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Abstract. The spatial and temporal organization of ecological processes and features and
the scales at which they occur are central topics to landscape ecology and metapopulation
dynamics, and increasingly regarded as a cornerstone paradigm for understanding ecological
processes. Hence, there is need for computational approaches which allow the identification of
the proper spatial or temporal scales of ecological processes and the explicit integration of that
information in models. For that purpose, we propose a new method (multiscale codependence
analysis, MCA) to test the statistical significance of the correlations between two variables at
particular spatial or temporal scales. Validation of the method (using Monte Carlo
simulations) included the study of type I error rate, under five statistical significance
thresholds, and of type II error rate and statistical power. The method was found to be valid,
in terms of type I error rate, and to have sufficient statistical power to be useful in practice.
MCA has assumptions that are met in a wide range of circumstances. When applied to model
the river habitat of juvenile Atlantic salmon, MCA revealed that variables describing substrate
composition of the river bed were the most influential predictors of parr abundance at 0.4–4.1
km scales whereas mean channel depth was more influential at 200–300 m scales. When
properly assessed, the spatial structuring observed in nature may be used purposefully to refine
our understanding of natural processes and enhance model representativeness.
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INTRODUCTION

Landscape ecology and metapopulation dynamics aim

at incorporating spatiotemporal information about the

distribution of organisms and attributes of their habitat

into ecological models (Forman and Gordon 1986,

Forman 1995). In addition to its importance in

obtaining dependable statistical inference tests from

observational studies and field experiments, the assess-

ment of the structures emerging from spatiotemporal

organization is increasingly recognized as a cornerstone

paradigm for understanding ecological processes (Wiens

et al. 1993, Cottenie 2005, Wagner and Fortin 2005).

Observational studies as well as large-scale experimental

studies performed in the field often result in data sets

whose observations are distributed across space or time.

Hence, theoretical frameworks which have as an

objective to analyze spatiotemporal variation in the

environment benefit from quantitative methods that

make use of the spatial and/or temporal structures

occurring in ecological data (both responses and

explanatory variables); purposefully including these to

refine models.

Methods based on sine-like eigenfunctions now exist

to generate sets of orthogonal structuring variables for

regularly or irregularly spaced points: spatial eigenfunc-

tions from a connection matrix of neighboring regions

or sites (Griffith 2000): PCNM, principal coordinates of

neighbor matrices (Borcard and Legendre 2002); MEM,

Moran’s eigenvector maps (Dray et al. 2006); AEM,

asymmetric eigenvector maps (Blanchet et al. 2008).

These structuring variables allow researchers to dissect

the spatial structure of ecological data at multiple scales

(Borcard et al. 2004). When explanatory variables are

involved, fractions of the total variation of a response

variable can be estimated by variation partitioning

analysis (Borcard et al. 2004, Peres-Neto et al. 2006).

These fractions are: a, the proportion of variation

explained uniquely with the explanatory variables; c, the

proportion explained uniquely with the structuring

variables; b, the proportion explained jointly by both

types of variables; and d, the proportion not explained

by any variables included in the analysis. Fraction a thus

represents the outcome of nonspatially organized

environmental processes whereas b þ c represents that

of both environment-driven (i.e., exogenous) and

species-driven (i.e., endogenous) spatially organized

processes. A method of analysis based on spatial signal

is advantageous when fractions b and c account for a
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substantial proportion of the explained variation (i.e.,

when a strong spatial signal is observed) and environ-
ment-driven processes are suspected to occur. In this

regard, it is possible to develop a computational
approach that uses orthogonal structuring variables as

bases to obtain scale-dependent correlation and regres-
sion coefficients between variables observed across
irregular transects or surfaces. Such an approach will

allow users to integrate the supplementary information
associated with the positions of observations into

statistical models, possibly increasing their predictive
power. This modeling approach may find numerous

applications whenever spatially, temporally, or phylo-
genetically explicit models are required.

Habitat modeling is one such domain that may benefit
from the application of a spatially explicit framework

(Lichstein et al. 2002, Thompson and McGarigal 2002,
Schooley 2006). For instance, it has long been known

that the distributions of individuals pertaining to a range
of species respond to physical characteristics of their

habitats (e.g., defining their ecological niche or tolerance
to anthropogenic disturbance). Some of these habitat

characteristics are structured in space and/or time as a
consequence of their relationship with physical (e.g.,

geological, climatological, geomorphological, hydrolog-
ical) processes that are themselves intrinsically spatially
and/or temporally structured. Hence, there is interest in

using the coupling of spatial/temporal signals of, for
example, species abundances and habitat characteristics,

instead of their discrete values at sites, for modeling
purposes.

The objective of the present study is to develop an
approach that will enable researchers to describe the

relationship between two variables sampled at the same,
irregularly spaced locations in space, or moments in

time, with respect to their scales of variation. Because
this technique examines the variation of two variables

(response and explanatory) in relation to their spatial/
temporal context respectively, it can possibly extract the

information contained in the data more efficiently than
traditional methods that use variables in a non-spatially/

temporally explicit manner. As an exemplar scenario
and in order to evaluate its performance in a concrete

situation, the approach will be applied to the modeling
of the river habitat of juvenile Atlantic salmon (Salmo

salar).

METHODS

Structuring variables

Spatial or temporal series are often composed of data
collected at more or less regular space or time intervals.

