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Abstract: The classical method for analysis of variance of data divided in geo-
graphic regions is impaired if the data are spatially autocorrelated within
regions, because the condition of independence of the observations is not met.
Positive autocorrelation reduces within-group variability, thus artificially
increasing the relative amount of among-group variance. Negative autocorrela-
tion may produce the opposite effect. This difficulty can be viewed as a loss of
an unknown number of degrees of freedom. Such problems can be found in
population genetics, in ecology and in other branches of biology, as well as in
economics, epidemiology, geography, geology, marketing, political science, and
sociology. A computer-intensive method has been developed to overcome this
problem in certain cases. It is based on the computation of pooled within-group
sums of squares for sampled permutations of internally connected areas on a
map. The paper presents the theory, the algorithms, and results obtained using
this method. A computer program, written in PASCAL, is available.

Résumé: Cet article présente une solution au probléme de 1’analyse de variance,
pour certains cas ou la variable i analyser est spatialement autocorrélée alors que
le critére de classification représente des sous-régions connexes du territoire 2
I’étude. On sait que les méthodes classiques d’analyse de variance ne sont pas
applicables dans ce type de situation puisque la condition d’indépendance des
échantillons n’est pas respectée; 1’autocorrélation positive réduit la vaniabilité
intragroupe, si bien que la quantité relative de variabilité intergroupe s’en trouve
artificiellement augmentée. Cette situation correspond en réalité a une vaste
catégorie de probléemes en génétique des populations, en écologie et dans
d’autres branches de la biologie, ainsi qu’en épidémiologie, en géographie, en
géologie, en science économique, en scicnce politique et en sociologie. Ce
nouveau test appartient a la famille des tests par permutation. Nous calculons la
somme des dispersions intragroupes et testons contre une distribution de
référence obtenue en permutant les régions géographiques un grand nombre de
fois sur la carte. La véritable difficulié de ce test est d’ordre algorithmique,
puisqu’il n’est pas facile de permuter des régions sur une carte, de fagon a ce que
chaque groupe demeure connexe, et que la carte permutée occupe le méme
espace total que la carte d’origine. Cet article présente la théorie, les algor-
ithmes, ainsi que des résultats obtenus par cette méthode. Un programme é&crit
en PASCAL est disponible.

Keywords: Analysis of variance; Choropleth map; Ecology; Genetics; Geogra-
phy; Permutation test; Spatial autocorrelation.

1. Introduction

Let us consider a common problem. We are studying a variable at vari-
ous locations in space and we want to test whether predetermined geographic
areas are significantly different in terms of the means of this variable. We
assume, under the null hypothesis of no difference, that the means do not
depend on the areas. This situation presents a problem common in such fields
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as ecology, economics, epidemiology, genetics, geography, geology, market-
ing, political science, and sociology, when dealing with data associated with
maps.

The problem as stated above is clearly one of single classification
analysis of variance (hereafter referred to as a one-way ANOVA). It is well
known, however, that spatial autocorrelation within areas, as is likely to be
found in geographically-based data, disturbs the tests of significance used in
analysis of variance and its nonparametric equivalents. The reference distri-
butions used in these tests are valid only if the observations arise by adding
independent and identically distributed error terms to means that may or may
not depend on the areas. Autocorrelated data do not fit this model (Griffith
1978, 1987; Cliff and Ord 1981; Millard et al. 1985). The problem of auto-
correlated data can be viewed from another perspective: if one knows the
shape of the autocorrelation function and the values the variable takes at
some of the points, then one can predict with a given error the values at other
points in space. Obscrving the actual values of the variable at these other
geographical locations can only refine our knowledge, since the set of values
the variable may take is restricted by our previous knowledge of the values at
other space locations; as a consequence, each new observation does not bring
with it one full degree of freedom. On the other hand, it is difficult to cstab-
lish what fraction of a degrce of freedom each new observation represents.
So, the problem of detcrmining the appropriate null reference distribution
remains unsolved. When the effect of spatial autocorrelation is not taken into
account, the test becomes too liberal in the case of positive autocorrelation.
That is, differences among groups that are not truly different are too often
declared to be significant. The probability of a Type I error is larger than its
assumed o value. Negative autocorrelation will produce the opposite effect.

Although various approaches may be used to rclate geographically-
based gencrating processes to the spatial distribution of variables (see Discus-
sion), these approaches do not exhaust the problem, and an ANOVA can still
be seen as the test of choice for examining potential differences in means
among geographic areas. Carrying out an ANOVA requires, of course, that
one be able to assess correctly the statistical significance of the result. This
paper proposes such a procedure, based on a computer-intensive generation
of a reference distribution from the actual data. Since it is a permutational
method, it differs from the parametric approach of Griffith (1978), for
instance. It also differs from the permutation approach of Edgington (1987) in
that we preserve the autocorrelation structure of both the variable and the
classification criterion.

However, as we stress again bclow, we advocate this method
unreservedly only when the localities are roughly on the nodes of a regular
lattice. Use of the method in any other case must bc accompanied by
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simulations validating the method for that application. We give an example
of this below.

