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GUILLAUME GUÉNARD,1,2,5 PETER CARSTEN VON DER OHE,3 DICK DE ZWART,4 PIERRE LEGENDRE,2 AND SOVAN LEK
1
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Abstract. Tolerance to toxic substances is a characteristic of an organism that determines
whether it is able to withstand the concentrations occurring in its environment. The
measurement of tolerance is therefore of fundamental importance when assessing the impact
of anthropogenic chemicals on ecosystems and ecological communities. Although an
appreciable amount of information on species tolerance to chemicals has been collected
through the last 50 years, substantial gaps remain in our knowledge of tolerance relative to the
diversity of organisms inhabiting aquatic ecosystems and the great and increasing number of
chemicals released in these ecosystems. Within that context, methods allowing one to reliably
and accurately estimate a species’ tolerance using other known characteristics would be valuable.
In the present study we introduce an approach that uses phylogeny to estimate the tolerance of a
species using that of a set of other species related to the focus species at different phylogenetic
scales. We estimated phylogenies from molecular data (DNA sequences) or inferred them from
taxonomy. Up to 83% of the among-species variation in tolerance (log-transformed median
lethal concentration over 96 hours; LC50) was found to be phylogenetically structured and was
therefore usable for making predictions. The ability of phylogenetic models to produce accurate
estimates of species tolerances is apparently related to the availability of information within
species groups and the variation in pesticide tolerance within these groups. Toxicity models
integrating phylogeny therefore appear suitable to assist in risk assessment.

Key words: aquatic organisms; molecular characters; pesticides; phylogenetic eigenfunctions; phyloge-
netic model; phylogeny; risk assessment; tolerance.

INTRODUCTION

Tolerance to toxic substances is a trait that determines

the ability of organisms to withstand the level of

pollutants occurring in their environment and is thus

central to assessing the effects of toxicity on biodiversity

(e.g., the calculation of species sensitivity distributions;

von der Ohe and Liess 2004, Postuma et al. 2002).

Tolerance is commonly approximated using bioassays,

which are controlled experiments where individuals are

exposed, for a given amount of time, to different

concentrations of a substance or a mixture of substances

and an effect is observed on a portion of the population

(e.g., death of 50% of the population over 48 h of

exposure, or inhibition of reproduction for 90% of the

population after 96 h of exposure). While being a useful

trait for ecotoxicologists, estimating tolerance is costly

(several thousands U.S. dollars needed per estimate),

logistically challenging (lots of laboratory space and

personnel must be mobilized), and sometimes impossible

for all important species since specimens need to be

raised in captivity or collected alive in nature. There are

many substances known to be hazardous to organisms

in the environment. The challenge faced by ecotoxicol-

ogists is to provide reliable estimates of tolerance for as

many species–substance combinations as possible. This

task is extremely difficult given the ever-increasing

number of potentially hazardous compounds that are

introduced each year and the often broad variety of

organisms inhabiting the ecosystems affected by anthro-

pogenic releases. It is therefore of interest to find

alternatives to the exhaustive testing of species–sub-

stance combinations. Methods allowing the estimation

of tolerance using other features of organisms—for

instance, trait values (e.g., morphological, physiological,

biochemical and/or ecological traits) and/or their

phylogeny with respect to other species having known
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tolerance—may represent such alternatives. Here we

consider methods for predicting tolerance using a

statistical modeling approach based on phylogeny.

Tolerance is the result of multiple subordinate traits

related to the uptake of pollutants by the organisms,

their metabolism (e.g., transport, accumulation, seques-

tration, activation/inactivation), and excretion. Depen-

dence on a wide array of such subordinate traits may

generate character correlation and (positive or negative)

phylogenetic autocorrelation. Modeling approaches can

take advantage of these correlations to estimate

tolerance, lessening the complexity associated with the

numerous toxic substances and species co-occurring in

the environment. Character correlation occurs when the

phenotype value of a given trait is correlated with that of

another trait as a consequence of, for instance, their

common reliance on similar subordinate traits influ-

enced by genetic (e.g., pleiotropy, linkage disequilibri-

um) or environmental (e.g., correlational selection;

Lande and Arnold 1983) processes. The presence of

character correlation implies that the value of a trait that

is hard to measure can be, to some extent, estimated

from that of a trait that is more easily obtained. That

approach was used by Baird and Van den Brink (2007)

to estimate tolerance (the median lethal concentration:

the concentration that kills 50% of individuals of a

population over a specified amount of time, LC50) using

species’ traits related to morphology, life history,

physiology and feeding ecology. The second trait

property, phylogenetic autocorrelation, implies that trait

values show dependence with respect to species’

positions in a phylogeny and may occur over multiple

scales. Positive phylogenetic autocorrelation implies that

closely related species share more similar trait values in

comparison to more distant ones, as a consequence of

evolution proceeding slowly by means of a series of

small steps, over a long time period (Diniz-Filho et al.

1998, Blomberg et al. 2003, Buchwalter et al. 2008).

Positive autocorrelation shows up as large-scale struc-

tures in phylogenetic trait signals. These large-scale

structures are characterized by large differences between

species pairs from different high-order taxonomic

groups and small differences between species pairs from

the same high-order taxonomic groups. However,

closely related species can vary markedly in individual

traits as a result of differentiation among parent species

(e.g., interspecific competition; Svanbäck and Bolnick

2007). By contrast, negative phylogenetic autocorrela-

tion implies that closely related species have more

dissimilar trait values than more distant species.

Negative autocorrelation appears as small-scale struc-

tures in phylogenetic trait signals. These small-scale

structures are characterized by large differences occur-

ring between closely related species pairs (e.g., from the

same low-order taxonomic groups) and small differences

occurring between loosely related species pairs. As for

character correlation, the phylogenetic autocorrelation

of a trait such as tolerance may be attributed to

subordinate traits, thereby reducing or enhancing its

rate of change depending on the level of nonadditivity of
the effects of those subordinate traits on higher-order

traits. Hence, the effect of a change in a given
subordinate trait may be dampened by that of other,

more conserved, subordinate traits (leading to small
differences among closely related species) whereas a
change of a similar magnitude, but on a different

subordinate trait, may have exacerbating effects (leading
to substantial differences among closely related species).

