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From a Phylogenetic Tree to a Reticulated Network

VLADIMIR MAKARENKOV1,2 and PIERRE LEGENDRE3

ABSTRACT

In many phylogenetic problems, assuming that species have evolved from a common ancestor
by a simple branching process is unrealistic. Reticulate phylogenetic models, however, have
been largely neglected because the concept of reticulate evolution have not been supported
by using appropriate analytical tools and software. The reticulate model can adequately
describe such complicated mechanisms as hybridization between species or lateral gene
transfer in bacteria. In this paper, we describe a new algorithm for inferring reticulate phy-
logenies from evolutionary distances among species. The algorithm is capable of detecting
contradictory signals encompassed in a phylogenetic tree and identifying possible reticu-
late events that may have occurred during evolution. The algorithm produces a reticulate
phylogeny by gradually improving upon the initial solution provided by a phylogenetic tree
model. The new algorithm is compared to the popular SplitsGraph method in a reanalysis of
the evolution of photosynthetic organisms. A computer program to construct and visualize
reticulate phylogenies, called T-Rex (Tree and Reticulogram Reconstruction), is available to
researchers at the following URL: www.fas.umontreal.ca/biol/casgrain/en/labo/t-rex.

Key words: least-squares fitting, phylogenetic tree, reticulate evolution, reticulated network,
reticulate phylogeny.

INTRODUCTION

Evolution of species has long been assumed to be a branching process that could be represented
only by a tree topology. In such a topology, a species can solely be linked to its closest ancestor; direct

interspecies relationships (connection branches) are not allowed. Such well-known evolutionary mecha-
nisms as hybridization or allopolyploidy cannot, however, be appropriately represented by means of a
tree topology. Reticulate patterns of relationships have been found in a number of phylogenetic situations
(Legendre, 2000): in bacterial evolution, lateral gene transfer is the mechanism allowing bacteria to ex-
change genes across species (Doolittle, 1999; Sneath, 2000); in plant evolution, allopolyploidy leads to
the appearance of new species encompassing the chromosome complements of the two parent species;
reticulate evolution is also present in microevolution within species in sexually reproducing eukaryotes
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(Smouse, 2000). According to McDade (1995), analytical tools enabling one to generate reticulate topolo-
gies that accurately depict hybrid history represent a wide-open field for research. When traditional cladis-
tic/phylogenetic methods are applied to such situations, they may produce confusing results since they are
constrained to generate only treelike patterns. Homoplasy is another source of confusion in the reconstruc-
tion of phylogenetic trees; it can be represented by supplementary branches added to phylogenetic trees. In
their review on reticulate evolution, Posada and Crandall (2001) considered several definitions of netlike
evolution, accompanied by proposals of how the biological procedures involved should be represented
mathematically. Nakhleh et al. (2003) have recently reported a suite of useful techniques for studying the
topological accuracy of methods for reconstructing phylogenetic networks.

Several tentative methods have been proposed for discovering reticulate evolution in nucleotide se-
quences. Among existing works, we can mention displays of compatibility (Sneath, Sackin, and Ambler,
1975), tests for clustering (Stephens, 1985), a randomization approach (Sawyer, 1989), and an extension of
the parsimony method of phylogenetic reconstruction that allows recombination (Hein, 1993). Rieseberg
and Morefield (1995) developed a computer program, RETICLAD, for the identification of hybrids based
on the expectation that they would combine the characters of their parents. The latter program can test
only reticulate events between terminal branches of a tree. Rieseberg and Ellstrand (1993) showed some
examples in which the program appears to work well. The popular method of split decomposition enables
the representation of data in the form of a splitsgraph revealing the conflicting signals contained in the
data (Bandelt and Dress, 1992a, 1992b; Bandelt, 1995). In a splitsgraph, a pair of nodes may be linked
by a set of parallel branches depicting alternative evolutionary hypotheses. Hallet and Lagergren (2001)
showed how lateral gene transfer events can be detected by comparing differences between species and
gene trees. Bryant and Moulton (2002) introduced a network-inferring method, NeighborNet, allowing the
reconstruction of planar phylogenetic networks. Each of these methods has features that make them useful
for the analysis of particular types of data, and they all have a role to play in detecting and describing
reticulate evolution.

In this article, we continue the development of a new method for detecting reticulate events in evolu-
tionary data, which was first described in Legendre and Makarenkov (2002). We present a new algorithm
for inferring reticulate phylogenies from evolutionary distances computed among species. This algorithm
uses the topology of a phylogenetic tree as its supporting structure, from which a reticulated network is
developed. We explore how new branches representing reticulate events can be added to a phylogenetic
tree, transforming it into a reticulate phylogeny. The addition of each reticulation branch is done opti-
mally using a least-squares criterion. The ins and outs of the new algorithm are shown by investigating
the evolution of photosynthetic organisms. Analyzing the inferred reticulate phylogeny, we compare the
novel approach to the widely used split decomposition technique (Bandelt and Dress, 1992a). Possible
improvements of the reticulation model are also discussed (Appendix B); they would make it possible to
construct a general reticulate structure not depending on the topology of a supporting tree. The proposed
algorithm can also be applied to detect contradictory features in a given phylogenetic tree; the fewer the
number of reticulation branches placed into a tree, the more credible the tree topology is.

MATERIALS AND METHODS

In this section, we describe the novel approach for reconstruction of reticulated networks representing
the evolutionary relationships among a group of species (e.g., taxa). Mathematical definitions related to
reticulated networks are given in Appendix A. Any reticulated network can be associated with a table of
pairwise distances, called reticulation distances, between the nodes labeled by the names of the species;
all other nodes of the network are intermediates: they represent unknown ancestors.

Buneman (1974) has shown that a distance matrix satisfying the four-point condition defines a unique
phylogenetic tree. Reticulated networks are more general structures than phylogenetic trees; several different
networks may be associated with the same distance matrix. For instance, the distance matrix given in
Table 1 can be represented by a complete graph without intermediate nodes R0 (Fig. 1a) or by the
reticulated networks R11 and R12 (Figs. 1b and 1c) containing one intermediate node, or else by the
reticulated networks R21 (Fig. 1d) or R22 (Fig. 1e) comprising two intermediate nodes. The nonuniqueness
of reticulated networks suggests that a strong assumption about a possible reticulate topology should be
made before starting the inference process.
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Table 1. Distance Matrix (Reticulation Distances) d
for a Set of Taxa x, y, z and w

x y z w

x 0 2 2 3
y 2 0 3 2
z 2 3 0 2
w 3 2 2 0

In this study, we are using a phylogenetic tree topology as the basic structure for reconstructing a
reticulated network. There are at least two justifications for this approach. First, in many evolutionary
instances, a phylogenetic tree is already adequate to represent the evolution of a group of species, and
in many cases, the number of reticulation events is small compared to the number of evolutionary events
represented by the branches of a classical phylogenetic tree. Second, there exist a number of efficient and
well-studied methods for inferring phylogenetic trees from distance data; see, for example, Saitou and Nei
(1987), Gascuel (1997a), Felsenstein (1997), or Makarenkov and Leclerc (1999). These methods utilize
different optimization criteria and should be applied whenever these criteria correspond to the assumptions
made about the data at hand.

