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Scale is emerging as one of the critical problems in ecology because our perception of most ecological variables 
and processes depends upon the scale at which the variables are measured. A conclusion obtained at one scale 
may not be valid at another scale without sufficient knowledge of the sealing effect, which is also a source of 
misinterpretation for many ecological problems, such as the design of reserves in conservation biology. 

This paper attempts to study empirically how scaling may affect the spatial patterns of diversity (tree density, 
richness and Shannon diversity) that we may perceive in tropical forests, using as a test-case a 50 ha forest plot 
in Malaysia. The effect of scale on measurements of diversity patterns, the occurrence of rare species, the fractal 
dimension of diversity patterns, the spatial structure and the nearest-neighbour autocorrelation of diversity are 
addressed. The response of a variable to scale depends on the way it is measured and the way it is distributed in 
space. 

We conclude that, in general, the effect of scaling on measures of biological diversity is non-linear; hetero- 
geneity increases with the size of the sampling units, and fine-scale information is lost at a broad scale. Our 
results should lead to a better understanding of how ecological variables and processes change over scale. 
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1. Introduction 

Ecology must  deal with scale, because the objects it focuses on, the organisms and types of  environ- 
ment,  are rarely found to be homogeneously distributed through space or time. Environmental  
forcing, populat ion and community dynamics, and chance events, are all sources of  heterogeneity 
(Dutilleul and Legendre, 1993) and contribute to create spatial structures of  various kinds, the most  
common of which are gradients and patches (Boreard and Legendre, 1994; Legendre and Fortin, 
1989). Thus heterogeneity makes ecological variables and processes scale-dependent. An explo- 
ration of  how diversity patterns change over scale is needed for extrapolation of  fine-scale results 
to broader-scale phenomena,  or the reverse. The concept of  spatial scale refers to three main com- 
ponents of  the sampling design: 

(i) Grain  size, or size of  the sampling unit, which is the surface or volume support  of  any parti- 
cular measurement.  

(ii) Extent of  the total area being sampled, or field size. 
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(iii) Sampling interval (called 'lag' in time series), which is the average distance between neigh- 
bouring samples. 

Grain and extent define the upper and lower limits of resolution of a study. Inference in any study 
is limited by its grain and extent. No generalization exceeding grain or extent could be derived 
without an assumption that the variables and processes are scale-independent. Comprehension of 
how grain and extent affect our perception of ecological phenomena is fundamental to an under- 
standing of scaling effects. Furthermore, in ecology the sampling interval is considered as another 
aspect of the spatial scale of a study (Fortin and Legendre, 1989; Palmer, 1988). However, the aspect 
of scale defined by sampling interval is not our concern here. The present paper studies scale only in 
terms of the range of resolution of a study, characterized by grain and extent. 

Many ecological variables and processes such as plant succession (Dale and Blundon, 1990), 
foraging behaviour (Kareiva, 1982), competition (Shorrocks et al., 1979), predator-prey inter- 
actions (Huffaker, 1958; Chesson, 1978), dispersal (Southwood, 1962; Wiens and Milne, 1989), 
nutrient cycling (Allen and Hoekstra, 1991), and the spread of disturbances (Minnich, 1983; 
Knight, 1987) are scale-dependent. Variables estimated and processes identified at one scale may 
not be important at another. Studies of large-scale ecological processes often require the extra- 
polation of fine-scale results to a broader-scale phenomenon (Steele, 1991); such an extrapolation 
is not possible if the effect of scaling on these ecological processes is unknown. For example, in a 
tropical rain forest in Malaysia, He, Legendre and LaFrankie (unpublished) found that some 
populations that are abundant and highly clumped at larger scale may demonstrate regular 
distributions at smaller scale, which implies that competition may not have been detected by a 
broad-scale study although it is present at finer scale. On the other hand, in a global comparison 
of biome maps predicted by two different models, the value of the kappa (~) statistic (which is a 
measure of agreement of two spatial distributions) was found to be scale-dependent (Prentice et al., 
1992). 

Early work in plant ecology has recognized that sampling scale is a key in describing the 
spatial patterns of a community (Greig-Smith, 1952). Nevertheless, the importance of scale in 
ecology has been widely ignored, until the past decade or so, for lack of proper methods to study 
it (Dayton and Tegner, 1984; Wiens et al., 1986; Giller and Gee, 1987; Meentemeyer and Box, 1987; 
Wiens, 1989; Kolasa and Pickett, 1991). Most theories in ecology ignore the scale effect, which is one 
of the major reasons for ecological controversies such as the role of density-dependent factors in 
population regulation (Antonovics and Levin, 1980); the importance of herbivores in structuring a 
plant community (Brown and Allen, 1989); equilibrium theories in tropical communities (Janzen, 
1970; Connell, 1978; Hubbell, 1979); and so on. Because they neglect scale dependence, many 
ecological theories poorly predict field observations: For example, two species which are predicted 
to be competition-exclusive by the Lotka-Volterra model may actually coexist in reality because of 
the existence of spatial structures which are not taken into account by this model (den Boer, 1968, 
1971; Dewdney, 1984; Moloney, 1988). Fortunately, recent developments, especially in landscape 
ecology (Forman and Godron, 1986), in ecological hierarchical theory (Allen and Starr, 1982) and 
in the awareness of spatial problems in ecology (Legendre and Fortin, 1989; Dutilleul, 1993; 
Legendre, 1993), have emphasized the importance of spatial structures for ecological phenomena 
and of greatly expanding the spatial and temporal ranges of our studies. 

