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Introduction

Incorporating spatial information about eco-
logical processes is now widely recognized 
as a cornerstone paradigm for understanding 
ecological processes and obtaining dependable 

statistical inferences from field study (Forman 
and Godron 1986, Legendre 1993, Wiens et  al. 
1993, Cottenie 2005, Wagner and Fortin 2005, 
Guénard et  al. 2010). Ecologists commonly 
need to assess the influence of variables with-
in a landscape. Whether these assessments 
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involve controlled field experiments or field 
observational surveys, the observations per-
formed will inevitably be distributed into space 
and will therefore likely feature spatial variation 
patterns (e.g., gradients, patches) that are con-
textual to a particular study area (Dormann et al. 
2007, Diniz-Filho et  al. 2009, Peres-Neto and 
Legendre 2010). These spatial variation patterns 
incur pseudoreplication and may induce ap-
parent but spurious relationships in field data. 
Modeling spatial variation is therefore import-
ant to ascertain that the observed relationships 
are indeed the outcome of underlying ecological 
processes. Quantifying the effect of hydroelec-
tric power dams, which is a human activity im-
pacting large areas, is one such scenario where 
spatial modeling comes in handy because of the 
need to estimate the local baseline conditions 
that would have prevailed had the river been 
unregulated.

Hydroelectric power production, as with most 
human activities, has its share of associated 
environmental costs (Bonner and Wilde 2000, de 
Ménora et al. 2005, Nilsson et al. 2005). Hydro-
electric power facilities can be operated in dif-
ferent ways; certain flow management practices 
may exert more downstream flow impacts than 
others. Spatial variation in flow regimes are sub-
ject to other factors, such as climate, that shift the 
baseline for environmental assessment and fur-
ther complicate the generalization of the effects 
of flow management practices on the ecosystems 
downstream of a dam. As the need for renewable 
energy increases, knowledge of the ecological 
consequences of hydroelectric power production 
across broad geographical ranges will undoubt-
edly be the cornerstone to develop more sustain-
able facilities, in terms of new constructions as 
well as upgrades of existing ones.

Flow management practices affect river flow 
in different manners, both in terms of intensity 

and periodicity. Here, we categorize rivers into 
four different types with respect to the presence 
and operation mode of hydroelectric facilities 
(Table 1). Unregulated river (UR) are those with-
out dam. The presence of a dam involves some 
sort of regulation, yet not all dams store large 
amounts of water. Dams with small water stor-
age (i.e., a few hours or days worth of flow) are 
categorized as “run-of-the-river” (RR). Dams 
that store large amounts of water may also differ 
in the way water is released with time. Storage 
dams may generate power all day long, releasing 
water gradually (ST, for “storage”) or alternate 
between two (or more) very contrasting flow val-
ues, releasing short bursts of high flow (PE, for 
“peaking”; McLaughlin et al. 2014, Young et al. 
2011). In northern latitudes, unregulated rivers 
experience flow patterns modulated by climato-
logical processes, showing seasonal periodicity 
(i.e., spring floods) and occasional random flow 
peaks after large storms (Young et al. 2011). In 
contrast, dams may use all the water available 
for power production or allow the surplus of 
water flow to spill over a weir. The storage ca-
pacity of reservoirs and release of water from 
dams may also vary greatly from one hydroelec-
tric facility to another, resulting in differences in 
the magnitude and periodicity of downstream 
flows. In rivers with RR dams, a small upstream 
reservoir volume relative to mean flow may oc-
cur but does not store more water than required 
for power production for a single day, resulting 
in downstream flows similar to a natural regime 
(Bratrich et  al. 2004). In rivers with ST dams, 
larger storage volumes allow the natural season-
al runoff volumes to shift temporally, resulting 
in significant seasonal high flow attenuation and 
enhancement of low flows, especially during 
the winter months. Rivers with PE dams exhib-
it frequent periods of significant hourly or daily 
hydrological fluctuations over a year caused by 

Table 1. Characteristics of the different rivers with respect to their flow management strategies.

Type Abbreviation Dam retention time
95th percentile hourly rate of  

flow increase or decrease

Unregulated UR No dam 0.2–3.1 m3/s
Run-of-the-river RR A few hours to a few days 0.5–3.3 m3/s
Storage ST Several months to a year 0.001–5 m3/s
Flow spiking (Hyropeaking) PE Several months to a year 6–135 m3/s
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rapid opening and closing of the dam’s sluice 
gates (ST dams do not produce such frequent 
burst of flow).