2. A Proposed Solution

Suppose that we have observed data values at n localities, and suppose
that the localities are spread cvenly over the study arca. Suppose also that the
localities have been exhaustively divided into & nonoverlapping geographic
areas (A1, ... ,Ay) according to some criterion that is independent of the data
values. If the geographic areas are assigned the means of their data values,
the resulting map is called a choropleth map in geographical research
(Muehrcke 1978; Thrower 1972). We may represent the data zlics values x;; in

a table with & columns, the j-th column with n; values, and X n; = n, as in
j=1

one-way analysis of variance. To give an example, suppose the x;; represent

gene frequencies in n citics, and (A, ... ,A,) represent & countries, where

k < n, into which these cities fall. We wish to decide if we can believe the

null hypothesis
Hy: The means of the variates in the areas are the same.

The above situation would be a classical analysis-of-variance problem, were
it not for the fact that the x-values of the variable are spatially autocorrelated,
but in an unknown way. As pointed out earlier, spatial autocorrelation breaks
the classical ANOVA assumption of independence of the error terms, and
necessitates an alternative technique.

If we understood the way in which the data are spatially autocorrelated
under Hy, we would be able to simulate sets of data values having this spatial
autocorrelation, and use them to test the null hypothesis. One possible solu-
tion to our problem would be to estimate the spatial autocorrelation function,
and use this in the simulation.

Let us suppose, however, that the spatial patterns we deal with are quite
complex, and that we have low confidence in our ability to estimate the spa-
tial relations between the localities correctly. Instead, it scems likely to us
that it is easier to generate geographic areas that share the properties of the
observed arcas; by repeating the process a number of times, we can obtain a
distribution of the statistic (bclow) against which the actual map can be
tested. Accordingly, we take the data values as fixed, and make the following
mimicking assumption.

Assumption: The observed set of shapes can be viewed as a single realiza-
tion from the ensemble of sets of shapes that can be generated by one of our
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computer algorithms. The shapes of the geographic areas (A, ... ,Ay) are
therefore acceptably mimicked by a computer algorithm.

To obey the mimicking assumption, the general characteristics of the
shapes in the ensemble must be determined. Two computer algorithms are
presented in the Appendix. These produce sets of simulated areas (called
pseudoareas) that are more or less compact and in which localities are geo-
graphically contiguous within each area. These specifications should
correspond to most situations found in the field. Implementing geographic
contiguity presents a difficult problem in computer algorithms. We overcome
this problem by representing the geography as graphs or networks. Graphs
that connect nearby points can be used to represent geographical contiguity
as edge links between the sampling points. All points that are linked graphi-
cally will also be geographically contiguous. We require furthermore that
each pseudoarea produced contains the same number of sampling localities as
the original arca. Therefore, the requirement that the localities be evenly
spaced will preserve not only sample size, but also the geographical size of
the arca. The algorithms presented in the Appendix attempt to satisfy these
requirements. Both algorithms work by exhaustively partitioning the graph
network into connected subgraphs that contain the same number of localities
as the original areas. The connectedness assures that the pseudoareas contain
geographically contiguous points. Whether the pseudoareas mimic relatively
compact geographical areas is discussed below.

In addition to the requirement that the localities be evenly spaced, we
also stipulate that the density of graphical connections should be approxi-
mately even over the study arca. That is, we wish the incidence variance (i.e.,
the variance of the number of edges per node of the graph) to be low. In a
simulation reported below, when this stipulation was not met, certain pseu-
doareas were differentially attracted to various parts of the study area. Vari-
ous graphical connection schemes will fulfill the incidence requirement. In
particular, nearest-neighbor graphs have a low incidence variance; in simula-
tions that we performed on randomly located points, the incidence variance of
nearest-neighbor graphs was about one fourth that of the corresponding
Delaunay triangulations. The incidence variance of graphs based on chess
moves (rook’s connections, king’s connections, etc.) is nearly zero, since only
marginal points receive a smaller number of edges.

The test statistic we use is the classical pooled sum of squares within
areas:

k N _
SSW =13 3 (xj—x)?
Jj=1

=1
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where k is the number of groups, n; is the number of localities in group j, and
n.

x; =(1/n;) T x; is the mean value of the variable in group j.
i=1

SSW is calculated for the observed geographic areas, and again for each
realization of a pseudomap (which is a map of pseudoarcas). We reject the
null hypothesis if the observed statistic is small relative to the distribution
given by the pscudoareas. Because the number of localitics per area is
preserved in each realization of a pseudomap and the total sum of squares is a
constant over all permutations, this decision is equivalent to rejecting the null
hypothesis when the among-areas sum of squares (SSB) is too large, where

k —
SSB = Y, nj(x; —x)*
j=1

and

- k
)_c=(1/n) Z le-j

j=ti=1

is the overall mcan value of the variable over the n localities.

The validity of this test depends upon the validity of th¢ mimicking
assumption. In general, we will never know if this assumption is true.
Indeed, the best we can usually hope for is that it is approximately truc.
Therefore the test we present here cannot be viewed as exact, but only as
approximate. In somc cases, even the approximation will be bad.

