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Abstract

Microbial ecologists often obtain data from sampling a piece of geographic space. These are
likely to be spatially autocorrelated. Autocorrelation removes degrees of freedom from the usual
tests of inferential statistics and can generate spurious correlations among variables, with the
consequence that suspected causal relations may not hold. This paper describes methods that can
be used to explore the spatial structure of ecological data and to include spatial location as a variable
in the study of relationships and models. The relationship between environmental heterotrophic
bacteria and phytoplankton, well established in aquatic environments, is re-examined in the Thau
brackish lagoon (Mediterranean coast of France). It did not hold for the bacteria growing on
bioMérieux nutrient agar (BNA), which are presumably of continental origin; their spatial gradient
can only partly be explained by the particulate organic carbon variable (POC) and not at all by
phytoplankton biomass (CHL A), despite the existence of a spurious correlation between BNA
and CHL A. The spatial gradient of abundance of heterotrophs growing on marine agar (MA),
expected to be mostly of marine origin, can be entirely explained by POC and CHL A. Different
segments of the bacterial community, both reacting positively to variations of the particulate organic
carbon, may follow partly, or not, variations of phytoplankton biomass. The mode of analysis
developed here extends to many other spatially distributed processes in ecology and other fields.

The study of aerobic heterotrophs often
entails the search for mechanisms explain-
ing variations of abundance observed among
samples. Relating these variations to pos-
sible causes is usually done by testing im-
plicit or explicit hypotheses that the in-
vestigator has in mind. Possible explanatory
variables are measured or observed in syn-
chrony with the bacterial variables, and hy-
potheses are tested, often by computing cor-
relations or simple linear regressions, or in
some cases by more complex types of mod-
eling.
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Sampling in the natural environment can
be planned in such a way as to grasp vari-
ations through space, or through time, or
sometimes both. When the data have been
obtained and analyzed, and relationships
among variables are found, it becomes le-
gitimate to wonder whether we are looking
at real relationships or only at spurious cor-
relations induced by a common spatial or
temporal structure. To our knowledge, this
question has not yet been addressed in the
microbial ecology literature. Beyond ma-
rine microflora, the mode of analysis de-
veloped here extends to many other studies
of space-based ecological processes.

Let us look at a few examples from recent
microbial literature where this problem is
potentially present because the observa-
tions are structured through space or through
time, which possibly makes the data auto-
correlated (see below). Common structures
that can be identified in space (or in time)
for ecological variables are gradients and
patches (clumps, aggregates). Patches are
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characterized by alternating, significant
positive and negative autocorrelation as one
goes from short to long distances, while gra-
dients are recognized by significant positive
short-distance and negative long-distance
autocorrelation (Sokal 1979). One further
problem is that by violating the assumption
of independence, positive autocorrelation
in small distance classes makes such tests
as the ANOVA F-test, t-tests, and corre-
lation or regression analyses too liberal ; the
actual numbers of degrees of freedom are
much smaller than the number of samples
might suggest. The consequence is that in
the presence of positive spatial autocorre-
lation, differences among group means that
in reality are not significant may be found
to be so, or correlation and regression coef-
ficients may be declared significantly differ-
ent from zero when they are not (Bivand
1980; Cliff and Ord 1981). Negative spatial
autocorrelation for small distance classes
may have the opposite effect. Consequently,
data should be tested for spatial indepen-
dence with spatial correlograms or similar
methods before one uses the standard sta-
tistical methods that assume the observa-
tions to be independent. Examples follow
where data should have been tested for spa-
tial independence, but have not. This list is
by no means exhaustive.