River regulation tends to increase minimum 
and decrease maximum flows, and that tends 
to make overall flow homogeneous among riv-
ers (Poff et al. 1997, Magilligan and Nislow 2001, 
Pyron and Neumann 2008). Furthermore, Magil-
ligan and Nislow (2005) have shown that regu-
lated rivers have a greater number of high flow 
pulses of shorter duration than unregulated riv-
ers. Each flow management practice may exert 
a range of influences on temporal flow patterns 
(McLaughlin et  al. 2014). Because of the poten-
tially complex effects of the flow management 
practices on temporal flow patterns downstream 
of the dam, generalizing their potential impacts 
on ecosystems is a challenging task (Richter et al. 
1996, Magilligan and Nislow 2005).

The hydroelectric industry and stakeholders 
place substantial effort to accurately identify 
reference fish and flow conditions that serve as 
baseline data to quantify the changes to fish com-
munities due to flow alteration in regulated riv-
ers. Assessing the ecosystemic effect of different 
flow management strategies further requires that 
fish communities be sampled across a variety of 
flow management practices and rivers, in order 
for the data to be representative of the largest 
number of possible natural backgrounds. Since 
no two rivers are entirely comparable, the num-
ber of rivers that are needed to detect any effect is 
often fairly large, resulting in prohibitive survey 
costs.

In this study, we propose to use an observation-
al approach involving survey data for the differ-
ent flow management practices. Observational 
studies do not provide much control over vari-
ables other than those tested. That lack of control 
entails low statistical power: the many points in 
which the rivers differ can be regarded as many 
potentially confounding variables that may 
distort our perspective of the actual outcome of 
the effect of flow management on ecosystem func-
tioning. Spatial variation stems from the spatially 
organized nature of the processes shaping the 
landscape (e.g., the climatological processes influ-
encing rainfalls, the ecological processes whereby 
species dispersed, the geological processes that 
distributed minerals in the earth crust). In addi-
tion, statistical tests assume that observations are 

independent of one another (Legendre and Leg-
endre 2012) or, at least, that their dependence of 
one another is homogeneous. However, because 
the features and processes in the environment are 
spatially organized, observations taken at near-
by locations (e.g., two consecutive locations) are 
more dependent of one another than observations 
taken at a greater distance (e.g., locations 10 km 
apart): observations are spatially autocorrelated 
(Legendre and Fortin 1989, Legendre 1993, Dor-
mann et al. 2007). Similarly, observations on pairs 
of rivers located in the same region (e.g., 50 km 
apart) are expected be more similar than observa-
tions on pairs of rivers located in different regions 
(e.g., 1000  km apart). Following that paradigm, 
the dependence of observations is expected to be 
some negative function of the distance separating 
them. Fortunately, methods exist that allow us to 
use the spatial dependence among observations 
in a predictive manner.

The goal of this study is to quantify the effect 
of different flow management strategies (i.e., RR, 
ST, and PE) on fish count density, biomass density 
and species richness. These ecosystem responses 
are of great societal value and good indicators 
of ecosystem status (Vörösmarty et al. 2010). We 
achieved that goal by using unregulated rivers as 
a baseline for comparison. For that purpose, we 
estimated local values of the response variables 
for unregulated conditions using spatial model. 
Observed fish responses were compared with 
spatially-explicit predictions obtained for unreg-
ulated sites to assess the effect of flow regulation. 
Spatial modeling allows us to assess the effects of 
flow management strategies and environmental 
variables by making spatially-explicit predictions 
for unsampled locations based on their distances 
from the sampled rivers. We use the ability of the 
models to make spatially-explicit predictions to 
generate prediction maps of expected fish count 
density, biomass density, and species richness for 
the different flow management strategies, thus 
highlighting the transferability of our approach 
to other impacted systems of the same types.

Methods

Sampling
Our data set encompasses information from 

28 rivers, of which 15 are unregulated and 13 
are regulated. All these rivers are located in 
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Canada and are spread among four Canadian 
provinces: Alberta, Ontario, New-Brunswick, 
and Quebec. Sampling was performed during 
the summer months (late June, July and August) 
of years 2011–2013, and consisted in both elec-
trofishing (using an LR24; Backpack electro-
fisher: Smith-Root Inc., Vancouver, Washington, 
USA) and snorkeling surveys performed during 
daytime (0830–1800). Because each of these 
sampling method shows selectivity toward 
catching fish of particular species and size 
classes, we used both methods in tandem to 
minimize the bias associated with sampling 
methods (Macnaughton et  al. 2014). For exam-
ple, electrofishing seemed to be more effective 
at sampling cryptic species than snorkeling, 
whereas the latter was more effective at sam-
pling large noncryptic fish, possibly because 
the latter species can feel the electric field of 
the electrofisher earlier and hence avoid being 
caught. Also, snorkelers would often observe 
large schools of small fish (e.g., 1–10  cm 
Cyprinids) while electrofishing could only catch 
a few individuals.