Phylogenetic autocorrelation was found to reliably
describe the extinction threat to amphibians (Corey

and Waite 2008) and the bioaccumulation of cadmium
in insects (Buchwalter et al. 2008) and of trace elements

in fish (Jeffree et al. 2010). However, and in spite of their
anticipated relevance, predictive modeling approaches

based on phylogenetic autocorrelation remain sparse.
The purpose of our present study is to develop a

statistical modeling approach for making predictions of
species’ tolerances to toxic substances based on infor-

mation available from other species and their common
phylogeny, which can be obtained using different

methods. We achieved this by providing assessments of
(1) the fraction of variation in the tolerance of a set of

species to toxic substances that can be modeled by
phylogeny and of (2) the predictive power of tolerance
models based on phylogeny. Considering the wide range

of information and techniques now available to recon-
struct the evolutionary relatedness of species, phyloge-

netic modeling of species tolerance may represent a
critical step towards the improvement of toxicity

assessment. The same approach could also be used to
compute predictive models for any other species traits

that exhibit phylogenetic autocorrelation.

METHODS

Data sources and selection

We used a database of concentrations associated with

different toxicological endpoints and effects for various
substances, aquatic species, and exposure times (de
Zwart 2002). That database has been compiled from

three sources: (1) AQUIRE (USEPA 1984) from U.S.
Environmental Protection Agency, Mid-Continent Ecol-

ogy Division, (2) a compilation of pesticide toxicity
made by the Centre for Substances and Risk Assessment

(Netherlands National Institute of Public Health and
the Environment; Crommentuijn et al. 1997, Tomlin

1997), and (3) another compilation of pesticide toxicity
offered by the U.S. Environmental Protection Agency,

Office of Pesticides Programs, Ecological Effects
Branch. From that database we selected data of lethal

concentration (LC50) after 96 hours while excluding all
entries with inequality indications (i.e., greater than or

smaller than). We selected that particular endpoint–
effect combination in order to obtain the greatest
number of substance–species combinations (7170 com-

binations over 8848 entries, with 1731 substances and
759 species involved). When multiple test values were
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found for one substance, quality checks such as water

solubility were employed to eliminate odd data entries

(e.g., unit transformation errors). If values differed by

more than a factor of 30 from the closest one in a group

of at least two other references, we discarded the

aberrant value in order to remove outliers from the

data set. Of all the remaining values for a given

substance, we took the geometric mean as the valid

experimental value. The remaining selection procedure

aimed at obtaining the largest set of species whose effect

concentrations were available for as many substances as

possible with no missing information. To obtain that

species-by-compound table we first classified species and

chemicals by decreasing order of number of effect

concentrations available and investigated the topmost

elements of the resulting lists.

Obtaining phylogenies

Phylogenies can either be estimated using suitable

characters, or obtained from the literature. A wide

variety of phylogenetic inference methods now exists

(e.g., maximum-parsimony, distance-based, maximum-

likelihood, spectral, or Bayesian methods), whereas

abundant, and rapidly increasing, information about

molecular (DNA) characters is being made available on

the Internet through organizations such as the U.S.

National Center for Biotechnology Information (NCBI;

available online).6 Phylogenies can also be found within

the molecular taxonomy literature or from the Tree of

Life project (ToL; Maddison et al. 2007). Our method-

ology can be used with any of these sources of

phylogenetic information as long as they are considered

reliable and accurate.

We used two different approaches to obtain phylog-

enies in the present study. The first involved the

estimation of a tree from DNA sequences using a

maximum-likelihood approach (Felsenstein 1981, Fel-

senstein and Churchill 1996; analysis was performed

using the software EMBOSS version 6.1.0–5 [Rice et al.

2000]). To do so, we obtained DNA sequences from

NCBI’s Nucleotide database which consisted, whenever

available, of the entire mitochondrial genome as well as

nuclear DNA sequences for 28S, 18S, and 5.8S

ribosomal RNA transcripts and their internal tran-

scribed spacers (ITS 1 and ITS 2). Then, we performed

multiple sequence alignment on each gene separately

using the computer program MUSCLE (version 3.7;

Edgar 2004). Finally, we concatenated these aligned

sequences into a super alignment of genes before

estimating the tree. The resulting tree was used to assess

the ability of phylogenetic autocorrelation to describe

the tolerance of a set of species to multiple pesticides.

The second approach involved constructing a tree

from information on taxonomic classification. For that

purpose, we gathered information on a maximum of 19

taxonomic ranks from the ToL project for each species.

Species with no available information for a given rank

were assigned a generic taxon for that rank. We

constructed the tree topology implied by the hierarchical

structure of taxonomy and placed all taxa of a given

rank at the same distance from the root.

Although the construction of a species tree from

taxonomy may be the only solution available in the

absence of suitable molecular information, readers must

be warned that there are many situations in which these

trees may not accurately represent the phylogeny. For
instance, trees constructed from the taxonomy of species

covering a wide range of high-order taxa may be

congruent with molecular phylogenetics trees in term

of their tree topology while their adequacy in represent-

ing branch lengths may remain questionable. The

quality of a tree constructed from the taxonomy of

species covering a narrower range of low-order taxa

would be questionable both in terms of topology and

branch lengths. As is the case for modeling methods in

general, the modeling approach described herein as-

sumes that the explanatory factor that is provided (i.e.,

the phylogeny), and on which it depends, is correct. In
most practical situations, trees estimated from molecular

phylogenetic methods should therefore be preferred over

trees constructed using taxonomic classification.

Constructing a phylogenetically explicit model

We represented the structures of phylogenetic signals

using eigenfunctions derived from a phylogenetic tree, a

method also known as ‘‘phylogenetic eigenvectors

regression’’ (PVR; Desdevises et al. 2003, Diniz-Filho

et al. 1998; Diniz-Filho et al. (1998) used only the first

few eigenfunctions obtained by principal-coordinate
analysis (PCoA) to represent the phylogeny, whereas

Desdevises et al. (2003) used all eigenfunctions, as in the

method described in the present paper). These eigen-

functions were computed from the phylogenetic covari-

ance matrix W whose elements wi, j correspond to the

length of path leading from the root of the tree to the

first common ancestor of species i and j. The eigenvalues

and eigenvectors associated with W after double

centering were obtained by solving the equation

X ¼ QWQ ¼ UDkU>

Q ¼ In �
1

n
1n1>n ð1Þ

where U is a matrix whose columns are eigenvectors,

diagonal matrix Dk is a diagonal matrix of eigenvalues,

Q is a centering matrix calculated from an n3 n identity

matrix In and a vector of n 1’s 1n; n is the number of

species and superscript > denotes matrix transposition.