In conservation biology and tropical rain forest studies, arguments have been developed that are 
closely related to the scale problem, raising interesting questions. For instance: what are the optimal 
spatial size and shape of areas that should be set aside for conservation of species (Shaffer, 1981; 
Gilpin, 1989)? How does the fragmentation of a forest affect the extinction of a species locally or 
globally (Harris, 1984; Hubbell, 1984)? How can we tell that a community is in equilibrium 
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(Connell, 1978; Hubbell, 1979)? It is not clear how these questions are related to scale, although 
some of them, such as those related to equilibrium theory, have been extensively studied. 

The present study dens with how spatial scale affects the diversity patterns that can be measured 
in a tropical forest; we use a rain forest plot in Malaysia as a test case. In this study, diversity is 
measured by three community parameters: tree density, richness, and Shannon diversity. Specifi- 
cally, the following four aspects will be tackled: (i) How does sampling scale affect the means and 
variances of measurements of tree density, richness and Shannon diversity? (ii) How are the occur- 
rences of rare species affected by spatial scale? (iii) What is the relation between the fractal dimen- 
sion of diversity patterns and grain size? (iv) How does scale affect the spatial structures and nearest- 
neighbour autocorrelations of diversity patterns? The results should be helpful to better understand 
how ecological variables and processes change with respect to scale. 

2. Study site and methods 

2.1 Study site 

A tract of mapped forest, located at 102°18 r W and 2°55 r N, was established in the Pasoh Reserve, 
Negeri Sembilan, Malaysia, to monitor long-term changes in a primary forest (hereafter called the 
Pasoh forest). The vegetation is primary rain forest and falls within the south-central subtype of 
the red meranti-keruing forest type of Wyatt-Smith (1987). The upper canopy is dominated by red 
meranti, Shorea section Muticae, especially S. leprosula Miq., S. acuminata Dyer, and S. macroptera 
Dyer. Other important canopy emergents are keruing, Dipteroearpus cornutus Dyer, balau, Shorea 
maxwelliana King, and chengal, Neobalanocarpus heimii (King) Ashton. Mean annual rainfall at 
Pasoh is about 2000 ram, which puts it among the driest stations in Peninsular Malaysia. 

The forest tract under study is a rectangle 1 km long and 0.5 km wide (50 ha). The survey 
enumerated all free-standing trees and shrubs at least 1 cm in diameter at breast height (dbh), 
positioning each one by geographic coordinates on a reference map, and identifying the species. 
The diversity of the plot is quite high: there are 334 077 trees, belonging to 825 species. There are 
no obvious dominant species. The most abundant one, Xerospermum noronhianum (Sapindaceae), 
accounts for only 2.5% of the total number of trees (Kochummen et al., 1991). 

This data set is almost unique in that all individual trees and shrubs at least 1 cm dbh are identi- 
fied, sized, and geographically located. So we can artificially 'sample' this forest in whichever way we 
like, using a computer. We will actually reorganize the study area in quadrat units, changing the 
quadrat size (grain) from 5 x 5, 10 x 5, 10 x 10, 20 x 10, 20 x 20, 40 x 20, 50 x 50, 100 x 50 to 
100 x 100m (Fig. 1A). In each quadrat of a given sampling design (= size), tree density, richness 
and Shannon diversity were measured, which makes a scaling study possible. Besides changing the 
grain size, the extent (= the area included in the study) was also changed from 10 x 10, 20 x 20, 
40 x 40, 80 x 80, 160 x 160, 320 x 320, 620 x 500 to 1000 x 500m, starting from the center of the 
Pasoh forest plot, with a fixed grain size of 5 x 5 m (Fig. 1B). 

Tree density is the number of trees per square metre in a quadrat. Richness is the number of 
species in a quadrat. The Shannon diversity index is computed as: 

H : - ~  iPi logpi 

where Pi is the proportion of the abundance of the ith species to the total abundance in a quadrat 
(natural logarithms were used). The units of H are bits per sample if base 2 logs are used, and nats 
(or nits) with natural logs. Margalef (1958) proposed using this measure of entropy as an index of 
diversity. 



268 He et al. 

50o 

~ 375 

.~ ~ 25o 

~ 125 

o 
o 

• ~ i ~ ~ ~ ~ ~ i 

• ~ ........ !--i--! ........ i ........ ~ ....... i "  ~---! .... : ....... i ......... ~ .... A 

. . . . . . . .  ! . . . . . . .  i . . . . . . . .  i . . . . . . . .  i . . . . . . . . .  ! . . . . . . .  ~i . . . . . . . .  ~ii..._4 ~ 

250 500 750 1000 

Geographic coordinates 
West-east (m) 

500 

.~ ~ 375 

r~m 125 

0 
250 500 

Geographic coordinates 
West-east (m) 

750 1000 

Hgure  1. Schematic sampling design used on the data  o f  the 50 ha Pasoh forest. In each sampling 
quadrat,  tree density, richness and Shannon diversity are counted or  calculated. A. The dashed lines 
are an example o f  fine-scale grain sampling quadrats,  while the solid lines delimit the broad-scale 
sampling units. Nine grain sizes were actually used to study the effect o f  grain size on diversity 
patterns: 5 x 5, 10 x 5, 10 x 10, 20 x 10, 20 x 20, 40 x 20, 50 x 50, 100 x 50 and 100 x 100 m. B. The 
sampling design was used to study the effect of  sampling extent on diversity patterns. Holding the 
grain size constant (5 x 5 m, dashed grid), the extent (solid frame) is changed from 10 x 10, 20 x 20, 
40 x 40, 80 x 80, 160 x 160, 320 x 320, 620 x 500 to 1000 x 500 m. 