Algorithm for inferring a reticulated network

This section describes an algorithm for inferring a connected and undirected reticulated network (see
Appendix A) from a given distance matrix. We propose the following approach to build a network from
a matrix of evolutionary distances among observed taxa: first, infer a phylogenetic tree from a distance
matrix using one of the existing tree fitting methods; supplementary branches, called reticulation branches,
are then added to the tree structure, one at a time, each one minimizing a least-squares or a weighted

FIG. 1. A complete graph R0 (a) and two reticulated networks, R11 (b) and R12 (c), with one intermediate node,
as well as two possible reticulated networks, R21 (d) and R22 (e), with two intermediate nodes, associated with the
distance matrix in Table 1.
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least-squares loss function. The addition of reticulation branches stops when the minimum of a special
goodness-of-fit function is reached. This function takes into account the value of the least-squares criterion
as well as the total number of branches of the reticulated network under construction. Because in our
study the reconstruction technique is based on the least-squares loss function, it is reasonable to consider
an initial phylogenetic tree whose branch lengths have been fitted to the given distances by least squares.
For an overview of least-squares fitting techniques, see Barthélemy and Guénoche (1991) or Bryant and
Wadell (1998).

Let δ be a distance function on the set X of n taxa, and T a phylogenetic tree inferred from δ by
means of an appropriate tree fitting method. Note that any given phylogenetic tree can be transformed into
a binary tree, whose internal nodes are all of degree 3, by adding links of length zero where necessary.
When this is done, a tree with n leaves has n − 2 internal nodes and 2n − 3 branches. In this article,
we consider binary phylogenetic trees as the foundation for the reticulated networks to be reconstructed.
Thus, similarly to the binary trees, the reticulated networks considered in this study will comprise 2n− 2
nodes. The original tree may be rooted or not; this does not matter when constructing undirected reticulated
networks.

We will now explore how to place the first reticulation branch into a tree. To add a new branch to
a phylogenetic tree, we will try out all possible pairs of nodes that are not already linked by a branch
and select the one that reduces the value of the least-squares function the most. Let us consider a binary
phylogenetic tree T inferred from a distance function δ and a pair of nodes x and y in T not linked by a
branch (Fig. 2a). We look for an optimal value l, according to the least-squares loss function, for a potential
new branch xy which may be added to the tree T , while keeping fixed the lengths of all preexisting tree
branches (Fig. 2b).

FIG. 2. Steps of the algorithm for inferring reticulate phylogenies. (a) A binary phylogenetic tree T is considered.
(b) New branch of length l can be added to T to link nodes x and y. (c) Reticulate phylogeny inferred from T by
addition of reticulation branches.
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We will examine in greater detail how to determine the optimum value of the length of the first reticulation
branch. First, we define a set A(xy) representing the distances between pairs of taxa that are susceptible
of changing if a new reticulation branch xy is added. Let d be a function of the distances in T between
pairs of nodes. The set A(xy) includes all pairs of taxa ij of X such that

Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)} < d(i, j). (1)

For instance, if we add a new branch xy of length 0 to the tree, all distances between the pairs of taxa
in A(xy) will change their lengths. To find the optimal value l of a new potential branch xy, we have to
subdivide A(xy) into the m following subsets:

A1 = {ij} such that: d(i, j)−Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)}
= Min{ij∈A(xy)}{d(i, j)−Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)}} = l1;

Ak = {ij} such that: d(i, j)−Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)}
= lk > lk−1 (for k = 2, . . . , m− 1),

Am = {ij} such that: d(i, j)−Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)}
= Max{ij∈A(xy)}{d(i, j)−Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)}} = lm = d(x, y) > lm−1,

where A(xy) = {A1 ∪A2 ∪ . . . ∪Am}. The number of subsets m is the number of distinct values that the
quantity d(i, j)− {d(i, x)+ d(j, y); d(j, x)+ d(i, y)} can take over the set A(xy).

The main reason for this subdivision is that each subset Ak has to be associated with an interval of
possible length values l of the branch xy for which a particular optimization problem should be formulated.
For each such optimization problem, a quadratic function has to be minimized, subject to a corresponding
interval of length values of xy.

We will now show how the function to be minimized can be composed, for a fixed interval of branch
length values, and how an optimal solution for this minimization problem can be found. Suppose that
lk ≤ l ≤ lk+1, where k = 0 . . . m − 1. The constraint means that only the distances, i.e., the minimum-
path-lengths d(i, j), that are such that ij ∈ {Am ∪Am−1 ∪ . . . ∪Ak+1} will change lengths. We formulate
the following problem to compute the optimal length value l of a potential new branch xy on the fixed
interval lk ≤ l ≤ lk+1:

Q∗(xy, k) =
m∑

p=k+1

∑
ij∈Ap

(Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)} + l − δ(i, j))2 → min. (2)

Minimizing Q∗(xy, k) minimizes the quadratic sum of differences between the values of the given evolu-
tionary distance δ and the associated reticulation estimates. A nontrivial solution l∗(xy, k) to this problem
is the following:

l∗(xy, k) =

m∑
p=k+1

∑
ij∈Ap

(δ(i, j)−Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)})
m∑

p=k+1

|Ap|
, (3)

where the vertical bars denote the cardinality of the enclosed entity. If this quantity does not meet the
constraint, the optimal solution l∗(xy, k) has to be selected from the boundary values lk and lk+1. When
l∗(xy, k) and Q∗(xy, k) have been found, the only remaining task is to compute the value of the least-
squares objective function Q corresponding to this particular solution on the interval lk ≤ l ≤ lk+1 of
length values of xy.

These computations have to be repeated over all intervals of branch lengths established for the given
pair of nodes xy not linked by a branch. The global optimum value of the least-squares criterion Q, as
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well as the global optimum value of the branch length l over the set of defined intervals lk ≤ l ≤ lk+1, for
k = 0, . . . , m− 1, are obtained recursively. To obtain the optimum value of Q over the set of all possible
new branches, these computations should be repeated for all pairs of tree nodes that are not linked by a
branch. Once the first reticulation branch has been added to the reticulated network, the best second, third,
and following reticulation branches may be placed into it in the same way (Fig. 2c).