In the space domain, Mahloch (1974) used
multiple regressions to test predictive
models of coliform abundances, after col-
lecting data at 20 stations located along the
course of the Leaf River, U.S.A. Bolter et
al. (1981) computed rank correlation coef-
ficients among 33 variables (chemical,
physical, biological) for 12 stations in the
Kiel Fjord and the Kiel Bight, F.R.G. Cam-
men and Walker (1982) computed linear
correlations between bacterial counts and
suspended particulate matter for 22 stations
forming two lines parallel to the long axis
of the Bay of Fundy, Canada; they also com-
puted multiple regression models to explain
maximal uptake rates with the same data.
Linley et al. (1983) analyzed the relation
between bacterial abundances and chloro-
phyll a, dissolved organic carbon, and par-
ticulate carbon with linear correlations and
simple linear regressions on data from a ver-
tical profile (nine depths) in the English
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Channel. In the time domain, Viitinen
(1982) computed ¢-tests and multiple
regression models to compare two stations
in a coastal archipelago of Finland for 22
variables with an 11-month series of 18
sampling dates; he also computed differ-
ences between paired proportions (x2-test)
for three sites taken two by two with an 18-
month series of 55 sampling dates. Wright
and Coffin (1983) used a 12-month sam-
pling series to test relations between total
bacterial counts, heterotrophic activity, and
temperature in the Essex River estuary,
U.S.A., with linear correlations and simple
linear regressions. Kirchman et al. (1984)
used 26 hourly samples (forming two con-
secutive tidal cycles) to correlate bacterial
abundances and chlorinity in a salt marsh
of the Cape Cod area, U.S.A. Troussellier
et al. (1986) used path analysis, which is
based on multiple regressions, to test models
of the evolution of bacterial counts in sew-
age treatment lagoons in France with a 19-
month data series made of 41 sampling
dates. Finally, workers sometimes analyze
data that are possibly autocorrelated in both
the space and time domains. Miyoshi and
Nakamoto (1975) computed a multiple
regression model of total bacterial counts
involving several explanatory variables from
98 observations drawn from eight sampling
stations, five depths, and five sampling dates
in the Hiuchi-Nada Sea, Japan. Viitdnen
(1982) computed multiple regression models
to explain the abundances of each of nine
subsets of microorganisms, with 24 samples
representing six to nine stations visited at
three different times.

Autocorrelation as a statistical phenom-
enon has been investigated for a long time
by specialists of time series (Box and Jen-
kins 1970; Fry et al. 1981) and more re-
cently in the case of space by statistical geog-
raphers (Cliff and Ord 1973, 1981). Spatial
autocorrelation has often been discussed in
the context of oceanography (e.g. Jumars et
al. 1977; Jumars 1978; Ibanez 1981; Yoder
et al. 1987; Legendre and Legendre 1988).
The effects of spatial autocorrelation on tests
of statistical significance have also been dis-
cussed (Bivand 1980; CIliff and Ord 1981;
Legendre et al. in prep.); this effect stems
from the violation of the assumption of in-
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dependence of the observations. Bivand
(1980) and Cliff and Ord (1981), in partic-
ular, present simulation data and graphs
showing the magnitude of the bias generated
by various amounts of spatial autocorrela-
tion in the data.

The aims of this paper are two. Ecologi-
cally we wish to demonstrate that even after
finding significant correlations, some as-
sumed relationships between bacteria and
environmental variables can be spurious,
implying a common spatial gradient, while
others are real. Methodologically we wish
to bring a new level of analysis to the prob-
lem of correlation and regression, showing
how space can be handled in the study of
relationships in ecology, and in particular
how to handle it as a full-fledged explana-
tory variable in modeling. What will be said
about space can be generalized to time,
which is but a simpler (one-dimensional)
case.

Materials and methods

On 17 June 1986, the Thau brackish la-
goon, located in southern France (43°20'-
43°28'N, 3°32'-3°42'E) was subjected to in-
tensive sampling, as part of the ECOTHAU
research program. Productivity of the Thau
lagoon is a question of economic impor-
tance for the Languedoc region, because of
large-scale eel fishing and mollusc farming
(mussels and oysters) taking place in this
75-km? water body. Average depth is 4 m.
The lagoon has three communication chan-
nels with the Mediterranean Sea (arrows in
Fig. 1); it also receives freshwater from the
Canal du Midi at its southwestern end and
from various streams on its northwestern
side. A systematic sampling design was ap-
plied and 63 locations, at the nodes of a
1-km regular grid, were visited in <4 h by
three teams of investigators working from
three boats. All data reported here were col-
lected at 0.5-m depth. The sampling grid
covers the whole of this largely enclosed
ecosystem.

