and five of the six environmental 
descriptors (v, D50, DD, TP, and MC). These interactions 
are the consequences of the fact that the numerous features 
underlying the environmental requirements of the fish 
species are the outcome of evolution (see Supplementary 
material Appendix 1, Details on the interactions between 
phylogeny and the environment, for further details about 
these interactions).

organisms living in rivers (Bonner and Wilde 2000, Nilsson 
et al. 2005). Here, we will use these results (Table 1) as an 
opportunity to illustrate the interpretation of model coeffi-
cients or groups of coefficients, as well as some requirements 
and assumptions of phylogenetic habitat modelling.

Interpreting descriptor marginal effects

Bilinear models, like the one used for phylogenetic habitat 
modelling, have an intercept, which is the fitted value of the 
response variables when all row and all column descriptors 
have a value of 0. The intersection between a constant term 
in one of the descriptor matrices (either that of the rows or 
the columns) and a variable in the other descriptor matrix 
(either that of the columns or the rows) are modelling the 
marginal (i.e. main) effects of a given type of descriptor (i.e. 
the effect of a descriptor that is not conditional on that of 

Observed − predicted

K
an

an
as

ki
s 

(P
E

)
W

at
er

to
n 

(S
T

)
M

ag
pi

e 
(P

E
)

M
is

si
ss

ag
i (

P
E

)
K

ia
m

ik
a 

(S
T

)
S

te
−

A
nn

e 
(R

R
)

C
oa

tic
oo

k 
(R

R
)

S
t−

F
ra

nç
oi

s 
(S

T
)

E
tc

he
m

in
 (

R
R

)
D

u 
su

d 
(R

R
)

S
t−

Je
an

 (
R

R
)

D
ee

 (
S

T
)

S
er

pe
nt

in
e 

(S
T

)

L. cornutus
N. stramineus
N. volucellus

N. rubellus
N. heterolepis

P. promelas
P. notatus

N. crysoleucas
S. corporalis

S. atromaculatus
C. plumbeus

Phoxinus. ssp.
R. cataractae

R. atratulus
E. maxillingua

M. macrolepidotum
M. anisurum

C. platyrhynchus
C. commersonii

C. catostomus
L. lota

N. flavus
A. nebulosus

E. lucius
U. limi

P. williamsoni
S. confluentus

S. fontinalis
O. mykiss

S. trutta
S. salar

S. vitreus
P. flavescens
P. copelandi
P. caprodes

E. nigrum − olmstedi
E. exile

E. flabellare
A. rupestris

M. salmoides
M. dolomieu
L. gibbosus
C. cognatus

P. omiscomaycus
C. inconstans
G. aculeatus
F. diaphanus
L. appendix

−15

−10

−5

−2

−1

0

1

2

5

10

15

fish ⋅ (100 m
2) −1

Figure 5. Difference between fish densities observed in the 13 
regulated rivers for different species and size classes (see Fig. 4A for 
their corresponding median total lengths) and the baseline values 
predicted by the model built with information from the unregu-
lated rivers. The differences are represented by colour codes in each 
river: red rectangles represent densities that are above the baseline, 
blue rectangles are densities that are below the baseline, and the 
intensity of the colour represents the absolute value of the differ-
ence. The dams are categorised with respect to three different types 
of flow regulation: run of the river (RR), storage (ST), and flow 
spiking (FS; also known as ‘hydropeaking’).
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dams seem to affect even more species than FS facilities. 
These different conclusions come from the fact that the 
first study analysed total fish density in multiple 300 m2 
sampling sites within each river whereas the present study 
analysed the fish density a species at a time in whole riv-
ers. Hence, the few species that were affected by FS dams 
were observed in large numbers, while many species affected 
by RR and ST dams were only sparsely observed and had 
little impact on total fish density. The analysis performed in 
the present study can therefore be regarded as more sensitive 
than that of Guénard et al. (2016a) to detect the influence 
of flow regulation on fish densities, in addition to providing 
more detailed information about fish community responses 
to flow management.

Conclusion

We have described a powerful habitat modelling approach and 
hope that it will be put in due use when studying the impact 
of environmental changes on communities, which are com-
posed of multiple species with sharing various levels of com-
mon ancestry. The framework we described is flexible and can 
easily be adapted to studies of other groups of organisms, e.g. 
bacteria, birds, evergreen trees, mammals, shrubs, yeast, weeds, 
zooplankton, or multiple taxonomic groups, and to any sce-
nario regardless of the spatial scale of the study. Requirements 
are 1) information about the phylogeny of the organisms and 
traits that are relevant to the particular application; 2) that 
one has suitable descriptors of the environment at the study 
sites; 3) information about spatial variation (i.e. a model of 
spatial relationships among the study sites, based for example 
on the distances of the sampling sites to one another); and 4) 
sufficient sample size. Other types of linear model may also be 
adapted to other types of response variable by using different 
families of GLM. We are hoping that the present study will 
foster greater use of phylogenetic habitat modelling to take up 
further challenges in applied ecology.