As consequences of the symmetry of W and its centering

prior to eigenvalue decomposition, n� 1 nonzero and

mutually orthogonal unit vectors are obtained, defining

an orthonormal basis against which trait variance can be

decomposed with respect to phylogeny in a multiple-6 hhttp://www.ncbi.nlm.nih.gov/i
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scale fashion (Fig. 1). That approach is similar to a

principal coordinate analysis based on a similarity

matrix (Gower 1966).

In the models developed in the present study, the

response variable y is a vector whose elements are

experimental LC50 values for a given species and

compound. This variable was regressed against a design

matrix X involving two factors and their interaction.

The first factor describes the fraction of LC50 variability

that is associated strictly with mean toxicity of each

compound for all the species involved in the model and

was represented using Helmert orthogonal contrast

variables. Each instance of a given compound was

represented in the design matrix X by its scores on the

contrast variables. The number of such contrast

variables in the design matrix was m � 1, where m is

the number of compounds considered. The second

factor describes the LC50 variability that is associated

strictly with the mean susceptibility of species for all the

compounds involved in the model. It was represented in

the design matrix using the species scores on each of the

n� 1 eigenvectors obtained from Eq. 1, the scores of any

given species being repeated for each compound. The

interaction term between the two factors describes the

LC50 variability that is not accounted for simply by

adding the mean toxicity of compounds with the mean

susceptibility of species, thereby allowing the model to

represent cases where different compounds affect the

species within the phylogeny in different ways. That

interaction term was represented in the design matrix by

the set of all possible (m � 1) 3 (n � 1) element-wise

multiplication of any Helmert contrast variable describ-

ing mean compound toxicity with any variable describ-

ing species susceptibility at a particular phylogenetic

scale from their position in the phylogeny. The design

matrix included a column of 1’s to allow the estimation

of the intercept of the model.

In order to avoid over-fitting, a column subset of the

design matrix was selected when constructing the

models. We obtained that subset by first including the

factor representing the compounds (i.e., the intercept

and Helmert contrasts) and then performing a forward-

stepwise selection, using F tests, of the variables

representing phylogeny and the interactions between

compounds and phylogeny. Family-wise (corrected) P

values of the inference tests performed for the stepwise

addition of variables were obtained using the sequential

Bonferroni procedure (Holm 1979). Finally, proportions

of variation associated with the compounds, the

phylogeny, and the compound–phylogeny interactions

were estimated as their respective adjusted coefficients of

determination. That approach is meant to provide a

column subset XS of the design matrix X that best fitted

the response variable while avoiding over-fitting. It does

not, however, allow one to make predictions of LC50

values for additional species.

FIG. 1. Example illustrating the approach for modeling trait values using phylogeny. We start with trait values (vector y, mean
trait value), which are known for species A–D and are estimated for species X–Z using phylogenetic information on all seven
species. (A) The phylogenetic information is used to estimate a tree. (B) Phylogenetic covariance matrices (among species A–D, W;
and between species X–Z and A–D,Wnþk) are obtained from the tree. (C) These matrices are in turn used to obtain the species score
matrices U (by eigenvalue decomposition after row and column centering on means where u1, u2, and u3 are column vectors in the
matrix; open circles) and S (by projection on the eigenfunctions defined for species A–D; solid circles). (D) Score matrixU is used to
estimate the parameters bj of any given eigenfunctions j in a linear model. The linear model is finally used to estimate trait values ŷi,
of species i, for which the trait is unknown, from its scores si, j.
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Making predictions

The approach to make predictions for additional

species involves four steps. Firstly, the positions of the

new species in the phylogenetic tree have to be taken

from a previous analysis or estimated. In the case that

the position has to be estimated, the new species must be

added to the established phylogenetic tree (i.e., the one

used to calculate W) without modifying the topology

and branch lengths of the subset tree for the original

species. Warning should be made here that redoing/

repeating phylogenetic analysis with one or more

additional species often results in the alteration of the

original subset tree. Under these circumstances, the

orthonormal basis must be recalculated and any model

based on it rebuilt. We avoided this issue by including in

the phylogenetic analysis, from the beginning, the

species for which predictions were to be made; it was

then possible to select the subset tree of the n species

with known response variable to estimate the phyloge-

netic model, and then use the positions of the remaining

q species to make predictions. Secondly, a q 3 n matrix

Wnþk whose elements wnþk, j are the lengths of the paths

leading from the root of the tree to the first common

ancestor of a new species k and a species j within the

model, is calculated. Thirdly, the projection scores Snþk
of the new species on the n� 1 eigenfunctions underlying

the eigenvectors in U are obtained following Gower’s

approach for adding new observations in an existing

principal coordinate analysis, by rearranging Eq. 1 and

performing a partial substitution of matrix W by Wnþk
(Gower 1969; also Fig. 1C: solid circles):

Snþk ¼ Wnþk �
1

n
ð1q1>n WþWnþk1n1>n Þ

�

þ 1

n2
1q1>n W1n1>n

�
UD�1

k : ð2Þ

Finally, the last step involves using the scores of the

new species as explanatory variables to calculate predic-

tions. Note that using scores obtained from species found

to be outside the originally established phylogeny to make

predictions involves extrapolation beyond the known

range of phylogenetic variation of traits and should thus

be avoided. Besides those involving phylogenetic eigen-

functions, other approaches (based, for instance, on

generalized least-squares regression or autoregression)

have been proposed to test for phylogenetic signals (e.g.,

Blomberg et al. 2003, Zheng et al. 2009) and to estimate

trait values (e.g., Martins and Hansen 1997, Garland and

Ives 2000, Rohlf 2001, Bokma 2008).

Constructing phylogenetic models

through cross-validation

The previously described framework provides the

possibility of using cross-validation as an alternative to

forward stepwise multiple regression to obtain a

phylogenetically explicit predictive model. Cross-valida-

tion allows a straightforward assessment of the ability of

the approach to make predictions for new species while

avoiding the issue of over-fitting the model. Such an

approach involves (1) removing one species at a time

from an original data set, (2) calculating linear model

coefficients (b) using the remaining species, (3) predict-

ing the value of the response from the removed species,

and (4) reiterating the first three steps for every species.