Electrofishing was performed by teams con-
sisting of an electro-fisher operator flanked by 
two fishers, each wielding a dip net (Smith-Root, 
dimension (cm): 38 long  ×  33 wide  ×  20 deep, 
mesh size (mm): 6.35) and moving in the up-
stream direction. The fish captured were identi-
fied to species, measured (total length; ±0.1 cm) 
and weighed (±0.1 g; Ohaus mod. CL201: Ohaus 
Corp., Parsippany, New Jersey, USA). They 
were allowed to recover in cool aerated water 
before being released at their point of capture. 
To standardize fishing effort, the electrofishing 
teams aimed for total electro-shocking periods 
of approximately 900  s per sampling site; the 
voltage was set at each sampling site to obtain a 
mean power of 200 W.

Observations were performed by teams con-
sisting of three trained snorkelers moving up-
stream in a zigzagging manner to cover the 
whole sampling area. Fish were identified to 
species or else to the nearest taxonomic level that 
snorkelers could discriminate visually. It was not 
possible for the snorkelers to identify fish below 
3  cm to species and, as a consequence, all fish 
observations with size <3  cm were categorized 
as “fry”. The size of fish with total length ≥3 cm 
was visually estimated in a first class going from 

3 to 5 cm (mean size taken as being 4 cm), and 
then in classes 5 cm apart (mean sizes taken as 
being 7.5 cm, 12.5 cm, 17.5 cm, etc.). Total lengths 
were converted to wet body mass using empiri-
cal length-mass relationships. The relationships 
used were computed using the fish captured by 
electrofishing. In order of preference, we used 
the relationship obtained using the fish from 
(1) the same river, (2) other rivers from the same 
Canadian province, or (3) all the sampled rivers, 
depending on available sample sizes.

Sampling sites having a surface area of 300 m2 
(5  m across by 60  m along the river) were po-
sitioned to ensure that the fish habitat within 
them was as homogeneous as possible. Because 
site width was often substantially narrower 
than river sections, they were transversally po-
sitioned in alternation, near the left shore (facing 
downstream), in the middle, and near the right 
shore of the river, starting randomly. The loca-
tion of the beginning and end of each sampling 
site were measured using a GPS unit (GPSMAP; 
76sc: Garmin International Inc. Olathe, Kan-
sas, USA). Local environmental variables were 
estimated. Water depth and velocity, as well as 
substrate composition, are often regarded as key 
drivers shaping community structure (Knouft 
et al. 2011, Michel and Knouft 2014). Water depth 
(z in cm, measured using a graduated pole), ve-
locity (v in cm/s; Flo-Mate 2000: Marsh-McBirney 
Inc., Frederick, Maryland, USA), and substrate 
median grain size (g in cm) were estimated in ten 
50 cm × 50 cm plots randomly dispatched with-
in each sampling site (Wolman 1954, Latulippe 
et  al. 2001). These three variables were used as 
covariables to obtain a better assessment of the 
effect of flow management on fish count and bio-
mass densities, and species richness.

Calculations
Total fish density was calculated as the max-

imum value obtained using electrofishing or 
visual sampling for each site within each river. 
That maximum was calculated on the basis of 
individual species and size classes, and was 
calculated separately for fish count density (no. 
fish/m2) and fish biomass density (g/m2; 
Macnaughton et  al. 2014). Following that 
selection procedure, we summed all these taxon- 
and size-specific densities to obtain the total 
fish count density and the total fish biomass 
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density for each sampling site. We calculated 
species richness per sampling site. Fish of total 
lengths ≤3 cm were excluded because they could 
not be dependably identified at the species level 
in the field. We computed spatial eigenvector 
maps on the basis of the distance among sites. 
The distance between pairs of sites located in 
different rivers was taken as the geodesic dis-
tance between the rivers; this is the length of 
the spherical arc between two locations follow-
ing Earth’s curvature. We calculated the geodesic 
distances from the geographical coordinates of 
the sites (in degrees) using the haversine for-
mula (Goodwin 1910). The distance between 
pairs of sites located in the same river was 
taken as the distance following the course of 
the river. That approach was used to calculate 
distances because the geodesic distance under-
estimates the distance that fish need to travel 
among sites of the same river.

