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Field sampling

During the summer months (late June – early September) of the years 2011 − 2013, the
Hydronet research group (hereafter simply referred to as “Hydronet”) surveyed 28 rivers (15
unregulated and 13 regulated) located in four Canadian provinces (New-Brunswick, Quebec,
Ontario, and Alberta). Each river was sampled at multiple locations hereafter referred to
as the sampling sites. Sampling sites had 300 m2 surface area (5 m across by 60 m along the
river) and were positioned in alternation (site width was often substantially narrower than
river sections), near the left shore (facing downstream), in the middle, and near the right
shore of the river, starting randomly, while ensuring that the habitat within them was fairly
homogeneous. Locations of the beginning and end of each sampling site were recorded using
a GPS unit (GPSMAP® 76sc: Garmin International Inc. 1200 E. 151st Street, Olathe, KS
66062, USA).

Fish sampling consisted in electrofishing (using an LR24® Backpack electrofisher:
Smith-Root Inc., 14014 NE. Salmon Creek Ave., Vancouver, WA 98686, USA; electroshock-
ing duration per site: 900 s; mean power: 200 W) and snorkelling surveys performed during
daytime hours (between 0830 and 1800). These two sampling methods were used in tan-
dem to minimise the bias associated with because each of these methods shows selectivity
toward catching fish of particular species and size classes (Macnaughton et al., 2014). Sam-
pling with both methods involved zigzagging in the upstream direction to cover the whole
sampling area. Fish were identified to species or else to the nearest taxonomic level that elec-
trofishers or snorkelers could discriminate visually. Electrofishing was performed by teams
of three fishers: one operating the electrofisher and two catching the electroshocked fish with
dip nets 38 mm long × 33 mm wide × 20 mm deep, mesh size: 6.35 mm (Smith-Root Inc.).
Fish were identified, measured (Total length, TL ±0.1 cm), allowed to recover in cool aerated
water, and released at the location where they had been captured. Visual observations were
performed by teams composed of two trained snorkelers. Fish with total lengths > 3 cm (fish
with total lengths < 3 cm could not be identified reliably by snorkelers) were categorised into
size classes, with the first class going from 3 to 5 cm (median size approximately 4 cm), and
then in classes 5 cm apart (median sizes: 7.5 cm, 12.5 cm, 17.5 cm, etc.).

Descriptors of the local physical environment that are often regarded as key drivers
shaping community structure were estimated in the sampling sites (Knouft et al., 2011;
Michel and Knouft, 2014). We estimated water depth (z, in cm, measured using a graduated
pole) and velocity (v, in cm s−1; Flo-Mate 2000: Marsh-McBirney Inc., 4539 Metropolitan
Court Frederick, MD 21704-9452, USA), substrate median grain size (D50, in cm), and the
proportion of macrophyte cover (MC, in %) in ten 50 cm × 50 cm plots randomly dispatched
within each sampling site (Wolman, 1954; Latulippe et al., 2001). Water temperatures was
measured in the field using HOBO UA-002-62 logging thermometers (precision: ±0.5°C;
Onset Computer Corp., 470 MacArthur Blvd., Bourne, MA 02532, USA; 3-10 devices /
river). Devices were deployed in riffle, run, or shallow pool habitats and set to record
water temperature at 15 min intervals for at least 9 weeks. We used the number of heating
degree-days (DD, in °C d) as an environmental descriptor, which we estimated as the sum of
mean daily water temperatures above 0°C for a period of nine weeks encompassing the four
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weeks preceding the hottest week of the summer, and the four weeks following it (between
late-May to late-September). During the low summer flows and on days without rain, we
took between one and nine water samples in the main stream of the rivers. These samples
were collected in 250 mL acid-washed, high-density polyethylene bottles (Nalgene®, Nalge
Nunc International Corporation), kept at 4 °C, and shipped to the University of Alberta’s
Biogeochemical Laboratory for analysis. Total phosphorus (TP , in µg L−1) was determined
using persulfate oxidation (Ng, 2010). For each river, individual TP values that differed by
15 standard deviations or less from the river mean were retained; we took the average of the
latter as the total phosphorus for the whole river.