Contrary to the many phylogeny environment interac-
tions that we found, a single interaction term was retained 
between phylogeny and space. That term involved the 
first spatial eigenfunction and PE35, and predicted higher  
densities for the blacknose dace and the cutlips min-
now in the eastern portion of the study area, whereas the  
longnose dace was more prominent in the western por-
tion. Environmental differences among the rivers seem to 
be a more relevant driver of the density structure of river 
fish assemblages considered in the present study than geo-
graphic isolation. The model did not detect the expected 
phylogeographic interaction underlying differences between 
the native ranges of the Atlantic salmon Salmo salar, and 
brook trout Salvelinus fontinalis, which are restricted to the 
eastern portion of the study area, and of the rainbow trout 
Oncorhynchus mykiss, and bull trout Salvelinus confluentus, 
which are restricted to the western portion. Had they been 
detected, these range differences would have most likely 
involved a set of phylogenetic eigenfunctions describing 
contrasts among Salmonidae (e.g. PE8, PE16, PE17, PE24, 
and PE41) with SE1, which describes a large-scale ( 3000 
km) gradient spanning the whole study area. The relatively 
small number of study sites (15 over an area larger than 
1.5 million km2) and the importance of the phylogeny  
environment interactions, which were found to be better 
predictors, may explain that absence of significant effect. 
Hence, the model estimation procedure imposed a smaller 
penalty to the phylogeny  environment interaction terms 
(lxphylo,envir.  0.075) than to phylogeny space interactions 
terms (lxphylo,space  0.34; Table 1).

When using the model to predict the expected densi-
ties for the regulated rivers, we found that the fish density 
observed in the regulated rivers were, with very few excep-
tions, lower than those predicted from the unregulated river 
data (Table 2, Fig. 4). That result concurs partially with that 
of Guénard et al. (2016a), who found a negative impact of 
flow regulation by FS dams on total fish density. In contrast 
with that study, however, we found here that RR and ST 

Table 2. Hypothesis tests of the differences between the fish densities observed and predicted in regulated rivers for the different types of flow 
regulation (RR: run of the river, ST: storage, and FS: flow spiking; also known as ‘hydropeaking’), for the species with significant differences 
between observed and predicted densities. Square parentheses: 95% confidence intervals.

Species F-test RR ST FS

Notropis rubellus F3,22  45.24) –0.11 [–0.15, –0.069] –0.060 [–0.10, –0.020] –0.054 [–0.11, –0.0033]
Pimephales promelas F3,22  34.74) –0.16 [–0.237, –0.0837] –0.095 [–0.17, –0.025] –0.061 [–0.16, 0.026]
Notemigonus crysoleucas F3,22  19.24) –0.16 [–0.263, –0.0641] –0.047 [–0.14, 0.041] –0.037 [–0.16, 0.076]
Phoxinus ssp. F3,22  53.54) –0.17 [–0.241, –0.0933] –0.076 [–0.15, –0.0097] –0.041 [–0.13, 0.040]
Moxostoma macrolepidotum F3,22  30.24) –0.14 [–0.191, –0.0859] –0.091 [–0.14, –0.041] –0.075 [–0.14, –0.014]
Moxostoma anisurum F3,22  56.04) –0.17 [–0.235, –0.112] –0.10 [–0.16, –0.045] –0.074 [–0.15, –0.0063]
Catostomus platyrhynchus F3,10  25.62) –0.30 [–0.501, –0.119] –0.16 [–0.34, –0.0017] –0.11 [–0.34, 0.087]
Catostomus catostomus F3,61  35.44) –0.14 [–0.187, –0.0968] –0.080[–0.12, –0.038] –0.068 [–0.12, –0.016]
Lota lota F3,61  22.54) –0.062 [–0.0851, –0.0398] –0.038 [–0.060, –0.016] –0.017 [–0.045, 0.0091]
Noturus flavus F3,22  27.24) –0.094 [–0.138, –0.052] –0.051 [–0.093, –0.010] –0.029 [–0.082, 0.022]
Ameiurus nebulosus F3,22  17.03) –0.12 [–0.179, –0.0578] –0.052 [–0.11, 0.0036] –0.039 [–0.11, 0.031]
Salvelinus fontinalis F3,87  6.141) –0.013 [–0.0582, 0.0310] 0.056 [0.011, 0.10] 0.011 [–0.044, 0.067]
Sander vitreus F3,22  16.83) –0.080 [–0.119, –0.0414] –0.046 [–0.084, –0.0090] –0.023 [–0.071, 0.023]
Ambloplites rupestris F3,48  25.64) –0.064 [–0.0888, –0.0403] –0.030 [–0.054, –0.0070] –0.021 [–0.051, 0.0079]
Micropterus salmoides F3,22  25.54) –0.065 [–0.102, –0.0298] –0.027 [–0.062, 0.0072] –0.014 [–0.058, 0.030]
Percopsis omiscomaycus F3,22  20.64) –0.094 [–0.147, –0.0438] –0.032 [–0.081, 0.016] 0.0044 [–0.058, 0.067]
Lethenteron appendix F3,35  26.84) –0.048 [–0.0686, –0.0271] –0.020 [–0.040, 2.20 e-05] –0.013 [–0.039, 0.013]
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