The bacterial variables studied are the
number of colony-forming units of aerobic
heterotrophs growing on bioMérieux nu-
trient agar (low NaCl concentration; they
are called Bna hereafter) and those growing
on marine agar (34%o salinity; they are des-
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Fig. 1. Map of the 63 sampling stations (black dots)
in the Thau lagoon. Dotted line is the 5-m isobath.
Arrows represent marine water inputs.

ignated Ma). Water samples were collected
in sterile vials, kept at 4°C, and transported
to the lab where they were spread-plated
with a series of dilutions, within 5 h of sam-
pling. Plates were incubated at lab temper-
ature and counted after 8 d. The nutrient
agar medium (bioMérieux) was used to re-
veal bacteria of continental origin. The ma-
rine agar medium (Difco), by contrast, was
expected to bring out mostly the aerobic
heterotrophs endemic to the marine lagoon,
where salinity varies roughly from 31 to
39%0. Difco marine agar was selected be-
cause itis a highly standardized product that
has been shown to produce, with lagoon ma-
rine water, higher counts than either of its
competitors, ZoBell medium 2216 and Dif-
co bacto nutrient agar with 30 g liter~! of
NaCl added (Troussellier 1987).
Chlorophyll a concentration (variable Chl/
a, in ug liter~!), which is an indirect and
approximate measure of phytoplankton
biomass, was obtained by acetone extrac-
tion and fluorimetric assay (Neveux and
Panouse 1987). Particulate organic carbon
(variable POC, in mg liter—!) was extracted
by filtration and assayed with a nondisper-
sive infrared detector (Cauwet 1983); after
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removal of POC, dissolved organic carbon
(variable DOC, in mg liter~!) was measured
with a flame ionization detector (Cauwet
1984). Finally, the spatial variable (SPACE)
is represented by a matrix of geographic dis-
tances, computed from the coordinates of
the sampling stations on a map.

The Box-Cox method (Sokal and Rohlf
1981) was used to approximate the best nor-
malizing transformation for all variables.
Normalization is used here as an empirical
way of reducing asymmetry in the frequency
distributions of the variables and thus in-
creasing linearity for the product-moment
correlation analysis. As confirmed by a Kol-
mogorov-Smirnov test of normality (Lillie-
fors 1967), the y = log.(x + 1) transfor-
mation was found to normalize both
bacterial variables as well as Chl a concen-
trations, and it was applied to the data. For
the particulate and dissolved organic carbon
variables, a log transformation was insuf-
ficient to reach normality. The optimal
transformations suggested by the Box-Cox
method, which indeed normalized the data,
were y = (x* — 1)/6 with § = —0.0918 for
the POC variable, and 6 = —3.78401 for the
DOC variable.

The analysis of spatial structures can be
done in a variety of ways that provide dif-
ferent information. We started by plotting
maps of the values of the four variables.
These maps were obtained by interpolation,
using the SYMAP package (Dougenik and
Sheehan 1975). The spatially distributed
transformed (above) values of each variable
were analyzed to detect significant spatial
structures, using spatial correlograms. A
spatial correlogram is a graph of autocor-
relation values (along the ordinate) as a
function of the distance between points (ab-
scissa). Both Moran’s (1950) I and Geary’s
¢ coefficients were used in this study, and
they evidenced the same type of spatial
structure. [Oceanographers will notice that
these coefficients differ from the one used
by Mackas (1984) in his “dissimilarity cor-
relogram,” which is actually a multivariate
variogram; as with standard variograms
(Matheron 1971), individual values of the
statistic in the correlogram of Mackas are
not amenable to testing.] In correlogram
analysis, one value is computed for all pairs
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of points located within each given distance
class; the values computed for all distance
classes are assembled in the correlogram.
Each value can also be tested for significance
(Cliff and Ord 1973; Sokal and Oden 1978;
Legendre and Legendre 1984) after the
overall significance of the correlogram has
been determined (Oden 1984). Finally, an
overall examination of the significant values
in a correlogram makes it possible to for-
mulate statements about the underlying
spatial structure (Sokal 1979). Correlations
among variables were computed with Pear-
son’s product-moment correlation coeffi-
cient.