This algorithm takes O(kn4) time for n taxa and k new reticulation branches, since there are O(n2)

taxon pairs ij for each pair of nonlinked nodes xy and O(n2) node pairs xy. Since all values of the
reticulation distance d corresponding to an obtained reticulated network can only decrease, the reticulation
distance always provides a more parsimonious solution than the initial additive distance (e.g., pairwise
distance between taxa in the phylogenetic tree) from which it is derived. In Appendix B, we examine
possible extensions of the reticulation model: reestimating all branch lengths, substituting a branch for
another, or adding one or two intermediate nodes at once to the network.

Weighted least-squares criterion

Reticulation branches can also be added to the network according to a weighted least-squares criterion
of the following form:

Q =
∑
i∈X

∑
j∈X

w(i, j)[d(i, j)− δ(i, j)]2 → min. (4)

The function w(i, j) is applied to the separation of taxa i and j .
The weighted least-squares criterion may be useful in a number of evolutionary contexts. If some entries

of the distance matrix are missing or uncertain, one can express this information through weighted least-
squares by assigning low weights to the uncertain entries. If some values in the distance matrix are missing,
such unknown data could be handled by setting the associated weights to zero. In the case of vicariance
or other spatially constrained forms of phylogenetic problems, one can use binary weights to specify the
groups of taxa among which reticulation branches are permitted, excluding the spatially separated pairs
(see Example 1 in Legendre and Makarenkov [2002]). For an overview of applications of the least-squares
and weighted least-squares criteria in the field of phylogenetics, readers are referred to Swofford and
Olsen (1996) or Li (1998). There exist a number of efficient methods for inferring phylogenetic trees using
weighted least squares: Felsenstein (1997) described how this kind of optimization is performed in the
PHYLIP package; see also the papers by Makarenkov and Leclerc (1999) and Gascuel (2000) explaining
how to reconstruct phylogenetic trees under different weighting conditions; on the other hand, the paper by
Bryant and Wadell (1998) discusses how to compute optimal branch lengths for a tree with fixed topology
in the weighted case. However, no important developments have taken place for the reconstruction of
reticulate phylogenies using this important criterion.

The algorithm described earlier can easily be extended to the case of weighted least squares (Equation 4).
The main difference compared to the unweighted case arises when the objective function is written over
a fixed interval of length values (lk ≤ l ≤ lk+1, where k = 0 . . . n− 1) of the potential branch xy. In the
weighted case, the function to be minimized is the following:

Q∗ =
n∑

p=k+1

∑
ij∈Ap

w(i, j)[Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)} + l − δ(i, j)]2, (5)

subject to lk ≤ l < lk+1. A nontrivial solution l∗(xy, k) for this minimization problem is as follows:

l∗(xy, k) =

m∑
p=k+1

∑
ij∈Ap

w(i, j)[δ(i, j)−Min{d(i, x)+ d(j, y); d(j, x)+ d(i, y)}]
m∑

p=k+1

∑
ij∈Ap

w(i, j)

. (6)



FROM A PHYLOGENETIC TREE TO A RETICULATED NETWORK 201

STOPPING RULES FOR ADDITION OF RETICULATION BRANCHES

A reticulated network comprises more branches and thus uses more parameters than a phylogenetic tree.
As in all statistical models, more parameters mean better fit but fewer degrees of freedom and a loss of
simplicity. A special cost criterion should be used to estimate how many reticulation branches have to
be added to a network. We are proposing four possible goodness-of-fit criteria allowing one to determine
when to stop adding branches to a reticulated network. All criteria take into account the least-squares
objective function as well as the number of network parameters. When the exact number of reticulation
branches is unknown in advance, as it is often the case in evolutionary problems, one can stop the addition
of new branches when the minimum of the selected criterion is reached.

The total number of nodes in an unrooted binary phylogenetic tree with n leaves is 2n−2. Therefore, the
maximum number of branches one might place in a reticulated network, inferred from a binary phylogenetic
tree with n leaves, is (2n− 2)(2n− 3)/2. However, any metric distance can be represented by a complete
graph with n(n − 1)/2 branches. Thus, any of these two limits (2n − 2)(2n − 3)/2 or n(n − 1)/2 can
be considered as the maximum possible number of branches in a reticulated network. If the latter limit is
considered, the number of degrees of freedom of a reticulated network with N branches can be defined as
n(n− 1)/2 −N .

It would be reasonable to consider a penalty function opposing the loss in degrees of freedom to the
gain in fit. The first goodness-of-fit function that we consider is the following:

Q1 =

√∑
i∈X

∑
j∈X
(d(i, j)− δ(i, j))2

n(n− 1)/2 −N =
√
Q

n(n− 1)/2 −N . (7)

The numerator of this function is the square root of the sum of quadratic differences between the values
of the given distance δ and the corresponding reticulation estimates d. Interestingly, as was confirmed by
a simulation study (see Legendre and Makarenkov, 2002), the function Q1 usually has only one minimum
over the interval [2n− 3, n(n− 1)/2[ of possible values of N . This minimum can define a stopping rule
for addition of new branches to the reticulate phylogeny.

The least-squares function itself may also be used as an appropriate numerator for the goodness-of-
fit measure. Thus, one can consider a slightly modified criterion, denoted Q2, which usually adds more
reticulation branches to the network than criterion Q1. The stopping rule Q2 was used in the application
section below:

Q2 =

∑
i∈X

∑
j∈X
(d(i, j)− δ(i, j))2

n(n− 1)/2 −N = Q

n(n− 1)/2 −N . (8)

One can also consider the Akaike information criterion (AIC) which is a useful and well-known statistic
for model identification and evaluation (Akaike, 1987). A model with a minimum value of AIC may be
chosen to be the best-fitting solution among several competing models. In our algorithm, the Akaike rule
would select the model that minimizes the following quantity:

AIC = Q

(2n− 2)(2n− 3)/2 − 2N
. (9)

Finally, another popular statistical estimator, the minimum description length (MDL) criterion introduced
by Rissanen (1978), can also be used as a stopping rule in our algorithm. The MDL criterion, which is
closely related to AIC statistics, can be computed as follows:

MDL = Q

(2n− 2)(2n− 3)/2 −N log(N)
. (10)
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MONTE CARLO STUDY

A Monte Carlo study was conducted to test the ability of the new method to cope with noisy phylogenetic
data. To supplement the simulation study reported in Legendre and Makarenkov (2002), we will examine
here how the new method reacts to the different kinds of noise condition affecting evolutionary data. All
results presented below were obtained by simulating 1,000 random phylogenetic trees. In each case, a true
phylogeny, denoted as T , was generated using the random phylogeny generation procedure described by
Kuhner and Felsenstein (1994). The tree topologies were simulated by an iterative process in which, at
each iteration, one of the k tree branches (where k = 1, . . . , 2n − 5, for trees with n leaves) was chosen
at random to be the one that splits. The lengths of the tree branches were drawn at random from an
exponential distribution with expectation 1/(2n − 3). Then, following Guindon and Gascuel (2002), we
added noise in the form of deviations from the molecular clock hypothesis. Every branch length of T
was multiplied by 1 + ax, where x was a value drawn at random from a standard exponential distribution
(P (x > k) = exp(−k)). The constant a was a tuning factor meant to adjust the deviation intensity from the
molecular clock hypothesis; as in Guindon and Gascuel (2002), a was set at 0.8. The trees generated by this
process were expected to have O(log(n)) depth. The additive distance matrix D associated with the true
tree T was then computed and normalized to have unit variance. The source code of our tree generation
program, written in C++, is available to researchers at www.info.uqam.ca/∼makarenv/tree_generation.cpp.