In that case, linear coefficients (b) and standardized

linear coefficients (b) of the relationship between the

response variable y (LC50 in the present study) and the

eigenvectors describing phylogeny (U) are calculated as:

b ¼ U>½yi � ȳ�

b ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½yi � ȳ�>½yi � ȳ�

q U>½yi � ȳ� ð3Þ

where yi is the trait value for a given species i, ȳ is the

mean trait value, and y is one of the response variables,

and the predicted values of the response variable (ypred)

are obtained from

ypred ¼ ȳþ Snþkb: ð4Þ

Since the observed values of the response variable are

not involved in the calculation of their respective

predictions, that approach has the advantage of

conserving the independence of the observed and

predicted values under the null hypothesis that the

response is unrelated to phylogeny. Although that

approach allows the use of every single eigenfunction

in the models, it does not, however, guarantee that all of

them are relevant for making predictions. A simple

method to obtain more generalizable models is to

truncate the vector of linear coefficients b by assigning

0 to its elements that are associated with square

standardized linear coefficients (b2) that are below a

threshold chosen to minimize the mean squared error of

the model (the mean of the squared differences between

predicted and observed values), thereby filtering out

irrelevant eigenfunctions. The cross-validation proce-

dure was illustrated by selecting LC50 values (96 h) for

the pesticide carbaryl on all available species in the

database and constructing a tree representing their

phylogeny from information on their taxonomy.

Comparing observed with predicted tolerance

The comparison of observed and predicted tolerance

values was performed at two levels. Firstly, a global

comparison of these values was made through the

examination of the confidence intervals of the slope and

intercept of a linear regression line with observed values

on the ordinates and predicted values on the abscissa

using log10-transformed LC50 values on a molecular

basis. Secondly, a comparison was performed at the

observation level by calculating the deviation factor d of

a species i as

di ¼
10ðypred i�yobs iÞ � 1 if ypred i � yobs i

1� 10ðyobs i�ypred iÞ � 1 if ypred i , yobs i

�
ð5Þ
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where yobs are the observed values and ypred are those

predicted by the model, both on a log10 scale. The
deviation factor is the number of times tolerance is

overestimated (positive values) or underestimated (neg-

ative values) by the model. For example, a value close to

0 means that the tolerance observed for a species is in
close agreement with that predicted by the phylogenetic

model. Similarly, a value ofþ10 means that the tolerance

observed for a species is 10 times lower than that
predicted by the model while a value of �2 means that

the tolerance observed for a species is twice as high as

that predicted by the model.

All calculations and statistical analyses were per-
formed using the R language and environment (version

2.10.1; R Development Core Team 2010). Database

queries were done using package RMySQL (version 0.7-

4; James and DebRoy 2009) and phylogenetic analyses
with package ape (version 2.4-1; Paradis et al. 2004).

RESULTS

Data mining

The best data set that we found involved the pesticides
malathion (CAS: 121-75-5), DDT (CAS: 50-29-3),

lindane (CAS: 58-89-9), and carbaryl (CAS: 63-25-2),

and 25 aquatic animal species, including 20 bony fish, 3
crustacean, and 2 insect species (see Appendix: Table A1

for details). We built a first model (hereafter referred as

model 1) using these data. In order to study the response

of models to a varying number of substances with respect

to species, we assembled three additional data sets by

adding chemical substances, which resulted in a subse-

quent reduction in the number of species. We obtained

the first additional data set by adding parathion (CAS:

56-38-2; 18 species: 13 fishes, 3 crustaceans, and 2 insects),

the second data set by further adding dieldrin (CAS: 60-

57-1; 14 species: 10 fishes, 3 crustaceans, and 1 insect),

and the third data set by further adding rotenone (CAS:

83-79-4) and toxaphene (CAS:8001-35-2; 11 species: 9

fishes, 1 crustacean, and 1 insect). The three additional

models built from these data sets are hereafter referred as

models 2, 3, and 4, respectively.

DNA sequences were available for 23 of the 25 species

and the most widespread were those for the cytochrome

oxydase subunit 1 (COX1; 19 species) and the mito-

chondrial large (21 species) and small (18 species)

ribosomal RNA subunits (see Appendix: Table A2 for

details). On average, 20.56 of the 44 sequences were

available at a specific level (range, 5–44). We completed

that set of sequences by borrowing sequences from other

species within the same genus (2.08 sequences on

average) or family (3.16 sequences on average), while

an average of 18.2 sequences remained missing. The

resulting super alignment included from 3246 to 24 433

base pairs (median, 16 503 base pairs).

Phylogenetic analysis

The tree obtained from DNA sequences placed most

species within their known taxonomic group (Fig. 2).

FIG. 2. The model for the 25 aquatic species for the pesticides carbaryl, malathion, DDT, and lindane. Open circles and solid
circles represent the observed and fitted values, respectively. For the full species names, see Results: Phylogenetic analysis. LC50 is
the lethal concentration that kills 50% of individuals of a population over a specific amount of time.
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The tree was rooted at the separation between arthro-

pods and (bony) fish. The first separation on the

arthropod subtree occurred between crustaceans and

insects, and the second for crustaceans at the subordinal

level between eucarids (the speckled shrimp, Metape-

naeus monoceros) and peracarids (represented by orders

isospoda, Asellus brevicaudus, and Amphipoda, Gam-

marus lacustris). On the fish subtree, the first separation

occurred between ostariophysians and the remaining

two teleost suborders, i.e., Protacanthopterygii and

Acanthopterygii. Within the ostariophysians the sepa-

ration first occurred at the ordinal level between

cypriniforms and siluriforms, each represented by a

single family (Cyprinidae and Ictaluridae, respectively).

The second separation on the fish subtree occurred

between protacanthopterygians, which is represented by

the the family Salmonidae (order Salmoniformes), and

acanthopterygians. On the salmonids subtree, the first

separation occurred between genus Oncorhynchus (rain-

bow trout and coho salmon) and genera Salmo (brown

trout) and Salvelinus (brook trout and lake trout), with

the second separation occurring between the latter

genera. Discrepancies of the constructed phylogeny with

respect to taxonomy occurred on the acanthopterygians

subtree. First, the striped bass (Morone saxatilis, family

Moronidae) and spotted snakehead (Channa punctatus,

family Channidae) separated from other species of order

perciformes rather than the species from order Cypri-

nodontiformes (both family Poeciliidae: the mosquito-

fish, Gambusia affinis and the guppy, Poecilia reticulata),

as expected by taxonomy. Cyprinodontiformes species

remained clustered within perciforms up to the sub-

ordinal level where they separate from the Mozambique

tilapia (Oreochromis mossambicus, family Cichlidae).

Following taxonomy, the striped bass and spotted

snakehead were expected separate from other perciforms

at the subordinal level. These apparent discrepancies

may outline the limit of the current DNA data set for

reconstructing the phylogeny of these species; we

explored their possible impact on the modeling ap-

proach herein described by recalculating model 1 using a

tree obtained from taxonomy (hereafter referred to as

‘‘model 1T’’).