The Mantel (1967) test is primarily useful
to look for a spatial trend in data corre-
sponding to some form of diffusive process.
Mantel proposed to represent the spatial re-
lationship among sampling localities by a
matrix A of geographic distances among all
pairs of these geographic points; this matrix
is referred to as SPACE. Mantel’s test looks
for a relationship between this matrix of
geographic distances and some other dis-
tance matrix B which is meaningful for the
problem at hand. The trend in the data may
be linear, in which case geographic distances
are used directly for testing, or it may be
hypothesized to follow some other relation-
ship, in which case other functions of the
geographic distances (D) may be used (1/D,
or 1/D?). In the multivariate case, one would
compute one of the many multivariate dis-
similarity functions available in the litera-
ture as dictated by the nature of the prob-
lem; Legendre and Legendre (1983, 1984)
and Gower and Legendre (1986) give guid-
ance to the choice of a coefficient. Since this
paper deals with the one-variable case, the
dissimilarity matrix CHL A for variable Ch/
a, say, is formed by taking the unsigned
difference among values of this variable for
all possible pairs of stations; this is the com-
mon form that most multivariate distance
functions boil down to in the univariate case.
(Notice that capitals are used throughout to
designate dissimilarity or distance matrices,
while italics are used for the variables them-
selves.) The Mantel statistic is simply the
sum of the cross-products of the corre-
sponding values in the two matrices A and
B under investigation (for instance, geo-
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graphic distance and Chl a dissimilarity).
The statistic can be normalized to range be-
tween —1 and + 1 by computing it as a prod-
uct-moment correlation coefficient between
the corresponding values of the two matri-
ces, excluding the main diagonal; the prob-
ability associated with this normalized
Mantel statistic (see below) is exactly the
same as for the original Mantel statistic. The
Mantel or the normalized Mantel statistic
can be tested for significance in one of two
possible ways (Mantel 1967): either through
a permutation test, or, when the number of
data points is large enough as is the case in
the present study (n = 63), by computing
the expected value and variance under the
null hypothesis and performing a z-test. The
null hypothesis of the test is, in both cases,
that the distances in matrices A and B are
not linearly related.

It is well known that two variables may
seem related when both are correlated to a
third, common cause. Spatial position is a
good candidate for causing such spurious
correlations: indeed, variables may seem re-
lated because they are driven by a common
spatial gradient. The statistical problem of
computing a partial correlation among vari-
ables while controlling for the effect of spa-
tial position has been solved by Smouse et
al. (1986). First, one computes three matri-
ces A, B and C; A contains for instance
geographic distances among sampling sta-
tions, as above, while B and C are dissim-
ilarity matrices, computed either from a sin-
gle variable or from a multivariate data set.
Second, one computes B’ which contains the
residuals of the regression of the values in
B on the values in A, and C' which contains
the residuals of the regression of the values
in C on the values in A; finally the stan-
dardized Mantel statistic is computed be-
tween the values in B’ and those in C'. This
procedure is just a way of computing the
partial Mantel relation rgc.4, as it is a stan-
dard way of computing a partial correlation
coefficient for two variables b and ¢ while
controlling the effect of a third variable a.
The partial Mantel relation will be denoted
(B-C)-A for convenience; this symbolism
is simpler when full variable names are used
(below). Third, the probability associated
with this partial Mantel statistic is com-
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puted in the usual way, either by permu-
tation or using the approximate z-test. Since
the test is performed between the two re-
sidual matrices B’ and C’, the partial test is
then computed in exactly the same way as
the simple Mantel test above. The partial
Mantel test will be used in the larger context
of causal modeling, as described by De
Neufville and Stafford (1971) and by Le-
gendre and Legendre (1983, 1984) for par-
tial Pearson correlations. Computations
were carried out with the MANTEL-3 pro-
gram written by A. Vaudor and included in
the “R package for multivariate data anal-
ysis” distributed by P.L.

Results

Interpolated maps for the four variables
Bna (aerobic heterotrophs growing on
bioMérieux nutrient agar), Ma (aerobic het-
erotrophs growing on marine agar), Chl a
(chlorophyll a) and POC (particulate organ-
ic carbon) are represented in Fig. 2, based
on observations at the 63 sampling stations.
These maps differ little from maps obtained
by the more sophisticated technique of
kriging, which were also produced but are
not presented here. They all suggest the
presence of a spatial gradient with high val-
ues in the northeast part of the lagoon and
low values in the southwest. The mean,
range, and C.V. for these variables and for
DOC (dissolved organic carbon) are pre-
sented in Table 1.

