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Summary

1. Phylogenetic signals are the legacy related to evolutionary processes shaping trait variation among species.

Biologists can use these signals to tackle questions related to the evolutionary processes underlying trait evolu-

tion, estimate the ancestral state of a trait and predict unknown trait values from those of related species (i.e.

‘phylogenetic modelling’). Approaches to model phylogenetic signals rely on quantitative descriptors of the

structures representing the consequences of evolution on trait differences among species.

2. Here, we propose a novel framework to model phylogenetic signals: Phylogenetic EigenvectorsMaps (PEM).

PEM are a set of eigenfunctions obtained from the structure of a phylogenetic graph, which can be a standard

phylogenetic tree or a phylogenetic tree with added reticulations. These eigenfunctions depict a set of potential

patterns of phenotype variation among species from the structure of the phylogenetic graph. A subset of eigen-

functions from a PEM is selected for the purpose of predicting the phenotypic values of traits for species that are

represented in a tree, but for which trait data are otherwise lacking. This paper introduces a comprehensive view

and the computational details of the PEM framework (with calculation examples), a simulation study to demon-

strate the ability of PEM to predict trait values and four real data examples of the use of the framework.

3. Simulation results show that PEM are robust in representing phylogenetic signal and in estimating trait

values.

4. The method also performed well when applied to the real-world data: prediction coefficients were high

(0�76–0�88), and no notablemodel biases were found.

5. Phylogeneticmodelling using PEM is shown to be a useful methodological asset to disciplines such as ecology,

ecophysiology, ecotoxicology, pharmaceutical botany, among others, which can benefit from estimating trait

values that are laborious and often expensive to obtain.

Key-words: comparative method, cross-validation, evolutionary models, graph theory, Ornstein–
Uhlenbeck process, phylogenetic eigenvectors, phylogenetic modelling, phylogenetic signal, statisti-

cal modelling, trait values

Introduction

Themorphological, physiological and behavioural characteris-

tics of organisms (i.e. species traits) are in varying degrees the

evolutionary legacy of common ancestry (i.e. they are autocor-

related). The result of these patterns of common variation in

the phenotypic values of traits is hereafter referred to as ‘phylo-

genetic signal’. The fact that species traits often have a strong

phylogenetic signal has long been recognized as an issue

because it means that statistical tests of trait correlation among

species are biased in comparison with those obtained from

independent observations (Felsenstein 1985). Reducing such

bias has become perhaps the primary purpose of phylogenetic

comparative methods (Freckleton 2009). However, the

development of comparative methods has unravelled opportu-

nities extending much beyond this primary purpose. These

comparative frameworks allow one, among other goals, to

explore the evolutionary processes underlying the evolution of

a trait (Hansen 1997; Butler & King 2004; Bartoszek et al.

2012; Slater et al. 2012;Hern�andez et al. 2013), estimate ances-

tral trait values (Felsenstein 1985; Garland & Ives 2000; Zheng

et al. 2009) and predict unknown trait values (Martins &

Hansen 1997; Gu�enard et al. 2011; Fagan et al. 2013). The

present study will focus on that latter purpose, which we refer

to as ‘phylogenetic modelling’. There are two important com-

ponents in current comparative frameworks that allow us to

model missing traits based on incomplete trait information.

The first one is the modelling of phylogenetic signal which is

currently performed by a variety of methods such as general-

ized least-squares (Garland & Ives 2000; Freckleton et al.

2002; Blomberg et al. 2003), autocorrelation / autoregression*Correspondence author. E-mail: guillaume.guenard@gmail.com
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(Gittleman & Kot 1990; Martins 1996), Bayesian inference

(Zheng et al. 2009) and eigenfunctions (Diniz-Filho et al.

1998; Desdevise et al. 2003; Pavoine et al. 2008). The second

component is the ability to estimate the processes underlying

trait evolution (Boettiger et al. 2012). Given the current avail-

able genetic data and our ability to estimate phylogenies for

large number of species, phylogenetic modelling becomes par-

ticularly compelling.

The significance of phylogenetic modelling is grounded in

the fact that traits can be very laborious and often expensive

(e.g. physiological traits) to estimate while being crucial to

empirical research as well as conservation and management

practices. The ability to predict whether organisms can tolerate

new environments, for example, is particularly important given

current trends in global changes. However, estimating trait

that can inform us about their capacity to tolerate these

changes for all species in a phylogeny may not be possible as

distributional, and associated environmental information is

often not available for a large number of species in any given

phylogeny. In such circumstances, a robust and well-imple-

mented phylogenetic model is a useful alternative to estimate

trait values from those known fromother species in the phylog-

eny (Zheng et al. 2009;Gu�enard et al. 2011).

In this paper, we use graph theory within a phylogenetic

modelling context as the approach allows a generic, flexible

and robust framework for representing trees as well as candi-

date evolutionary processes underlying trait variation and

divergence among species. Trees are a particular kind of direc-

ted graph called an acyclic directed graph (West 2001). Fol-

lowing the terminology of graph theory, which is adapted from

that of geometry, a graph is a set of objects, called vertices, that

are interconnected by edges. Each edge of a graph connects a

pair of vertices, thereby representing their relationship to one

another and altogether defining the topology of the graph. In

addition to the classical view whereby a phylogeny is repre-

sented as having a strict tree structure, phylogenetic graphs can

also accommodate any other kind of phylogenetic network

originating, for instance, from species hybridization or hori-

zontal gene transfer in bacteria (Makarenkov et al. 2004). In a

phylogenetic graph, vertices represent extant species (tips) as

well as hypothetical ancestors (referred to as ‘nodes’ or ‘root’

in the case of the last common ancestor), while edges represent

species affiliation. Moreover, since affiliation is unidirectional,

going from ancestors to their descendants, phylogenetic graphs

are intrinsically directed (i.e. their edges are unidirectional).

Graph theory is closely related to linear algebra, and it follows

that spectral decomposition of relational matrices obtained

from graphs (e.g. pairwise phylogeneticmatrices, spatial neigh-

bourhood matrices, time-series matrices) can be used to quan-

tify and represent (i.e. map) the influence of vertices (species,

sampling sites, time steps) on one another (Dray et al. 2006).