Statistical analysis
Spatial eigenvectors.—We quantified spatial 

structures using spatial eigenvector maps (Leg-
endre and Legendre 2012: Chapter 14). Since we 
use the sampling sites of all the rivers for the cal-
culation of the spatial eigenvectors, sites within 
a river were very close to one another in com-
parison to distances among rivers. We therefore 
calculated a spatial eigenvector map using the 
approach proposed by Diniz-Filho et  al. (2013), 
which consists in multiplying the among sites 
distances by −0.5 before centering the rows and 
columns of the resulting matrix to a value of 0 
and calculating an eigenvalue decomposition as 
follows (Griffith 2003):

� (1)

where Q  =  In  −  n−11 n1n
T is an idempotent 

centering matrix (n: the number of sites, In: 
an n  ×  n identity matrix, 1n: an n  ×  1 all-ones 
matrix), [di,j] is the among sampling sites dis-
tance matrix for all the rivers, U is a matrix 
of spatial eigenvector, and Dλ is a diagonal 
matrix whose diagonal elements are the  nonzero 
eigenvalues λ. That calculation is equivalent 
to performing a Principal Coordinate Analysis 
of the square root of the distances among the 
sampling sites while skipping the last step 

where the eigenvectors are multiplied by the 
square root of their eigenvalues. The square 
root of the distances was used in this study 
to decrease the importance of the among-river 
distances relatively to the within-river dis-
tances. Since no two sites occupy the same 
location and because of the centering of the 
distance matrix (Eq. 1), the number of nonzero 
eigenvalues is n − 1. Only the eigenvectors as-
sociated to nonzero eigenvalues were used for 
spatial modeling. Interestingly, a regularly 
sampled transect, these spatial eigenvectors are 
identical to the type-II discrete cosine trans-
forms (DCT-II), which are commonly used to 
represent image details by image compression 
algorithms (e.g., jpeg), yet they remain appli-
cable in irregular sampling scenarios, which 
is the case in this study. The higher order 
eigenfunctions represent large-scale spatial 
variation on the whole study area, whereas 
lower order eigenfunctions represent smaller 
features, first among rivers, and then within 
the rivers. By combining them, a multiple-
spatial-scale picture of the spatial variation is 
obtained. Making predictions using eigenfunc-
tions is straightforward, as was illustrated by 
Guénard et  al. (2011) where predicting trait 
values was done using phylogenetic eigenvec-
tors. Similarly, prediction scores (sk) for a set 
of q arbitrary sampling sites can be obtained 
in the spatial context by re-arranging Eq.  1 
and posing a matrix of new locations k located 
at known distances [di,k] from the sampling 
points i as follows:

(2)

Models built using the eigenvectors in U can 
be used to predict values for new sites by 
using sk as predictors. In this study, we used 
predictions obtained from spatial predictors sk 
to cross-validate linear models as well as to 
draw prediction maps for all response 
variables.

Spatial model estimation.—We modeled fish 
count and biomass density, and species richness 
for UR rivers using water depth (z) and velocity 
(v) as well as median substrate grain size (g) and 
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spatial eigenvectors in an additive manner using 
a linear model defined as follows:

� (3)

where yi is the response variable observed on 
site i, b0 is the intercept of the model, which 
corresponds to unregulated rivers, bz, is the 
effect of depth, bv is the effect of current velocity, 
bs is the effect of substrate grain size, bl is the 
effect of a spatial eigenvector l of which ui,l is 
an element and εi is a normally-distributed 
random error. Since the spatial modeling method 
presented above produces many (n  −  1) spatial 
eigenvectors in addition to the environmental 
variables, we built the spatially-explicit models 
using elastic net regression (Zou and Hastie 
2005). Elastic net regression linearly combines 
norm (L1) used for the Least Absolute Shrinkage 
Selection Operator (LASSO; Tibshirani 1996) 
with that (L2) used for the ridge regression 
(Tikhonov and Arsenin 1977) in a single qua-
dratic regularization norm. The parameter es-
timates thus minimize the following objective 
function:

� (4)

where yi and ŷi are the observed and fitted val-
ues of the response (fish count density, biomass 
density or species richness), b are the regression 
coefficients, α is a parameter varying between 
0 and 1 that sets a trade-off between ridge (α = 0) 
and LASSO (α  =  1) regression, and ψ is the 
penalty applied to the regression coefficients. As 
with LASSO regression (but unlike ridge regres-
sion), elastic net regression can produce a par-
simonious model as it allows one to entirely 
deselect variables (i.e., make their coefficients 
numerically equal 0), while being more reliable 
than the LASSO at selecting variables within 
groups of correlated variables (Zou and Hastie 
2005). The value of ψ imposes a constraint to 
the size of the regression coefficients to which 
it is applied, shrinking their contribution in the 
model. The smallest possible constraint is ψ  =  0 

and corresponds to a regular multiple regression 
model while increasing ψ would progressively 
pull an increasing number of coefficients toward 
0, discarding them from the model. We used 
cross-validation to estimate the most appropriate 
value for α and ψ on the basis of the predictive 
power of the resulting spatial model as estimated 
using the cross-validation R-square (Rcv

2).
Because the number of observations was too 

great for leave-one-out cross-validation we 
performed it on groups of sites from the same 
river. We first determined the number of cross-
validation groups in each river as the integer part 
of the division of its number of sampling sites by 
a value of minimum group size. Then, we pro-
ceeded in an interleaving manner by assigning 
the sampling sites to successive cross-validation 
groups. The number of observations varied 
among the different cross-validation groups 
because the numbers of sampling sites differed 
among the rivers and were often not multiples of 
the minimum group size (see Results).