2.2 D a t a  a n a l y s e s  

2.2.1 Spatial variance and predictability 

Each grain size and extent produces a mean and spatial variance computed among quadrats, for 
each observed ecological variable (diversity, etc.). The mean and variance, which will be used for 
descriptive purposes only, are calculated using the standard formulas, without special allowance for 
spatial autocorrelation: 

1 " 
mean of  a spatial variable x: rnx = - ~ xi (1) 

n 

1 i  n 2 __ ~ -~ (x i  - rex) 2 (2) variance of  a spatial variable x: Sx - -  n - -  i=1 

where xi is the observation at location i and n is the total number of  observations. All these 
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quantities vary as functions of the parameters of the sampling scale: grain and extent. Tree density, 
richness and Shannon diversity of the Pasoh forest will be analysed in the present paper. 

Our perception of the occurrence of rare species changes over sampling scales. We will attempt to 
determine how important rare species may be on diversity measures, for various sampling scales. 
The influence of rare species can be measured by correlating the diversity variables with all species 
included, to their counterparts when rare species are excluded. The question can be asked in another 
way: To what extent can the real information be estimated if rare species are absent from the data? 
That is, how important are the rare species in this estimation? It is obvious that this estimation varies 
with scale. So the correlation (the coefficient of determination R 2 will actually be used) between the 
two data series is a function of grain size. For the purpose of this study, the species whose density is 
equal to or less than 1 tree per hectare are defined as rare species; this sets the limit to at most 50 
individuals in the 50 ha plot (Hubbell and Foster, 1986). 

2.2.2 Variogram and fractal dimension 

The variogram is the theoretical basis and methodology of geostatisticians for the estimation and 
mapping of regionalized variables. Recently it has been widely used to describe the spatial structure 
of ecological variables (Phillips, 1985; Palmer, 1988; Legendre and Fortin, 1989; Rossi et al., 1992). 
Variograms measure spatial variability, giving the relative degree of dissimilarity between values 
separated by a vector h, which is characterized by an intensity (distance) and a direction. The experi- 
mental variogram is given by: 

1 U(h) 
7*(h) -- 2U(h) Z ( x i  - yi)2 (3) 

i=1 

where N(h) is the number of pairs, xi is the value at one end of vector h, and Yi is the value at the 
other end. The locations of the two values xi and Yi are separated by vector h. 

Journel and Huijbregt (1978, pp. 161-95) proposed a series of variogram models describing the 
spatial continuity of a random function modelling the dispersion of a variable through space. This 
function is chosen after examination of the experimental variogram. They proposed two main types 
of models characterized by the presence or absence of a sill. 

The presence of a sill implies stationarity of the covariance, i.e. the covariance exists and depends 
only on the vector h: 

1 m 2 

where m is the mean.. Stationarity of the covariance implies stationarity of the variance and of the 
variogram. Models without a sill correspond to random functions that are said to be only intrinsic. 
Their a priori variance and covariance are not defined. The increment (x i - Yi) has a finite variance 
which does not depend on their locations but only on h. 

All experimental variograms for tree density, richness and diversity index reported in the results 
show a well-defined sill and indicate isotropic phenomena, i.e. ,'/(h) does not depend on the direction 
of h. They were fitted using an exponential model plus a nugget effect: 

7(h) = Co + Ca (1 - exp ( -h /a))  if h > 0 (5) 

7(h) = 0 i fh  = 0 

where Co is the nugget effect, which represents the discontinuity at distance zero. Several factors 
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such as sampling error or fine-scale spatial variability may result in a nugget effect. The ratio of the 
nugget effect to the sill, called the relative nugget effect, can be used to evaluate sampling error and 
fine-scale spatial effects. Ca is the variability due to the structure in the exponential model and a is a 
parameter. The exponential model reaches its sill (Co + C1) asymptotically. The range of a model 
with a sill is the distance where the spatial influence disappears, i.e. 7(h) ceases to increase. The 
practical range of an exponential model is defined as 3a, the distance at which the variogram is 
95% of C1. 

In the present study, the nugget effect, the relative nugget effect, the sill and the range are used to 
describe the spatial features of a variable and to demonstrate how these parameters change with 
sampling scales; this will allow us to evaluate the effect of scale on the estimation of spatial 
structures. 