The positions of the observations are used to calculate
structuring variables. Matrix W contains a set of

structuring variables wi that globally (e.g., sines and
cosines, or spatial eigenfunctions such as PCNMs) or

locally (e.g., wavelets) describe the spatial and/or
temporal relationships among the sampling units of

the study. These variables are orthogonal to one another

within the set W, and each one has a zero sum:

Z ‘

�‘

wiðtÞ dt ¼ 0 or
Xn

i¼1

wiðtÞ ¼ 0 ð1Þ

and

Z ‘

�‘

wiðtÞ3 wjðtÞ dt ¼ 1 if i 6¼ j
0 if i ¼ j

�

or

Xn

i¼1

wiðtÞ3 wjðtÞ ¼
1 if i 6¼ j
0 if i ¼ j

�
ð2Þ

where n is the number of discrete values (points t) where

functions wi and wj are estimated. Furthermore, the

vectors in W are normalized to length 1, so that W is

orthonormal. These variables are meant to describe the

variation associated with the positions of observations

in space or time. In the present study, we will use the

form of spatial eigenfunctions called principal coordi-

nates of neighbor matrices (PCNM; Borcard and

Legendre 2002, Borcard et al. 2004, Dray et al. 2006).

We will consider only PCNM eigenfunctions modeling

positive autocorrelation; that is, those that have a

Moran’s I statistic larger than the expected value of I

under H0. In order to comply with the property outlined

in Eq. 2, the principal coordinates will be normalized to

length 1, contrary to the classical PCNM functions that

are usually (but not necessarily) normalized to length ki.
PCNM are produced by eigen-decomposition of a

truncated distance matrix and are ordered by decreasing

eigenvalues. In the specific case of a spatial transect or a

time series with equally spaced observations, the

variables have a sinusoidal aspect in terms of smooth-

ness, continuity, and periodicity, with respective wave-

lengths decreasing as the rank order of the PCNM

eigenfunctions increases. In that particular situation, the

first PCNM variable has a wavelength nearly equal to

the extent of the sampled area and the last PCNM has a

wavelength nearly equal to the sampling interval. For

such transect with equal sampling intervals, the approx-

imate relationship between PCNM variable with rank i

and its wavelength (ki ) is given by

ki ¼ 2
Lþ s

iþ 1
ð3Þ

where L is the extent (length) of the sampled section and

s is the sampling interval. While this approximation is

useful to ease the interpretation of results, it does not

apply to irregular sampling designs. In the particular

context of regular sampling, the wavelength is related

with the size of the spatial structures prevailing in the

study area or transect, and hence with the spatial scale at

which these structures occur. For that reason, spatial

scale and wavelength will be used interchangeably in the

context of the present study. The procedure described

thereafter could, however, be applied using any struc-
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turing variables generated by orthogonal basis functions

(eigenfunctions or other types) relevantly describing the

particular phenomenon under study.

Multiscale codependence analysis (MCA): computation

Consider two random variables, a response variable

(y) and an explanatory variable (x), each centered on its

respective mean, as well as an orthonormal matrix W

whose columns contain a set of the structuring variables

described in the previous paragraph. In the advent that

the explained and explanatory variables are both

correlated with a given structuring variable, the product

of their simple linear correlations with the structuring

variable will reflect the strength of their common

correlation at the scale corresponding to that variable.

Hence, a vector (Cy,x;W) containing all such products of

correlation coefficients (hereafter referred to as code-

pendence coefficients) can be calculated as

Cy;x;w ¼
wiyffiffiffiffiffiffiffi
y 0y
p wjxffiffiffiffiffiffiffi

x 0x
p ; i ¼ 1; 2; 3; . . . m ð4Þ

where m is the number of variables in matrix W. This is

only one possibility; another one is

C�y;x;w ¼ min
ðwiyÞ2

y 0y
;
ðwjxÞ2

x 0x

( )
; i ¼ 1; 2; 3; . . . m: ð5Þ

By analogy, we define the test statistic s as the product

of the Student t statistics derived from the two

correlation coefficients computed with respect to a given

structuring variable (wi ) from a subset Ws of q

structuring variables in W:

sy;x;w;2Wi
¼ ðn� q� 1Þ wiyffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½y�WsW
0
sy�

0½y�WsW
0
sy�

q

3
wixffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½x�WsW
0
sx�

0½x�WsW
0
sx�

q
ð6Þ

where n is the number of observations. In a similar

manner as for Eqs. 4 and 5, another possibility would be

sy;x;w;2Wi

¼ ðn� q� 1Þmin

�
ðwiyÞ2

½y�WsW
0
sy�

0½y�WsW
0
sy�
;

ðwixÞ2

½x�WsW
0
sx�

0½x�WsW
0
sx�

�
:
ð7Þ

It should be noted that the C* coefficient and its

associated s* statistic do not conserve the sign of the

relationship between y and x with respect to wi. The s or
s* statistics could be tested parametrically or by

independent permutations of y and x. Under the

hypothesis that x and y are independent, x ; N(0,

r2I ) and y ; N(0, c2I ), then s* is a product of two

independent Student variables with n� q� 1 degrees of

freedom. When a sufficiently large (.100) number of

degrees of freedom are available, the product distribu-

tions could be approximated using the normal product

distributions (Craig 1936). Alternatively, the test could
be performed using s* whose P value would be

P ¼ p½minðT2
1 ; T

2
2Þ. s�y;x;wi2Wi

�

¼ p½minðF1;F2Þ. s�y;x;wi2Wi
� ¼ p½F1 . s�y;x;wi2Wi

�
n o2

ð8Þ

where T1, T2 are an independent Student tn�q�1
distribution, or F1, F2 are an independent Fisher F1,n�q�1
distribution that approximate to v2

1 when n is very large,

and p denotes cumulative probability. The sign of any
Cy;x;wi

depends on the signs of the correlations between y

or x and wi, being positive when both correlations are of

the same sign (either positive or negative), and negative
when correlations are of opposite signs. Since any

eigenvector wi is equivalent to (�1) 3 wi, the sign of

the codependence coefficient only depends the sign of
one of the correlations with respect to the other. A

positive Cy;x;wi
value thus implies that both variables y

and x follow the (spatial) trend described by wi in the
same direction whereas a negative Cy;x;wi

value implies

the variables follow this trend in opposite directions.