Phylogenetic models of tolerance

The models describing LC50 variability among pesti-

cides (where ‘‘LC50’’ means lethal concentration for 50%
of the population over a specified period) and as a

function of species’ phylogenetic structure explained

from 61% (model 3) to 85% (model 1, Fig. 2) of the

observed variation in tolerance to pesticides (Table 1).

By comparison, a model using the mean LC50 of all

TABLE 1. Statistical test results associated with the phylogenetic models describing among-pesticides and among-species variation
of LC50 (96 h), and their associated coefficient of multiple determination (R2) and adjusted coefficients of multiple determination
(R2

adj).

Factor F df

P

R2

R2
adj

Test-wise Family-wise
Individual
factor All factors

Model 1: 4 pesticides, 25 species

Pesticide 129.407 3 ,0.0001 0.602 0.590 0.847
Phylogeny 23.815 5 ,0.0001 ,0.0001 0.185 0.141 0.000
Interaction 16.558 3 ,0.0001 ,0.0001 0.077 0.048 0.000
Residual 88 0.136

Model 2: 5 species, 18 pesticides

Pesticide 33.489 4 ,0.0001 0.478 0.453 0.683
Phylogeny 18.429 3 ,0.0001 ,0.0001 0.197 0.169 0.000
Interaction 10.169 1 0.002 0.03 0.036 0.025 0.000
Residual 81 0.289

Model 3: 6 pesticides, 14 species

Pesticide 22.222 5 ,0.0001 0.520 0.489 0.612
Phylogeny 12.070 1 0.0009 0.006 0.056 0.045 0.000
Interaction 14.470 1 0.0003 0.003 0.068 0.056 0.000
Residual 76 0.356

Model 4: 8 pesticides, 11 species

Pesticide 26.296 7 ,0.0001 0.562 0.524 0.734
Phylogeny 18.460 1 ,0.0001 0.002 0.056 0.045 0.734
Interaction 16.314 3 ,0.0001 ,0.0001 0.150 0.119 0.734
Residual 76 0.232

Model 1T: 4 pesticides, 25 species�
Pesticide 102.061 3 ,0.0001 0.602 0.590 0.805
Phylogeny 24.485 3 ,0.0001 ,0.0001 0.144 0.117 0.805
Interaction 13.013 3 ,0.0001 ,0.0001 0.077 0.048 0.805
Residual 90 0.177

� The additional model 1T corresponds to model 1 but was constructed on a phylogeny obtained from taxonomy rather than
from molecular characters.
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organisms for each of the pesticides (i.e., factor

pesticide) only explained from 45% (model 2) to 49%
(model 1) of that variability. The addition of phyloge-

netic information thus represents improvements ranging

from 12% (model 3) to 26% (model 1) of the total LC50

variability, with phylogeny explaining from 24% (model

3) to 63% (model 1) of LC50 variability within pesticides.

Model 1T slightly differed from model 1, but led to

similar conclusions.

We found 67 species whose LC50 values (96 h) for

pesticide carbaryl were available to illustrate the cross-

validation procedure. These species included 35 fish, 18

crustaceans, 8 insects, 4 mollusks, 1 amphibian, and 1

annelid. We estimated the b2 threshold for the trunca-

tion of the vector of linear coefficients graphically as

0.00052 from a plot of cross-validated mean standard

error obtained by repeating the calculations for thresh-

olds ranging from 0 (all eigenfunctions retained) to 0.015

(the expected b2 if all 67 eigenfunctions were equally

relevant) in steps of 0.00001. The resulting cross-

validated models explain 83% of the observed variation

of the log10 LC50 for carbaryl among these species

(adjusted R2; Fig. 3). The regression slope (1.06; 95%
confidence limits 0.94 and 1.18) and intercept (�0.01;
95% CL �0.15, 0.13) of the relationship between

predicted and observed value was consistent with those

of a 1:1 relationship and are not suggestive of a

substantial prediction bias by the approach. Its ability

to predict LC50 accurately within taxonomic group

differed among high-order taxonomic groups, with the

model representing from only 13% (P . 0.05) of log10
LC50 variability among mollusk species up to 81% (P¼
0.001) of that among insects species (fish, 40% and P ,

0.0001; crustaceans, 68% and P , 0.0001). The median

deviation factor was 0.09 (range�46 to 10), and ranged

from �1.84 (mollusks) to 0.57 (insects) to 0.11 (crusta-

ceans) to 0.05 (fish) among the four groups with more

than one representative species (Fig. 4). Overall,

predictions for 64 out of 67 species (95.5%) had a

deviation factor between �10 and þ10 whereas a

deviation factor between �1 and þ1 was obtained for

41 (61.2%) species. The fish was the group whose

tolerance was the most accurately represented by the

models (median absolute deviation factor: 0.70), fol-

lowed by crustaceans (0.94), insects (1.10), and mollusks

(2.37).

DISCUSSION

The approach herein described exemplifies how

phylogeny could be used to predict tolerance to

pesticides and other chemical substances. In spite of

the relatively modest number of representative species

available, the results of our present study suggest that

the phylogenetic structuring of tolerance, quantified in

terms of LC50, accounted for almost one fourth to

almost two thirds of the residual variation within sets of

4–8 pesticides. When cross-validated against a single

pesticide, carbaryl, the phylogenetic prediction ap-

proach provided good estimates of observed LC50 values

taken from published laboratory studies, using a

reasonable amount of empirical information. Given

the ever-increasing availability of molecular informa-

tion, more particularly in the form of DNA sequences,

these results highlight an opportunity to stretch our

current usage of the existing tolerance data through

phylogenetic-based estimation for species of unknown

tolerances. The phylogenetic modeling framework de-

veloped in the present study seems, at least under certain

circumstances, robust to discrepancies in its prediction

basis (i.e., the phylogenetic tree), as illustrated by

similarity of the results obtained by model 1 and model

1T, which was based on taxonomy. The robustness of

phylogenetic models towards misspecified phylogenies

has also been recently demonstrated for the phylogenetic

generalized least-squares regression, another method to

construct phylogenetic models (Stone 2011).