The fractal dimension D is a measure commonly used to study the features of surfaces and the 
effect of scaling (Burrough, 1981; Phillips, 1985; Culling, 1986; Frontier, 1987; Krummel et al., 1987; 
Palmer, 1988; Milne, 1991). Several methods allow us to calculate the fractal dimension of surfaces 
(Cart and Benzer, 1991; Bolviken et al., 1992). For a fractal surface, the variogram follows the 
equation (Mandelbrot, 1983, p. 353): 

7(h) = Kh 2H (6) 

corresponding to a power model. The fractal dimension of the surface is given by 

D = 3 - H. (7) 

This result allows one to calculate the fractal dimension D for a real data set from the log-log plot of 
the variogram: 

log (7(h)) = a +/3 • log (h) (8) 

The slope/3 (= 2 H )  of the equation is then equal to 6 - 2D. 
We have mentioned previously that the variograms of the variables of interest follow exponential 

models which have a sill and a defined and finite apriori  variance. The power model, which describes 
a self-similar fractal, corresponds to a phenomenon with an unlimited capacity for spatial dispersion 
and with an undefined a priori variance (Journel and Huijbregts, 1978). So the fractal nature or the 
self-similarity of the phenomenon is only defined locally, near the origin where the variogram is 
linear in the log-log plot. It is bounded by a lower and an upper scale of self-similarity. If a variable 
is strongly autocorrelated both in the short and long distances, i.e. 7(h) is approximately a parabolic 
function of the distance h, D is close to 2; conversely, ifa variable has its values randomly distributed 
in space (no autocorrelation), D equals 3. The fractal dimension is a measure of the degree of spatial 
dependence of a variable. So the relation of D to the sampling scale indicates the trend of the spatial 
structure of a variable. 

2.2.3 Nearest-neighbour autocorrelation 

The method used here to study nearest-neighbour autocorrelation was proposed by Legendre and 
Borcard (1994). For n locations in space, the value at each location could be estimated at least partly 
from its neighbours if autocorrelation is present in the data. Assume that the ith location has Pi 
nearest-neighbours and that each neighbour contributes equally, i.e. with weight 1/pi, to the esti- 
mation of that location. A nearest-neighbour matrix NMnxn is formed with 1/pi as its entities if they 
are nearest neighbours, and 0 otherwise. The estimated value Xn~xl from nearest-neighbour auto- 
correlation could be calculated by postmultiplying N M  with the observed values Xnx a (Fig. 2): 

N M  * X = X '  (9) 
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Figure 2. Illustration of the computation of the estimated value at any one point i based on the 
information of its nearest neighbours. This example assumes that each value has four nearest 
neighbours. The row of weights for point no. 1 is shown, assuming the nearest-neighbour structure 
displayed at the top. 

The correlation between X' and X indicates the degree of nearest-neighbour influence. 
Our interest is to study how nearest-neighbour autocorrelation changes over sampling scales; 
of course, second or third, etc. nearest-neighbourhood effects could also be studied in the 
same way. 

3. Results and discussion 

3.1 Spatial mean and variance 

Mean tree density (always measured per m 2 in this study) is a constant in the Pasoh forest, regardless 
of grain size, while mean richness and Shannon diversity are convex increasing functions of grain 
size if we hold the extent of the sampling zone constant (Fig. 3). Density is constant across scales. 
This variable is said to be additive, meaning that its values can be added or averaged to create larger 
quadrats, while retaining the same meaning as the original variable; values for tree density, 
which form an intensive variable (its values represent an 'intensity' defined independently of the size 
of  the actual sampling units) can actually be averaged only if they are referred to the same 
unit of surface (here, the number of trees per ma). Species richness and Shannon diversity are not 
additive; for example, the sum of the numbers of species in two adjacent quadrats is usually 
larger than the number of species in the combined quadrat. The relation of these variables 
to scale depends on the distribution patterns of the species and the grain size of the 
measurements. 
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Figure 3. Relationships between mean tree density, richness and Shannon diversity on the one hand, 
and grain size on the other, showing how grain size affects the measurements. Right-hand plots are 
log-log transformations of left-hand plots. Mean tree density is scale-independent, while the other two 
measures are in inverse exponential relation with grain size. In the two lower right-hand plots, linear 
regression lines are shown as references against which the curvature of the displayed relationships can 
be appreciated. 

The spatial variances of  tree density and Shannon diversity in the Pasoh forest illustrated in Fig. 4 
display concave decreasing relations with grain size, while richness shows a convex increasing 
relation. 

The mean and variance of  a variable are also a function of  the spatial extent of  the investigation. 
Holding grain size constant (5 x 5 In), the effect of  sampling extent on tree density, richness and 
Shannon diversity were computed (Fig. 5). Compared  to grain, the effect of  extent is more compli- 
cated to explain. The heterogeneity o f  a variable generally increases with spatial extent, because 
more patches are included as the study area expands. Including a new type of  patch may  cause 
an abrupt  change in variance. Or, new patches may  be included which make the variance 
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Figure 4. Relationships between the variance of tree density, richness, and Shannon diversity on the 
one hand, and grain size on the other (expressed as the square root of the grain surface area), showing 
how the variance of a measurement is a negative exponential function of grain size. Right-hand plots 
are log-log transformations of left-hand plots• In the right-hand plots, linear regression lines are 
shown as references against which the curvature of the displayed relationships can be appreciated. 

display a periodic variation along the extent axis; Turner et al. (1989) have obtained this pattern 
in a landscape ecology study. Figure 5 also shows that at small extent values, the means and variances 
of variables are more variable (among extent values) than for larger extents. The reason is probably 
that for small extents, the spatial heterogeneity among sampling quadrats (for constant grain size) is 
higher; one is then more likely to find sample quadrats belonging to different patch types. As extent 
increases, the rate at which new types of patches are found slows down, and heterogeneity is gradually 
averaged out until the sample grows enough to incorporate another type of community. 