One should always investigate the validity of the mimicking assump-
tion when using this test. One way to do this is to compare statistics on the
shapes of the obscrved areas to the same statistics on the population of pseu-
doareas. We have found the set diameter most useful. It is defined as the
largest geographic interpoint distance between any pair of localities in the
area or pseudoarca, measured along the earth’s curvature,

In one of the applications presented below (Section 4), we also report,
for each observed area, its position in the corresponding distribution of pseu-
doarea set diameters. A decision as to the validity of the mimicking assump-
tion can be reached as follows. If we compare the position of the observed
area’s set diameter to the distribution of this same statistic in the population
of pscudoareas, we can compute the probability of obtaining, among the
pseudoareas, a result as small as or smaller than the actual value. We may
expect this probability to follow approximately a uniform (flat) distribution
on the [0, 1] interval if there is no bias in the pseudoarca generation process,
that is, if the mimicking assumption is met. Considering the probabilities
computed for the various areas in the problem under study, we may test the
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correctness of the uniform distribution hypothesis using a Kolmogorov-
Smimov test of goodness-of-fit when the number of groups allows (k = 4).

In addition to a test of difference of means, it is also possible to investi-
gate each geographic area separately. That is, we can sce if its individual
sum of squares within group j

SSW; =3, (x;; —x;)*

i=1

is unusual when compared to the SSW; values of the pseudoareas correspond-
ing to that area. If the probability of the observed value of this quantity is
low, the geographic area in question is more internally homogeneous than
one can expect under the pseudoarea model. Since the various SSW; values
are correlated, one should use the Bonferroni method (Cooper 1968; Miller
1977) or related techniques, when investigating the homogeneity of sets of
individual areas in this way, in order to allow for simultancous inference.

An alternative way to motivate this analysis is to view the areas (coun-
tries, in our running example) as fixed and to assert that the data arise by
discretely sampling a single realization of a continuous, stationary, isotropic,
weakly autocorrelated stochastic process at the study locality. If we had a
different realization, we would of course observe different values at the study
localities; therefore, the value obscrved at any single study location has a
sampling distribution. If, however, the assumption holds that we are sam-
pling the stationary process described above, then, for any given cluster of
localities, the distribution of SSW values calculated on those localitics
remains the same under any rigid motion (including mirror-imaging) of the
localities that still leaves them in the study area. A pseudoarea is a locality
cluster that is approximately like the obscrved cluster (same area, same
number of localities, roughly the same shape), so that if we are indeed sam-
pling a stationary process as described above, the SSW of a pseudoarea has
approximately the same distribution as the observed SSW. Drawing many
pseudoarcas will build up a rough empirical distribution for the SSW statistic.
The “‘weakly autocorrelated’’ part of the assumption allows successively
drawn pseudoareas to be nearly independent, thus giving a fairly dependable
idea of the distribution. In this case the mimicking assumption is recast as an
assumption that the pseudoarcas arc enough like the observed area to be
counted as approximations of it. That is, the observed area is assumed to be
an observation from the distribution giving rise to the pseudoarcas. The vari-
ous tests of the mimicking assumption then serve to test this new version of
the assumption.

The rescarcher must decide for each application whether either of these
motivations is believable before deciding whether to use this approximate
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analysis of variance method.

A conversational computer program written in PASCAL is available
from P. Legendre and A. Vaudor to perform the computations for the above
method, which we term the contiguity-constrained permutational ANOVA
(acronym COCOPAN). The program contains both the ring and the random
tree algorithms described in the Appendix.

3. Properties of Pseudoareas
3.1 Shape Statistics

What shape do pseudoareas receive from the algorithms described in
the Appendix? A regular grid of points was constructed, bearing 18 rows and
20 columns, and the points were connected using king’s connections (hor-
izontal, vertical, and diagonal links). Groups of 10, 20, . . .,80 points each (8
groups, a total of 360 points) were defined on this grid. After permuting the
arcas 300 times, the set diameter statistic was computed for the pseudoarcas
(Table 1). These evenly spaced locality points produced slightly clongated
pseudoareas, with average set diameter 1.4 to 1.7 times the length of the
minimum possible set diameter, using the ring algorithm, and 1.7 to 2.0 times
for the random tree algorithm (shapes slightly less compact). So, the algo-
rithms are appropriate for mimicking compact geographic areas, while they
may not be for very elongated or dendritic-shaped areas.

3.2 Where do Pseudoareas Fall?

This section studies where the pseudoareas fall on the map, under
different patterns of connections. This question is another aspect of the prob-
lem of randomness of the pscudoarcas constructed by our algorithms; it con-
cerns their location on the map instead of their shape.

For this study, we constructed a regular grid of 100 localities (10 x 10)
on which a network of connections was defined (below). The localities were
initially divided into three groups of, respectively, 10, 30 and 60 localities,
and we permuted the map 1000 times, using the ring algorithm. If localities
were randomly and independently assigned to pseudoareas, we would expect
each locality to be included the same number of times in the pseudoarea with
10 localities, and similarly for the 30 and 60 locality pscudoareas.