The sign of the codependence should not be confused
with the sign of the autocorrelation involved in the

spatial structure.

Test procedure

Since a complete or otherwise large set of structuring

variables may be available for analysis, a testing
procedure is required in order to correctly select the

most relevant codependence coefficients. The testing

procedure developed here makes use of the orthogonal-
ity property of the structuring variables (Eq. 2). Because

these variables are orthogonal to (i.e., linearly indepen-

dent from) one another, the corresponding fractions of
the variation they explain in the response and explan-

atory variables are reciprocally independent in the same

fashion. This means that the calculation of a codepen-
dence coefficient for a given structuring variable, Cy;x;wi

,

does not influence the value obtained for another

coefficient Cy;x;wj
; hence the matrix-form calculation in

Eq. 4. The following procedure uses the order of the

coefficients (in absolute value) in vector Cy,x;W as the

basis for the selection procedure, which involves five
steps:

1) Compute vector Cy,x;W of the codependence

coefficients (Eq. 4).

2) Sort the codependence coefficients in decreasing

order of their absolute values.
3) Select the structuring variable wi associated with

the highest codependence coefficient Cy,x;max among

those that have not been tested yet (i.e., not already
integrated in subset Ws).

4) Calculate the test statistic j for the structuring

variable wi (Eq. 6); compute its associated probability

(P) using a parametric or permutation procedure.
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5) Test the significance of wi by comparing its P value

to a predetermined significance level a. If wi is

significant, incorporate wi in subset Ws and proceed

again from step 3 to test another coefficient. Otherwise,

stop here.

Because many candidate structuring variables may be

available for testing, especially during the first steps of

the testing procedure, some correction of the original,

testwise, P values has to be applied in order to obtain

correct, familywise, probabilities. For that purpose, a

sequential version of the Šidák correction (Šidák 1967,

Wright 1992) is used:

P 0 ¼ 1� ð1� PÞm�q ð9Þ

where P 0 and P are the familywise and testwise

probabilities, respectively, m is the number of structur-

ing variables available for analysis, and q is the number

of structuring variables already present in subset Ws.

This multiple inference correction is applied at step 4 of

the aforementioned iterative testing procedure. Hence,

the decision in step 5 is made using the familywise P

value. The testing procedure is conducted iteratively and

ends when the last statistically significant structuring

variable, if any, is included in subset Ws.

Assessing goodness of fit

The codependence coefficient operates like a correla-

tion coefficient. Its absolute value indicates the strength

of the covariation of the response and the explanatory

variables with a structuring variable. Assessing the

goodness of fit (i.e., to what extent the values of y fitted

to the model adequately represent the values observed)

requires coefficients that establish such a relationship in

a manner similar to a regression slope coefficient, in

order to assess to what extent the response variable may

be affected by the explanatory variable. For that

purpose, we define the vector of coregression coefficients

(by,x;W) as

by;x;wi
¼ wiy

wix
; i ¼ 1; 2; 3; . . . ;m: ð10Þ

Standardized coregression coefficients (by,x;W) are sim-

ilarly defined as

by;x;wi
¼

ffiffiffiffiffiffiffi
x 0x

y 0y

s
wiy

wix
; i ¼ 1; 2; 3; . . . ;m: ð11Þ

Fitted (or predicted) centered values of the response

variable (ŷ) are obtained for a statistically significant set

of coregression coefficients (by;x;wi
) by rearranging Eq.

10 and incorporating the explanatory variable (x) in the

following equation:

ŷ ¼
Xk

i¼1

by;x;wi
ðw 0

i xÞwi ¼
Xn

i¼1

wiw
0
i

� �
y: ð12Þ

The last equality shows that the fitted or predicted

values are obtained by an orthogonal projection of the

observations y onto the k-dimensional space spanned by

the k selected structuring variables. Although this

equality may give the impression that predictions do

not use the explanatory variable x, one has to be

reminded that the selection of structuring variables was

done using x. Moreover, if these centered fitted values

are generated using strictly exclusive subsets of struc-

turing variables, all of which being, by definition,

orthogonal from one another (i.e., Eq. 2), they will also

be orthogonal to one another. The components of fitted

values obtained from different explanatory variables for

strictly exclusive sets of structuring variables can

therefore be combined additively to provide a single,

multivariate, and spatially explicit model.

More than one explanatory variable in X may show

statistically significant codependence with y at a given

scale (i.e., with respect to the same structuring variable).

Where this situation occurs, the explanatory variable

associated with the highest s statistic (in absolute value)

was selected. This selection was necessary to satisfy the

aforementioned requirement for strictly exclusive sets of
structuring variables; insuring that the different envi-

ronmental variables that intervene in the model remain

independent from one another.