An asymmetric spectral decomposition approach in which

the influences of vertices on each other are asymmetric (AEM:

asymmetric eigenvector maps; Blanchet et al. 2008) has been

proposed in ecology as a modelling tool able to accommodate

spatial neighbourhood matrices among sampling sites (verti-

ces) that have asymmetric relationships in the sense that the

connectivity (influence) of any two given sites may be different

on one another (e.g. site A is connected to site B, but site B is

not connected to site A, or both sites are connected but with

different connectivity weights). This matrix representation and

associated spectral decomposition in amodelling framework is

then able to cast spatial variability representing spatial latent

processes influencing species distributions in space (or time). In

addition to the topological information on site locations with

respect to a latent spatial process (or a combinations of multi-

ple spatial processes), the AEM framework also allows one to

integrate information about the spatial processes influencing

variation between adjacent sites (vertices) by applying weights

to the graph edges. This approach has great potential value for

modelling phylogenetic variation in trait as it allows one to rep-

resent information not only on phylogenetic topology (e.g. spe-

ciation and hybridization events) but also information

associated with different evolutionary processes occurring

along the edges (e.g. evolutionary rates). Indeed, different evo-

lutionarymodels can be represented by giving different weights

to the edges in a graphic representation of a phylogenetic tree

(e.g. Pagel’s lambda, Ornstein–Uhlenbeck process; see Butler

& King 2004 and Boettiger et al. 2012 for a recent overview).

Finally, there is a conceptual similarity between the particular

context in which a directed process could drive a temporal

(and certain spatial) signal and that where successive speciation

events and trait evolution in time could structure phylogenetic

signal: both kinds of signals are generated by processes acting

in a single direction on a set of interconnected objects or verti-

ces (i.e. sampling sites, time periods or species).

It follows that the evolutionary processes influencing a trait

can bemodelled from the edges of the phylogenetic graph. The

evolutionary forces acting on traits are often seen as a gradient

whose end points are neutral (e.g. genetic drift, random muta-

tions leading to gradual changes over generations) and selec-

tive (e.g. stabilizing or directed natural selection; Hansen 1997;

Butler & King 2004; leading to either lack of change or abrupt

changes in trait trajectories in contrast to neutral variation)

processes, respectively. Although a phylogenetic signal may

occur regardless of the absence or presence of natural selection,

the nature of the intervening evolutionary processes may influ-

ence the strength and the structure of the phylogenetic signal.

For instance, on average, a trait evolving neutrally will change

gradually along edges, whereas the same trait may either

remain conserved or change steeply after speciation (i.e. at

nodes) in the presence of strong stabilizing or directional natu-

ral selection. With a graph-based approach to model phyloge-

netic signal, accommodating these two extreme scenarios of

trait evolution is straightforward, in addition to a broad range

of practical situations where both neutral processes and natu-

ral selectionmay have driven trait evolution.

The goal of this paper is to propose a general and flexible

phylogenetic modelling framework based on graph theory,

namely Phylogenetic Eigenvectors Maps (PEM). The pro-

posed framework allows one to model trait variation based on

the information obtained on both the graph structure (topol-

ogy and branch length) and the dynamics of trait evolution,

that is, whether phenotypes tend to change gradually over
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generations or abruptly at nodes. The greatest advantage of

the proposed approach is its flexibility in the sense that, unlike

other approaches, PEM can be used within any statistical fit-

ting procedure (e.g. Griffith & Peres-Neto 2006). In order to

demonstrate its strengths and robustness, we use a combina-

tion of computer simulations and real data sets from the litera-

ture, representing different groups of organisms and

potentially evolutionary processes.

Materials andmethods

CALCULATION OF PHYLOGENETIC EIGENVECTOR MAPS

As established earlier, any phylogenetic tree can be regarded as a phylo-

genetic graph. In this section, we describe the algebra underlying PEM,

whereas a complete numerical example is given in the next subsection.

PEM work on a similar basis as (centred) principal component

analysis (PCA; Pearson 1901; Legendre & Legendre 2012). In

PEM, one uses a matrix containing the graphic structure of a

phylogeny to calculate eigenvectors that are later used as descrip-

tors (predictors) in predictive modelling procedures such as multi-

ple regression (see Griffith & Peres-Neto 2006 for an overview).

Because the number of eigenvectors is usually large (number of

tips minus one), a subset of eigenvectors is selected and used,

alone or with other descriptors (e.g. other traits), to model the

variation in the trait of interest.

The calculation of a PEM from a phylogenetic graph begins by

coding the topology of the phylogenetic graph in an influence

matrix B ¼ ½bi;j�. The influence matrix is a n 9 m binary matrix

whose rows and columns represent the n vertices and m edges of

a directed graph, respectively. The term ‘influence’ here means the

inheritance of ancestors on their descendants. An element bi;j is set

to 1 when vertex i is under the direct or indirect influence of edge

j; an indirect influence is when a non-pendant edge j is in the path

from the root to vertex i. Element bi;j is set to 0 when vertex i is

assumed not to be influenced by edge j. The information that is

not associated with the topology of the graph but, instead, with

details about the dynamics of trait change along the edges, is rep-

resented using edge weights. The estimation of these weights is pre-

sented in details in the next subsection ‘Estimating weighting

function parameters’.

While trees having the same topology share the same influence

matrix, edge weighting is used to represent a particular evolutionary

model (e.g. Pagel’s lambda,Ornstein–Uhlenbeck) influencing the varia-

tion of a given trait. Therefore, by considering appropriate edgeweight-

ing, one can obtain a covariance structure that is best at modelling a

particular trait. As such, we propose that an edge is assigned a weight

wa;w proportional to the extent of the change that is expected to occur

along that edge based on the followingmonotonic function:

wa;wð/jÞ ¼ w/
1�a
2 /j [ 0

0 otherwise;

�
eqn 1

where a (0 ≤ a ≤ 1) is the steepness parameter describing how abrupt

the changes in trait values occur with time following branching (steep-

ness is related to Pagel (1999) j, with a = 1 � j), w (0 < w < ∞) is the
relative evolution rate of the trait being modelled, and /j is the length

(phylogenetic distance) of edge j (Fig. 1). For any given trait, a tree can

be assigned a single pair of parameters a and w, thereby assuming that

the trait evolved in a steady manner throughout the phylogeny. It is

also possible to relax this assumption (i.e. one single evolutionary rate

for the entire phylogeny) by assigning different parameters to different

subordinate phylogenies (e.g. use different pairs of parameters a and w
for sub-trees; Revell et al. 2011; Beaulieu et al. 2012), but obviously at

the cost of increasingmodel complexity (i.e. more parameters). Follow-

ing that model, a describes the initial steepness of the relationship

between the extent of the changes in the trait values along the edges of

the phylogenetic graph and their (phylogenetic) lengths /j. Under

purely neutral evolution, a = 0 and the expected trait changes along

edges are proportional to the square root of the phylogenetic distances,

with w being the proportionality constant, whereas when a = 1,

changes occur at a fixed rate w whenever species diverge; the phyloge-

netic variation (distances) due to trait evolution subsequently along the

edges are irrelevant to the size of the changes. Hence, changes occur

more gradually with time for traits evolving neutrally than for traits

under natural selection, where adaptive forcing either prevents trait

changes (i.e. stabilizing selection) or induces very drastic trait changes

(i.e. directional selection).