The approach we used was, in part, borrowed from

that of the phylogenetic comparative method, whose

purpose is to study the relationships between traits by

means of comparisons across species, while correcting

for their respective phylogenetic autocorrelation. In our

present study the fraction of trait variation that is

organized with respect to phylogeny is exploited for

making predictions. We ought to mention here that

autocorrelation implies the violation of the assumption

of independence of observations and may thus affect the

outcome of statistical tests. It has been recognized that

phylogenetic autocorrelation may render invalid the

statistical tests of correlation between species traits

(Feldsenstein 1985). This represents a serious shortcom-

FIG. 3. Relationship between predicted and observed
log10(LC50) for carbaryl. The regression line is solid black;
confidence limits of the slope are solid gray; the 1:1 line is the
dashed line.
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FIG. 4. (A) Deviation factor, i.e., the number of times tolerance is over- or underestimated by the phylogenetic model
(overestimation, positive values; underestimation, negative values). Symbol key: open circle, absolute value . 10; shaded circle, 1 ,
absolute value , 10; solid circle, absolute value , 1. (B) The LC50 values with respect to their taxonomy. Symbol key: open circle,
observed values; solid circle, predicted values. Species abbreviations key: for superphylum, Lopho¼ Lophotrochozoa; for phylum,
An¼Annelida, Moll¼Mollusca; for class, Gas¼Gastropoda, Bi¼Bivalvia, Am¼Amphibia; for subclass, Or¼Orthogastropoda,
Ba ¼ Basommatophora; for superorder, En ¼ Endopterygota, Exopteri ¼ Exopterygota, Proacantho ¼ Protacanthopterygii; for
order, Amphipo ¼ Amphipoda, Is ¼ Isopoda, Co ¼ Coleoptera, Di ¼ Diptera, He ¼ Hemiptera, Pleco ¼ Plecoptera, Cy ¼
Cyprinodontiformes, Salmonifo¼ Salmoniformes, Silu¼ Siluriformes; and for family, Am¼Ampullariidae, Me¼Melanopsidae,
Gamma ¼Gammaridae, Po ¼ Pontoporeiidae, Camb ¼ Cambaridae, Pal ¼ Palaemonidae, Pe ¼ Penaeidae, Ne ¼Nepidae, No ¼
Notonectidae, Pt ¼ Pteronarcyidae, Pr ¼ Perlidae, Pn ¼ Perlodidae, Os ¼ Osphronemidae, Ci ¼ Cichlidae, Pc ¼ Percidae, Te
¼Terapontidae, Cent ¼ Centrarchidae, Mo ¼ Moronidae, Ch ¼ Channidae, Cl ¼ Clariidae, He ¼ Heteropneustidae, Ic ¼
Ictaluridae).
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ing that sometimes fails to be addressed when using

character correlation for predicting tolerance from other

species’ traits (e.g., Baird and Van den Brink 2007). As a

potential solution, a model may use a phylogeny in

conjunction with auxiliary traits related to tolerance to

pesticides, possibly enhancing the capacity of the

former. When constructing models involving auxiliary

traits, however, one has to keep in mind that any trait

used as an explanatory variable may itself be phyloge-

netically autocorrelated. For example, body size has

been shown to be related to a wide range of physiolog-

ical and ecological attributes (Peters 1983) and may

affect tolerance as well. However, the magnitude of

body size is heavily structured by phylogeny at large

scale and body size may also vary markedly, but within

similar orders of magnitude, at smaller phylogenetic

scales (e.g., within a family). Since both the tolerance

and body size may be driven by the same phylogenetic

structures, the parameters (intercept and slope) of a

regression involving these traits are likely to be biased

FIG. 4. Continued.
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and not representative of the general relationship

between them. A general solution when integrating

auxiliary traits in models is to use phylogenetic

eigenfunctions, which correspond to the eigenfunctions

selected for the phylogenetic model, as co-variables

when estimating the relationship between the response

(i.e., tolerance) and the auxiliary trait (e.g., body mass).

Using phylogeny in that manner allows one to partial-

out the phylogenetic components of the variation of

these species traits before using them as explanatory

variables. For instance, body size sometimes varies

greatly during the ontogeny of organisms such as

aquatic animals, and therefore is irrespective of their

phylogeny. Hence, if tolerance to a given pollutant is

related with body size, and one builds a model using

many individuals of different sizes to represent each

species, an important portion of the variation observed

for tolerance cannot be represented using a phylogeny,

but will be suitably accounted for by body size. In such a

situation, a model involving body size as an auxiliary

trait would explain a greater portion of the variation in

tolerance than one involving phylogeny alone.

The ability of a phylogenetic model to make reliable

predictions for a given taxonomic group may not only

depend on the number of representative species involved

in its construction, but also on the structure of the trait

variation along the tree used to represent the phylogeny.

For instance, 81% of the variability in the tolerance to

carbaryl among insect species was explained by the

phylogeny. The relatively good accuracy of the model

for predicting the tolerance of insect species to carbaryl

is driven by the small tolerance of the four plecopteran

species (mean LC50¼0.020 lmol/L) compared to that of

hemipterans (mean LC50¼ 1.75 lmol/L). Moreover, the

large-scale component of the phylogenetic tolerance

signal did accurately predict the tolerance of the only

amphibian species (the Indian bullfrog; Hoplobatrachus

tigerinus) to carbaryl from that of the other vertebrate

species (fish). On the other hand, the poor performance

of the model at predicting the tolerance among mollusks

is seemingly the consequence of its inability to predict

the greater tolerance of the Atlantic rangia (Rangia

cuneata), the only bivalve species available, with respect

to the other three gastropod species. These examples

illustrate the two main requirements of the phylogenetic

approach to accurately model the value of a trait such as

tolerance: the accuracy of the method is dependent both

on the degree of the phylogenetic autocorrelation of the

trait (i.e., how much of the trait value is inherited from

ancestral species) and the adequacy of the sampling (i.e.,

the number of members within taxonomic groups

among which large differences in trait value are

observed or expected). For instance, a phylogenetic

model is expected to be inaccurate at evidencing very

sensitive or tolerant species pertaining to a highly

variable and poorly sampled genus. To this end, it is

noteworthy that phylogenetic models cannot predict

instances where outstandingly resistant populations

arise by natural selection, such as resistance to pesticides

(Ferro 1993, Nandula 2010) or cases of populations

living in heavily polluted environments and showing

high tolerance to local pollutants (e.g., Nacci et al.

2010). In these cases, a phylogenetic model can

nevertheless be useful as a baseline to qualify organisms

as resistant or sensitive when their observed tolerances

are higher or lower than predicted by the model,

respectively. Also noteworthy is the fact that the

approach described in our present study carries the

assumption, which is common among statistical model-

ing methods, that the set of species under study forms a

representative sample of a larger group of species for

which we want to estimate tolerance (i.e., the statistical

population). In some groups, the tolerance of ubiquitous

species occurring close to—and/or bearing economical

value for—humans, may be better studied than that of

rare species. Hence, a model involving a sample of

exceptionally tolerant (or sensitive) species will consis-

tently overestimate (or underestimate) the tolerance of

species for whom tolerance data are not available.