It is obvious from Figs 3, 4 and 5 that scaling effects are important in the estimation of  ecological 
parameters. How ecological phenomena respond to scale depends on the properties of  the measure- 
ment, the sampling scheme and the spatial distribution. A population parameter measured, or a 
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Figure 5. Relationships between extent size and the mean (left) and spatial variance (right) of tree 
density, richness and Shannon diversity, showing how extent affects the measurements. At small 
extent, the measurements are variable; they become stable for larger values of extent. This implies that 
a study area (extent) should be large enough to include sufficient information for an accurate 
estimation of these parameters. 

conclusion obtained, at one scale may not  hold at another scale. For  example, Shannon diversity 
over the whole plot is 5.64 (nits) for the Pasoh forest, while at 50 x 50 and 10 x 10 grain scales its 
mean values are 5.10 and 3.68 respectively. As grain size increases, variances of  tree density and 
Shannon diversity decrease, while the variance of  richness increases. On the other hand, when 
increasing the spatial extent, the variance becomes more stable because proportionally fewer new 
patches become included in the analysis. 

Classical statistical and geostatistical theories give analytical solutions to predict the change in 
variance due to different sampling unit sizes, for intensive additive variables such as tree density. For  
such variables, whose mean value in principle does not change with grain size if they have been 
sampled over a completely homogeneous area and there is no autocorrelation among samples, 
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statistical theory suggests that the dispersion variance of the quadrats should decrease linearly with 
the number of sampling units in a quadrat or a composite sample: 

Vat (Vc/A) = Vat (V /A ) /N  (10) 

where Vat (Vc/A) is the variance of the composite samples in area A, Var (V/A) is the original 
variance of the sampling units in the same area, and N is the number of sampling units in a com- 
posite. This relationship shows that the variance of the composite sample decreases linearly with the 
increase in size of the support (grain size). This conclusion is valid only for homogeneous systems 
where sampling units are independent. When the process is complicated by patterns of spatial 
heterogeneity, the above relationship is no longer valid. Levin (1989) and Wiens (1989) present 
some empirical results showing the complexity of such heterogeneous processes. In our results 
(Fig. 4), the relationship between In (variance) and In (grain size) for the density, with a slope of 
-0.675, shows a departure from classical theory, which would have allowed us to expect a slope o f - 2  if 
the area had been homogeneous. The expected value is -2  because we used the square root of the 
surface area as a measure of grain size, and Fig. 4 is in log-log scale. This departure from classical 
theory results from performing a change of support in a heterogeneous, spatially autocorrelated area. 

Problems of change of support (grain size) have received attention in the geostatistical literature 
dealing with ore reserve estimation (Journel and Huijbregts, 1978, pp. 61-94; Isaaks and Srivastava, 
1989, Chapter 19). Geostatisticians want to perform estimations about the grades of large blocks 
from data obtained from small drill cores. Equation (10) cannot be used because the data are usually 
autocorrelated (underlying heteregeneous process). For a homogeneous area, reduction in variance 
associated with a given change of support is more important than for a heterogeneous area where 
spatial autocorrelation is present. 

The additivity property of variances in nested designs allows us to write 

Var (v/A) = Var (v /V ) + Var (V/A) (11) 

where Var (v/A) is the dispersion variance associated with a small volume v in area A; Vat (V/A) is 
the dispersion variance associated with a large volume V in area A; and Vat (v /V)  is the dispersion 
variance associated with a small volume v in the large volume V. Journel and Huijbregts (1978, pp. 
66-7) show that the dispersion variance Var (v/V ) is related to the variogram as follows: 

Var (v/ V ) = ~,( V, V ) - "~(v, v) (12) 

where "~(V/V ) is the average variogram value calculated over all possible distance vectors h con- 
tained in V. It represents the within-surface variance. The mean values ~(V, V ) can be calculated 
numerically from function 7(h) by discretizing the support V into a finite number of small volumes. 
Journel and Huijbregts (1978, pp. 108-23) developed a series of auxiliary functions giving a pre- 
calculated mean value of'~(V, V) corresponding to simple geometries of Vthat are frequently found 
in practice. Tables and graphs allowing to calculate -~(V, V ) from these auxiliary functions are given 
in Journel and Huijbregts (1978, pp. 125-47) for some variogram models. 

When a support v is used to compute experimental variograms, a regularized form of variogram is 
estimated. We must deduce a point-support model 7(h) (i.e. v = 0) from a regularized model %(h). 
Using the approximate formula of Journel and Huijbregts (1978, p. 89): 

%(h) = 7(h) - "~(v, v) for h > v (13) 

where %(h) is the variogram defined for a support of size v. If%(oo) = C1, which is the sill value, or 
the variance component of the spatial structure for the non-point support, then 

C1 = C[ - "~(V, V) (14) 
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Figure 6. Directional variograms of the tree density variable, and parameters of exponential 
variogram models (curves) for 5 x 5 and 10 x 10m 2 quadrats. Co is the nugget effect; C1 is the 
variability due to the structure in the exponential model (Co + C1 is the sill); a is a parameter of the 
exponential model. 

where C ~ is the sill value of the point support. This correction only transforms the spatially struc- 
tured part of  the variance. The variance component ascribed to random variations and modelled by 
a nugget effect follows the classical relationship (Equation 10). 