The effect of flow regulation on the three fish 
responses was quantified by subtracting values 
predicted by the spatial model from the values 
observed on the regulated rivers. Inference tests 
of the effect of flow regulation were calculated 
separately for each type of flow regulation while 
controlling among-river differences. For that 
purpose, we used an ANOVA model calculated 
on the basis of type II sums of squares because 
sample size differed among rivers.

All calculations were performed using the R 
language for statistical computing (The R Devel-
opment Core Team 2014). Spatial eigenfunctions 
were calculated using R package codep (Guénard 
et  al. 2010) and elastic net regressions using R 
package glmnet (Friedman et al. 2010).

Results

The number of sites sampled in each of the 
28 rivers varied from 16 (one river: Petit-
Saguenay) to 50 (two rivers: Au Saumon and 
Becaucour), for a total of 941 sites (513 in 
unregulated rivers and 428 in regulated rivers) 
spread over a vast area (Table  2). Sampling 
sites within river were located 368  m apart, 
on average, with separation distances ranging 
from 26  m to 11  km. In regulated rivers, sam-
pling began from 200  m (Dee, Serpentine) to 
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)2

+ψ

(

α

n−1
∑

l=1

|bl|+(1−α)

n−1
∑

l=1

b2

l

)



May 2016 v Volume 7(5) v Article e012527 v www.esajournals.org

GUÉNARD ET AL.

8  km (Magpie, Mississagi) downstream of the 
dam. Fish were observed in 910 sites (97%), 
where the range of fish count density was 
0.003–4.57  fish/m2 (median: 0.16  fish/m2), the 
range of biomass densities was 0.002–66.78  
g/m2 (median: 0.67  g/m2), and the maximum 
number of species observed per site was 18 
(median: 5). Species richness as well as count 
and biomass densities were left-skewed 
(Richness: γ1  =  0.83, count density: γ1  =  2.79, 
biomass density: γ1 = 12.19) and were therefore 
log(x + 1)-transformed to prevent models from 
being overly influenced by the few largest 
values.

We set a minimum group size of 15 for cross-
validation, for a total of 31 cross-validation 
groups ranging in size from 15 (31 groups) to 22 
(one group encompassing all sites of the Batcha-
wana river). Petit-Saguenay River, was repre-
sented by a single group, two rivers (Au Saumon 
and Becaucour) by three groups and the remain-
ing 12 rivers by two groups. The cross-validation 
estimates of α were slightly below 1, while that of 
ψ were ranged from 0.010 to 0.032 (Table 2). The 
predictive powers of the spatial models obtained 
from the elastic net regression models (Rcv

2) with 
spatial eigenfunctions ranged from 0.26 to 0.47 
and were always higher than their counterpart 
without spatial eigenvectors (range: 0.09–0.23).

In the model predicting count density, the effect 
of two predictors, water depth and velocity, were 
retained by the elastic net model together with 
17% of the 506 spatial eigenfunctions, whereas that 
of the median substrate size and the remaining 

spatial eigenfunctions were discarded (Table  2). 
We found the flow management practices to affect 
count density, with PE dams having a 39% small-
er density, on average than values predicted for 
unregulated rivers (a −0.059 fish per m2 deviation 
from the predicted baseline of 0.150 fish per m2; 
t(96)  =  −5.922, P  <  0.0001). No statistically signifi-
cant differences were found for RR and ST dams 
(P > 0.05; Fig. 1a).

In the model predicting biomass density, 
water velocity was the only retained significant 
predictors and was accompanied by 15% of the 
spatial eigenfunctions (Table 2). We found flow 
management to affect biomass density, with 
ST and PE dams having 33% higher and 47% 
lower biomass density, respectively, than pre-
dicted for UR (ST: a 0.350 g/m2 deviation from 
the predicted average baseline of 0.795  g/m2; 
t(162) = 6.879, P < 0.0001; PE: a −0.267 g/m2 devia-
tion from the 0.566 g/m2 baseline; t(96) = −10.017, 
P  <  0.0001). RR dams were similar to UR con-
ditions in terms of biomass density (P  >  0.05; 
Fig. 1b).