Besides its direct application for predicting a single

toxicological effect and endpoint, the approach de-

scribed in our present study remains applicable in a

multiple-effects or multiple-endpoints model frame-

work. Here we will suggest two approaches by which it

can be achieved, although others may be applicable. The

first possibility would be to use multivariate regression

of a species 3 effect or species 3 endpoints response

matrix instead of a single response vector as used in the

present study. Such a relatively simple approach allows

one to obtain several models describing the different

effects and/or endpoints at once. The second, more

elaborate possibility would be to combine the informa-

tion on many different endpoints for a given species and

calculate metrics describing their relationships to one

another (e.g., the log ratio between concentration for

observing effects x, y, z and LC50, over the same amount

of time), or with respect to a common tolerance baseline,

and then applying multivariate regression to the

resulting species 3 metrics response matrix. For both

approaches, it would be possible to further the analysis

of the results obtained by subjecting their resulting

multivariate fitted and residual values to principal-

components analysis. The combination of these two

methods, multivariate regression and principal-compo-

nents analysis, is known in community ecology as

redundancy analysis (Rao 1964, Legendre and Legendre

1998).

Although the phylogenetic-eigenfunctions approach

considered in our present study relies on known

chemicals for which toxicity was assessed empirically

from bioassays, its flexible nature also allows it to be

transposed to other frameworks based, for instance, on

toxic modes of action (TMoA) or quantitative struc-

ture–activity relationships (QSAR; Russom et al. 1997,

Schultz et al. 2003, von der Ohe et al. 2005, de Roode et

al. 2006, Ajmani et al. 2009). TMoA refers to the
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metabolic function that is the most adversely disturbed

by a given chemical and most readily leads to the

observed effect on the whole organism. Hence, different

TMoA can be used as levels of a linear-model factor,

with individual chemicals acting through the same mode

nested within its respective level (i.e., its respective mode

of action). Models thus obtained could provide insight

on how the sensitivity towards particular TMoA is

structured into phylogeny and which groups are the

most or the least susceptible, etc. QSAR models seek to

predict the biological activity of a compound from

descriptors of its chemical structure. Since biological

activity may vary among organisms as a consequence of

their particular biochemical traits, it is conceivable that

including phylogenetic eigenfunctions as a new set of

parameters in QSAR models may improve their ability

to predict the impact of new compounds on organisms

from a given set of taxonomic groups. If such an

approach proves successful, it would provide environ-

mental protection agencies with more dependable tools

to more readily screen across the growing list of

emerging industrial compounds. Furthermore, organ-

ism-specific QSAR may benefit the chemical industry by

providing insights on the theoretical innocuousness of

compounds under development on the organisms that

would specifically be exposed to it.
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26:329–358.

Rice, P., I. Longden, and A. Bleasby. 2000. EMBOSS: the
European molecular biology open software suite. Trends in
Genetics 16:276–277.

Russom, C. L., S. P. Bradbury, S. J. Broderius, D. E.
Hammermeister, and R. A. Drummond. 1997. Predicting
modes of toxic action from chemical structure: acute toxicity
in the fathead minnow (Pimephales promelas). Environmental
Toxicology and Chemistry 16:948–967.

Schultz, T. W., M. T. D. Cronin, and T. I. Netzeva. 2003. The
present status of QSAR in toxicology. Journal of Molecular
Structure THEOCHEM 622:23–38.

Stone, E. A. 2011. Why the phylogenetic regression appears
robust to tree misspecification. Systematic Biology 60:245–
260.
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APPENDIX

Two tables containing the log10-transformed LC50 values used in the study and the information about the DNA sequences used
to estimate phylogeny (Ecological Archives A021-142-A1).
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Appendix A. Two tables containing the log10-transformed LC50 values of used in the study and the 

information about the the DNA sequences used to estimate phylogeny.
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Table A1. Values of log10{LC50 (μmol∙L-1)} obtained from the database for eight pesticides and 

available to build the models. When more than a single value was available, the number of averaged 

values is indicated in parenthesis and the standard deviation is shown.

Species Carbaryl DDT Lindane Malathion  Parathion Dieldrin Rotenone Toxaphene

Asellus 

brevicaudatus3

0.110
± 0.033 

(2)
-1.954 -1.464 0.958

0.589
± 0.275 (2) 

-1.882

Carassius auratus4
1.868

± 0.051 
(2)

-1.413
± 0.097 

(3)
-0.346

1.204
± 0.306 (2)

0.798 -2.326 0.100 -1.471

Channa punctatus1 1.660
± 0.11 (6)

-0.849
± 0.376 

(2)

-0.858
± 0.194 

(2)

0.845
± 0.126 (7)

-1.356*

Cyprinus Carpio
1.117

± 0.104 
(6)

-1.954
-0.336
± 0.173 

(2)

1.183
± 0.219 (3)

0.465 0.197 -1.317 -2.049

Gambusia affinis
1.521

± 0.678 
(2)

-1.223
± 0.128 

(4)

0.150
± 0.221 

(4)
-0.218

0.443
± 0.402 (2)

-1.089 -1.365
-1.514

± 0.201 (4)

Gammarus lacustris -1.100
-2.079
± 0.477 

(2)
-0.782 -2.309

-1.639
± 0.282 (2)

0.173
± 0.091 

(2)
0.819 -1.202

Heteropneustes  

fossilis2

1.994
± 0.006 

(2)
0.914 0.266

1.605
± 0.126 (5)

1.951

Ameiurus melas1 1.997
-1.600
± 0.275 

(2)
-0.657 1.592 -0.006* -1.853*

Ictalurus punctatus4
1.842

± 0.053 
(2)

-1.449
± 0.121 

(6)

-0.315
± 0.505 

(2)

1.450
± 0.016 (2)

0.959 -1.928
-1.665

± 0.516 (2)
-2.099

± 0.382 (3)

Lepomis cyanellus4 1.746 -2.109 -0.545 -0.276 0.504 -1.788 -0.447 -1.503

Lepomis 

macrochirus4

1.275
± 0.142 

(6)

-1.986
± 0.119 

(12)

-0.775
± 0.09 (5)

-0.644
± 0.108 (3)

-0.420
± 0.664 (2)

-1.886
± 0.131 

(4)

-0.913
± 0.324 (3)

-1.981
± 0.118 (6)