Simulation study

Type I error rate.—Monte-Carlo simulations were run

to estimate the type I error rate (the probability of

falsely rejecting the null hypothesis, H0: s¼ 0) generated

by the procedure described therein when it was applied

to pairs of normally distributed random y and x

variables, and 10 to 1000 points were placed along a

transect with regular spacing. For simplicity, each

iteration of the procedure was interrupted after testing

one variable, regardless of the result obtained. Because

the testing was done using permutation tests, the

number of permutations needed to provide dependable

tests with respect to a given a threshold using reasonable

computation time had to be chosen carefully. The bare

minimum number of permutations (np) required to reach
a given significance level a is

np ¼ a�1: ð13Þ

By combining the latter equation and the reciprocal of

Eq. 9, one obtains

nP ¼ 1� ð1� a 0Þ11=ðm�qÞ
n o�1

ð14Þ

for the number of permutations that are necessary to

obtain a given, familywise, a0 significance level. To

insure that it remained possible to reject the null

hypothesis on a familywise basis, the number of

permutation used for testing in the present study was

set to 10 times np and rounded up to the next 1000. A
total of seven simulation runs were done for sample sizes

of 10 to 1000 observations (Table 1).

Statistical power.—Statistical power (i.e., the proba-

bility of detecting a phenomenon of a given magnitude
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in the presence of noise) was investigated using Monte-

Carlo simulations. Power is defined as the rate of

detection of a signal in the presence of given amounts of

(Gaussian) noise using a fixed significance level a; 0.05
was used. Values of statistical power ranged from 0 to 1.

For that purpose, pairs of variables (response and

explanatory, y and x), each having a known amount of

signal (defined as a given PCNM) and noise (i.e.,

random Gaussian deviates) and hence known signal-to-

noise ratio (snr) were created. Again, 10 to 1000 points

were placed along a transect with regular spacing.

PCNM eigenfunctions were generated for these points.

A six-step computational procedure was used to

generate the y and x variables:

1) A structuring PCNM variable was chosen at

random (e.g., wi ).

2) Two vectors of random normal deviates were

generated.

3) To ensure suitable control over the amount of

signal and noise in the simulated data, standardized

(standard deviation ¼ 1) residuals of the regression of

these deviates were computed with respect to the selected

structuring variable and used as noise components

(hereafter referred to as devy and devx).

4) Signal-to-noise ratios of the response and explan-

atory variables (snry and snrx, respectively) were

obtained by the following approach using two numbers

drawn at random from a uniform [0, 1] distribution (r1
and r2):

snry ¼
r1r2ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� r2
1

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

2

q snrx ¼
r1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

1r2

q : ð15Þ

5) The two pseudo-variables were constructed as

follows:

y� ¼ r1r2 3 wi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

1

q ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

2

q
3 devy

x� ¼ r1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

2

q
3 wi þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2

1

q
r2 3 devx: ð16Þ

6) MCA was performed on these deviates against the

complete set of structuring variables, as described in

Test procedure. The signal was considered detected when

the test of significance of the pseudo-variables against

the selected PCNM variable wi, used to generate the

pseudo-variables was statistically significant (P0 � 0.05).

The signal-to-noise ratio of the relationships (snr)
between the pseudo-variables (y* and x*) with respect to

the selected structuring variable (wi ) was taken as the

geometric mean of snry and snrx. The above-described

procedure allowed us to generate pairs of pseudo-

variables with an overall mean snr of 1, with half the snr

values in the range [0–1) and the other half in the range
[1–‘). Seven simulation runs were performed for sample

sizes of 10 to 1000 observations (Table 1). We used

logistic regression on the results of the statistical tests

(i.e., P � a coded 1 and P . a coded 0) to explore the

relationships between statistical power and snr.

Ecological illustration: habitat of juvenile Atlantic salmon

As part of a survey to determine the factors

influencing the distribution of parr ( juveniles) of wild

Atlantic salmon (Salmo salar), an endangered species, in

pristine rivers, the daytime distribution of parr was

surveyed by snorkeling during the summer of 2002 in the
St. Marguerite River, Saguenay region, Québec, Canada

(Fig. 1). A 6200 m stretch of river, ranging from site

Bardsville (48823001.5900 N, 70812010.0500 W) to site

Glasspool (48824 001.5900 N, 70816 021.9200 W), was

surveyed once over a period of 10 days between 28 June

and 10 August (Table 2). Water temperature (handheld
thermometer, 60.58C) was measured and the percentage

of cloud cover visually estimated at the beginning and

the end of each sampling day. Water discharge was

estimated on the beginning of each sampling day from a

fixed water level positioned at a standard location

(48816047.2500 N, 69855031.9800 W) 50 km downstream
from site Bardsville. The transect comprised a total of

310 contiguous 20-m segments. Two snorkelers swim-

ming upstream counted the number of age Iþ and IIþ
parr in any given 20-m segment. This surveying

approach allowed an assessment of parr encounter per
unit of survey effort without disturbing the upstream

habitat. As the surveying effort was similar for all 20-m

segments, the values of encounter per unit of effort

assessed using this method represent a reliable proxi-

mate for the density of parr using the habitat (Bouchard

and Boisclair 2008). Flow velocity and channel depth

TABLE 1. Conditions used in the simulations to estimate type I error rates and statistical power.