In the model predicting species richness, water 
depth and velocity were selected as predictors 
together with 10% of the spatial eigenfunctions 
(Table  2). As in the two previous analyses, the 
flow management had an influence on species 
richness: PE and ST dams had 13% and 1.7% 
fewer fish species, respectively, than predicted for 
UR (PE: a −0.660 species deviation from the base-
line of 5.088 species; t(96) = −12.744, P < 0.0001; ST: 
a −0.091 species deviation from the baseline of 
5.200 species; t(162) = −2.716, P < 0.01), whereas RR 

Table 2. Summaries of parameter values for the models describing transformed (log(x + 1)) fish count density, 
biomass density and species richness estimates for unregulated rivers with the number of spatial eigenfunc-
tions and cross-validation R-squared (Rcv

2) for the model with and without spatial eigenfunctions.

Parameter

Model

Count density Biomass density Species richness

α 0.9984 0.9917 0.9996
ψ 0.010 0.029 0.032
Intercept 0.3829 0.7409 2.3302
Depth −0.0015 – −0.0062
Velocity −0.2194 −0.3605 −0.8092
log(D50 + 1) – – –
Nb. of eigenfunctions 86 77 52
Rcv

2 w eigenfunctions 0.47 0.26 0.33
Rcv

2 w/o eigenfunctions 0.09 0.005 0.23
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dams had similar species richness than for UR 
(P > 0.05; Fig. 1c).

Because the selected rivers were spatially 
clustered in three groups, we predicted the three 
response variables in space in three regions: 
the western (from +49,−116° to +51,−113°; en-
compassing the four Albertan rivers), central 
(from +46,−85° to +49,−83°; encompassing the 
five rivers east of Lake Superior and north of 
Lake Uron), and eastern region (from +45,−77° 
to +49,−66°; encompassing the 19 rivers of 
Eastern Ontario, Québec, and New-Brunswick). 
Predictions were calculated using the average 
environmental conditions observed: depth 
40 cm, flow velocity 32 cm/s, median substrate 
grain size 2.9 cm.

Predicted fish count density varied between 
−0.09–0.56  fish/m2 (Fig.  2a), biomass densi-
ty varied between 0.31 and 1.05  g/m2 (Fig.  2b) 
whereas species richness varied between 1.58 
and 2.18 species (Fig.  2c). The three response 
variables studied here show roughly similar 
spatial variation patterns across the three re-
gions. For instances the highest values of all 
three responses were predicted in the eastern 
region, along the Saint-Lawrence River. The 
lowest count and biomass density values were 
predicted in the lower portion of the central re-
gion (north of Sault Ste.-Mary, Ontario), and the 
lowest species richness were predicted north of 
the western region.

Discussion

In this study, we used spatial modeling to 
take the spatial context in which the obser-
vations were obtained into account to depend-
ably assess the specific effect of flow 
management practices on fish density and 
species richness. It is important to state that 
the purpose of the spatial modeling method 
we described is not only to control for spatial 
variation as being a source of confounding 
variation; it is also to use the latter to make 
predictions for given segments of similar rivers 
located within the spatial scope of the models. 
Here, we illustrated that capacity by mapping 
fish count and biomass densities as well as 
fish species richness from spatially-explicit 
predictions across whole maps. The same com-
putational approach remains applicable to other 
variables of interest and for other similar stud-
ies whose goal is to reliably assess the effect 
of variables using observation data obtained 
in survey studies.

The spatially-explicit models enabled us to 
highlight the effects of different flow manage-
ment practices against the natural background of 
spatial variation. Our analysis strongly suggests 
that PE dams have deleterious effects on fish den-
sities (count and biomass) and species richness 
(Fig. 1). Three out of the 28 rivers sampled had 
dams with PE management practices and given 

Fig. 1. Effect of flow management strategies on fish: (a) count density, (b) biomass density, and (c) species 
richness (RR: river with run-of-the-river dam, ST: river with a gradual release storage dam, PE: river with a peak 
release storage dam) Error bars are 95% confidence intervals.
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their geographic locations, the models would 
expect count density to be 83%, 0.36%, and 32% 
higher, biomass density to be 52%, 13%, and 7% 
higher, and species richness to be 15%, 1%, and 
4% higher in the Kananaskis, Magpie, and Mis-
sissagi Rivers, respectively, had these rivers been 

unregulated (Table 3). Possible mechanisms un-
derlying the negative effects of PE dams may 
encompass, for example, fish stranding, down-
stream fish displacement, egg de-watering, in-
creased predation on small fish, impeded fish 
migrations, lack of timing for fish reproduction 

Fig. 2. Spatially-explicit estimates of fish: (a) count density, (b) biomass density, and (c) species richness, all 
three represented using a color scale, for the different flow management strategies in the three regions (Western, 
Central, and Eastern). The symbols on the maps represent the flow management strategies prevailing on a given 
location; management strategy symbols are shown in an inset in the upper map.
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and migration, and reduced fish shelter (see 
Young et  al. 2011, for a review). Although we 
may consider the uneven spread of regulation 
practices across the study area as a limitation of 
this study, it is the goal of spatial modeling to 
make predictions assessing the effects of river 
management practices on fish through space.