The range of the spatial structure is also affected by the size of the sampling units. Journel and 
Huijbregts (1978, p. 84) show that the range of a spatial structure estimated from a support of size L, 
is a + L, where a is the practical range that would be measured if the support was a point. Therefore, 
changing the size of  the support produces changes in the overall dispersion variance and in the 
parameters characterizing the variogram (nugget effect, relative nugget effect, structured variance 
component and range). 

Figure 6 gives experimental variograms and model parameters for the tree density corresponding 
to 5 x 5, and 10 x 10 m 2 quadrat sizes, for the nor th-south  and east-west directions. These experi- 
mental variograms show well-defined sills and are isotropic, i.e. "y* (h) does not depend on the direc- 
tion of h. Exponential models with nugget effect (curves in the figure) were fitted to these 
experimental Variograms. 
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All variogram values up to h = 250 m in the nor th-south direction and to h = 500 m in the east-  
west direction, were estimated with at least 2500 pairs for 5 x 5 quadrats, and 1250 pairs for 10 x 10 
quadrats. The limit of reliability of these variograms is 250 m in the nor th-south  direction. This 
limit is generally set to one half the length of the area to ensure that vector h and increments (xi - Y i )  

characterize the whole study area, and not only the edge points. Beyond 250 m in the nor th-south 
direction, there is an increase in variogram values, indicating the presence of another structure with 
a range that cannot be evaluated from the available data. 

For the 5 x 5 m 2 quadrat size, the practical range is 120 m (3 x 40) and the parameter a ~ of a point 
model is equal to a ~ = (3a - l )/3 = 38.3. The point sill value is given by formula (14) as: 

C 1 = C~ - '~(V,  V )  

0.012 = C[ - C~-F(5;5)  

C~ = 0.0128 

where F(5; 5) is an auxiliary function (F(L, l )) defined as the proportion of C~ corresponding to the 
mean value of ",/(h) when the extremities of h describe a rectangle of sides L and l (Journel and 
Huijbregts, 1978, p. 138). 

The theoretical point-support variogram is an exponential model: 

7(h) = 0.0128(1 - exp (-h/38.3)).  (15) 

From this theoretical model, it is possible to calculate the dispersion variance of any given sup- 
port in the whole area and to find an appropriate variogram model describing the spatial structure 
features for various quadrat sizes. For example, for 10 x 10 m 2 quadrats: 

~(V, V) = C[ .F(10;40) 

?(V, V) = 0.0016. 

From Equation (14), the structured variance component for the 10 x 10 m 2 quadrat size is: 

C1 (lOxlO) ---- C~ - 9(10, 10) 

C1(lO×1O) = 0.0128 - 0.0016 

C1 (lOxlO) = 0.0112. 

The classical relationship (Equation 10) allows to calculate the expected nugget effect (random 
component) for 10 x 10 m 2 quadrats from the knowledge of the nugget effect of the 5 x 5 m 2 

quadrats (C000×10)= 0.046/4 = 0.0115). This random component plus the spatially structured 
component (C100x 10)) represent an analytical solution giving an estimation of the overall variance 

2 for 10 x 10m quadrats (C0(10xl0) + C100xa0) = 0.0227). The experimental variance value for 
10 x 10m 2 quadrats is 0.028, while the classical approach would have given 0.0615/4 = 0.015. 
The analytical solution is closer to the experimental values than the classical relationship. 
The slight underestimation may be due to a long-range spatial structure in the nor th-south 
direction which is not modelled, considering the size of this scale compared with the size of the 
study area. 

3.2 Rare species occurrence and predictability 

Rare species are of special interest in tropical rain forests, not only because of their contribution to 
diversity, but also for purposes of conservation (Hubbell, 1984; Hubbell and Foster, 1986). Forest 
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Figure 7. Effect of scaling on the occurrence of rare species. R 2 me asu r e s  the relation between the 
values of the variables with all species included, and their counterparts with rare species excluded. So 
it is a measure of the importance of rare species for these diversity measures. High R 2 means that rare 
species play a lesser role in a measurement, and vice versa. The graph shows that scale differently 
affects the effect of rare species on diversity variables. 

reserves should be created large enough to allow rare species to maintain a viable population. How 
much space a rare species requires is a source of controversy among conservation biologists; we 
believe this to be essentially a problem of scale. This problem is obviously too complex to be com- 
pletely addressed here. This section has the more limited objective of contributing to understand the 
effect of scale on our perception of the occurrence of rare species. 

In the Pasoh forest, the percentage of rare species is astonishingly high (301 rare species, repre- 
sented by 4985 individual trees); our criterion for rarity is defined in 2.2.1. The occurrence of rare 
species in different grain sizes has different effects on tree density, richness and Shannon diversity. 
The R 2 between the values of the three diversity variables (measured in the various quadrats) with all 
species included, and their counterparts with rare species excluded, shows the importance of rare 
species to diversity measures (Fig. 7). A higher R 2 implies that rare species have less influence on the 
diversity measures, and vice versa. The most distinguishing feature is that different measurements 
respond differently to the effect of scaling. Figure 7 shows that at small grain size ( ~< 20m), 
tree density is greatly affected by rare species; that is, the samples without rare species cannot 
provide adequate information, and depart substantially from the samples with all species 
included. The R 2 of richness decreases roughly linearly with grain size, because rare species are 
better represented in samples with large grain size. The Shannon diversity curve is a little more 
complicated; at both small and large grains, it is less influenced by rare species, compared to 
grain sizes between 10 and 30 m. 