Run
Number of
simulations Sample size

Number of permutations
Minimum
P value

Detection threshold
(snr�)Type I error Statistical power

1 5000 10 40 999 4999 0.005 1.97:1
2 5000 25 109 999 10 999 0.005 1:1.23
3 5000 50 224 999 22 999 0.005 1:1.78
4 5000 100 454 999 44 999 0.005 1:2.53
5 4000� 250 1 143 999 111 999 0.005 1:3.96
6 1000 500 224 999 224 999 0.05 1:4.86
7 1000 1000 448 999 448 999 0.05 1:7.40

� Signal-to-noise ratio.
� 1000 simulations were used for simulations on statistical power.
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were measured in the middle of each segment using a

Gurley 625A flow velocity meter (Gurley Precision
Instruments, Troy, New York, USA) and a graduated

pole. The measurements were made at three locations

transversally and averaged: in the thalweg (i.e., the

section of the water flow where the highest flow velocity

is found) and at one-third and two-thirds of the distance
between the thalweg and the shore that was the most

distant from the thalweg. Substrate composition was

estimated visually by trained observers (Latulippe and

Lapointe 2001) as the percent contribution, per unit of
surface, of six grain size classes. The grain size

classification used in this study has been modified from

Wentworth (1922) and comprises fine substrate (size , 4

mm; i.e., silt, clay, and fine to rough sand), gravel (4–32

mm), pebble (32–64 mm), cobble (64–250 mm), boulder
(25–100 cm), and metric boulder (size .1 m). Analyses

were performed either on loge(y þ 1)-transformed parr

abundances or using generalized linear models (GLM,

quasi-Poisson family with loge as link function). MCA
was performed after detrending (i.e., removing the linear

trends from) the original data series. Since the logarithm

is a monotonous positive function, logarithmic trans-

formations do not affect the conclusions of the present

study.

RESULTS

Simulation study

The type I error rates estimated from the simulation

study corresponded closely to the expected error rates

under the combinations of sample sizes and significance

levels explored (Fig. 2; v2
23¼ 12.042, P¼ 0.97 comparing

the observed and expected numbers of significant tests

for the different thresholds). Statistical power increased

with increasing sample size (Fig. 3). The minimum effect

size (in terms of snr) that could be detected in 95% of the

inference tests (i.e., statistical power ¼ 0.95, Table 1)

ranged from 1.97:1 to 1:7.40 over the range of sample

size studied (i.e., simulated transects containing from 10

to 1000 observations). These results suggest that the

testing method described herein renders correct rates of

type I error in the range of conditions explored.

Moreover, MCA showed good aptitude at extracting

information out of noisy data, even with modest (e.g.,

25–50) sample sizes.

Habitat of juvenile Atlantic salmon

Parr abundance ranged from 0 to 14 fish/20 m among

20-m segments and mean daily parr abundance ranged

from 0.47 to 2.45 fish/20 m among sampling days. These

differences in parr abundance were statistically signifi-

cant (GLM: F9, 300 ¼ 6.822; P ¼ 6.30 3 10�9) and could

have been partly driven by change in one or more

explanatory variables that were sampled daily (i.e.,

cloud cover, water temperature, and river discharge;

Table 2). Therefore, an analysis of the potential effects

of these variables was performed. Parr abundance was

influenced positively by water temperature (b ¼ 0.085;

F1, 308 ¼ 10.134; parametric P ¼ 0.0016) and negatively

by river discharge (b ¼ �0.139; F1, 308 ¼ 5.8787;

parametric P ¼ 0.016), but not by cloud cover (F1, 308

¼ 0.0626; parametric P ¼ 0.80). However, the influence

of river discharge was no longer statistically significant

when included together with water temperature in a

FIG. 1. Survey site: Ste-Marguerite River, Québec, Canada.

TABLE 2. Sampling schedule, segment sampled during each sampling day, and environmental
variables estimated on a daily basis.

Date Beginning (m) Distance (m) Cloud (%) Temperature (8C) Discharge (m3/s)

28 Jun 0 520 6 14.8 8.8
29 Jun 520 760 10 14.0 7.0
2 Jul 1280 1520 13 20.0 5.1
3 Jul 2800 260 45 19.0 4.7
4 Jul 3060 460 63 19.3 4.3
11 Jul 3520 480 28 14.5 3.7
19 Jul 5700 500 75 13.0 4.5
1 Aug 4000 640 30 20.8 4.0
7 Aug 4640 580 25 15.8 5.3
9 Aug 5220 480 28 17.0 3.9
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generalized linear model (GLM: F1, 307 ¼ 1.7374; P ¼
0.19). As a consequence, the effect of water temperature

was removed by computing regression residuals from the

original parr abundance data. Furthermore, parr

abundance and the explanatory variables were linearly

detrended with respect to transect position to remove

spatial structures at scales larger than the extent of the

transect. Linear detrending is suitable to obtain a more

thorough identification of the spatial scales involving

codependence (i.e., to prevent the spurious aliasing of

structures at scales larger than the extent of sampling

with smaller scale structures), but is not an absolute

requirement of MCA. Eight explanatory variables were

used in the subsequent analysis (Fig. 4).

A variation partitioning analysis was performed on

the log(yþ 1)-transformed parr abundance to provide a

preliminary assessment of the importance of spatial

structuring in the data set. The partitioning involved

three steps. First, we computed a model describing

spatial structures in parr abundance (hereafter referred

to as the spatial model) using forward-selection multiple

regression with the PCNM eigenfunctions obtained

from transect locations. That model involved six

variables and indicated that 26.9% of the variation in

parr abundance (adjusted R2) was spatially organized.