Metapenaeus  

monoceros3

-0.922
± 0.015 

(3)
-0.792 -1.723 0.530 0.573 -1.007

Micropterus  

salmoides4
1.502

-2.444
± 0.107 

(3)
-0.958 -0.064 0.328 -2.037 -0.444 -2.316

Morone saxatilis3
0.637

± 0.060 
(2)

-2.831 -1.600
-1.192

± 0.108 (4)
-1.214 -1.286

-1.929*
± 0.044 (2)
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Species Carbaryl DDT Lindane Malathion  Parathion Dieldrin Rotenone Toxaphene

Oncorhynchus 

kisutch1

1.072
± 0.262 

(2)

-1.728
± 0.226 

(2)
-1.102

-0.192
± 0.096 (2)

-0.804* -1.714*

Oncorhynchus 

mykiss4

0.933
± 0.115 

(6)

-1.895
± 0.138 

(11)

-0.995
± 0.037 

(2)

-0.431
± 0.065 (6)

0.546
± 0.136 (2)

-2.329
± 0.189 

(5)

-1.835
± 0.231 (4)

-1.736
± 0.327 (3)

Peltodytes sp.2 1.215 -2.556 -1.163 0.481 -1.619

Perca flavescens1 1.404
-2.189
± 0.588 

(2)
-0.631 -0.099 -1.119* -1.538*

Pimephales promelas4
1.634

± 0.113 
(3)

-1.363
± 0.106 

(2)
-0.524

1.511
± 0.063 (3)

0.796
± 0.111 (2)

-1.689
± 0.312 

(2)

-1.407
± 0.332 (5)

-1.635
± 0.125 (4)

Poecilia reticulata1
1.386

± 0.067 
(3)

-1.880
± 0.199 

(2)

-1.004
± 0.256 

(2)

0.766
± 0.206 (2)

-1.918*
± 0.091 

(3)

Pteronarcys  

californica4

-1.813
± 0.190 

(2)
-1.711

-2.137
± 0.327 

(2)

-1.170
± 0.349 (2)

-1.483
± 0.262 (3)

-2.882
-0.107

± 0.091 (2)
-2.255

Salmo trutta1
1.019

± 0.477 
(2)

-1.518 -2.233 -0.515 -2.125*

Salvelinus fontinalis2
0.909

± 0.222 
(3)

-2.300 -0.817 -0.440 0.715
-1.507*

± 0.557 (2)

Salvelinus 

namaycush2
0.535 -1.597 -0.958 -0.638 0.819

Oreochromis  

mossambicus1
1.626 -1.711

-0.640
± 0.068 

(2)

0.062
± 0.118 (2)

-1.619*
± 0.038 

(2)
-0.693*

1: species used only for model #1 (and 1T)
2: species used for models #1 and #2
3: species used for models #1, #2, and #3
4: species used for all 4 models

*: unused
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Table A2. Sources for molecular characters for the 25 aquatic animal species: number of sequences 

found for the species, or substituted from a related species of the same genus or family, total number of 

sequences found and missing, and Genbank accession codes (parenthesis G and F: sequence borrowed 

within genera or families, respectively).

Species name
Taxonomic resolution Found / 

Missing
Accession codes

Species Genera Families

Ameiurus melas 7 0 0 7 / 37 AY184263, AY705821, DQ421854, DQ421876, EU524419

Asellus 

brevicaudus
0 3 33 36 / 8

AF255701 (G), AF259529 (F), DQ305105 (G), FJ749279 

(G), NC_008412 (F)

Carassius auratus 41 0 0 41 / 3 AF047349, EF100727, NC_006580

Channa punctatus 11 2 0 13 / 31
AB196280, AY763724 (G), AY763770 (G), EU216546, 

EU342184, EU417796, EU836885

Cyprinus carpio 44 0 0 44 / 0 AF133089, NC_001606

Gambusia affinis 39 0 0 39 / 5 AP004422

Gammarus 

lacustris
5 1 0 6 / 38

AF228046 (G), AY529073, AY926671, AY926784, 

EF582869

Heteropneustes  

fossilis
8 0 0 8 / 36 AF520826, AJ876377, DQ119383, FN677932, GQ461897

Ictalurus 

punctatus
40 0 0 40 / 4 AF021880, NC_003489

Lepomis cyanellus 5 1 0 6 / 38
AB271768 (G), AY115973, AY517733, AY742522, 

AY742616, EU524705

Lepomis 

macrochirus
14 0 0 14 / 30

AB167815, AB167816, AY517740, AY742530, AY742623, 

AY828968, EU524732

Metapenaeus  

monoceros
0 1 42 43 / 1

AF124597 (F), AY264904 (G), EU920969 (F), NC_002184 

(F)

Micropterus  

salmoides
39 1 0 40 / 4 EU502753 (G), NC_008106

Morone saxatilis 11 0 3 14 / 30

AF147741, AF240746, AY072684, AY138963, AY538941, 

DQ028057, EU524145, L60529, X74147 (F), X74148 (F), 

X74149 (F)

Oncorhynchus 40 0 0 40 / 4 AF030250, NC_009263
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Species name
Taxonomic resolution Found / 

Missing
Accession codes

kisutch

Oncorhynchus 

mykiss
43 0 0 43 / 1 AF308735, NC_001717, OMU34341

Oreochromis  

mossambicus
42 0 0 42 / 2 AF497908, AY597335, DQ397880

Peltodytes ssp. 0 6 0 6 / 38
AJ318668 (G), AY071790 (G), AY071816 (G), AY745649 

(G), AY745665 (G), EU797379 (G)

Perca flavescens 8 0 1 9 / 35
AF045357, AY225721, AY520099, AY538950, AY726669, 

EU524238, NC_008111 (F), Y14728

Pimephales  

promelas
7 1 0 8 / 36

AF126355, AY102292, AY102302, AY216557 (G), 

AY430235, AY855349, EU525095, GQ275159

Poecilia reticulata 19 1 0 20 / 24
DQ983928, EF017485, EF017585, EU751921 (G), 

GQ855720, GU179192

Pteronarcys  

californica
6 34 0 40 / 4

AY521812, AY521880, EF623110, EF623261, EF623427, 

EU099983, NC_006133 (G)

Salmo trutta 40 0 0 40 / 4 DQ009482, NC_010007

Salvelinus 

fontinalis
39 0 0 39 / 5 NC_000860

Salvelinus 

namaycush
6 1 0 7 / 37

AF174610, AF297989, DQ451375, EU522418, FJ620124, 

NC_000861 (G), U61182

Average: 20.56 2.08 3.16
25.80 / 
18.20
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