This effect of the occurrence of rare species on diversity estimates may be exacerbated or alle- 
viated, largely depending on the sampling scale and the nature of the diversity measures, for instance 
the spatial distribution of a measurement used in the calculation of the diversity measure (Turner et 
al. in Wiens, 1989). Census data based on sampling are usually not error-free, contrary to the Pasoh 
data base used in the present study. Our results show that with such data, which usually under- 
estimate rare species, more precise estimates of density are obtained using a large grain size, 
while more precise estimates of richness require small grain size. Shannon diversity provides rela- 
tively stable estimates over the whole scale of grain sizes, although it does slightly worse at inter- 
mediate grain size values. No grain size is optimal for all diversity variables, 
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Figure 8. The effect of grain size on the fractal dimensions (D) of tree density, richness and Shannon 
diversity in the Pasoh forest. D generally decreases with larger grain size, which means that 
heterogeneity increases. 

3.3 Fractal dimension 

Fractal dimension is a useful measure of  the complexity of  a surface pattern. For  a surface, the 
fractal dimension D takes values between 2 and 3. A low D value means that the heterogeneity 
of  the variable is high (strong autocorrelation) and there may be dominant long-range effects, 
while high D indicates that the variable is randomly distributed in space (weak or no autocorre- 
lation) and that only weak short-range effects exist. It has been shown that the fractal dimension is 
not a constant over varying sampling intervals (Palmer, 1988, but his method of  calculating D is 
doubtful, since it gives rise to D values exceeding 2 in the case of  transects). How the fractal dimen- 
sion changes with grain size has not been investigated yet, however. In the Pasoh forest, we found 
that the fractal dimensions of  tree density, richness and Shannon diversity are generally high (close 
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to 3). The fractal dimension of diversity patterns decreases with increasing grain size, although it 
may increase locally (Fig. 8). This trend implies that at small sampling scales, diversity patterns 
display more homogeneous distributions, i.e. weaker autocorrelation; on the contrary, at broad 
sampling scale they show relatively high spatial heterogeneity, i.e. significant autocorrelation. 

The reason for the high fractal dimensions and homogeneity in the Pasoh forest lies in the fact 
that most species are present at low density (He, Legendre and LaFrankie, unpublished). With 
reduction of grain size (increasing resolution), the similarity (autocorrelation) in species composi- 
tion between adjacent sampling quadrats becomes very low or nil. In contrast, similarity increases 
with larger grain size. Interpolation or mapping may prove difficult, especially at small scale in 
tropical rain forests, because of the high fractal dimension. Using different sampling scales, oppo- 
site conclusions may be reached; for instance, a given scale may indicate that a distribution is 
isotropic, while it may look anisotropic at another scale (Fig. 8). It is obvious here that scale is a 
source of ecological controversies. Scale of studies is probably the first thing to look at in cases of 
controversies. 

3.4 Analysis of variograms 

Many ecological processes are spatially structured, as argued in the introduction. This is the under- 
lying reason why ecological processes are scale-dependent. It is interesting to explore how scale 
(grain size) affects the spatial structure of a variable. The variogram is one of the most common 
methods used to describe the spatial structure of a variable in ecology (Burrough, 1987; Legendre 
and Fortin, 1989). The scaling effect on the spatial structure is quantified by the range and relative 
nugget effect of the corresponding variogram. Figures 9 and 10 show how the ranges and nugget 
effects of the variograms of tree density, richness and Shannon diversity change with grain size. 

The range of a variogram is considered to be a measure of the size of a patch, i.e. the region inside 
of which there is autocorrelation among locations. The range is not always defined (for example in 
the case of gradients), or may be difficult to determine. Figure 9 presents the mean range estimated 
from exponential variogram models of tree density, richness and Shannon diversity in the north- 
south and east-west directions of the Pasoh forest plot (Figure 1). We find that the range increases 
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Figure 9. The effect of grain size on the ranges of  the variograms (in the east-west direction) of tree 
density, richness and Shannon diversity in the Pasoh forest. The ranges of the diversity indices 
increase about linearly with grain size. 
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with grain size, which is consistent with the solution given in Section 3.1 and with the expectation of  
the fractal dimensions shown in Fig. 8, in which autocorrelation expands (decreasing D) with 
increasing grain. So, patch size estimations may differ with scales. This is not an artefact but a 
problem of  scale. What  sampling grain size is appropriate  for a study depends on its objectives. 
For  example, if  the interest is in the spatial structure of  a community,  a fairly small-scale sampling 
scheme (small grain) may be appropriate,  while if the interest is in the structure of  a landscape 
system which usually embodies several communities, a relatively broad-scale scheme may be used. 