Phylogenetic EigenvectorMaps (PEM) are then obtained by weight-

ing (eqn. 1) and centring the reduced influence matrix B� (the subset of
the rows ofB corresponding to the tips), and extracting the singular val-

ues of the following product:

QðnÞB
�Dw ¼ UDRV

T eqn 2

where QðnÞ is an order n centring matrix (obtained as

QðnÞ ¼ IðnÞ � ½1=n�n�n, where IðnÞ is an order n identity matrix and

½1=n�n� n is an n by n matrix whose elements are 1/n), Dw and DR

are diagonal matrices of edge weights (i.e. the jth element in the

diagonal of Dw contains edge weight wa;wð/jÞ; matrix has order

m) and singular values (order n), respectively, while U and V are

the left and right singular vector matrices, respectively. Due to cen-

tring (through the operation QðnÞB
� of eqn. 2), the n�1 left singu-

lar vectors have a mean of 0 and are orthonormal (i.e. their scalar

products and column correlations are both zero); U can be then

used as a design matrix (predictors) in modelling procedures. The

Phylogenetic Eigenvector Maps (PEM) are the columns of matrix

U, that is, the principal components of QðnÞB
�Dw and each

Distance (φ)

w
a,

 ψ
 (φ

)

0 1 2

0·0

0·5

1·0

1·5
a ψ
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1·00
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0·65
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0·33
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Fig. 1. Profiles of the edge weighting function (eqn. 1) for phylogenetic

eigenvectors maps for six different combinations of selection strengths

a and evolution ratesw. Solid line: purely neutral evolution withw = 1;

dashed lines: different selection strengths with w = 1; dotted lines: dif-

ferent evolution rates and selection strengths.
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element ui;j of U is the loading of species i on a phylogenetic ei-

genfunction j. As such, PEM is the orthogonal basis obtained

from the structure of the phylogeny (both in terms of topology

and trait change dynamic, which is inferred from the edge weights;

Dray et al. 2006; Blanchet et al. 2008). Singular values associated

with PEM are proportional to the extent of the variation of

QðnÞB
�Dw in which the largest singular values represent the broad-

est patterns of phylogenetic variation (i.e. those involving many

species) and the smallest values being associated with the narrow-

est patterns (i.e. those involving only a few species; see Fig. 2).

How gradually or abruptly trait changes occur is then modelled as

the influence of edge lengths (phylogenetic distances) on trait varia-

tion; see example in Fig. 2. Phylogenetic signal in response traits

can be then modelled using subsets of the columns of PEM as

explanatory variables in fitting procedures.

ESTIMATING WEIGHTING FUNCTION PARAMETERS

The purpose of eqn. 1 is to obtain the phylogenetic model that is the

most suitable to represent a phylogenetic signal. The weighting func-

tion parameters are estimated on the basis of the among-species phylo-

genetic covariance matrix C. It is interesting to note that there is a

direct relationship between PEM (columns of U, eqn. 2) and C, which

can bemodelled as a function ofU as follows:

C¼ fQðnÞB
�DwgfQðnÞB

�DwgT ¼QðnÞB
�Dw2B�TQðnÞ ¼UDR2UT:

eqn 3

Given that C here is produced already centred, its elements can be

interpreted as the relative degrees of resemblance between any two spe-

cies with respect to the covariances among the other species. Positive

and negative covariance values indicate species pairs that have greater

or lesser resemblance, respectively, than that observed, on average,

among other species. Here, we proposed that PEMbe extracted using a

weighting function parameters a and w that best represent the among-

species phylogenetic covariance structures associated with a species

trait y. To do so, we begin by assuming that trait values yi for each

species i follow a multivariate normal probability distribution with

covariances r2C, where r2 is the variance of y, and C is the phyloge-

netic covariance structure as calculated above (eqn. 3).

Under normality assumptions, the joint probability density function

of y is:

fCðyÞ ¼ ð2pÞrankðCÞ
2 jr2Cj�1

2� e�
1

2r2
½yi�Xb�TC��½yi�Xb�; eqn 4

where jCj� and C�� denote the pseudo-determinant and the (Moore-

Penrose) pseudo-inverse ofC, respectively; rank(C) denotes the rank of

C, X is a matrix whose columns are auxiliary traits (i.e. traits that can

also serve as predictors of y), β is a vector containing the slope esti-

mates of the relationships between the auxiliary traits and y, and super-

script T denotes matrix transpose. The maximum likelihood estimate

ofβ is then obtained as:

b̂ ¼ ðXTC��XÞ�1XTC��y; eqn 5

whereas themaximum likelihood of r2 is obtained as:

r̂2 ¼ ½yi � Xb�TC��½yi � Xb�
n

: eqn 6

Because C is modelled as a centred matrix (its rows and columns

havemeans of 0), the density function in eqn. 4 is not affected by adding

or subtracting a constant value to y. Therefore, when no auxiliary traits

are used (i.e. when the goal is uniquely predict the response trait solely

on the basis of phylogenetic variation contained inC), the termXb̂ can

simply be removed from eqns 4 and 6. The parameters of the weighting

function are then estimated as the values that minimize the objective

(deviance) function corresponding to eqn. 4 as follows:

�2 logL ¼ nþ rankðCÞ logð2pÞ þ n logðr̂2Þ þ log jCj� eqn 7

where L is the likelihood of observing trait y given C. We propose

to use a box-constrained optimization method for this purpose

(e.g. Byrd et al. 1995; Nocedal & Wright 1999). It is noteworthy

that it is not possible to estimate w when it is assumed to be con-

stant for the whole phylogeny because it would conflict with the

estimation of r̂2 (eqn. 6). In the latter case, we propose to use

w = 1 as a standard value. Moreover, when multiple values of w
are used, a value needs to be considered a constant (e.g. w1 ¼ 1)

so that the other values (e.g. w2;w3;w...) are interpreted relative to

w1.