Our analysis also revealed a positive effect of 
ST dams on biomass density. We found positive 
difference between observed and predicted bio-
mass density ranging from 163% (Serpentine) to 
35% (Dee) for all five rivers with ST dams. These 
results suggest that the ST dams may enable fish 
to grow to larger sizes than under unregulated 
flow. These results are similar to those reported 
by Kushlan (1976), who observed decreased fish 
density concomitantly with increased biomass, 
average fish size, species richness, and species 

diversity following a period of stability of the 
water level in the Everglades marshes (Florida, 
USA). These changes were accompanied by a 
shift from the dominance of small-sized omni
vorous species to a dominance of large-sized 
carnivorous species resulting from their immi-
gration, because they were poorly adapted for 
surviving water level fluctuations in their native 
marshes. By contrast, we detected a small neg-
ative effect of ST dams on fish species richness 
compared to UR rivers. In this study, ST dams 
are associated with a similar number of indi-
viduals of fewer species growing to larger sizes. 
Although the effect of ST dams on species rich-
ness is small, similar species richness may imply 
radically different species composition. Further 
study on species composition may help detect 
what change in species assemblages underlying 

Table 3. Geographic locations (in degrees) of rivers in three regions of Canada (Western, Central, Eastern), their 
flow management strategies, and their mean observed and predicted count density (no. fish/m2), biomass 
density (g/m2), and species richness (species).

Region River Type Latitude Longitude

Count density Biomass density Species richness

Obs Pred Obs Pred Obs Pred

Western Kananaskis PE 50.79013 −115.15707 0.01 0.15 0.06 0.76 0.73 3.99
Elbow UR 50.91403 −114.64483 0.04 NA 0.50 NA 2.76 NA
Castle UR 49.50713 −114.11905 0.15 NA 0.81 NA 4.25 NA

Waterton ST 49.39392 −113.59020 0.23 0.17 1.16 0.69 5.03 4.60
Central Magpie PE 48.00691 −84.80294 0.18 0.16 0.28 0.46 5.12 5.89

Batchawana UR 47.01422 −84.50238 0.18 NA 0.46 NA 5.81 NA
Goulais UR 46.74834 −84.09958 0.15 NA 0.31 NA 4.62 NA

Aubinadong UR 46.91840 −83.42486 0.05 NA 0.28 NA 4.20 NA
Mississagi PE 46.87216 −83.33139 0.08 0.14 0.40 0.50 3.67 5.57

Eastern Picanoc UR 46.04178 −76.11821 0.07 NA 0.40 NA 3.05 NA
Kiamika ST 46.60518 −75.18681 0.38 0.19 1.51 0.67 6.41 5.50

Noire UR 45.61028 −72.59266 0.48 NA 1.74 NA 8.84 NA
Nicolet UR 46.10445 −72.39958 0.27 NA 0.93 NA 7.95 NA

Sainte-Anne RR 46.66634 −72.11558 0.19 0.44 0.62 1.18 5.07 7.81
Coaticook RR 45.17841 −71.81062 0.45 0.28 0.88 0.71 5.49 4.38

Eaton UR 45.42903 −71.62786 0.40 NA 0.79 NA 4.52 NA
St-Francois ST 45.61350 −71.52945 0.06 0.35 1.18 0.77 3.93 5.73
Bécancour UR 46.27578 −71.47241 0.91 NA 3.00 NA 8.20 NA

Au Saumon UR 45.60874 −71.38894 0.38 NA 0.91 NA 6.77 NA
Etchemin RR 46.66083 −71.07681 1.17 0.70 2.44 1.66 7.38 7.23
du Sud RR 46.88161 −70.69758 0.43 0.68 1.10 1.63 8.61 6.21
St-Jean RR 48.21989 −70.22747 0.09 0.11 0.41 0.36 3.15 3.28

Petit-Saguenay UR 48.20977 −70.06994 0.06 NA 0.21 NA 2.82 NA
Ouelle UR 47.41224 −69.95785 0.79 NA 2.19 NA 7.43 NA

du Loup UR 47.57704 −69.66737 0.24 NA 0.68 NA 3.61 NA
Gulquac UR 46.96566 −67.19058 0.22 NA 0.88 NA 4.84 NA

Dee ST 47.07160 −66.99624 0.22 0.22 1.44 0.92 4.61 4.84
Serpentine ST 47.20665 −66.85522 0.22 0.24 1.89 0.95 3.80 5.40
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the positive effect of ST dams on biomass den-
sity.