In a first permutation experiment, the points were connected with irreg-
ular density, as follows. The four bottom rows of the 100-point grid were
connected using the king’s connection paitem (horizontal, vertical, and diago-
nal connections). This connection pattern assures near-neighbor linkages in
all possible directions, which assumes that the areca can be viewed as covered
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TABLE 1

Set Diameter Statistics over Simulated Psendoareas

n; in Ring algorithm Random tree algorithm

group Min! Mean? Ratio® Mean? Ratio®
10 3.161 4.352 1.38 5.400 1.71
20 4.470 6.564 1.47 8.996 2.01
30 5.826 8.707 1.49 11.425 1.96
40 6.702 10.880 1.62 13.463 2.01
50 7.609 12.327 1.62 14.979 1.97
60 8.536 13.755 1.61 16.445 1.93
70 9.214 15.353 1.67 17.296 1.88
80 9.836 16.955 1.72 18.107 1.84

Minimum set diameter for the same number of points (n;) as in the group. Unit =
length of a horizontal or vertical edge between adjacent poinis of the grid.

2 Mean over 300 permutations, regular grid (18 x 20).

3 Ratio = Mean/Min.

by a collection of connected rectangular tiles. Patterns based on other chess
moves, employed below, are less densely connected. The upper section of
the grid was divided vertically in the middle, and the right-hand part was con-
nected using the rook’s connection pattern (horizontal and vertical connec-
tions), while the left-hand part was connected by horizontal links only. After
1000 permutations, the frequency of occurrence of each locality in each of
the three groups (10, 30 and 60 localities) was computed, and an analysis of
variance showed that there were significant differences (p < 107*) in the allo-
cation of the three groups to the various regions of the map. Parametric a
posteriori contrasts tests (SNK and Tukey: Nie et al. 1975, section 22.3.3)
showed that the mean frequency of occurrence was different for all pairs of
regions of the map, and this for each group (10, 30 or 60 localities respec-
tively). Mapping the frequencies of occurrence for each of the groups of
localities showed that the 60-point group tended to occupy the horizontally-
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connected arca of the map (upper left) far more often than expected, while the
10-point group occupied that same area far less frequently than expected.
The 30-point group occupied the king’s-connected area (lower part of the
map) far more often than expected.

To see whether this eflect was really caused by the connection pattem,
rather than by some other artifact of the program, a second permutation
experiment was conducted in which the points in the grid were all connected
by the king’s connection pattern (horizontal, vertical, and diagonal connec-
tions). After 1000 permutations, the frequency of occurrence of each locality
in each of the three groups was computed as above; an ANOVA showed that
there were no significant differences in the allocation of the three groups to
the various regions of the map.

These results show on the one hand that the COCOPAN method may
not be appropriate in cases where the localities are connected in a pattern
with high incidence variance; in this example the smaller groups of localities
tend to avoid the more weakly connected regions of the map. On the other
hand, when the connecting pattern was uniform, there was no tendency for
some pscudoareas to be found repeatedly in some regions of the pscudomap,
or to avoid other regions.

4. An Example: Ecological Application (Lattice Data)

Legendre and Legendre (1984) have studied the postglacial dispersal of
freshwater fishes in the Québec peninsula. Part of their data set is used here
to test if the number of fish specics is related to the geomorphology of the
arca. The territory under study consists of 64 one-degree-square units (lattice
data), located in the western part of Québcec, adjacent to James Bay (Figure
1); each unit of territory is about 7000 km?. It scemed possible that the
number of habitat types available for fishes depended to a certain cxtent on
the nature of surface deposits, which may influence, for instance, the primary
production of the lakes and rivers, through the types and amounts of dissolved
minerals. Three kinds of surface dcposits have been recognized in the area:
the Tyrrell marine transgression, glacial dcposits only, and glacial lake
transgression.

There is a north-to-south gradient in species numbcr, common in these
northem latitudes. So as not to confound the effect of latitude with that of
geomorphology, the effect of the former was eliminated by linear regression.
A parametric analysis of variance was first computed on the residual data,
using the ONEWAY subprogram of the SPSS package. Significant
differences were found among the groups at probability level 0.0009.
Parametric a  posteriori contrasts tests (SNK and Tukey) showed further
that although the marine (A in Figure 1) and the glacial lake (C) transgression
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Figure 1. Geomorphological division of the territory, according to the Glacial Map of
Canada. A: maximum extension of the Tyrrell marine transgression. B: Glacial deposits only
(Wisconsinian ice sheet). C: maximum extension of the Ojibway-Barlow glacial lake.
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TABLE 2

Set Diameter Statistics over Pseudoareas, Fish Example

Group nin LT! EQ! GT! Prob

J
name group LT+EQ?
A 19 157 5 88 64.8%
29 94 5 151 39.6%
C 16 202 3 45 82.0%

1 LT = number of pseudoareas with set diameter smaller than the actual value;
EQ = equal; GT = greater than. Number of permutations = 250.

2 Probability of a result as small or smaller,

zones were not significantly different from one another, both displayed
significant differences from the third zone (B) where only glacial deposits are
found.

Since the detrended data still displayed significant patchiness, when
subjected to spatial autocorrelation analysis (Cliff and Ord 1981), they were
re-analyzed by COCOPAN; the territory units were connected using king’s
connections for maximal near-neighbor connectivity. Sixteen of the 250 per-
muted maps were found to yield smaller within-group sums of squares than
the observed data (none were equal), giving a probability that Hg is true
equal to 0.064. This probability level does not allow one to reject H at the
0.05 probability level and so we find no convincing evidence that fish diver-
sity, as measured by the number of species, varies with the ‘‘surface depo-
sits’’ classification criterion in this territory as mapped in Figure 1.