The correlogram of Chl a (Fig. 3) easily
passes Oden’s (1984) test of overall signif-
icance. Further examination clearly shows
that observations located near one another
over the whole surface of the lagoon have
very similar values (significant positive val-
ues of the I coefficient at low distance
classes). On the contrary, distant observa-
tions have dissimilar values of Chl a, which
translate into significant negative values of
I for the large distance classes. This shape
for a correlogram, with significant positive
values in the low distance classes and sig-
nificant negative values in the high distance
classes, is characteristic of a spatial gradient
(Sokal 1979), which statistically confirms
the first impressions obtained from the
maps. The other three variables, Bra, Ma,
and POC, produced spatial correlograms
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Fig. 2. Interpolated maps of the four variables. Darker areas correspond to higher values of the variables.

that are also characteristic of spatial gradi-
ents.

All four variables, Bna, Ma, Chl a, and
POC, are very highly correlated to one

another (Table 2). The significance of Pear-
son’s product-moment correlation coeffi-
cient is computed in the usual way, without
taking into account the fact that all these
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Table 1. Basic statistics for the five variables under study (63 sampling stations).
Min Mean Max C.V. (%)
Bna (N ml") 1.0 3.2x10? 3.9x103 207
Ma (N ml) 4.5%x10? 9.5x103 8.4x104 170
Chl a (ug liter!) 0.7 2.4 7.5 60
POC (mg liter") 0.100 0.273 0.690 48
DOC (mg liter!) 2.50 2.98 4.12 11

variables are autocorrelated and form spa-
tial gradients (just as one would have done
in most environmental analyses), but the
level of significance is corrected to take mul-
tiple testing into account (Bonferroni cor-
rection: Cooper 1968; Miller 1977). Our
purpose is, of course, to show that indica-
tions drawn from such analyses can be mis-
leading.

Table 3 shows the results needed to ana-
lyze the influences acting on the BNA bac-
teria, while Table 4 deals with the MA bac-
teria. In these tables, SPACE is a matrix of
geographic distances among sampling sta-
tions, while each of the other variables is
represented by a matrix of dissimilarities,
computed as the unsigned difference among
values, as explained in the methods. All
analyses were performed with the approx-
imate z-test, after checking that the results
were indistinguishable from those obtained
with the permutation test.

Discussion

Microbiologists before us have felt the
need to include space as an explanatory
variable in models. Two cases are Miyoshi
and Nakamoto (1975), where “distance from
the coast” was included as one of the in-
dependent variables in a multiple regression
model of total bacterial counts, and Wright
and Coffin (1983), where the “distance from
the mouth of the estuary’ was used in sim-
ple linear regressions intended to predict
bacterial densities along the course of three
different rivers. The various methods of
spatial analysis are more versatile, since the
analysis is not limited to one-dimensional
gradients.

Correlation analysis (Table 2, upper tri-
angle) showed a positive relationship be-
tween the heterotrophic bacterial abun-
dance (Bna and Ma) and Chl a concentration

(Chl a), our indirect measure of phytoplank-
ton biomass. This correlation is well doc-
umented in the ecological literature. It has
been demonstrated a number of times and
in particular for AODC (acridine orange di-
rect counts) by Ferguson and Palumbo
(1979) in the marine environment, by Fu-
kami et al. (1983) in a brackish ecosystem,
and by Bird and Kalff (1984) in freshwater.
The mechanism suggested is that dissolved
organic compounds associated with pri-
mary production, as well as the particulate
matter resulting from decay, are used as
substrate by bacterioplankton. Since the
model of the control of heterotrophic bac-
terioplankton by the algal resource is eco-
logically plausible and is already well sup-
ported by the studies mentioned above,
ecologists would usually stop their analysis
here, satisfied that the correlations in Table
2 corroborate this well-established model.
Introducing SPACE as a variable into the
analysis, one finds from the simple Mantel
tests (Tables 3 and 4, upper triangles) that
the bacterial variables obey the same en-
vironmental gradient as phytoplankton. It
is only too easy to forget to test the other
possible hypothesis—that the correlation of
the Chl a to bacteria is spurious, both of

0.5

o
»

MORAN’S /

.\-\,/'

DISTANCE CLASSES (km)

Fig. 3. Spatial correlogram for the Chl a variable.
Significant autocorrelation coefficients (P < 0.05)—;
Moran’s I coefficient not significantly different from
zero—[1.