CALCULATION EXAMPLE, PART 1 – MODELLING

PHYLOGENETIC SIGNALS

Here, we illustrate how to obtain a PEM using a fictional phylogenetic

tree containing seven species labelled A�G (Fig. 3a) and associated

made-up trait values (Fig. 3b). The influence matrix B� of the example

tree is:

B� ¼

A
B
C
D
E
F
G

1 1 1 0 0 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 0
1 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 1 1 0 0 0 0
0 0 0 0 0 1 1 0 1 0 0 0
0 0 0 0 0 1 0 0 0 1 1 0
0 0 0 0 0 1 0 0 0 1 0 1

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

C

B

A

0·1

0

0·
33

0·
67 1

a

0

0·
33

0·
67 1

a

u1 u2

Fig. 2. Impact of increasing selection strength (a) on a centred phyloge-

netic eigenvector map (PEM) having two eigenvectors (u1 and u2 com-

puted for aminimal tree of three species). The open and closedmarkers

are negative and positive species scores on the eigenvectors, respec-

tively, while the sizes of the markers are proportional to the absolute

values. For a trait evolving neutrally (i.e. when a is close to 0), evolution

occurs progressively along the edges and phylogenetic distances play a

more important role on the structure of PEM, whereas under strong

natural selection (i.e. when a is close to 1), the structure of PEM is

mostly driven by the topology.
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where the columns of B� are, from left to right, edges E1�E12 of Fig.

3a. In that example, species A to C are influenced by edge E1, and spe-

cies D to G by edge E6. The vector of phylogenetic distances of the

edges is:

/¼ 0�25 0�15 0�15 0�20 0�35 0�10 0�30 0�25 0�10 0�30 0�15 0�20f g:

The steepness parameter computed from the trait values (Fig. 3b) is

estimated as a = 0�52. w is assumed constant for the whole tree with a

standard value of 1. The vector of edgeweights is therefore:

w¼ 0�72 0�64 0�64 0�68 0�78 0�58 0�75 0�72 0�58 0�75 0�64 0�68f g;

the centred andweighted influencematrix for the tips is:

and the centred covariancematrixC obtained from eqn. 3 is:

C¼

A
B
C
D
E
F
G

0�93 0�52 0�21 �0�43 �0�40 �0�41 �0�42
0�52 0�97 0�20 �0�43 �0�41 �0�42 �0�43
0�21 0�20 0�90 �0�34 �0�31 �0�32 �0�33

�0�43 �0�43 �0�34 0�96 0�47 �0�11 �0�12
�0�40 �0�41 �0�31 0�47 0�83 �0�08 �0�09
�0�41 �0�42 �0�32 �0�11 �0�08 0�88 0�46
�0�42 �0�43 �0�33 �0�12 �0�09 0�46 0�92

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;
:

From matrix QðnÞB
�Dw, a PEM with six (left) singular vectors U

is obtained using eqn. 2 (Fig. 4). A model of the phylogenetic signal

(trait values) is obtained by regressing y against U. Note, however,

that the number of PEMs (i.e. columns on U) is too large for the

number of species (i.e. 6 PEMs are produced), and as such, we need

to use a model selection procedure to retain the most important ei-

genvectors mapping (explaining) trait variation (see Diniz-Filho

et al. 2012 for a recent review). The selection procedure used in our

simulation and real examples are explained later on. For this small

example, however, we did not use a selection and simply picked the

set that explained the largest amount of trait variation (adjusted

coefficient of determination). As a result, the phylogenetic signal

presented in Fig. 3b was modelled as the following combination of

the three PEMs, among those shown in Fig. 4:

y ¼ �0�10� 3�33u2 þ 2�20u3 þ 0�67u5:
It is noteworthy that the intercept of that regression model is not the

estimated trait value at the root of the phylogeny (see Discussion for

details).

ESTIMATING PREDICTED VALUES

Phylogenetic modelling, in the context of this paper, deals with incom-

plete trait information. Its goal is to predict unknown trait values for

one or several species (referred here as the ‘target’ species) in phyloge-

nies for which we have trait values already estimated for a reduced set

of species (referred here as the ‘model’ species), based on their relative

phylogenetic positions. In order to estimate trait values for the target

species, one must knowwhere the target species are located on the phy-

logeny in relation to themodel species, that is, onwhich edge andwhere

on that edge. That information is used to obtain vectors of species coor-

dinates describing the relative position of any target species in themod-

el’s weighted influence matrix (starget; see example in the next section).

These coordinates are obtained based on the following three steps: (i)

determining the identity of (a) the ‘split edge’, that is, the edge on which

the target species is located and (b) the ‘parent vertex’, that is, the vertex

located immediately downward (i.e. closer to the root) from that edge;

(ii) copy the coordinates of the parent vertex in the model’s influence

matrix; and (iii) assign a weight to the split edge. That weight is calcu-

lated on the basis of eqn. 1 using the parameters a andw estimated from

the model species and the phylogenetic distance / between the parent

vertex and the location of the target species on the split edge.

Equation 2 can be rearranged as follows:

U ¼ fB�Dw � 1n�1½1=n�1�nB
�DwgVD�1

R ; eqn 8

where ½1=n�1�n is a row vector whose n elements have values 1/n, and

1n�1 is a column vector whose n elements have values 1. The term

½1=n�1�nB
�Dw contains the means of the columns of B�Dw. To calcu-

late the scores of the target species (utarget) on a map of the model spe-

cies, we substitute the relative position of the target species (starget) in

place of the weighted influencematrix (B�Dw) in eqn. 8:

utarget ¼ fstarget � ½1=n�1�nB
�DwgVD�1

R : eqn 9

PEM predictions work on the principle that starget contains the

closest substitutes, in terms of phylogenetic topology and dis-

QðnÞB
�Dw ¼

A
B
C
D
E
F
G

0�41 0�45 0�55 �0�10 �0�11 �0�33 �0�21 �0�10 �0�08 �0�21 �0�09 �0�10
0�41 0�45 �0�09 0�58 �0�11 �0�33 �0�21 �0�10 �0�08 �0�21 �0�09 �0�10
0�41 �0�18 �0�09 �0�10 0�67 �0�33 �0�21 �0�10 �0�08 �0�21 �0�09 �0�10

�0�31 �0�18 �0�09 �0�10 �0�11 0�25 0�54 0�62 �0�08 �0�21 �0�09 �0�10
�0�31 �0�18 �0�09 �0�10 �0�11 0�25 0�54 �0�10 0�50 �0�21 �0�09 �0�10
�0�31 �0�18 �0�09 �0�10 �0�11 0�25 �0�21 �0�10 �0�08 0�54 0�55 �0�10
�0�31 �0�18 �0�09 �0�10 �0�11 0�25 �0�21 �0�10 �0�08 0�54 �0�09 0�58

8>>>>>>>><
>>>>>>>>:

9>>>>>>>>=
>>>>>>>>;

;

A

B

C

D

E

F

G

N1

N2

N4

N3

N5

N6

E1

E2

E3

E4

E5

E6

E7

E8

E9

E10

E11

E12(a)

0·2

−4 −2 0 2 4

(b)

Trait value

Fig. 3. Example of (a) a phylogenetic tree with seven tips labelled A–G,

six nodes labelledN1–N6, and 12 edges labelled E1–E12, and (b) a phy-
logenetic signal with values of a hypothetical trait among the species.
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tances, for the lines of B�Dw and that utarget, by analogy, con-

tains also the closest substitutes for the lines of U. To predict

trait values for the ‘target species’, these scores are used as pre-

dictors in a model that is obtained using the loadings of the

‘model species’. It is important to note that target species are not

added to, but rather projected (i.e. ‘mapped’) on, the PEM.