Data processing

In the present study, we used fish density (fish (100 m2)−1) by species and size class as
the response variable of the phylogenetic habitat model. To obtain a species × location
response matrix that was not overly sparse (i.e. did not contain too many zeros) as well
as to facilitate computations, modelling was performed on the basis of whole rivers. For
each river, values of z, v, D50, and MC were averaged. Mean densities for whole rivers
were estimated separately for each combination of species and size class using Generalised
Linear Models (GLM: Hastie and Pregibon, 1991; Poisson distributed) fitted with the values
of depth, velocity and substrate grain size for each sampling site as descriptors. We took
the fitted values of each GLM (one per river for each combination of species and size-class),
estimated for the average environmental conditions observed in the river, as the mean fish
density. Species and size class combinations that were not observed in a given river were
assumed to be absent from that river and assigned a density value of 0 fish (100 m2)−1.

For any given species, we discarded all size classes for which no fish was observed, and
merged the size classes for which fish were present in two rivers or less. Size class merging
was performed by coalescing size classes with insufficient numbers of observations with an
adjacent size class. When two adjacent size classes were present on either side of the class
with low number of observations, the one with the smallest number of observations was
chosen. The mean size of the newly formed size class was taken as the mean of their median
sizes weighted by their respective numbers of observations. Size class merging stopped when
all those remaining had been observed in two rivers or more. The species represented by a
single size class that were present in only one river were discarded.

We used the phylogeny published by Hubert et al. (2008), which was estimated using
K2P distances (Kimura, 1980) calculated from a standard 652 base pairs «bar code» region
of the Cytochrome Oxydase subunit I (COI) mitochondrial gene. That tree was used to
calculate Phylogenetic eigenvector maps (PEM; Guénard et al., 2013). PEM required a
tree tip for every combination of species and size class. Therefore, every single tree tip
representing species with more than one size class was merged into a star tree having branch
lengths of 0 and as many tips as the species had size classes. Since the merged star tree
had branch lengths of 0, the number of phylogenetic eigenvectors with non-zero eigenvalues
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obtained from the approach remain one minus the number of species, with each eigenvector
defined for all the species and size classes; they are, however, invariant across observations
involving the same species.

We used spatial eigenvector maps (SEM; Borcard and Legendre, 2002; Dray et al.,
2006; Diniz-Filho et al., 2013; Legendre and Legendre 2012, Chapter 14) to model patterns of
spatial variation among the rivers and account for spatial auto-correlation (Legendre, 1993;
Dormann et al., 2007). These eigenfunctions were calculated from the geodesic distances
among rivers.

In the present study, the design matrix X contained the species descriptors, which
included the median standard length of the fish in each size class as a species trait in addition
to the PEM descriptors that represented the among-species phylogenetic patterns of trait
variation. It is noteworthy that, in the model, variation among species and size classes was
explained in part by the median fish size and the PEM, because fish of different species
had different median sizes, on average, but within-species variation was only associated
to variation in the median fish size, because PEM were constant across size classes for a
given species. The design matrix Z of site descriptors included environmental variables and
the spatial eigenfunctions. Since two types of row descriptors were used with two types
of column descriptors, there were eight types of bilinear model terms. Among them, four
were modelling main effects acting alone in the model: 1) the traits, 2) the phylogeny
(PEM), 3) the environment, 4) space (spatial eigenvectors). There were also four second-
order interaction terms: 1) trait-environment, 2) trait-space, 3) phylogeny-environment,
4) phylogeny-space. Therefore the first two columns of matrix R represent the different
types of row descriptors, namely trait (fish total length; column 1) and phylogeny (PEM;
column 2), the next two columns represent the column descriptors, namely environment (z,
v, D50,MC, DD, and TP ; column 3) and space (SEM; column 4), and the last four columns
of R represent their interactions (column 5: trait ∧ environment, column 6: trait ∧ space,
column 7: phylogeny ∧ environment, and column 8: phylogeny ∧ space). We fitted the
model using a Poisson-distributed Generalized Linear Model (GLM).