107
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Table 2. Product-moment correlation coefficients and associated probabilities (two-tailed tests) among the

five variables Bna, Na, Chl a, POC, and DOC; n = 63

Ma Chla POC boc

Bna 0.420 0.599 0.644 0.116
P =0.00061* P = 0.00000* P = 0.00000* P =0.36500 N.S.

Ma — 0.502 0.533 0.305
P = 0.00003* P =0.00001* P =0.01502 N.S.

Chl a - - 0.729 0.117
P = 0.00000* P =0.36148 N.S.

POC - - - 0.146
P =0.25339 N.S.

* Correlation is significant at the Bonferroni-corrected probability level of (0.05/10 = 0.005) for an overall significance level of 0.05 over 10

simultaneous tests; N.S.—test is not significant.

them being controlled independently by en-
vironmental factors.

We have chosen the particulate organic
carbon variable (POC) as the predictive
variable for bacterial abundances instead of
the dissolved organic carbon (variable
DOCQ), because our data show that the POC
variable is significantly correlated with the
Bna and Ma abundances, while the DOC
variable is not (Table 2). Since there is pos-
itive autocorrelation displayed in the small
distance classes of the correlograms of all
variables, the effect of positive autocorre-
lation on tests of statistical significance, such
as in linear correlation, is to create a bias

in one direction only; positive spatial au-
tocorrelation artifactually could have pro-
duced apparently significant correlations,
but not the opposite (Bivand 1980), so that
we can be confident that DOC is really not
correlated with our bacterial abundances.
On the other hand, Fukami et al. (1981,
1985) have shown, after experimentation,
that during phytoplankton degradation,
variations in bacterial abundances are more
closely related to observed variations of POC
than to those of DOC. This finding does not
exclude the possibility that the biodegrad-
able fraction of DOC is a more directly ac-
cessible organic resource than that of POC,

Table 3. Above the diagonal: simple Mantel statistics and associated probabilities. Below the diagonal: partial

Mantel statistics and associated probabilities. Tests o

f significance are one-tailed. The distance matrix held

constant in each case is indicated with the dot notation; for instance, the partial Mantel test (BNA-CHL A)-
POC is indicated as -POC in column BNA and line CHL A.

BNA CHL A POC SPACE
BNA 0.258 0.315 0.521
P = 0.00000* P=0.00000* P =0.00000*
CHL A -POC = 0.130 _ 0.476 0.505
P =0.00292} P=0.00000* P =0.00000*
-SPACE = —0.006
P =0.45694 N.S.
POC -CHL A = 0.226 ‘BNA = 0.431 _ 0.347
P = 0.00000} P = 0.00000% P = 0.00000*
-SPACE = 0.168 -SPACE = 0.372
P =0.00109} P = 0.00000}
SPACE -CHL A = 0.468 ‘BNA = 0.449 -BNA = 0.226 _
P = 0.00000} P = 0.00000% P =0.00003%
-POC = 0.462 -POC = 0.411 -CHL A = 0.141
P = 0.00000¢} P = 0.00000% P =0.00128t

* Mantel test is significant at the Bonferroni-corrected probability level
simultaneous tests.

+ Partial Mantel test is significant at the Bonferroni-corrected probability
12 simultaneous tests; N.S.—test is not significant.

of (0.05/6 = 0.00833) for an overall significance level of 0.05 over six

level of (0.05/12 = 0.00417) for an overall significance level of 0.05 over
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Table 4. As Table 3, but for MA bacteria.
MA CHL A POC SPACE
MA 0.325 0.363 0.223
P = 0.00000* P = 0.00000* P = 0.00000*
CHL A -POC =0.185 —_— 0.476 0.505
P =0.00046} P = 0.00000* P = 0.00000*
-SPACE = 0.252
P =0.00001}
POC -CHL A = 0.250 -MA = 0.407 — 0.347
P =0.00001} P =0.00000t P = 0.00000*
-SPACE = 0.312 -SPACE = 0.372
P =0.00000t P = 0.00000%
SPACE -CHL A =0.073 -MA = 0.469 ‘MA =0.293 —_
P =0.06015 N.S. P =0.00000t P = 0.00000%
-POC=0.111 -POC =0.411 -CHL A =0.141
P =0.00591 N.S. P = 0.00000% P =0.00128%
* As Table 3.
1 As Table 3.