CALCULATION EXAMPLE, PART 2 – PREDICTING TRAIT

VALUES

In order to illustrate how to estimate predicted values using our pro-

posed PEM framework, let us add three target species (called X, Y and

Z) to the previous example (Fig. 5a). Target species X intersects the

phylogeny on edge E1, at a phylogenetic distance /X ¼ 0�2 from par-

ent vertex (node N1). The coordinates of node N1 in the model’s

weighted influencematrix are:

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
sN1 ¼ f 0 0 0 0 0 0 0 0 0 0 0 0 g

note that in this example, N1 is neither influenced directly nor indirectly

by any of the edges of the graph thus receiving values 0 everywhere.

Given the evolution parameters obtained in the first part of this exam-

ple (a = 0�52 and w = 1), the weight (or coordinate) of target species X

on edge E1 is 0�68 (eqn. 1: w0�52;1ð0�2Þ ¼ 0�68) so that the location of

X in themodel’s weighted influencematrix is:

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
sx ¼ f 0�68 0 0 0 0 0 0 0 0 0 0 0 g:
Likewise, target species Y and Z are located upwards from nodes N3

andN2, respectively, whose locations in themodel’s weighted influence

matrix are:

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
sN3 ¼ f 0 0 0 0 0 0�58 0 0 0 0 0 0 g
sN2 ¼ f 0�72 0 0 0 0 0 0 0 0 0 0 0 g

:

Target species Y intersects the phylogeny on edge E7 at distance

/Y ¼ 0�25 from N and has a coordinate of w0�52;1ð0�25Þ ¼ 0�72 on

edge E7, whereas target species Z, which intersects the phylogeny on

edge E5 at distance /Z ¼ 0�1 from N2, has a coordinate of

w0�52;1ð0�10Þ ¼ 0�58 on edge E5. Hence, their locations in the model’s

weighted influencematrix are:

E1 E2 E3 E4 E5 E6 E7 E8 E9 E10 E11 E12
sy ¼ f 0 0 0 0 0 0�58 0�72 0 0 0 0 0 g
sz ¼ f 0�72 0 0 0 0�58 0 0 0 0 0 0 0 g

:

From these coordinates and eqn. 9, the projected scores of target spe-

cies X,Y andZ on the Phylogenetic EigenvectorMap (Fig. 4) are:

u1 u2 u3 u4 u5 u6
ux ¼ f �0�25 0�00 0�20 0�01 �0�01 �0�01 g
uy ¼ f 0�27 �0�35 �0�01 0�01 0�00 �0�15 g
uz ¼ f �0�32 0�00 0�69 �0�01 0�02 0�01 g

:

By applying the regression model built using the PEM of the target

species in our previous example using the scores presented above, we

obtain the following predictions: yx ¼ 0�328, yy ¼ 1�019, and

yz ¼ 1�436.
In our example, the target species X diverged from a common

ancestor shared with model species A, B and C, while species Z

diverged later; sharing its most recent ancestry with species C only

(Fig. 5). It follows that estimated trait values for the target species

indicate that species X is intermediate in relation to species A, B and

C, whereas the trait estimates for species Z are much closer to the

value observed for species C. Along similar lines, trait estimates for

target species Y are similar to values observed for model species D

and E, with whom Y has its last common ancestor somewhere along

edge E7. However, because Y is phylogenetically closer to E than to

D, and given that trait evolution contains a neutral component (i.e.

â\ 1), the estimated trait value for species Y is more similar to that

of E than to D.

SIMULATION STUDY

In order to demonstrate the robustness and accuracy of PEM in pre-

dicting trait values, we designed a numerical experiment in which we

repeatedly applied PEM at predicting simulated trait values. Quantita-

tive traits were simulated based on the Ornstein–Uhlenbeck (OU) pro-

cess (Uhlenbeck & Ornstein 1930; Hansen 1997). This process

describes the instantaneous rate of change in a trait value (dy) as the

sum of a deterministic component forcing the trait value towards an

optimum h and a random component allowing the trait value to spread

around the optimum:

dy ¼ aðy� hÞd/þ rdW/; eqn 10

where a and r are the rates guiding the deterministic (i.e. selec-

tion) and random (i.e. diffusion) components of the trait change,

respectively, d/ is an infinitesimal amount of phylogenetic distance,

and dW/�N(0,d/) is a deviate from a normal distribution with 0

mean and variance d/. To simulate quantitative trait evolution,

we began by drawing random phylogenies with 50, 100, 200 and

400 species (100 random trees for each number of species) using

the function ’rtree’ in R package ape (Paradis et al. 2004). We

then defined a set of seven optima (h ∈ {�3,�2,�1,0,1,2,3}) for

which the trait is selected towards. For each phylogeny, we let

these optimal values shift from one vertex to the next, in the direc-

tion going from the root to the tips, following a Markov chain

process. The chain allowed the optima to shift from 0 (the value

set at the root) towards either �3 or 3 in either in an ascending

or descending step of 1 with a transition probability of 0�1 for

individual steps. Trait values were simulated node by node, by let-
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Fig. 4. A phylogenetic eigenvector map composed of seven eigenvec-

tors obtained for the seven species whose phylogeny is illustrated in

Fig. 3; trait evolution is assumed to be neutral: a = 0. The open and

closedmarkers are negative and positive species scores on the eigenvec-

tors, respectively, while marker sizes are proportional to the absolute

values.
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ting the trait shift from a starting value of 0 at the root, once

again from one vertex to the next and in the direction going from

the root towards the tips. For each vertex k, we calculated the

mean value of the trait lk as:

lk ¼ yie
�a/j þ hkð1� e�a/j Þ; eqn 11

where yi is the trait value at vertex i, the immediate ancestor of k, /j is

the length (i.e. phylogenetic distance) of edge j joining vertices i and k,

and hk is the optimal trait value at vertex k. The diffusion r2j expected
to occur along edge j is:

r2j ¼ r2
1� e�2a/j

2a
: eqn 12

The simulated trait value at vertex k, yk, is a number drawn from a

random normal distribution with mean lk and variance r2j . For every
single tree, we chose four selection rates: a = 0 (pure diffusion), a = 0�5
(weak selection), a = 1 (medium selection) and a = 10 (strong selec-

tion), with the diffusion rate kept constant at r = 1.Using these param-

eter combinations, we generated 1600 simulation runs. Finally, for

each simulation run, we generated 100 sample traits.