In this study, we show how the new method behaved in the situation when the observed data corresponded
to a phylogenetic tree affected by different amounts of noise. Normally distributed random errors with mean
zero and variances σ 2 varying from 0 to 0.3 were added to D to obtain replicates of the distance matrix #.
In the rare cases where a negative value arose in #, it was replaced by the constant 0.01. The simulations
were carried out with phylogenies with n = 24 leaves. The results, presented in Figs. 3a, 3b, and 3c, are
averages for 1,000 different distance matrices. Figure 3a shows the neighbor-joining (NJ) (Saitou and Nei,
1987) topology recovery as a function of the amount of noise. Mean values of the Robinson and Foulds (RF)
topological distance (Robinson and Foulds, 1981) between a true tree and a tree derived by NJ are shown;
the RF distance was normalized by its greatest possible value, which is 2n− 6 for a binary phylogenetic
tree with n leaves. Nowadays, NJ is arguably the most popular method for constructing phylogenies from
distance data. For some time, the success of NJ was inexplicable for computational biologists, due to the
lack of approximation bounds (Bryant and Moulton, 2002). One of the first bounds was found by Atteson
(1999), who showed that NJ would be able to return the true phylogeny given that the observed distance
is sufficiently close to the true evolutionary distance. On the other hand, Gascuel (1997a,b) proved that the
branch length estimation and distance matrix reduction formulae in NJ provide low variance estimators.
In the paper describing the BioNJ method, Gascuel (1997a) showed how to improve NJ accuracy by
incorporating minimum variance optimization in the NJ reduction formula. While observing the behavior
of the NJ curve in Fig. 3a, one will note that, as expected, the performance of NJ decreases with increasing
noise.

Figures 3b and 3c show the asymptotic behavior of the algorithm described in this paper in the situation
where the original data correspond to a phylogenetic tree. No reticulation branches at all should be added to
a tree when the generated distance matrix satisfies the four-point condition and, thus, perfectly corresponds
to a tree topology. However, as in the type I error of statistical tests, we can expect some reticulation
branches to be formed in the presence of noisy data. True phylogenies with 24 leaves were randomly
generated and biased by noise as described above; then, phylogenetic trees were inferred from the noisy
patristic distances by NJ. Following this, the new algorithm for reconstructing reticulate phylogenies was
applied. We computed how many reticulation branches should have been added to the NJ phylogenies
to provide the preselected amount of improvement in fit, varying from 1% to 25%, with respect to the
least-squares coefficient Q obtained for the NJ phylogenies. In Fig. 3b, type I error was graphed against
a fixed amount of improvement in fit (graphs for 10%, 15%, and 25% improvement are shown) for σ 2

varying from 0 to 0.3. In Fig. 3c, the variance of the noise σ 2 was fixed (graphs with σ 2 = 0.1, 0.2, and
0.3 are shown), and the amount of improvement in fit varied from 0% to 25%.

The following observations can be made after analyzing the graphs in Figs. 3b and 3c. The simulations
show that no reticulation branches were added by the new algorithm when analyzing error-free data
(σ 2 = 0). In the case of trees affected by noise, the number of reticulation branches necessary to produce
a preselected gain in fit increased with increasing noise. First, the results suggest that the new method
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FIG. 3. Mean simulation results for 1,000 trees with 24 leaves. (a) Mean values of the normalized Robinson
and Foulds topological distance between the true tree and the tree derived by NJ, as a function of the amount of
noise. Smaller distances correspond to better recovery. (b) Fixed improvement in fit, varying noise: mean number of
reticulation branches needed to obtain fixed improvements in fit of 10%, 15%, and 25% measured using the least-
squares coefficient Q of the NJ tree. (c) Fixed noise, varying improvement in fit: mean number of reticulation branches
as a function of improvement in fit for trees with fixed variance of the noise σ 2 of 0.1, 0.2, and 0.3.
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is able to recognize a true phylogenetic tree by not adding any reticulation branch to it. Second, they
indicate that when the new method is applied to analyze unreticulated but noisy data, it is likely to produce
reticulation branches that will represent contradictory features existing in randomly generated or noise-
biased data set. Third, the following trend can be observed: the more noise was added to the data set,
i.e., the closer the distance matrix was to a completely random distance matrix, the greater number of
conflicting signals were detected and, as a consequence, the greater number of reticulation branches were
added to a phylogenetic tree to attain a preselected value of improvement in fit.

EVOLUTION OF PHOTOSYNTHETIC ORGANISMS

In this section, we show how the new algorithm for inferring reticulate phylogenies may help to examine
the evolution of photosynthetic organisms. We provide a comparison of our technique with the popular
splits-graph method, which is also meant to detect and represent contradictory features in evolutionary
data. Some common features and differences between the two approaches are discussed.

Because a set of real evolutionary data may contain a number of conflicting signals, evolutionary events
cannot always be modeled as a treelike process. To address this problem, Bandelt and Dress (1992a)
designed the method of split decomposition allowing one to transform evolutionary data into a sum of
weakly compatible splits. There exist a number of algorithms for carrying out split decomposition (see
Bandelt and Dress [1992b] or Huson [1998]). In this study, we used the second version of the SplitsTree
program by Huson (1998).

Let us recall some basic definitions related to splits-graphs. Let X be a set of taxa. A split S = {B,B ′}
is defined as a partition of X into two nonempty sets B and B ′ such that B ∪ B ′ = X. For instance, any
branch in a phylogenetic tree introduces a split consisting of all the taxa found on one side (set B) and on
the other (set B ′) of this branch. A set S of splits is called weakly compatible if, for any three splits S1,
S2, and S3 from S and all Bi ∈ Si (i = 1, 2, 3), at least one of the four intersections

B1 ∩ B2 ∩ B3, B1 ∩ B ′
2 ∩ B ′

3, B
′
1 ∩ B2 ∩ B ′

3, or B ′
1 ∩ B ′

2 ∩ B3

is empty (see Bandelt and Dress, 1992a, b). A splits-graph representing a weakly compatible split system
S is a graph G(S) = (V ,E) whose nodes v ∈ V are labeled by the set of taxa in X and whose branches
e ∈ E are straight line segments that represent the splits in S; see Fig. 4a. In such a graph, each split
{B,B ′} in S is represented by a group of parallel branches of equal lengths, so that deleting all branches
in such a group splits the graph into exactly two parts, one containing all nodes labeled by the taxa in B
and the other containing all nodes labeled by the taxa in B ′.