In Table 2 we report results on the position of the shape statistics of the
observed arcas in the distribution of such statistics for the pseudoareas. Since
none of the three areas is aberrant, we tend to accept the mimicking assump-
tion.

Here, then, is a case where spatial autocorrelation in the data would
have led one to take the wrong statistical decision after an ordinary analysis
of variance, because ANOVA is too liberal when the data are positively auto-
correlated, as discussed in the Introduction. COCOPAN, on the contrary, is



Analysis of Variance of Regional Data 65

more conservative. This difference may be important in a context where
results from statistical tests may lead to management decisions (Millard et al.
1985).

5. What to do if the Lattice Condition is not Met

The computer algorithms presented in the Appendix ensure that the
number of localities in each of the geographic areas is preserved in every
realization of a pseudomap. Variation in the density of localities across the
study site prevents the original size of the areas from being preserved. Areas
with dense localities will give rise to larger sized pseudoareas (as measured
for instance in square kilometers), when projected in more loosely sampled
parts of the map. If the data are also spatially autocorrelated, this may
influence the SSW statistic. In this situation, COCOPAN needs to be applied
with caution. However, auxiliary tests may suggest that the method is still
reliable in specific applications. An example using this more complex (but
commonplace) data structure follows.

6. Gene Frequency Differentiation Among Human Linguistic Groups
(Nonlattice Data)

Sokal et al. (1989) have studied whether differences in gene frequen-
cies are associated with language-family arcas in human populations in
Europe. The data in the study consisted of 69 variables of blood group gene
frequencies and cranial measurements sampled from various geographic loca-
tions in Europe. Each genetic system was measured at a different set of local-
ities over Europe. The location of the samples was not under the controt of
the investigators, and the sampling density for the variables was very uneven
across the European continent. Is the method reliable when the data do not
form a regular lattice? To provide an answer to that question, a simulation
study was carried out to assess the degree to which the unevenness of the
sampling locations aflects the permutation method developed here.

The simulation study used the observed geographic locations and their
graph links (next paragraph) and generated data according to three different
models, in order to assess the method. The first model, called the null model,
assumed that all localities were independent and there were no differences
among groups in the means of the variable; an analysis of variance is not
expected to find any significant difference among these groups. The second
model, called the language model, assumed that there was no spatial auto-
correlation within language areas in the simulated variables, but that some of
the language areas had different means; an analysis of variance is expected to
find these differences. The third model, called the geographic model,
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assumed that there was autocorrelation between the locations but no
difference in means across language areas; an investigation of differences
among means should yield nonsignificant results. The investigators felt that
if COCOPAN gave results expected under the various models, the degree of
uneveness in the sampling pattern of the data could be ignored when evaluat-
ing the actual genetic data in the study.

The localities of two genetic systems were chosen as representative of
the sampling pattern of the total data set. They were: ABO gene frequency
data, which had the largest number (870) of localities, and haptoglobin gene
frequency data, which had about the modal number of sample localities (175).
The locality sampling points based on the ABO gene frequency data were
tested only against the geographic model because of the heavy computational
load incurred when working with this dataset. The graph links on these two
locality sets were established by a Dclaunay triangulation (Brassel and Reif
1979; Ripley 1981, section 4.3; Upton and Fingleton 1985, section 1.7) of the
original geographic locations. The original partitionings of localities into
language-family areas were used in the simulation study.

The simulated data for the null model were generated by sampling from
a normal distribution of mean 0 and variance 1. We created 50 such surfaces
on the geographic locations of the haptoglobin data, COCOPAN was applied
to each of these simulated surfaces in tumn. The results were summarized by
determining whether a datasct was found to lead to significant differences
among group means at the 0.05 probability level. All but two replicates from
the null model were found to be nonsignificant, which is well within the
expected number of nonsignificant datasets (obtained from the binomial pro-
bability), so that the method performed satisfactorily.

The language modcl data were generated, again for the haptoglobin
data points, by sampling from the normal distribution, specified as N(0,1), for
all language family areas but two. The two exceptions were sampled from
normal distributions specified as N(1,1) and N(3,1); this was done in two
different ways. In a first set of 50 simulations, the two areas with the largest
number of localities were sampled from the normal distributions with offset
means, In a second set of 50 surfaces, intermediate size arcas were chosen.
All of the replicates in the language model were found to differ significantly
in their means, regardless of which of the two treatments was applied. This
result was also as expected, since the assigned parametric means differ by
construction.

The geographic model data were generated by assuming that there was
a “‘lattice’” of 100 000 points underlying the continent of Europe. Each lat-
tice point had a value sampled from the normal distribution of N(0,1). The
value for each observed locality was obtained by summing all the values of
the underlying lattice that were covered by a window centered upon the
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geographic location of the observed locality. Neighboring localities will be
autocorrelated due to overlap of the windows; the amount of autocorrelation
depends on the size of the window. Four window sizes were used in the
simulation test.

Each treatment was replicated 50 times for the haptoglobin data points,
except for the largest window size, where computational load limited replica-
tions to 20; each treatment for the ABO data points was replicated 20 times.
The number of significant replicates per set of different autocorrelation
strengths were 3, 4, 4, and O for the haptoglobin data points, as the strength
(ie., window size) increased; for the ABO data points, the number of
significant replicates was 0, 3, 4 and 3 per set, respectively. Since there was
no difference in means of the parameters of the simulation, we expected that
no significant difference should be found among group means of the simu-
lated data sets. The maximum value of four significant replications found for
the haptoglobin as well as for the ABO data points is well within expected
99% confidence limits, based on the binomial distribution.