Figure 10 shows how the relative nugget effects of  the variograms of  tree density, richness and 
Shannon diversity change with grain size in the east-west  direction. These variables have high 
nugget effect, as high as 80%. The nugget effect is not a linear function of sampling scale. For  
example, the nugget effect of  tree density at small scale and broad scale is higher than at intermedi- 
ate grain sizes. 
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Figure 11. The scaling effect of the nearest-neighbour autocorrelation of tree density, richness and 
Shannon diversity in the Pasoh forest. The nearest-neighbour effect is a non-linear function of 
sampling scale. At small grain size ( ~< 15 m), the nearest-neighbour effect linearly increases with grain 
size. Beyond that scale, it may increase or decrease. 
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3.5 Spatial structure and nearest-neighbour autocorrelation 

Small-scale autocorrelation can also be looked at from the point of view of nearest-neighbour 
autocorrelation. Figure 11 shows the coefficients of determination (R 2) obtained when comparing 
the actual values at the various locations, to the estimates of these same values by their nearest- 
neighbour influence, for each grain size. High values of R 2 indicate strong nearest-neighbour 
influence. The R 2 values are small to intermediate in size, between 0.174 and 0.633; this means 
that on average, 17.4% to 63.3% of the variation in observed values of tree density, richness and 
Shannon diversity could be explained by nearest-neighbour values, depending on the variable and 
grain size. In aU three panels of Fig. 11, R e increases steadily for grain sizes between 5 x 5 m and 15 
x 15 m. For tree density, R 2 slightly decreases after 30 x 30 m, while for richness and diversity it 
keeps increasing in a stepwise manner. These pictures are almost perfect mirror images of Fig. 10 
depicting the evolution of the nugget effect with grain size. Spearman rank correlation coefficients 
computed between nugget effects and nearest-neighbour autocorrelation curves for tree density, 
richness and Shannon diversity are -0.883 (p = 0.0125), -0.967 (p = 0.0063) and -1.000 (p = 
0.0047), respectively; low nearest-neighbour autocorrelation corresponds to high nugget effect, 
while high nearest-neighbour autocorrelation is associated with low nugget effect. Sampling error 
and the presence of microstructures were considered above to be responsible for high nugget effects 
for small grain sizes. So, low nearest-neighbour autocorrelation should be the main explanation for 
high nugget effect. For example, a homogeneous Poisson pattern has 100% nugget effect and zero 
nearest-neighbour autocorrelation, no matter the value of grain size, or how much one can reduce 
sampling error. Avoiding sampling error or choosing an appropriate sampling scale can reduce the 
nugget effect, as shown in Fig. 10, but it will never be reduced to zero. When nearest-neighbour 
autocorrelation rises, the corresponding first-distance-class variogram value should drop; and 
since the first-distance-class variogram value is closely related to the 0-distance-class variogram 
value (=  nugget effect), then the result is as expected. Nugget effect is a common feature of phenom- 
ena in nature; it is caused jointly by sampling errors and microstructures occurring if the distance 
between sampling units, or the size of sampling units, are greater than the ranges ofmicrostructures. 

4. Conclusion 

The way we perceive ecological patterns in nature depends to a large extent on the scale at which we 
look at them. Ecological variables and processes are rarely scale-free. How they are affected by 
scaling is heavily dependent upon the way they are measured and distributed through space. 

The current study on the diversity patterns of the Pasoh forest, Malaysia, showed that the effect of 
scale on these measurements is complex. In our forest plot, mean tree density, which is simply the 
count of individual trees in quadrats, is a constant over scales, while the means of richness and 
Shannon diversity are scale-dependent. Procedures or criteria are needed to establish the proper 
relation between scaling mechanisms underlying the spatial patterns of tree density, richness and 
Shannon diversity, and other ecological variables. Our study leads to the three following important 
conclusions: (i) scaling (i.e. grain size) usually has a non-linear effect on non-additive measurements. 
(ii) heterogeneity generally increases with the increase of sampling scales, as shown by fractal dimen- 
sions. (iii) detailed information on a spatial structure is often lost at broad scale because samples 
then average out the fine-scale differences. 

As a matter of fact, each of the diversity variables we studied responds differently to scale. A scale 
appropriate for one variable may not be appropriate for another. More precise estimates of density 
are obtained using a large grain size, while more precise estimates of richness require small grain 
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size. Shannon diversity provides relatively stable estimates over the whole scale of grain sizes, 
although it does slightly worse at intermediate grain size values. No grain size is optimal for all 
diversity variables. This finding should be properly taken into account when planning ecological 
surveys of plants or animals. 

If one's interest is, for example, to reduce the nugget effect ofvariograms for the Pasoh forest data 
to a proportion of 11% of the total spatial variability of the signal, then our study shows that a grain 
size of 30 m may be appropriate for tree density, 70 m for Shannon diversity, and 50 m for richness. 
At small grain size, the measurements of tree density (~< 20 m), richness (~< 10 m) and Shannon 
diversity (~< 10 m) are either relatively constant, or linear functions of scale. They are the 'domains 
of scale' of these variables. Outside these domains, extrapolation of information from scale to scale 
is difficult. Although our current 50 ha forest plot is very small compared to the extent of the world 
tropical rain forest, and the vegetation is by and large of a uniform type, the current study demon- 
strates that extrapolation of information among scales (possible up-scale only) may be possible but 
very difficult. More studies of this kind in other ecosystems are needed before theories and general- 
izations about scaling effects can be formulated. In large-scale ecological studies, extreme caution 
should be exerted with respect to scale. 
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