but it is likely that the relation between bac-
teria and DOC could only be perceived for
finer scales of observation than the one that
was used in the present study (1-km sam-
pling grid). On the other hand, the fraction
of DOC that cannot be degraded by bacteria
is possibly greater than that of POC:; this
interpretation would explain why we ob-
serve a higher mean concentration of DOC
than POC, while the C.V. of POC (48%) is
larger than that of DOC (11%).

Of course phytoplankton may be one of
the fractions, or even the main fraction, of
particulate organic carbon. In any case, we
learn from Tables 2—4 (upper triangles) that
variable POCis significantly correlated with
Bna, Ma, and Chl a, and that it is also dis-
tributed as a spatial gradient. So, at this
point, we cannot tell the influence of Chl a
from that of POC on the bacterial variables
nor have we tested the alternative to the
classical model.

To make clear the relation between a
causal model and the partial Mantel tests,
let us examine the series of possible models
among three variables, BNA, CHL A, and
SPACE, and the predictions each one makes
about the direct and partial relationships
that can be computed among them. In Fig.
4, all the possible three-variable models are
listed, except those where SPACE would be
a dependent variable, which do not make
sense. Indeed, it is not enough to demon-

strate that the data support the model that
we hypothesized for each case; we also have
to show that all other possible alternative
models are not supported. We are left with
seven different models. For each one, causal
analysis makes predictions involving the
values of the simple correlations (De Neuf-
ville and Stafford 1971) and of the partial
correlations (Legendre and Legendre 1983,
1984). We feel authorized to use these pre-
dictions here because the standardized sim-
ple Mantel statistic is computed as a prod-
uct-moment correlation coefficient while the
partial Mantel statistic is computed as a par-
tial correlation coefficient.

The first six models in Fig. 4 are not sup-
ported by the data, because one or several
of their predictions are not realized; the re-
sults of actual computations are listed for
each model, indicating which predictions
are realized and which ones are not. When
we state that a relation is equal to zero, we
mean that it is not significantly different from
zero in Table 3. With model 7, all eight
predictions that can be made about the val-
ues of the simple Mantel and partial Mantel
statistics are realized in the results of Table
3, so that this model—and this model only
—cannot be rejected. The first conclusion
that we reach is the following: contrary to
generally accepted ideas about AODC, the
subclass of the AODC bacteria that grows
on bioMérieux nutrient agar and is presum-
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Legendre and Troussellier

Model Predictions of model Model Computed Model Computed
if model is true results results

1 2 1320 1) SPACE BNA yes 2) SPACE CHL A yes
\ / 2:3#0 yes yes
12=0 no no
3 (142)3#0 CHL A yes BNA yes
(2:3)1 20 no no
(143)2#0 yes yes
(1e3)2 213 no no
(23)e1223 no no
1 1220 3) SPACE yes 4) SPACE yes
¥ 2:3#0 ] yes yes
2 12213 BNA yes CHL A no
] 23213 ¥ no ¥ no
3 (1:3)2=0 CHLA no BNA no
(1+2)3#0 yes yes
(2:3)1 20 no no
(1e2)3< 122 yes yes
(2231 <23 yes yes

(142) X (2:3) = (1+3) 0.135 #0.505 0.130 = 0.521
1 120 5) SPACE yes 6) SPACE yes
/ \ 130 ¥ yes 4 yes
2:3#0 CHL A yes BNA yes
2«3 (12):3#0 N yes yes
(14320 BNA yes CHL A yes
(23)1 0 no no

Model Predictions of the model Computed

if the model is true results

7 SPACE SPACE-CHL A #0 yes
SPACE*BNA # 0 yes
(SPACE-CHL A)°BNA #0 yes
(SPACE*BNA)CHL A #0 yes
CHLA BNA (CHL A-BNA)*SPACE =0 yes
(SPACE-BNA)-CHL A < SPACE*BNA yes
(SPACE-CHL A)*BNA < SPACE-CHL A yes