Then, we developed the environment model by comput-

ing the complete set of possible multiple regression

models, using every possible combinations of explana-

tory variable (255 models in total), and selecting the

combination associated with the highest R2. This model

was tested for statistical significance while partialing out

the variables involved in the spatial model to avoid

biases that may arise from spatial autocorrelation. That

approach was used because spatial autocorrelation is

known to inflate the level of type I error and make the

tests of significance invalid. To this end, Peres-Neto and

Legendre (2010) have shown that using structuring

variables as covariables in partial regression or partial

FIG. 2. Results of the simulations to assess the type I error rates generated by the codependence testing method for significance
levels of 0.1 (circles), 0.05 (squares), 0.01 (up-pointing triangles), and 0.005 (down-pointing triangles) for sample sizes of 10–1000
observations. The symbol ‘‘3’’ represents values that cannot be reliably calculated (insufficient number of Monte-Carlo
simulations). Mean values are represented with their respective 95% confidence interval bars (parametric calculations).

FIG. 3. Statistical power as a function of the signal-to-noise ratio (i.e., relative effect size, solid lines; note log scale) for different
sample sizes (N ). The dashed lines depict the 95% confidence interval of the relationships.
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canonical analysis is an effective way of controlling for

type I error in such tests of species-environment

relationships. The subset of explanatory variables that

best explained parr abundance while accounting for

spatial structures included three variables: channel

depth, the percentage of gravel, and the percentage of

boulder in the substrate. These variables explained 9.9%

of the variation in parr abundance (adjusted R2; F3, 288¼
15.17, testwise P , 0.0001, familywise P over 255 tests ,

0.0001). Finally, the model including both the three

retained explanatory variables and the six structuring

variables was computed (adjusted R2 ¼ 0.248). The

unique fraction of the variation of parr abundance

explained by environmental conditions was 2.0% and

that explained uniquely by the PCNM eigenfunctions

was 14.9% while their common fraction (b) was 7.9%

(residual variation ¼ 75.2%).

Because performing multiple tests represents an

increased risk of falsely rejecting the null hypothesis,

the significance threshold of any given codependence

analysis (a0) had to be corrected to ensure a global,

familywise, significance level (a) of 0.05. For that

purpose, the Šidák approach (non-sequential version;

Šidák 1967, Wright 1992) was used:

a 0 ¼ 1� ð1� pÞ1=m: ð17Þ

As a consequence, a significance level of approximately

0.00639 was used for the MCA performed on individual

explanatory variables.

Thirteen combinations of explanatory variables and

spatial scales explained a statistically significant fraction

of the variations of parr abundance (Table 3). Seven of

the eight explanatory variables and six of the 154 PCNM

eigenfunctions modeling positive autocorrelation were

involved in these significant relationships. At the scale of

4.1 km, parr abundance was primarily and negatively

related to the percentage of pebble in the substrate.

Three other variables describing substrate composi-

FIG. 4. (A) Abundance of Atlantic salmon parr after the effect of among-day temperature differences and linear trend were
removed by regression. Also shown are (B) flow velocity, (C) channel depth, and (D) substrate composition after removal of linear
trends. The six levels of shading represent the contributions of the six grain size classes of the river bed, from fine substrate (light) to
metric boulder (dark).
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tion—the percentages of metric boulder (negative

relationship), fine substrate (positive relationship), and

gravel (positive relationship)—also intervened at the

scale of 4.1 km but were less closely associated with parr

abundance. The percentage of pebble also influenced

parr abundance at the scale of 2.5 km but this

relationship was positive. A negative relationship

between parr abundance and the percentage of metric

boulder was observed at the scale of 1.1 km. Parr

abundance at this scale was, but to a lesser extent,

coupled positively with the percentages of gravel and

pebble in the substrate as well as with flow velocity. The

percentage of boulders was positively associated with

parr abundance at the scale of 401 m while the

percentage of pebble was associated negatively at that

same scale. Finally, water depth was negatively related

with parr abundance at the scales of 197 and 265 m.

Six combinations of environmental variables and

spatial scales were used in MCA to provide a model

for the assessment of the goodness of fit (Table 3; see

Methods: Assessing the goodness of fit). Together, the

percentage of pebble at scales of 4.1 and 2.5 km, the

percentage of metric boulder at the scale of 1.1 km, the

percentage of boulder at the scale of 400 m, and depth at

the scales of 197 and 265 m explained a total of 18.9%

(adjusted R2) of the log(yþ 1)-transformed variation in

parr abundance (Fig. 5). For comparison, the best

multiple regression model obtainable using the environ-

mental variables explained 9.9% of the log(y þ 1)-

transformed variation in parr abundance using three

variables. Hence, the spatialized model obtained from

the MCA represents an almost two-fold improvement

over this linear model. These results suggest that, by

using the information associated with the distances

separating the observation locations, models based on

the approach described and tested in the present study

can increase the amount of information that can be

extracted from spatially explicit ecological data sets.

DISCUSSION

The present study demonstrates the statistical validity
and the potential utility of the multiscale codependence

analysis (MCA), a form of scale-specific correlation

between two variables, for spatially explicit ecological

data. Simulations have shown that MCA was honest in

that it did not produce probabilities of falsely rejecting
the null hypothesis (i.e., no codependence) that were

substantially lower or larger than the expectations (i.e.,

the significance levels) in the range of conditions tested.

Furthermore, the method was found to have the
statistical power to detect relationships when they were

present in the tested data set. Statistical power was

found to be a function of sample size, a common

situation with statistical tests based on degrees of

freedom. MCA was also shown to explain a larger
fraction of the variation of ecological data than methods

based on linear models. The method is applicable when

exogenous (environment-mediated) spatial processes are

suspected to be involved as an explanation for the
spatial distribution of an observed response. When such

a situation occurs, both the response and explanatory

variable are expected to follow similar spatial trends in

the same or opposite direction, giving rise to positive or

negative codependence, respectively. Data analysis can
also be substantiated by combining MCA with other

approaches. For instance, the presence of residual

spatial variation of the response can be evidenced using

multiple regression against the set of structuring
variables found not to have statistically significant

codependence. Furthermore, non-spatially organized

environmental processes can be investigated using

multiple regression against explanatory variables, par-
tialing out known components of spatial variation.