For the sake of comparing the simulated values with model predic-

tions, we split each data set in two equal parts; the first half being the

model species used to fit regression models on the basis of PEMs and

the second half being the target species for which predictions were to be

made. Note that because we know the expected values for the target

species (i.e. we simulated them along with the model species), by com-

paring estimated values from the PEM models and the simulated

(‘true’) values, we can estimate prediction error for each parameter

combination. The model species were then used to estimate parameter

a of eqn. 1 (a single value for the whole phylogeny).We then computed

PEMs and regressed trait values against them. PEM were selected in

order tominimize information loss using a forward stepwise procedure.

Information loss was estimated using the Akaike information criterion

with correction for small sample size (AICc; Hurvich & Tsai 1993).).

The model with the lowest AICc was retained. We then calculated the

scores of the target species (eqn. 9) and used themwithin the regression

model to estimate trait values for the target species.

We used the following prediction coefficient to assess the predictive

power of PEMmodels:

P2 ¼ 1�MSPE

s2y
eqn 13

where MPSE is the mean square prediction error. MPSE is esti-

mated as MSPE ¼ Pn
i¼ 1ðyi � ŷiÞ2=n, where ŷi is the trait value

estimated by the PEM model for target species i, yi is the simu-

lated ‘true’ value for target species i (but obviously not used in the

fitting process), and s2y is the sample variance of the ‘true’ trait

values. As such, P2 can be interpreted similarly as Ezekiels’ (1930)

adjusted coefficient of determination. P2 ¼ 1 when all predictions

perfectly match the observations, whereas values below 1 indicate

imperfect predictions. Values P2 close to 0 (negative or positive)

indicate that predictions have poor accuracy, being no better than

what would be expected from chance alone. We also used the sim-

ulation results to explore how the selection rate (a) used to gener-

ate the traits influenced the estimates of the steepness parameter

(a) and highlight possible methodological behaviours regarding pre-

diction biases as a function of these estimates.

REAL EXAMPLES

As a demonstration of the accuracy of the directed graph approach

described here, we applied our PEM framework to four cases taken

from published studies (Table 1; Purvis & Rambaut 1995; Isaac et al.

2005; Lislevand & Thomas 2006). In all cases, we first selected a single

response trait to be modelled.We applied the following iterative proce-

dure: for each species i, we took i as the target species and the remaining

n�1 species as themodel species and estimated the steepness parameter

a (eqn. 1); we then used the correlation structure obtained, together

with that between the target and the model species, to predict the trait

value for i using the same procedure as in our simulation study.

Although ourmethod (eqn. 1) allows one to ascribe values of parameter a

to specific sub-trees, for the sake of simplicity, we did not use that func-

tionality and assumed instead a unique value for parameter a for all spe-

cies in data sets. As in the simulation study, we compared the observed

values against the predictions to estimate prediction power and also high-

light possiblemethodological behaviours regardingprediction biases.

COMPUTER SOFTWARE

Computer software to perform the analysis and simulations described

in the present study is available as the contributed R packageMPSEM

(i.e. Modelling Phylogenetic Signals using Eigenvector Maps) from the

Comprehensive R Archive Network (CRAN; http://cran.r-project.

org/). TheR language scripts and data used to generate all the examples

and figures in this paper are available as supplementary electronic

material.
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Fig. 5. (a) Intersection of three target species (X, Y and Z) with the

phylogeny of the model species A–G (Fig. 3). The intersection vertices,

node NX, NY and NZ, are located at distances /X, /Y and /Z from

nodes N1, N3 and N2 along edges E1, E7 and E5, respectively. The

information about where a target species intersects the phylogeny of

the model species can be used to predict its trait values. (b) Predicted

trait values for the target species obtained using PEM (open diamond;

obtained using three eigenvectors u2, u3 and u5, shown in Fig. 4), both

with bars showing the limits of 95% prediction intervals. The close cir-

cles are the trait values for themodel species (as in Fig. 3).
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Results

SIMULATION EXPERIMENT

Our simulation experiments showed that PEM phylogenetic

models had prediction coefficients (power) ranging from�1�66
to 0�98, with 95% of the cases being between 0�23 and 0�93
(Table 2). Note that prediction coefficients closer to 1 indicate

perfect predictability, whereas coefficients of zero and negative

indicate complete absence of prediction power. The prediction

power tended to increase with sample size (F1;158400 ¼ 46705;

p < 0�0001). When a = 0, for instance, P2 increases by

0�00045, on average, for each new species added within the

range of conditions that we simulated (25 ≤ n ≤ 200, i.e., half

of the species for the simulated phylogenies 50 ≤ n ≤ 400). The

different selection rates used to generate the phylogenetic sig-

nals also influenced the percentage of variation that could

effectively be predicted using PEM (F3;158400 ¼ 40327;

p < 0�0001). We found that for signals generated with a = 0�5,
P2 were, on average, 0�0479 lower than those generated with

a = 0, whereas signals generated with a = 1 and a = 10 had

P2 higher by 0�0333 and 0�253 than those with a = 0�5, respec-

tively. The results of the simulation study also evidenced an

interaction between sample size and selection rate on the pre-

diction power of PEM-based regression models

(F3;158400 ¼ 1117; p < 0�0001). The effect of sample size on the

predictive power was lower when signals were simulated with

some amount of selection (by �0�000200, �0�000200 and

�0�000358 for a = 0�5, a = 1, and a = 10, respectively) then

with pure diffusion.We also found that the combined effects of

sample size and selection rate varied among the phylogenies

(F1592;158400 ¼ 62�40; p < 0�0001), indicating that differences

in the structure of phylogenies also affect the power of our pro-

posed modelling framework. Finally, we found that the selec-

tion rate used for simulations impacted the estimation of the

steepness parameter (F3;158400 ¼ 26424; p < 0�0001); the mean

estimates were 0�17, 0�35, 0�48 and 0�70 when a was 0, 0�5, 1
and 10, respectively.