Table 2 contains the pairwise distances among eight species of photosynthetic organisms. The original
sequence data, obtained by Lockhart et al. (1993), consist of 920 bases from the 16S rRNA of the
chloroplasts of algae, liverworth, and higher plants, and also of a cyanobacterium. The data are available
among the examples distributed with the SplitsTree program. The distance matrix was calculated by Huson
(1998) using the log-determinant distance (LogDet) introduced by Steel (1994) and Lockhart et al. (1994).

The derived splits-tree path-length distances, obtained from the SplitsTree program, are reported in
Table 3; the splitsgraph in shown in Fig. 4a. It illustrates evolutionary conflicts existing between the
cyanobacterium and the chloroplasts of Euglena and the chrysophyte. The correct phylogenetic split should
put Euglena (which contains chlorophyll a and b) together with the other chl-a/b containing species:
rice, tobacco, liverworth, Chlamydomonas, Chlorella. Chrysophytes (also called chromophytes) contain
chlorophyll a and c, while cyanobacteria contain only chlorophyll a. The main reason for the observed
conflicting signal is that the rRNA chloroplast sequences in Euglena and the chrysophyte have, probably
independently, acquired similar base compositions (convergence); see the discussion in Huson (1998) and
in the references therein.

In a splits-graph, conflicting information is represented by parallel branches that can be removed to create
a split forming subsets of taxa. (a) The largest set of parallel branches has lengths 0.0142; by cutting
them, one separates a group containing all the species with chlorophyll a and b from the chrysophyte
and cyanobacterium. (b) The next split to consider has length 0.0087. It would isolate Euglena and the
chrysophyte from all the other species. We don’t know how to interpret this split. (c) The third split, of
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FIG. 4. (a) Splits-graph associated with the distances in Table 3. Each band of parallel branches indicates a possible
split. (b) Reticulate phylogeny associated with the distances in Table 4. The reticulated network was constructed by
adding three branches (dashed lines) to the NJ (neighbor-joining) phylogenetic tree (full lines). For the sake of a
better representation, all tree branches are drawn equal. The numbers on the branches represent their lengths. Boxes:
bootstrap support values for the clades on the NJ tree.
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Table 2. Pairwise Distances among Species of Photosynthetic Organisms Obtained
from the SplitsTree Program Using the LogDet Distance over a Set of

Chloroplast 16S rRNA Sequencesa (See Huson, 1998)

Tobacco 0.0000
Rice 0.0282 0.0000
Liverworth 0.0324 0.0455 0.0000
Chlamydomonas 0.1290 0.1386 0.1107 0.0000
Chlorella 0.0875 0.0991 0.0699 0.1132 0.0000
Euglena 0.1524 0.1621 0.1366 0.1621 0.1271 0.0000
Cyanobacterium 0.1435 0.1551 0.1400 0.1657 0.1372 0.1791 0.0000
Chrysophyte 0.1601 0.1670 0.1508 0.1807 0.1285 0.1529 0.1521 0.0000

aLiverworth: Marchantia sp.; cyanobacterium: Anacystis nidulans; chrysophyte (or chromophyte): Olisthodiscus luteus.

Table 3. Path-Length Distances among Species of Photosynthetic Organisms
in the Splits-Graph in Fig. 4a Obtained after Using, as Input,

the Pairwise Distances in Table 2 (SplitsTree Program)

Tobacco 0.0000
Rice 0.0258 0.0000
Liverworth 0.0248 0.0357 0.0000
Chlamydomonas 0.1124 0.1215 0.1014 0.0000
Chlorella 0.0713 0.0804 0.0604 0.0920 0.0000
Euglena 0.1270 0.1361 0.1161 0.1506 0.1033 0.0000
Cyanobacterium 0.1299 0.1390 0.1190 0.1535 0.1128 0.1611 0.0000
Chrysophyte 0.1370 0.1461 0.1261 0.1606 0.1133 0.1442 0.1427 0.0000

Table 4. Path-Length Distances among Species of Photosynthetic Organisms in the
Reticulated Phylogeny in Fig. 4b, Obtained after Using, as Input,

the Pairwise Distances in Table 2 (T-Rex Program)

Tobacco 0.0000
Rice 0.0283 0.0000
Liverworth 0.0337 0.0441 0.0000
Chlamydomonas 0.1283 0.1387 0.1157 0.0000
Chlorella 0.0862 0.0966 0.0736 0.1086 0.0000
Euglena 0.1490 0.1594 0.1364 0.1663 0.1293 0.0000
Cyanobacterium 0.1441 0.1545 0.1396 0.1695 0.1325 0.1643 0.0000
Chrysophyte 0.1554 0.1658 0.1428 0.1727 0.1285 0.1529 0.1521 0.0000

length 0.0035, would isolate Euglena, the chrysophyte and the cyanobacterium from the other species (two
chlorophytes, liverworth, and the higher plants). We don’t know how to interpret this split either. (d) The
fourth split, of length 0.0033, is more interesting: it puts together three species (Chlorella, Euglena, and
the chrysophyte) that are known to be facultative heterotrophs; i.e., they have the capacity to use organic
substrates while growing in complete darkness (Stevenson et al., 1996, Section 10.I.A).

We also carried out the analysis of distance data in Table 2 using the algorithm described in this paper.
First, a phylogenetic tree was inferred from Table 2 by means of the method of weights MW, providing
optimal least-squares estimates for the tree branches (see Makarenkov and Leclerc, 1999). Bootstrap support
values were computed using NJ; the topology of the NJ tree was identical to that of the MW tree. The
least-squares coefficient Q obtained by this approximation of the original data was 0.000917. The inferred
phylogenetic tree (full lines) is shown in Fig. 4b, together with the three reticulation branches added by the
new algorithm (dashed lines). The path-length distances between species in the reticulation structure are
reported in Table 4. Note that the phylogenetic tree put Euglena together with the other species containing
chlorophyll a and b (rice, tobacco, liverworth, Chlamydomonas, Chlorella).