The least autocorrelated surfaces, among the four data sets genecrated
under the geographic model for the haptoglobin data points, were also sub-
jected to parametric ANOVA for comparison. All 50 replications led to
highly significant results. This outcome indicates that contiguity-constrained
permutational ANOVA does overcome the problem of autocorrelation in the
data while parametric ANOVA does not. Although this simulation study is
not complete (e.g., mixed models of language and geography were not
tested), we felt that the results gave cnough confidence in the method to apply
it to our uncvenly distributed sample data.

When the original dataset of 69 variables, sampled over Europe, was
initially tested using paramctric ANOVA, all but 4 variables were found to
differ significantly in means over language groups. As suggested at the
beginning of the Discussion, the four non-significant variables were immedi-
ately eliminated from the study, since adjustment for spatial autocorrelation
by our mcthod would probably not have shown them to be significant. When
the 65 remaining variables were tested by COCOPAN, the null hypothesis
was rejected in only 23 cases (Sokal et al. 1989), which shows again that
parametric ANOVA can often give very biased results in the presence of spa-
tial autocorrelation.

The analysis of the European gene-frequency data demonstrated that
speakers bclonging to different language families differ genetically. These
differences are not due to spatial autocorrelation induced by the limited
mobility of the speakers (isolation by distance), since the COCOPAN method
eliminated the effects of autocorrelation. In the cited study (Sokal et al.
1989), various models bringing about the obscrved pattemns are ecnumerated
and discusscd.
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It should be noted that our simulation study does not validate the use of
the permutational method in all cases of uneven sampling. The tests were
done specifically on the sampling patierns of ABO and haptoglobin and there-
fore only lend confidence to using the method on these and similarly sampled
datasets. We recommend that unevenly sampled data be examined individu-
ally in a manner similar to the simulation study above.

7. Discussion

We have explained in earlier sections that autocorrelation in a variable
can disturb the tests of significance used in the analysis of variance, and we
have clearly illustrated this phenomenon in the two examples presented in
Sections 4 and 6, where results of parametric ANOVA were compared to
those obtained with the contiguity-constrained permutational ANOVA
described in this paper. Even in the presence of spatial autocorrelation, one
can start by performing standard ANOVA (parametric or non-parametric). If
the spatial structure consists of positive autocorrelation for the small distance
classes, and if the null hypothesis of ANOVA is accepted, there is probably
no need to proceed with any further testing. With positive autocorrelation,
ANOVA results that are significant can be rendered nonsignificant with our
method, ANOVA being too liberal in that case. So, only when the null
hypothesis of ANOVA is rejected should the analysis be repeated using some
method, such as the one described in this paper, that takes the spatial struc-
ture into account. In the very rarc cascs of negative autocorrclation, ANOVA
will be too conservative.

One might be tempted to use the Mantel test (Mantel 1967) as another
way of answering the same question as that addressed by COCOPAN. The
test would be performed between (1) an (n X n) matrix of n localities, con-
taining the differences in values of the variable at the various localities, and
(2) a model (n X n) matrix containing, say, zeroes for all within-group com-
parisons and ones for all between-group comparisons. The Mantel statistic
would measure the degree of agreement between data and model, and this
value could be tested for significance against a reference distribution
obtained after repeated random permutations of the order of the localities in
one of the two matrices. We need to point out that this test would not be
equivalent to COCOPAN. In the latter test, we leave the sampling points in
their fixed positions on the map, each rctaining its value of the variable under
study, thus leaving undisturbed their autocorrelation structure. In the Mantel
test on the contrary, random permutations of rows and columns destroys the
inter-point structure in onc of the two matrices (computationally the results
are the same whichever matrix is permuted). Either the values of the variable
are randomized over the localities, thus destroying their autocorrelation



Analysis of Variance of Regional Data 69

structure, or it is the group membership which is ¢stablished at random, so
that the connectedness of pseudoareas is destroyed in the permutation pro-
cess. Used thus, the Mantel test is a nonparametric ANOVA that is appropri-
ate only when there is no spatial autocorrelation within groups. In contrast,
COCOPAN is appropriate if one believes that the autocorrelation structure of
the variable is a salient property of the problem. Moving the regions around,
in the algorithm, is actually equivalent to retaining the initial geographic
position of the regions while randomly moving around (i.e., randomizing)
selected blocks of localities that retain their autocorrelation structure.

Suppose our data indicate a spatial gradient, with long, narrow areas
perpendicular to the direction of steepest ascent. How should such data be
analyzed? The surprisingly complex answer to this question is considered
below in terms of two separate issues.