Details on model estimation

To ensure that the resulting model was general, rendered dependable predictions, and avoided
over-fitting, we regularised the bilinear regression model using elastic net regularisation (Zou
and Hastie, 2005), which is a combination of the Least Absolute Shrinkage and Selection
Operator (LASSO; Tibshirani, 1996; the L1 regularisation norm) and Tikhonov regularisa-
tion (Tikhonov and Arsenin, 1977, the latter being also known as ridge regression; the L2
regularisation norm). That method involves estimating matrix B as the solution minimising
an objective function f involving size of the (standardised) regression coefficients as follows:

fα,λ,ξ(y;x, z|β) =
n∑
i=1

m∑
j=1

ε2
i,j + λ

p∑
k=1

q∑
l=1

ξk,l

(
α|βk,l|+

(1− α)
2 |βk,l|2

)
(1)
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where α is a parameter varying between 0 and 1, which controls the relative importance of the
regularisation norms, λ is the average penalty of all the descriptors (0 ≤ λ <∞), and ξk,l are
penalty factors specific to particular terms of the model, βk,l are the standardised regression
coefficients, and εi,j are the residuals of the regression model. Therefore, any variable with
λξk,l > 0 (the minimum value) experiences an effective shrinkage of its contribution to the
model. In that framework, parameter λ controls the average amount of shrinkage for all
the regression coefficients whereas parameters ξk,l allows one to attribute greater shrinkage
to certain groups of regression coefficients with respect to others. That feature can be
exploited for the purpose of maximising the predictive power. We estimated α, λ, and ξk,l
using embedded models estimated by cross-validation as those maximising the predictive
power of the models. Parameters α and λ were estimated as constants cα = logitα and
cλ = log λ, respectively, to ease optimisation (since the domain of cα and cλ need not be
bounded), whereas parameters ξk,l were estimated through a logistic model with a factorial
design that was defined as follows:

R[cξ] = [logit ξk,l], (2)

where R is a binary design matrix with (p·q−1) rows, each of them representing the columns
of Z ⊗ X, with the exception of the model intercept (the first column), which is assigned
a constant penalty factor of 0.5, and (r + 1) (s + 1) − 1 columns, where r is the number of
types of row descriptors and s is the number of types of column descriptors, while [cξ] is a
column vector of the regularisation model coefficients. It is noteworthy that following Eq.2,
penalty values are equal for all the variables involved in the same model term. We chose
a logistic rather than a linear model to represent the penalty factors because constraining
the penalty factors between 0 and 1 avoids interference with the estimation of cλ during
the optimisation process. The columns of matrix R represent the different types of row
descriptors, column descriptors, as well as their interactions. Elements in each column of R
take the value 1 whenever the descriptor is involved in the type of descriptor it represents,
or their interactions, and 0 otherwise.

For phylogenetic habitat modelling, there will be at least one type of each of the row
and column descriptors (i.e. r = 1 and s = 1), namely a set of variables representing the
phylogeny, and a set of variables representing the environment. In the simplest scenarios,
matrix R will therefore have three columns: one that represents the marginal effect of the
phylogeny, one that represents the marginal effect of the environment, and a third represent-
ing the interaction between phylogeny and the environment. In such a scenario, rows of R
corresponding to the columns of Z⊗X representing the marginal effect of the the phylogeny
will take the value 1 in the first column of R and 0 elsewhere. On the other hand, rows of R
corresponding to the columns of Z⊗X representing the phylogeny-environment interaction
will also take the value 1 in the first column of R, but also in the second, which represents
the environment, and in the third column, which represents the phylogeny-environment in-
teraction, thereby allowing the penalties applied to the marginal effects of phylogeny and
environment to be non-additive with that applied to their interactions. In practice, it may
be useful to use traits alongside the variables describing the phylogeny as row descriptors
and variables describing spatial variation alongside environmental variables as column de-
scriptors.
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Assessing the effect of flow regulation

We assessed the effect of flow regulation on fish density by subtracting the predicted fish
density values by species and size classes, obtained using the unregulated river model, from
the fish densities observed at the sampling sites. The density differences thus obtained were
negative when the model predicted higher densities than that observed in the field; positive
values were obtained for observed densities that were higher than those predicted. Prior to
further analysis, we log(x + 1)-transformed these density differences on the basis of their
absolute values while conserving their signs as follows:

xtransfromed = sign(xoriginal) log(|xoriginal|+ 1), (3)
where xoriginal and xtransformed are the original and transformed differences in fish density,
respectively, and function sign(x) returns −1 when x < 0, 0 when x = 0, and 1 when
x > 0. The necessity for that transformation was consequential to the fact that a Poisson
distribution was assumed for modelling. It was used to mitigate over-dispersion and avoid
conclusions driven only by a few extreme values.