FROM A PHYLOGENETIC TREE TO A RETICULATED NETWORK 207

  
  

  
  

FIG. 5. Behavior of (a) the least-squares function Q (open triangles) and the goodness-of-fit criterion Q1 (open
squares), and (b) of the goodness-of-fit criteria Q2 (open triangles) and AIC (open squares) for the first eight iterations
of the algorithm for inferring reticulated networks applied to the pairwise distances among species of photosynthetic
organisms from Table 2. Abscissa: number of iterations of the algorithm. Zero corresponds to the phylogenetic tree
before reticulation branches were added. The minima of Q1, Q2, and AIC were reached at iterations 2, 3, and 4,
respectively.

When building a reticulated network, the stopping rules Q1, Q2, and AIC discussed above suggested
different solutions: the minimum value of Q1 was found at the second iteration (Fig. 5a), the minimum
of Q2 at the third one (Fig. 5b), and the minimum of AIC at the fourth one (Fig. 5b). The solution
with three reticulation branches, obtained using criterion Q2, is shown in Fig. 4b. The first reticulation
branch, linking Euglena to the chrysophyte, decreased the value of Q to 0.000704. The second one linked
the cyanobacterium to node 9, which is the attachment point for the higher plants, tobacco, and rice; it
decreased the value of Q to 0.000573. The third one, linking Chlorella to the chrysophyte, decreased
the value of Q to 0.000522. The reticulation branches linking Euglena, Chlorella, and the chrysophyte
delineate the group of facultative heterotrophs described above. On the other hand, the long reticulation
branch (length = 0.1352) found between the cyanobacterium and the higher plants, which is an order of
magnitude longer than the branches of the tree, is suggestive of the endosymbiosis hypothesis of Margulis
(1981). According to this hypothesis, the cytoplasmic organelles (plastids) found in the cells of eukaryotes
are thought to have once been free-living primitive bacteria that have become symbionts living inside the
eukaryotic cells. Chloroplasts, in particular, could be derived from primitive cyanobacteria. Endosymbiosis
is a form of lateral gene transfer that occurred in the deep phylogeny.

Let us now compare the numerical results provided by the SplitsTree program and the new algorithm for
inferring reticulate phylogenies. The value of the least-squares coefficient Q computed for the splitsgraph
in Fig. 4a is 0.008739. This result is not nearly as good as the value of Q = 0.000522 obtained for
the reticulated network in Fig. 4b. As to the cophenetic correlation computed for the two structures in
Figs. 4a and 4b, the reticulate phylogeny also compares advantageously to the splitsgraph with correlation
coefficients equal to 0.995365 and 0.990795, respectively.

DISCUSSION

We have developed an algorithm to infer reticulate phylogenies from evolutionary distances among
observed species. The new algorithm builds a reticulated network by adding supplementary branches
to a phylogenetic tree. Any new branch added to a phylogenetic tree represents unresolved conflicting
information contained in it. Two species or clades that are linked by a reticulation branch are more closely
related to one another than in the phylogenetic tree representation that provided the initial fit for the
evolutionary distances. The main challenge consists in giving plausible explanations for each of the extra
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relations represented by reticulation branches. These new branches should be interpreted differently under
different evolutionary circumstances. First, we suggest that long reticulation branches linking nodes located
far away from one another in the phylogenetic tree reveal incompatibilities of a tree structure with respect to
the observed evolutionary distances. Two explanations are possible in this situation: first, the phylogenetic
tree does not provide a good representation of the evolutionary distances; second, long reticulation branches
may represent homoplasy among the observed species.

For data that are assumed to comprise neither reticulate relationships nor any homoplasy, reticulation
analysis can be used to decide which phylogenetic tree, among a set of trees of nearly the same length,
is the best one to represent the data: a tree containing fewer reticulation branches, especially the long
ones, may be seen as the one embedding less conflicting signal. Special attention should be paid to short
reticulation branches linking nodes located near one another. These branches may reflect either hybridization
events that occurred between related species or their ancestors, or allopolyploidy if plant genetic distances
are considered. The case of lateral gene transfer (LGT) seems to be the most complicated one because
reticulation branches depicting gene exchange may be of any length. In this situation, investigation of
the characters causing a reticulation might assist in the interpretation: if the responsible characters are
contiguous in the nucleic acid sequence, LGT can be indicated.

We would like to give some recommendations to researchers who have access to sets of molecular
sequences of certain species and want to test the data for presence of reticulate evolution. First, a matrix of
evolutionary distances among the species has to be computed using an appropriate distance transformation.
Among the most popular transformation functions are the Hamming, Kimura 3ST (Kimura, 1981), Jukes
Cantor (Jukes and Cantor, 1969) and LogDet (Steel, 1994) transformations. Second, a phylogenetic tree has
to be inferred from the distance matrix using a tree fitting algorithm. Third, the algorithm for reconstructing
reticulate phylogenies can be applied, using one of the goodness-of-fit criteria as a stopping rule for
addition of reticulation branches. We recommend to verify the solutions obtained using all four stopping
rules (Q1, Q2, AIC, and MDL) discussed above and retain for further investigation the most interpretable
reticulate phylogeny. In some situations, especially when the initial fit of the distance data provided by
a phylogenetic tree is good, all four stopping rules may suggest adding the same number of reticulation
branches to the phylogenetic tree. Interpretation of the reticulation branches should be done using the
biological or evolutionary knowledge available about data at hand.

The algorithm for reconstructing reticulate phylogenies introduced in this paper has been included in the
T-Rex (tree and reticulogram reconstruction) package (see Makarenkov, 2001). The T-Rex program, imple-
mented for Windows and Macintosh platforms, is freely available for researchers at www.fas.umontreal.ca/
biol/casgrain/en/labo/t-rex. The package also includes some popular phylogenetic tree fitting algorithms:
ADDTREE by Sattath and Tversky (1977), neighbor-joining (NJ) by Saitou and Nei (1987), unweighted
neighbor-joining (UNJ) by Gascuel (1997b), the method of weighted least-squares (MW) by Makarenkov
and Leclerc (1999), circular order reconstruction by Makarenkov and Leclerc (1997, 2000), and others.
T-Rex allows users to infer and visualize reticulate phylogenies by adding extra branches to phylogenetic
trees obtained by the above-mentioned tree fitting algorithms.

APPENDIX A: FORMAL DESCRIPTION OF A RETICULATED NETWORK

This appendix provides definitions concerning reticulated networks. A reticulated network R is a
weighted graph defined as a triplet (V , B, l), where V is a set of nodes (points or vertices), B is a
set of branches (links), and l is a function of branch lengths assigning real nonnegative numbers to the
branches. Each node i is either a taxon belonging to a set X or an intermediate node belonging to V −X.
Thus, there are two different types of nodes in R.