The first issue concerns the question of whether the observed gradient
should be removed before the analysis of the data, as we did in the example
of Section 4. The problem here is that a true systematic change in the under-
lying expected value of the data (termed here for convenience a ‘‘true’” gra-
dient) can often be convincingly imitated by highly autocorrelated data with
no change in underlying expected value (termed here for convenience a
‘‘false’’ gradient). Indeed, it is this phenomenological similarity between true
and false gradients that necessitates the use of special methods with auto-
correlated data. If there is prior reason to believe in a true gradient (as would
be the case, for example, if we knew, on the basis of other evidence, that the
observed data values were driven by an underlying nutritional gradient, or by
climate, etc.), then this gradient must be removed before further data analysis
with COCOPAN. The reason is that the null hypothesis of COCOPAN holds
that there is no underlying change in expected value (the ‘‘weak stationarity”’
assumption of geostatistics). In other words, all variations in the data are
caused by autocorrelation; all gradients are false. If we have prior belief in a
true gradient, the data are not admissible for study by COCOPAN. We add
parenthetically that the removal of a true gradient in this situation is difficult,
since, if onc admits the possibility of autocorrelation, the true gradient might
castly be partially confounded with a false gradient. Special methods are
required to disentangle the truth in this type of situation.

The second issue concems the validity of the mimicking assumption.
Suppose we adopt the null hypothesis that the observed gradient is false. We
wish to use COCOPAN 1o test this hypothesis, with the alternative being that
the gradient is at least partially true. Notc that the areas in the example, being
long, narrow, and perpendicular to the direction of the steepest ascent, differ
as much as possible from each other in data values. The reason is that each
area is as homogencous as can be, because of the peculiar division of the
observed gradient into arcas. Either COCOPAN or an ordinary ANOVA
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would therefore produce a significant result. Can we now reject the null
hypothesis, and conclude that there is at least some true gradient?

The answer to this question clearly reveals the importance of the mim-
icking assumption. From an intuitive point of view, we might claim that the
observed differences are only the result of the shape and orientation of the
areas. If these had been constituted more randomly, we might not have found
any differences among them. This possibility immediately raises the question
of what sort of arcas might have been possible besides the ones observed. If,
for some reason unrelated to arca-specific data values, the only possible areas
were those with borders perpendicular to the gradient, then our observed
differences are not surprising, and do not support the assertion of true
differences between the areas. If, however, under the null hypothesis of no
difference between areas, the areas could have arisen any which way, then the
observed inter-area differences are surely surprising, and merit rejection of
the null hypothesis.

From the point of vicw of COCOPAN, these meditations translate into
questions concerning the validity of the mimicking assumption. Suppose the
areas could have arisen any which way. That is, suppose that the obscrved
arcas arc a sample from the distribution of areas generatcd by our computer
algorithms. The mimicking assumption is now correct. In this case,
COCOPAN would produce the correct answer, namely, that the areas differ.
When confronted with such peculiar observed areas, the investigator should,
however, immediately suspect that the computer algorithms are inappropriate
for the arcas undcr investigation. This lack of suitability should be further
revealed by the test of the mimicking assumption requircd with each applica-
tion of COCOPAN. If an alternative algorithm generated only pseudoarcas
perpendicular to the gradient, the method would find no significant difference
among areas. Which pseudoarea generation method provides an acceptable
modec] for the observed areas depends upon the specific application.

Appendix: Algorithms

The algorithmic problem to solve before permuted maps can be
obtained is not simple, since cach ncw permutation of the pseudoarcas must
contain the same numbcr of observations per group, each pseudoarea must
remain connected, there must be the same number of pseudoareas on the map,
and the pseudomap must cover the same total surface as the original map.
Two algorithms have been developed for achieving these goals, and although
thcy usc very different approaches, they produce very similar probabilities
when compared over an extcnsive number of runs. This result is interesting
in itself. The first algorithm produces more compact groups, but the second
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algorithm is faster with large data sets. As noted above, both methods require
initial user-specification of a network connecting all localities.

1. The Ring Algorithm

The first algorithm approaches the problem as follows. Sced points for
the pseudoareas are chosen at random among the localities on the map. Then
each group is grown in steps, by attaching concentric rings of points around
the seed locality (hence the name of the algorithm), following the connecting
graph. When pseudoareas meet, growth is no longer possible along their
common border and each one has to grow in different directions, as available
points permit. When ring growth is no longer possible, another procedure
takes over that forces the incomplete groups to grow at the expense of their
neighbors. This goes on until all pseudogroups have recached the required
number of localities, that is, the same number as in the observed geographic
areas they mimick. If this attempt tums out to be too tedious, the incomplete
pscudomap is abandoned and the procedure is restarted from the beginning.
The step-by-step algorithm goes as follows.

1.1.  For all localities, build a connecting network reflecting the graph
connection structure of the observed localities, as described in the
Mcthods section. Write it in a file available to the COCOPAN pro-
gram, in the form of a list of pairs of locality identifiers.

1.2.  Compute the pooled sum of squares within observed areas, SSW,
based on the actual division of the study area into regions. Call this
value VAL,

1.3.  Compute 4 random permutations of the pseudoareas on the map.
Each permutation corresponds to a realization of the null
hypothesis. For instance, & = 250, or 500, or 1000. The algorithm
accomplishes this task as follows:

1.3.1. First step:
(@) Choose a random seed for each of the pseudoareas to
be grown on the pseudomap.
(b)  All groups grow simultaneously, one ring of points at
a time for each group in tumn, following the connect-
ing graph. At the end of each cycle, a statistic is
computed:

number of points of the group still to be placed
total number of points in the group

and the group that has the highest value of this
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statistic is served first during the next cycle. This
step is critical to reducing computation time.