Data collected

A total of 989 sites were sampled in the 28 rivers but because of malfunctioning equipment
during field sampling, information about water velocity was not available for 48 sites located
on four rivers (St-Jean: 17 sites, Elbow: 12, Kananaskis: 10, and Petit-Saguenay: 9); these
sites were thus discarded, leaving us with 941 usable sites for modelling. Mean river environ-
mental conditions and species densities were calculated using numbers of sites ranging from
16 (in Petit-Saguenay) to 50 (in Au saumon and Bécancour). Water depth was left-skewed
and was log-transformed before further treatment as were water velocity and substrate grain
size; both were log(x + 1)-transformed because values of 0 were present. Water depth (z)
ranged 25.8–55.1 cm (mean= 36.82 cm), v ranged 0.07–0.59 m s−1 (mean= 0.296 m s−1), D50
ranged from 0.29 to 38.68 cm (7.057 cm),MC ranged from 0 to 21%, DD ranged from 367 to
1540 °Cd, and TP ranged from 1.00 to 3.42µg L−1 among the rivers. A total of 244 combina-
tions of species and size classes, involving 61 species, were observed in at least one of the 28
rivers. After merging the sparsely observed size classes, 143 combinations of species and size
classes, involving 48 species, were retained (see Fig. 1 in the main text). On average, each
species was represented by 2.6 size classes, with numbers ranging from one (six species) to
nine (one species: the white sucker, Catostomus commersoni). The characteristic (median)
sizes of these classes ranged from 4.0 to 42.5 cm (mean: 9.50 cm). The sample size (n p) for
the present application scenario was 2145 observations (143 combinations of species and size
class sampled in the 15 unregulated rivers).
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Details on the interactions between phylogeny and the
environment

We found a total of 22 interactions terms between phylogenetic eigenfunctions and five
of the six environmental descriptors (v, D50, DD, TP , and MC). Mean current velocity
interacted with one phylogenetic eigenfunction (PE36) and described the Common shiner
(Luxilus cornutus), the Bluntnose (Pimephales notatus), and the Fathead (P. promelas)
minnows as being more abundant in rivers with faster current than are the eastern shin-
ers (i.e. species of genus Notropis). Substrate grain size interacted with five phylogenetic
eigenfunctions (PE12, PE17, PE27, PE30, and PE36); their overall effect indicated that, in
the family Cyprinidae, riffle daces (i.e. the Longnose dace, Rhinichthys cataractae, and the
Blacknose dace, R. atralutus) tended to be more abundant in rivers with coarser substrate
than the average, while the Fallfish (Semotilus corporalis), the Bluntnose and fathead (genus
Pimephales) minnows, the eastern shiners, and the Golden shiner (Notemigonus crysoleucas)
tended to be abundant in rivers with finer substrate. Temperature interacted with three phy-
logenetic eigenfunctions (PE17, PE19, and PE35), their overall contributions indicating that
the White sucker (Catostomus commersoni), the redhorses (i.e. the Silver redhorse, Moxos-
toma anisurum, and the Shorthead redhorse, M. macrolepidotum), the Lake chub (Couesius
plumbeus), and the Creek chub (Semotilus atromaculatus) were observed in greater densities
in cold environments whereas the Longnose dace, the Fallfish, the White sucker, the Brown
bullhead (Ameiurus nebulosus), and the Stonecat (Noturus flavus) were denser in warmer
environments. Total phosphorus interacted with a total of 11 phylogenetic eigenfunctions
and their combined effects were associated to a wide range of differential species responses
to TP , which we enumerate as follows:

1. The complex formed of the Johnny darter and the Tessellated darter (Etheostoma
olmstedi nigrum - E. olmstedi; these species could not be discriminated by phylogenetic
analysis) is found in higher densities in high TP environments, while the Fantail darter
(E. flabellare) is denser in lower TP environments. Two phylogenetic eigenfunctions
were involved in that interaction: PE33 and PE42.