REAL EXAMPLES

With the exception of example 1 (bodymass ofAnolis), all pub-

lished phylogenetic trees were ultrametric; hence, the original

authors assumed that trait evolution occurred at constant rates

along all edges of their graphs (Table 1, Fig. 6). Examples pre-

sented sample sizes varying between 13 and 85 species, and esti-

mates of the steepness parameter (a) ranged from 0 to 0�38.
Models were quite accurate, having prediction coefficients (P2)

ranging from 0�76 (case #1: body mass of Anolis lizards) to

0�88 (case #3: neonatal mass of odd-toed ungulates).We found

neither absolute nor relative prediction biases, that is, in all

four cases, the value 0 was inside the (95%) confidence interval

of the regression intercepts and the value 1 was inside the confi-

dence interval of the regression slopes.

Discussion

In the present study, we developed a framework for phyloge-

netic modelling based on graph theory that allows one to pre-

dict trait values for species lacking this information.

Phylogenetic modelling has been around for some time

(Felsenstein 1985;Martins&Hansen 1997), yet its applications

are still sparse in spite of the far-reaching empirical and applied

potentials (Gu�enard et al. 2011). Here, we provide an

approach that is simple yet versatile enough to be applied

jointly with other fitting procedure that can be used to describe

and predict traits across multiple species (e.g. multiple regres-

Table 1. Phylogenetic modelling of traits observed on four groups of n organisms.Model parameters â are the estimated steepness parameter of the

trait evolution model (eqn. 1, w = 1), P2 is the prediction coefficient of the trait; b0 and b1 are the regression intercepts and slopes [with their 95%

confidence limits, respectively]

# Organism– trait n â P2 b0 b1 References

1 Anolis lizards– bodymass 85 0�34 0�76 0�18 [�0�31,0�66] 0�95 [0�84,1�07] RichGlor*

2 Shorebirds– log eggmass 71 0�08 0�83 �0�06 [�0�39,0�27] 1�02 [0�91,1�13] Lislevand&Thomas 2006

3 Odd-toed ungulates– logNeonatalmass 13 0�00 0�88 �0�01 [�0�38,0�37] 1�01 [0�75,1�26] Purvis &Rambaut 1995

4 Primates– gestation period 63 0�38 0�80 �3�33 [�25�65,18�99] 1�02 [0�89,1�15] Isaac et al. 2005

*Source: http://bodegaphylo.wikispot.org/Phylogenetics_and_Comparative_Methods_in_R?action=Files&do=view&target=anolis_mtDNA.mrb.

con [first tree, accessed 13-04-19].

Table 2. Synthetic results of the simulations (P2: prediction

coefficients, â: estimates of the steepness parameter) performed to illus-

trate the predictive power of PEM for different sample sizes (n) and nat-

ural selection strengths (a). Upper and lower 95% confidence limits are

the 2�5 and 97�5 percentiles of the 10 000 (100 phylogenies9 100 itera-

tions per phylogeny) signals generated for every combination of n and

a that we explored. Format: mean [lower CL, upper CL]

n a P2 â

25 0 0�56 [0�03, 0�87] 0�28 [0�00, 1�00]
0�5 0�45 [�0�16, 0�81] 0�40 [0�00, 1�00]
1 0�56 [0�01, 0�86] 0�48 [0�00, 1�00]
10 0�79 [0�46, 0�95] 0�64 [0�00, 1�00]

50 0 0�66 [0�33, 0�87] 0�19 [0�00, 0�94]
0�5 0�56 [0�17, 0�81] 0�39 [0�00, 1�00]
1 0�66 [0�33, 0�86] 0�51 [0�00, 1�00]
10 0�85 [0�68, 0�95] 0�75 [0�00, 1�00]

100 0 0�73 [0�52, 0�88] 0�14 [0�00, 0�65]
0�5 0�62 [0�33, 0�82] 0�33 [0�00, 0�97]
1 0�69 [0�39, 0�87] 0�46 [0�00, 1�00]
10 0�86 [0�67, 0�96] 0�69 [0�00, 1�00]

200 0 0�78 [0�64, 0�89] 0�09 [0�00, 0�45]
0�5 0�68 [0�49, 0�83] 0�30 [0�00, 0�78]
1 0�75 [0�56, 0�87] 0�45 [0�00, 0�95]
10 0�89 [0�80, 0�96] 0�71 [0�04, 1�00]
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sion, bilinear regression, neural networks, GLMs). In addition

to its versatility, PEM is computationally far less intensive than

estimating optimal trait values using Markov chain algorithm

(e.g. Butler & King 2004), the latter being a non-polynomial

complete problem.

There are many modelling methods that rely on knowledge

about species traits, and it is rather common that biologists

face the issue posed by the absence of information on such

traits when performing modelling exercises. For example, a

bioenergetic model requires that several traits describing the

physiological response of organisms to the physical and chemi-

cal characteristics of their habitat be known in order to predict

their growth response and their impact on resources, among

other issues (Adams & Breck 1990). Because the collection of

trait information can sometimes be logistically challenging or

unacceptable (e.g. performing lethal assays on rare or endan-

gered species), onerous, and/or time-consuming, researchers

and practitioners (e.g. conservation biologists) require appro-

priate and robust methods to estimate them. Our simulation

results cover a wide variety of situations encompassing cases

where the method produced accurate models (P2 close to 1)

and other cases where models yielded low predictive power

(positive P2 near 0 or, in some case, negative P2). Using a wide

range of scenarios, we were able to capture the essences of the

predictive power of PEM. Not all traits may be equal with

respect to their capacity for being modelled solely based on

their phylogenetic relationships. Similarly, simulation results

also pointed out that not all phylogenies appeared to have the

same potential for phylogenetic modelling. While a particular

trait may be clearly phylogenetically structured and thus rela-

tively easy to model from the phylogeny even with relatively

modest sample size (i.e. with few model species), patterns of

phylogenetic signal may be rather weak for other traits. In the

latter case, phylogenetic modelling attempts are unlikely to be

successful. However, we showed that it is straightforward to

assess fit as well as the level of accuracy related to a phyloge-

netic model using a cross-validation exercise.