The groups that are blocked by not having localities
to expand to on the connecting graph are placed on
“‘hold.”

Second step:

(a)

(d)

©)

The blocked groups on hold are forced to grow at the
expense of others, one ring of points at a time, insofar
as unassigned points are available.

Repeat this step for all groups placed on hold. (The
number of repetitions allowed for this operation is set
by a parameter of the program.)

Check that cvery pseudoarea is still connected. If
not, discard the map and go to 1.3.1.

Third step:

(@)

(b)

If only one or a few points are missing for the last
pseudoarea to be completed, find the shortest path
between the empty spots and the group (pseudoarea)
in question, and move all the points along this path in
the direction of the empty spots so as to create empty
slots adjacent to the group, permitting it to expand.
Check that every pseudoarea is still internally con-
nected. If not, discard the map and go to 1.3.1.

Decision about the map:

Keep this pseudomap if it is complete, or throw it away and
start again from the beginning (step 1.3.1).

Statistic:

If it is kept, compute the SSW statistic for this pseudomap,
which is a realization of the null hypothesis.

[End of the map permutation loop.]

From the A values of the statistic obtained under H, calculate the
probability of finding a value as small as, or smaller than VAL, if the
null hypothesis is true.

2. The Random Tree Algorithm

For large data sets (with more than, say, 500 points), the ring algorithm
above has the disadvantage of being slow; its complexity is 0(n%). This
disadvantage becomes a real inconvenience when one wishes to produce a
large number of maps. For these reasons, an effort has been made to produce
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a faster algorithm. We have used this faster algorithm on problems involving
more than 1300 points, which is by no means its practical limit.

The problem of partitioning a graph into connected components with a
prespecified number of vertices can be viewed as the problem of finding the
appropriate edges that must be removed to achieve the partition. In most
graphs, the number of edges that must be removed to produce two discon-
nected components (although each one remains internally connected) is large.
However, we can use the fact that if the graph is a tree, the removal of any
edge will result in two separate connected components, by definition of a tree
graph. Any graph can be reduced to a subgraph that is a tree. For any desired
partition, the entire graph may be reduced such that every subgraph is a tree,
attached to other subgraphs by only one edge. Our problem can then be
approached as that of finding a random reduction of the original graph into a
tree, such that the removal of certain edges will result in the desired partition.
The step-by-step algorithm is the following.

2.1.and 2.2. Same as 1.1 and 1.2 above.

2.3. Compute h random permutations of the pseudoarcas on the map.
Each permutation corresponds to a realization of the null
hypothesis. For instance, i = 250, or 500, or 1000. The algorithm
accomplishes this task as follows:

2.3.1. Pick alocality at random, to be used as the starting point for
building the randomly reduced tree (called the ‘‘random
tree’’ from here on).

2.3.2. Start a random walk over the topology of the original con-
necting network, with bifurcations, such that the result is a
binary tree. The tree will be made of a random selection of
certain edges of the original connecting network. This
selection may be done in several ways, but we used the sim-
plest method we found, using the following recursive algo-
rithm.

(a) From the starting point, randomly choose one of the
localities connected to it and include this locality as
the start of the left branch of the tree.

(b) Repeat (a), adding localities until no more can be
found.

(c)  Trace back the localities until a locality is found that
still is connected to at least one not already included
in the tree. Add that locality as a right branch of the
tree and continue as in (b).

(d) Check that all localities are included in the tree. If
not, find the lost ones. To preserve the binary tree
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structure, all the vertices must be of degree three or
less (i.e., each must have three or fcwer localities
connected to it). If a lost locality cannot be attached
to the random tree without increasing the degree to
more than three at the node locality where it is to be
attached (the mother), a pseudolocality is created.
This pseudolocality is inserted between the mother
and any other locality attached to the mother. The
lost locality is then attached to this pseudolocality.
Pseudolocalities are ncver counted in any other pro-
cedure and are only used to preserve the binary tree
structure.

(¢) Continue (b) from the lost locality, and repeat (d) as
needed, until all localities have been added to the
tree.

[End of the recursive procedure.]
Once all the localities have been added to the binary tree,
write tag numbers along the tree from the tip of the leftmost
branch. The numbering is done by counting the number of
vertices subtending (‘‘descending from’’) each vertex, and
including that vertex. The pseudolocalities are not included
in the count.

Do binary trec search from the tip of the leftmost branch.

The tag numbers from step 2.3.3, found at each vertex, are

checked against the list of desired group sizes. If a match is

found, all of the vertices from that branch are labeled with
the name of the corresponding group. The branch contain-
ing these vertices is pruned from the tree.

Renumber the remaining binary tree after pruning. Con-

tinue with step 2.3.4 until all groups have been fitted, or

until no matches are possible. If groups remain unfitted,
abort the tree and go back 10 2.3.1 to create a new random
tree.

Output the assignments of localitics to the newly permuted

pscudoareas.

Compute the SSW statistic for this pseudomap, which is a

realization of the null hypothesis.

[End of the map permutation loop.]

The estimated probabilities are computed as in 1.4, after the desired
number of permutations have been completed.
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