2. Among the Percidae, the Walleye (Sander vitreus) appears to be favoured in high TP
conditions whereas the Yellow perch (Perca flavescens) and two roughbelly darters
(Genus Percina: the Common logperch, P. crapodes, and the Channel darter, P.
copelandi) were denser in lower TP environments. PE23 and PE45 were involved
in that interaction.

3. Among the eastern shiners, the Sand shiner (Notropis stramineus) is more prevalent
in high TP in comparison with the Mimic shiner (N. volucellus). PE44 was involved
here.

4. In genus Semotilus, higher TP is concomitant with higher densities of the Fallfish
compared to the Creek chub and the Lake chub. PE17 and PE22 were behind that
interaction.
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5. The riffle daces and the Cutlips minnow (Exoglossum maxillingua; the effect was de-
scribed by PE29) as well as the Fathead minnow (the effect was, this time, associated
with PE30 and PE40) seem to find high TP environments more favourable than the
other Cyprinids.

6. Among the Catostomidae, the White sucker are found to be denser in high TP environ-
ments while the Longnose (Catostomus catostomus) and Mountain (C. platyrhynchus)
suckers as well as the redhorses appear to be denser in rivers with lower TP . Here,
PE19 and PE45 were involved.

Macrophyte cover interacted with three phylogenetic eigenfunctions; their combined effects
described the riffle daces, the Cutlips minnow, the Golden shiner, and the Fathead minnow as
being found in higher densities in rivers with low MC, compared to the eastern shiners, the
Common shiner (Luxilus cornutus), the Fallfish and the Bluntnose minnow, which had higher
densities in rivers with higher MC. These examples illustrate the capacity of the method
described in this paper to represent, in a single model, many details about the habitat
requirements of many species, using knowledge of their common evolutionary history, and
how these factors drive community structure.

Analysis data and script

The raw data and analysis script used for the exemplary scenario are available online at
http://dx.doi.org/10.5061/dryad.60n52.
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Tables

Table 1: Bilinear model coefficients estimated by the elastic net procedure.
Int. TL PE1 PE12 PE17 PE19 PE22 PE23 PE27

Int. -3.58 — -8.79 — — — — — —
log z — -0.0193 — — — — — — —
log(v + 1) — -0.0837 — — — — — — —
log(D50 + 1) — -0.0158 — -1.11 0.107 — — — 0.72
DD 0.00131 -4.4e-05 — — 0.000964 0.000785 — — —
log TP 1.79 — — — 0.725 0.95 0.441 0.987 —
MC — -0.0242 — 0.395 — — — — —
SE1 0.313 -0.0316 — — — — — — —
SE2 — 0.103 — — — — — — —
SE3 — -0.0777 — — — — — — —
SE4 — 0.0238 — — — — — — —
SE7 — -0.00938 — — — — — — —
SE8 — 0.102 — — — — — — —
SE11 — -0.00975 — — — — — — —
SE12 — 0.0272 — — — — — — —
SE13 — 0.0679 — — — — — — —
SE14 — -0.0182 — — — — — — —

PE29 PE30 PE33 PE35 PE36 PE40 PE42 PE44 PE45
Int. — — — — — — — — —
log z — — — — — — — — —
log(v + 1) — — — — 4.8 — — — —
log(D50 + 1) — 0.127 — — 0.318 — — — —
DD — — — -0.000554 — — — — —
log TP -0.224 0.0298 -2.5 — — -0.295 0.256 0.624 -0.165
MC — — — — — -0.105 — — —
SE1 — — — 1.91 — — — — —
SE2 — — — — — — — — —
SE3 — — — — — — — — —
SE4 — — — — — — — — —
SE7 — — — — — — — — —
SE8 — — — — — — — — —
SE11 — — — — — — — — —
SE12 — — — — — — — — —
SE13 — — — — — — — — —
SE14 — — — — — — — — —
Int.: intercept, TL: total length (cm), PEx:xth phylogenetic eigenvector, z: depth (cm),
v: velocity (cm s−1), D50:median grain size (cm), DD: cumulative number of degree-day
(°C d), TP : total phosphorus (µg L−1), MC: percent macrophyte cover (%), SEx:xth spatial
eigenvector, —: placeholder for coefficients estimated to numerically 0; all logarithms are
base e
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