Nevertheless, our results suggest that the buff-
ering of peak flow events associated with ST type 
dams may be favorable to larger individual fish, 
possibly because it is energetically more reward-
ing to have a larger size under that flow regime 
(Enders et  al. 2005). Peak flow events, whether 
they are natural or anthropogenic in origin, may 
be difficult for larger fish to withstand, possibly 
because of their reduced ability to find refuge 
along the river bed and, therefore, they have a 
higher propensity to be flushed away from their 
preferred habitats. Similar peaking events might 
also be involved in the overall depression of 
ecosystem responses observed in rivers with PE 
dams. That result might seem counter-intuitive 
and contrast with that of other studies that found 
larger fish to be more powerful and better able 
to withstand peak flows than smaller fish (Bain 
et  al. 1988, Kinsolving and Bain 1993). Because 
swimming against running water is energetically 
costly, simply swimming against strong current 
may not be sustainable in the long run, and this 
irrespective of fish size (i.e., swimming costs 
grow with fish size; Boisclair and Tang 1993, 
Guénard et al. 2015). In such a circumstance, fish 
would need to change their distribution toward 
more profitable habitat. It is possible that these 
alternate high flow habitat be rare for fish of any 
size given the magnitude of the flow peak down-
stream of PE dams.

King et  al. (2010) have shown that too much 
flow stability can be detrimental to river ecosys-
tems. ST dam operation also involves a few high 
flow events that could be instrumental to key pro-
cesses for the maintenance of the habitat, such as 
preventing river bed silting. We hypothesize that 
ST dams may provide, on average, a good trade-
off between the flow stability required for fish to 
thrive while ensuring sufficient high flow events 
to maintain suitable fish habitat.

The small negative impact of ST dams observed 
on species richness (0.2% on average) was not 
consistent among rivers. It was observed for three 
rivers out of five (Serpentine: −4%, St-François: 
−3%, and Dee: −0.1%), with the two remaining 
rivers, Waterton (4.4%) and Kiamika (3.9%), hav-
ing higher species richness than predicted by the 
spatial model. That result suggests that under 
sets of circumstances not assessed in this study, 

flow stability may become either detrimental or 
beneficial to local fish diversity.

Run-of-the-river management practices are 
thought to have minimal, if any, artificial influ-
ence on downstream river flows, suggesting that 
fish community metrics should not be signifi-
cantly affected by these flows. This study sup-
ports that view as our results could evidence no 
effect of RR dams for any of the three fish com-
munity responses under study.

It is widely expected that the construction of hy-
droelectric dams on rivers and their subsequent 
operation may have profound impacts on eco-
systems. Our results suggest that, asides for PE 
dams, the impacts on fish may be small and not 
systematically negative. Future studies should 
investigate whether and how flow management 
influence in community structure. For instance, 
the density of some species may increase, mask-
ing decrease in that of other species and resulting 
is similar total density. An analysis of species in-
teraction may help strengthen our understanding 
the reason underlying the global fish responses 
that were observed in this study.

Using spatially-explicit modeling in this study 
has allowed us to take advantage of spatial varia-
tion to make predictions. These spatially-explicit 
predictions allowed us to extrapolate the effect 
of further hydroelectric development and flow 
management practices to other systems. Our 
study highlights the merits of including spatial 
modeling as a predictive tool in establishing 
environmental flows for regulated systems across 
large geographic extents. Spatial modeling is lim-
ited to representing spatial variation. To reliably 
estimate baseline conditions, it is important that 
models employ environmental variables repre-
senting any local particularity contrasting from 
the broad landscape picture. Let us consider, for 
instance, two nearby sites with very different 
depths have very contrasted fish density because 
of their different depth. A purely spatial model 
will not be able to grasp that difference without 
being helped by environmental variable depth. In 
revenge, it is often not practical to assess all the 
different driving broad- and medium-scale spa-
tial variation and use them directly for prediction. 
Spatial modeling appears a pragmatic solution in 
such widespread situations. Spatial eigenfunc-
tions represent variation that may arise from a 
multitude of environmental factors. The relevance 
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of these multiple factors driving spatial variation 
can investigated in future studies using methods 
such as multiscale codependence analysis (MCA; 
Guénard et  al. 2010). MCA allows to quantify 
the join spatial dependence between variables, 
allowing one identify the variables whose spatial 
distribution influence that of others.

From a more philosophical standpoint, we 
hope this study will help bridge the gap between 
theory and practice and encourage ecologists to 
use spatial ecological methods to tackle practical 
issues. Spatial structure and ensuing autocorrela-
tion is expected in large-scale study such as the 
present. We recommend that spatial modeling 
be attempted in these scenarios. Spatial variation 
can only be assumed not to be relevant when no 
eigenfunctions can be evidenced to be a relevant 
predictor of the response under study.
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