A path p from node i to node j in R is a sequence of branches, b1b2, b2b3, . . . bk−1bk , with b1 = i

and bk = j . The length of path p is given by the sum of the lengths of branches included in p and
is denoted lp(i, j). A reticulated network is connected if, for every pair of nodes i and j , there ex-
ists at least one path from i to j . It is called undirected if there is no direction associated with the
branches. Given a connected and undirected reticulated network R, the minimum-path-length distance be-
tween nodes i and j , denoted d(i, j), is defined as in any weighted graph: d(i, j) = min{lp(i, j)|p is a path
from i to j}.
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A set of reticulation distances can be associated with the set of pairwise distances among the taxa
in X. They are the minimum-path-length distances among taxa whose relationships are represented by a
reticulated network.

APPENDIX B: EXTENSIONS OF THE RETICULATION MODEL

Here we discuss some possible modifications and improvements of the reticulation model presented in
this paper. First, we consider the problem of reestimating the branch lengths of a reticulated network. Then,
we examine the case where one of the branches is removed from the reticulated network and the case where
one or two new intermediate nodes are added to it. Although these operations may make the reticulation
model more complex and increase the time complexity of the inferring procedure, they may allow one to
build a generic reticulate phylogeny which is totally independent of the basic phylogenetic tree.

In the algorithmic section, a stepwise optimization procedure designed to add a single reticulation branch
at a time was described. It was intended to optimize the choice of the new branch as well as its length.
Interestingly, the same calculations can be used to update all the other branch lengths. To reassess the
length value of any branch in a reticulate phylogeny, one can use again Equations 2 and 3 assuming
that the lengths of all the other branches are fixed. After a new reticulation branch has been added to a
network, the polishing procedure can be carried out for branch number 1, then branch number 2, and so
on, until all branch lengths are optimally reestimated. Then, one can return to the new reticulation branch
to reassess its length for the second time, and so forth. The reestimation loop may be repeated several
times to achieve the minimum value of the least-squares function for the reticulated network with a fixed
topology. As this is usually the case, improvement in fit requires an increase in time complexity. If the
reestimation procedure described above is incorporated into the algorithm, the time complexity of each
iteration will increase up to O(pmn4), where m is the number of branches in the reticulated network and
p is the number of loops performed over all branches.

Another operation which could improve the fitting precision consists in removing an existing branch and
adding a new one; in other words, substituting a branch for another. All branches, including those of the
original phylogenetic tree, could be candidates for removal. The only restriction for this operation is that
the resulting network must not become disconnected. For a particular branch ab of length lab considered
for removal from the reticulated network R, we have to find all pairs of taxa that will be affected by
this deletion. This means that for any pair of taxa ij such that either d(i, a) + lab + d(b, j) = d(i, j)

or d(j, a) + lab + d(b, i) = d(i, j), we have to recompute the value d(i, j) under the condition that the
branch ab is no longer in R. This operation can be followed by the branch addition operation. The pair of
branches (removed and added) corresponding to the lowest value of the least-squares function Q may be
selected for substitution. This operation may significantly redesign the topology of the reticulated network,
which was initially based on a phylogenetic tree. Some branches of the original phylogenetic tree may
no longer be part of the reticulated network. The time complexity of the removing–adding operation is
O(mn4), where m is the number of branches in the reticulated network and n is the number of taxa. If
only the branch removal operation (not cumulative with branch addition) is considered, we simply have
to recompute the value of the goodness-of-fit criterion and make the decision about the potential branch
deletion.

One may also want to introduce new intermediate nodes into the reticulated network. To deal with this
issue, one has to consider a new optimization problem. Suppose that a new node y belonging to a new
branch xy, which we are attempting to add to the reticulated network R, splits an existing branch zw of
length lzw into two parts yz and yw, as shown in Fig. 6a. One has to consider all pairs of taxa ij such that
the associated distances d(i, j) are susceptible of changing when the branch xy is added. To simplify the
problem, one may assume that the branch zw is such that l1 + l2 = lzw, where lzw is a fixed length value.
Similarly to the optimization problem for addition of one reticulation branch (Equation 2), a particular
minimization problem can be formulated in the case of addition of a new branch with a new node. In this
new problem, the minimization will also be done under constraint, but the optimization will involve three
unknown branch lengths l, l1, and l2 instead of one.

To address the more complicated problem consisting of adding two intermediate nodes at once to the
reticulated network (in Fig. 6b, two new nodes x and y and a new branch xy linking them are considered
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FIG. 6. (a) Incorporation of a new intermediate node y along with a new branch xy into a reticulated network.
(b) Incorporation of two new intermediate nodes x and y along with a new branch xy into a reticulated network.

for addition), one could assume that the new branch xy splits the existing branches ab and zw in their
middle. Thus, the only unknown variable is the length l of the new branch xy. One can then carry out
the estimation procedure (Equations 2 and 3) to compute the optimal length l of xy while keeping all the
other branch lengths fixed. This procedure may be followed by the polishing procedure for branch length
reestimation, carried out over a whole network.

ACKNOWLEDGMENTS

The authors are grateful to the biologist and software developer Philippe Casgrain for his contribution
to programming the T-Rex package, which makes the new method of reticulation analysis available to the
scientific community, and to Dr. Yves Desdevises for help during the phylogenetic analyses.

REFERENCES

Akaike, H. 1987. Factor analysis and AIC. Psychometrika 52, 317–332.
Atesson, K. 1999. The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica 25,

251–278.
Bandelt, H.-J. 1995. Combination of data in phylogenetic analysis. Plant Systematics and Evolution Supplementum 9,

355–361.
Bandelt, H.-J., and Dress, A.W.M. 1992a. Split decomposition: A new and useful approach to phylogenetic analysis

of distance data. Molecular Phylogenetics and Evolution 1, 242–252.
Bandelt, H.-J., and Dress, A.W.M. 1992b. A canonical decomposition theory for metrics on a finite set. Adv. Math.

92, 47–65.
Barthélémy, J.P., and Guénoche, A. 1991. Trees and proximity representations, Wiley, New York.
Bryant, D., and Moulton, V. 2002. NeighborNet: An agglomerative method for the construction of planar phylogenetic

networks, in R. Guigo, D. Gusfield, eds., 2nd Workshop on Algorithms in Bioinformatics, 375–391, LNCS 2452,
Springer.

Bryant, D., and Waddell, P. 1998. Rapid evaluation of least-squares and minimum-evolution criteria on phylogenetic
trees. Mol. Biol. Evol. 15, 1346–1359.

Buneman, P. 1974. A note on metric properties of trees. J. Comb. Theory B. 17, 48–50.
Doolittle, W.F. 1999. Phylogenetic classification and the universal tree. Science 284, 2124–2128.
Felsenstein, J. 1997. An alternating least-squares approach to inferring phylogenies from pairwise distances. Syst. Zool.