The present paper focused on describing the PEM and the

simulation study was primarily concerned about assessing how

the method generally performs. The prediction coefficient

increased with sample size was lower for 0 < a < 1 than for

the other selection rates simulated, and we found interactions

between sample size and selection rate. We also found that the

selection rate has a positive influence on the steepness parame-

ter.We expected such a relationship because a controls the rate
at which a trait tends towards an optimum,whereas a describes

whether a trait tends either to change progressively along edges

or to shift abruptly at nodes. Further simulation studies
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Fig. 6. Observed and predicted trait values obtained following leave-one-out cross-validation for four exemplary cases involving (a) genus Anolis
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regarding the properties of PEM could be performed, but they

are beyond the scope of the present paper. One issue, not con-

sidered here, is how trait coverage across the phylogeny may

affect predictive power. For instance, we may have dispropor-

tionally larger numbers of trait values for some clades in con-

trast to other clades, and this uneven distribution is likely to

affect phylogenetic modelling. It would also be useful that

future studies investigate the relationship between metrics of

prediction power, model accuracy and properties of phyloge-

netic trees like resolution, and balance, among other. More-

over, an assessment of the limits of applicability of

phylogenetic modelling by PEM and other methods such as

generalized least square regression (Goldberger 1962) would

be a valuable asset for applied biology. Such a study could be

performed by creating signals in large phylogenies and sub-

sampling small numbers of tips from them. In that way, it

would be possible to evaluate the accuracy of phylogenetic

model predictions for target species withmany of their relatives

being model species, compared to that of target species whose

common ancestry with themodel species is more remote.

A key feature of PEM is versatility. Freckleton et al. (2002)

have proposed a phylogenetic comparative method to consider

different evolutionary models by multiplying the off-diagonal

elements of the phylogenetic covariance matrix by a factor

between 0 and 1 (e.g. Pagel’s lambda). In that framework,

selection (i.e. the change in trait optima) is regarded to be

intrinsically independent of phylogeny and resulting from pro-

cesses that are entirely driven by the environment. It therefore

makes sense to take out that part of the trait variation to assess

the relationship among trait values. In phylogenetic modelling,

one is primarily concerned with estimating the relative patterns

of trait covariance among species in order to obtain the eigen-

vectors that are the most suitable to explain trait variation.

Hence, we proposed to reach that goal by treating topology

and edge length separately in order to fine-tune eigenfunctions

with details about the dynamics of trait change. The graph-

based method described in the present study is a straightfor-

ward implementation of this approach, allowing one to fine-

tune trait predictions by incorporating selection (both stabiliz-

ing and directional) with diffusion in the form of a steepness

parameter (a). To this end, our simulation results have shown

that there is a relationship between a and the OU selection

strength (a), at least under the range of simulation parameters

we used. The method also has the additional benefit of being

flexible from an algorithmic standpoint. Hence, phylogenetic

graphs have the ability to represent a broader array of poten-

tial evolutionary relationships than classical phylogenetic trees,

for example, hybridization, or lateral gene transfer. This fea-

ture will likely facilitate the adaptation of our framework to

address future phylogenetic modelling challenges such as to

the modelling of traits under reticulated evolution (Makaren-

kov et al. 2004). Because PEM actually consist in building a

set of descriptor variables, the framework is adaptable to a

broad array of possible modelling methods in addition to mul-

tiple regression. Hence, PEM can be used in, redundancy

analysis, generalized linear models, bilinear models (Gabriel

1998), artificial neural network models, regression trees among

others (seeGriffith&Peres-Neto (2006) for a discussion of flex-

ibility of eigenvector predictors in the context of spatial model-

ling).

The applications to real cases presented here have shown

that our PEM framework is accurate enough and potentially

useful in many other cases. This should not be assumed to

be always the case, however, as predictions may sometimes

be too inaccurate to have a practical value. Although one

may be inclined to use a test of phylogenetic signal prior to

phylogenetic modelling (e.g. Abouheif 1999; Blomberg et al.

2003; see M€unkem€uller et al. 2012 for a review), even when

such a preliminary test is found to be significant, there is no

guaranty that the trait value is estimable with sufficient accu-

racy to be useful in practice. Instead, we propose that predic-

tive performance under phylogenetic modelling (P2) be used

instead. A potential additional inference test of the statistical

significance of a phylogenetic signal for modelling purposes

can be obtained, if deemed necessary, by comparing

observed P2 values under cross-validation against cross-vali-

dated values obtained from permuted sets (i.e. trait values

are permuted across the phylogeny). In this way, significance

of predictive power could be estimated by a one-tail permu-

tation test of P2.

As mentioned earlier, the intercept of regressionmodels esti-

mating trait values via PEM should not be confused with the

mean trait value at the root of the phylogeny, as would be

the case using generalized least-squares. The coordinates of the

root being sroot ¼ 0, its scores (uroot) are computed as:

uroot ¼ �½1=n�1�nB
�DwVD

�1
R eqn 14

and the PEM regression estimate of the trait value for the

root would be obtained by estimating the regression equation

for these scores. The regression intercept is the trait value when

utarget ¼ 0 andwhose location in the graph is therefore:

sintercept ¼ ½1=n�1�nB
�Dw: eqn 15

In practice, these coordinates are not represented in the phy-

logenetic graph (neither at tips, nodes nor along edges). The

regression intercept should therefore be regarded as the mean

trait value in a case where no eigenvector is used (i.e. as a null

model).

We mentioned earlier that it is wise to assume that not

all traits are equal in terms of their predictability by phylo-

genetic models. For instance, an OU process will drive a

wide range of phenotypic variation when r is large, and/or

when a is large and optimal trait value (h) tends to shift

by large extents at nodes (eqn. 10). In the latter scenario,

traits for which optimum shifts occurred only recently (i.e.

near the tips) will be not be as predictable as those

whereby shifts occurred earlier in the phylogeny (i.e. near

the root). In the situation where a is small, variation is

mostly driven by random fluctuations that is phylogeneti-

cally structured. Traits showing high variability and that

have been sampled over a sufficiently broad phylogeny are

likely to be predictable by phylogenetic modelling. Such

© 2013 The Authors. Methods in Ecology and Evolution © 2013 British Ecological Society, Methods in Ecology and Evolution, 4, 1120–1131
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condition is more likely to be the case among species from

different classes or even phyla than among closely related

species (e.g. from the same genus: Senior & Nakagawa

2013). We expect that phylogenetic modelling will be par-

ticularly useful in fields for which knowledge about traits

for numerous species, spread over a wide taxonomic range,

is available, as is often the case when assessing species sen-

sitivity distribution (SSD, De Zwart, 2002; De Zwart &

Posthuma 2005) or ecological risk (Faggiano et al. 2010;

Carafa et al. 2011), for example.
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