MCA is a bivariate scale-specific correlation method.
Although MCA was used in the present study to analyze

the abundance data of one species, this method may be

adapted to a multivariate framework. Extension to

multivariate response data, such as species assemblages,

TABLE 3. Results of codependence analysis and associated significant statistical tests.

Variable Scale� (m) Cy,x;w by,x;w sm m Familywise P

Flow velocity 1131 0.036 4.17 11.67 308 0.01
Depth 265 �0.032 �6.37 �10.24� 308 0.02

197 �0.029 �4.39 �9.67� 307 0.02
Fine 4147 0.052 0.10 16.95 308 ,0.005
Gravel 1131 0.040 0.10 12.84 308 ,0.005

4147 0.040 0.14 13.32 307 ,0.005
Pebble 4147 �0.100 �0.023 �34.36� 308 ,0.005

2488 0.036 0.0055 14.54� 307 ,0.005
1131 0.026 0.064 10.73 306 ,0.005
401 �0.020 �0.028 �8.61 305 0.04

Boulder 4147 0.062 0.037 20.42 308 ,0.005
401 0.027 0.021 9.18� 307 0.02

Metric boulder 1131 �0.069 �0.027 �22.97� 308 ,0.005

Note: Cy,x,w is the codependence coefficient, by,x,w is the coregression coefficient, sm is the test
statistic, and m is the degrees of freedom.

� Obtained using Eq. 3.
� These combinations of variables and spatial scales were retained in the global model and used

to assess the goodness of fit.
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may be achieved by computing MCA between the

ordination axes of the community composition data

obtained by principal component analysis (PCA) or

correspondence analysis (CA) and the possible explan-

atory variables.

The computation of MCA outlined in the present

study was performed using least squares fit of a common

structuring variable on both a response and an

explanatory variable. The testing procedure assumes

that the response and explanatory variables are both the

outcome of a Gaussian stochastic process (i.e., a process

yielding a normally distributed error). The MCA

calculated assuming normally distributed response and

explanatory variables could be used for data arising

from different stochastic processes by using relevant

transformations. Hence, the distribution of a variable

arising from a Poisson process could be approximated

with the normal distribution after square-root or

logarithmic transformation, while one arising from a

binomial or negative-binomial processes could be

approximated after arcsine or inverse hyperbolic sine

transformations, respectively (Legendre and Legendre

1998, Guan 2009). The requirement of MCA for

normally distributed variables could, however, be

regarded as an outcome of the computation approach

used to calculate the MCA rather than an intrinsic

property of MCA itself. Further work towards a

generalization of MCA to other distributions, for

instance using maximum-likelihood, may overcome this

limitation in a similar fashion as the generalized linear

model did for regression and ANOVA by providing a

unifying computational framework. A second assump-

tion to MCA is that there are linear relationships

between (1) the response variable and the structuring

variable, and (2) between the explanatory variable and

the same structuring variable. This, in turn, implies that

there is a conditional linear relationship between the

response and the explanatory variable with respect to

the structuring variable. A third assumption of MCA is

that the estimates of both the response and the

explanatory variable are reliable. The reliability of the

structuring variables in representing a given spatially or

FIG. 5. (A) Observed (solid) and fitted (dotted) parr abundances, on a loge(yþ1) scale, along the river transect; (B) the fraction
of parr abundance explained by channel depth; and (C) substrate composition obtained from Eq. 9. The model explains 18.9% of
the log(xþ 1)-transformed variation in parr abundance.
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temporally structured process may depend on factors

including, for instance, the grain size and extent of

sampling, and the degree of unevenness in sampling

intervals. The topic of the reliability of structuring

variable is beyond the scope of the present study (see

Dray et al. 2006). In the present study, PCNM, which

are themselves related to Moran’s I, were used to

describe potential spatial structures, but any other kind

of variables (e.g., wavelets) satisfying Eqs. 1 and 2 could

have played the same role. Finally, the fourth assump-

tion of MCA is the homoscedasticity of the residual

variance across the fitted values, with respect to

structuring variables, of the response and explanatory

variables. Heteroscedasticity could be resolved using the

aforementioned transformations or using a maximum

likelihood approach accounting for unsteady dispersion.

In MCA, the residuals of the spatial model for both the

response and the explanatory variables are readily

accessible, allowing easy assessments of the assumptions

associated with distributions, i.e., normality and homo-

scedasticity, as well as residual autocorrelation.