46, 101–111.
Gascuel, O. 1997a. BIONJ: An improved version of the NJ algorithm based on a simple model of sequence data.

Mol. Biol. Evol. 14, 685–695.
Gascuel, O. 1997b. Concerning the NJ algorithm and its unweighted version, UNJ, in B. Mirkin, F. R. McMorris,

F. Roberts, and A. Rzhetsky, eds., Mathematical Hierarchies and Biology, DIMACS Series in Discrete Mathematics
and Theoretical Computer Science, 149–170, Providence, RI.



FROM A PHYLOGENETIC TREE TO A RETICULATED NETWORK 211

Gascuel, O. 2000. Data model and classification by trees: The minimum variance reduction (MVR) method. J. Clas-
sification 17, 67–99.

Guindon, S., and Gascuel, O. 2002. Efficient biased estimation of evolutionary distances when substitution rates vary
across sites. Mol. Biol. Evol. 19, 534–543.

Hallet, M.T., and Lagergren, J. 2001. Efficient algorithms for lateral gene transfer problems. Proc. 5th Ann. Int. Conf.
on Computational Molecular Biology.

Hein, J. 1993. A heuristic method to reconstruct the history of sequences subject to recombination. J. Mol. Evol. 36,
396–405.

Huson, D.H. 1998. SplitsTree: A program for analyzing and visualizing evolutionary data. Bioinformatics 141, 68–73.
Jukes, T.H., and Cantor, C.R.. 1969. Evolution of protein molecules, in H.N. Munro, ed., Mammalian Protein

Metabolism, 21–132, Academic Press, New York.
Kimura, M. 1981. Estimation of evolutionary distances between homologous nucleotide sequences. Proc. Natl. Acad.

Sci. USA 78, 454–458.
Kuhner, M.K., and Felsenstein, J. 1994. A simulation comparison of phylogeny algorithms under equal and unequal

evolutionary rates. Mol. Biol. Evol. 11, 459–468.
Legendre, P. 2000. Biological applications of reticulation analysis. J. Classification 17, 153–157.
Legendre, P., and Makarenkov, V. 2002. Reconstruction of biogeographic and evolutionary networks using reticulo-

grams. Syst. Biol. 51, 199–216.
Li, W.H. 1998. Molecular Evolution, Sinauer, Boston.
Lockhart, P.J., Penny, D., Hendy, M.D., and Lakrum, A.W.D. 1993. Is Prochlorothrix hollandica the best choice as a

prokaryotic model for higher plant chl-a/b photosynthesis? Photosynthesis Res. 73, 61–68.
Lockhart, P.J., Steel, M.A., Hendy, M.D., and Penny, D. 1994. Recovering evolutionary trees under a more realistic

model of sequence evolution. Mol. Biol. Evol. 11, 605–612.
Makarenkov, V. 2001. T-Rex: Reconstructing and visualizing phylogenetic trees and reticulation networks. Bioinfor-

matics 17, 664–668.
Makarenkov, V., and Leclerc, B. 1997. Tree metrics and their circular orders: Some uses for the reconstruction

and fitting of phylogenetic trees, in B. Mirkin, F.R. McMorris, F. Roberts, and A. Rzhetsky, eds., Mathematical
Hierarchies and Biology, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 183–208,
American Mathematical Society, Providence, RI.

Makarenkov, V., and Leclerc, B. 1999. An algorithm for the fitting of an additive distance according to a weighted
least-squares criterion. J. Classification 16, 3–27.

Makarenkov, V., and Leclerc, B. 2000. Comparison of additive trees using circular orders. J. Comp. Biol. 7, 731–744.
Margulis, L. 1981. Symbiosis in Cell Evolution, Freeman, San Francisco, CA.
McDade, L. 1995. Hybridization and phylogenetics, in P.C. Hoch and A.G. Stephenson, eds., Experimental and

Molecular Approaches to Plant Biosystematics, 305–331, Monographs in Systematic Botany from the Missouri
Botanical Garden.

Nakhleh, L., Sun, J., Warnow, T., Linder, R., Moret, B.M.E., and Tholse, A. 2003. Towards the development of com-
putational tools for evaluating phylogenetic network reconstruction methods. Proc. 8th Pac. Symp. on Biocomputing,
315–326.

Rieseberg, L.H., and Ellstrand, N.C. 1993. What can molecular and morphological markers tell us about plant hy-
bridization? Crit. Rev. Plant Sci. 12, 213–241.

Rieseberg, L.H., and Morefield, J.D. 1995. Character expression, phylogenetic reconstruction, and the detection of
reticulate evolution, in P.C. Hoch and A.G. Stephenson, eds., Experimental and Molecular Approaches to Plant
Biosystematics, 333–353, Monographs in Systematic Botany from the Missouri Botanical Garden.

Rissanen, J. 1978. Modeling by shortest data description, Automatica 14, 465–471.
Robinson, D.R., and Foulds, L.R. 1981. Comparison of phylogenetic trees. Math. Biosci. 53, 131–147.
Posada, D., and Crandall, K.A. 2001. Intraspecific phylogenetics: Trees grafting into networks. Trends Ecol. Evol. 16,

37–45.
Saitou, N., and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol.

Biol. Evol. 4, 406–425.
Sattath, S., and Tversky, A. 1977. Phylogenetic similarity trees. Psychometrika 42, 319–345.
Sawyer, S. 1989. Statistical tests for detecting gene conversion. Mol. Biol. Evol. 6, 526–536.
Smouse, P.E. 2000. Reticulation inside species boundary. J. Classification 17, 165–173.
Sneath, P.H.A. 2000. Reticulate evolution in bacteria and other organisms: How can we study it? J. Classification 17,

159–163.
Sneath, P.H.A., Sackin, M.J., and Ambler, R.P. 1975. Detecting evolutionary incompatibilities from protein sequences.

Syst. Zool. 24, 311–332.
Steel, M.A. 1994. Recovering a tree from the leaf colorations it generates under a Markov model. Appl. Math. Lett.

72, 19–24.



212 MAKARENKOV AND LEGENDRE

Stephens, J.C. 1985. Statistical methods of DNA sequence analysis: Detection of intragenic recombination or gene
conversion. Mol. Biol. Evol. 2, 539–556.

Stevenson, R.J., Bothwell, M.L., and Lowe, R.L. 1996. Algal Ecology, Academic Press, San Diego.
Swofford, D.L., and Olsen, G.L. 1996. Phylogeny reconstruction, in D.M. Hill, ed., Molecular Systematics, 407–514,

Sinauer.

Address correspondence to:
Vladimir Makarenkov

Département d’informatique
Université du Québec à Montréal

C.P. 8888
Succ. Centre-Ville

Montréal (Québec), Canada

E-mail: makarenkov.vladimir@uqam.ca