Application of MCA to parr abundance data and

environmental conditions prevailing in a river con-

firmed known ecological relationships among variables

and emphasized less documented interactions. For

instance, parr of Atlantic salmon are generally expected

to select habitats that contain a high percentage of

coarse substrate (Bouchard and Boisclair 2008). How-

ever, the present study further emphasizes that boulder

(25–100 cm; positive effect on parr abundance) and

metric boulder (.1 m; negative influence on parr

abundance) may have opposite effects on parr abun-

dance (Table 3). In addition, the influence of environ-

mental variables on parr abundance also varied with the

spatial scale. The percent contribution of boulder to

riverbed was found to have a positive effect on parr

abundance at the scales of 4.1 and 0.4 km but not at

smaller scales. In this transect, the percentage of

boulders increased from an average of 10% (0–1300 m

from the downstream limit of the transect) to reach an

average of 30% (3000–4000 m from the downstream

limit of the transect) and decrease to 25% (4700–5200 m

from the downstream limit of the transect). The pattern

observed at the scale of 4.1 km illustrates the presence

in the Ste-Marguerite River of geomorphological

structures defined by the downstream fining of particles

(in the present case, the decrease of the percentage of

boulder from ’3500 m to the downstream limit of the

FIG. 6. (A) Observed parr abundance (solid line) and its spatially structured fraction (i.e., fitted parr abundance with respects to
structuring variables of 4.1 km, 2.5 km, 1.1 km, and 0.4 km wavelength; dashed line), on a loge(yþ 1) scale. Solid lines in panels
(B)–(D) present percentages of (B) pebble, (C) boulder, and (D) metric boulder; dashed lines show their spatially structured
fractions: (B) scales of 4.1 and 2.5 km; (C) scale of 0.4 km; (D) scale of 1.1 km).
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transect) and referred to as sedimentary links (Rice et

al. 2001, Davey and Lapointe 2007). The existence of a

statistically significant relationship between the abun-

dance of parr and the percentage of boulder on the

riverbed therefore supports the hypothesized role of

large-scale geomorphological structures such as sedi-

mentary links on the distribution of the biota in rivers

(Rice et al. 2001; M.-È. Bédard, D. Boisclair, and M.

Lapointe, unpublished manuscript). The pattern ob-

served at the scale of 0.4 km may reflect the effect on

fish distribution of the sequence of riffles (relatively

shallow sections characterized by higher flow velocities,

coarse substrate such as boulder, and high parr density)

and pools (deeper river sections with lower flow

velocities containing finer substrate such as sand,

gravel, or pebble) observable in the Ste-Marguerite

River (Davey and Lapointe 2007). The effect of

sedimentary links and pool–riffle sequences on the

biota may also be observed in the relationship between

the abundance of parr and the percentage of pebble in

the riverbed. However, the spatial variation of the

percentage of pebble was explained by four structuring

variables (4.1 km-, 2.5 km-, 1.1 km-, and 0.4-km

wavelength; Table 3). The sign of the relationship

between parr abundance and the percentage of pebble

changed with respect to the spatial scale, being negative

at 4.1 and 0.4 km, and positive at 2.5 and 1.1 km. The

negative codependence detected between the abundance

of parr and the percentage of pebble to the riverbed at

the scale of 4.1 and 0.4 km mirrored the sedimentary

link and the pool–riffle sequence effects mirrored the

sedimentary link effect noted with boulder. The

percentage of pebbles decreased from an average of

60% (0–1300 m from the downstream limit of the

transect) to an average of 15% (3000–4000 m from the

downstream limit of the transect) and increased to 20%
(4700–5200 m from the downstream limit of the

transect). The variation of the percentage of pebble

followed a trend that was therefore opposite to that of

parr abundance and boulder at the scale of the complete

transect. In contrast, the codependence between the

abundance of parr and the percentage of pebble to the

riverbed was positive at the scale of 1.1 km (Table 3).

The contribution of this wavelength in the distribution

of the percent age of pebble to riverbed may be related

to the distribution of metric boulder that has taken the

form of ripples particularly in the upstream half of the

transect (peak percentage of metric boulder at 3000,

4400, and 5400 m from the downstream limit of the

transect; Fig. 6) via a geomorphological process that

remains to be elucidated. Yet, this process may have

resulted in the deposition, between zones of high

percentage of metric boulder, of pebble that apparently

serve as habitat for parr. This structuring suggests that

the effect of pebble on parr may be contextual with a

negative effect at the scale of the complete transect and

pool–riffle sequences but positive when focusing on the

effect of 1-km patches of pebbles located near or

between 1-km patches of metric boulder; that interac-

tion would have been difficult to elucidate without a

statistical method such as MCA. The deposition of finer

particles in patches of larger substrate may explain the

positive codependence between parr abundance and the

percentage of gravel in the riverbed at the scale of 1.1

km, and also the positive effects of the percentages of

fine substrate and gravel at the scale of 4.2 km (Table

3). Where high parr abundance was observed, boulders

were often embedded in fine substrate and gravel.

Finally, the negative codependence between parr

abundance and water depth at scales of 200–300 m is

consistent with the anticipated role of pool–riffle

sequences recurrent at approximately five times the

river width of the transect (full bank river width ¼ 40–

60 m). This negative codependence with water depth,

together with the positive codependence with boulder

and the negative codependence with pebble at a similar

scale (0.4 km), therefore confirms the known preference

of Atlantic salmon parr for riffles instead of pools

(Bouchard and Boisclair 2008). MCA was therefore

successful in refining the understanding of the effects of

particular structures (opposite roles of boulder and

metric boulder), in identifying unexpected processes and

relationships (ripple distribution of metric blocs and its

indirect role on the reversal of the effect of the

percentage of pebble on parr abundance at 4.1 and

1.1 km), and at confirming the expected interactions

between parrs and environmental structures at large

(4.1 km; sedimentary links) and small scales (200–400

m; pool–riffle sequences).

Computational tool

An R package called ‘‘codep’’ is available online.4 It

contains all functions needed to calculate MCA,

perform the stepwise testing procedure of the codepen-

dence coefficients, and calculate fitted and residual

values.

ACKNOWLEDGMENTS

We are grateful to Mariane Fradette, Marie-Ève Bédard,
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