(SPACE*CHL A) x (SPACE*BNA) =~ (CHL A*BNA) 0.263 = 0.258

Fig. 4. Among the seven possible models of causal relationships for the variables SPACE, CHL A, and BNA,
the first six are not supported by the data since some of the computed results do not agree with the predictions

of the models.

ably predominantly of continental origin
rather than endemic to the marine lagoon
is distributed along a spatial gradient which
is independent of that of the phytoplankton
biomass. This absence of a causal link be-
tween CHL A and BNA could mean that
the BNA bacteria are unable to use phyto-
plankton products to support their own
growth in the marine environment. Either
they are impaired by salinity, or the organic
matter content produced by phytoplankton
in the marine lagoon is too dilute compared
to what is found in the eutrophied fresh-
waters where these bacteria are usually found
growing in large numbers.

Since the partial Mantel test is a new tech-
nique to most ecologists, we tried to see if
the same results could be obtained with a
more standard technique. Instead of using
the dissimilarity matrices (represented by
capital roman letters), we removed the effect
of Chl a from the Bna variable by linear

regression and computed the residual Bna
variability. From the residual Brna, we com-
puted a dissimilarity matrix as explained in
the methods and compared that to the geo-
graphic distance matrix with a simple Man-
tel test. The Mantel statistic was 0.134 with
a significant probability value of 0.00190,
which shows again a linear effect of spatial
location in Bna remains after controlling for
the influence of Chl a.

In order to explain the spatial gradient of
the BNA bacteria, we added the particulate
organic carbon variable (POC) into the
analysis. Since it is not yet known how to
compute partial Mantel tests while con-
trolling for several matrix variables, or the
equivalent of multiple regression involving
dissimilarity matrices (for path analysis), we
resorted to computing three-variable models
for all combinations of the four variables
BNA, CHL A, POC, and SPACE. The re-
sults of these analyses, based on the Mantel
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(@) SPACE ®) SjA@ (¢) SPACE (@ CHL ‘A (@ SPACE () SPACE (c) SPACE @ CHLA
\ /N / o\ /\
POC»>BNA CHL A»POC POC » BNA CHL A»MA POC » MA CHL A»POC POC > MA
Synthetic model for BNA SPACE———>CHL A Synthetic model for MA: SPACE——— CHL A
ITC POC
d A

Fig. 5. The four three-variable models (a-d) are
assembled into a synthetic model for the bacteria grow-
ing on bioMérieux nutrient agar (target distance matrix
BNA, underlined). Significant causal links are indicat-
ed by arrows (dashed arrow weakly significant).

test results reported in Table 3, are pre-
sented in Fig. 5. One model has been se-
lected in each case as being supported by
the data, after a reasoning process similar
to that illustrated in Fig. 4. Model a has
already been discussed above. In models b,
¢, and d, the mathematics did not dictate
the direction of the arrows that are drawn
between variables; it dictated only their
presence or absence. Drawing causal arrows
from CHL A and from POC to BNA, and
not the other way around, comes from the
fact that BNA is the target variable of the
model: in other words BNA is the variable
whose variations we want to explain. It is
not meant to negate the possible positive
influence that the BNA bacteria may have
on either CHL A or POC, be it by liberating
metabolites that can help phytoplankton
growth or by creating particulate organic
matter (which would increase POC) through
their metabolism or decay. The arrows from
CHL A to POC on the other hand describe
the fact that phytoplankton is most likely a
part of the amount of particulate organic
carbon that was measured, so that the vari-
ations of CHL A cause at least in part the
variations observed in POC and not the op-
posite. If it had three full arrows, model d,
which does not take spatial structure into
account, would be one of the classical models
of aquatic bacterial ecologists; the dashed
arrow in model d from CHL A to BNA
means that the partial Mantel test (CHL A -
BNA)-POC in Table 3 is only weakly sig-
nificant, being very close to the Bonferroni-
corrected level of significance.

The four three-variable models lead to

Fig. 6. As Fig. 5, but for the bacteria growing on
marine agar (target distance matrix MA, underlined).

the synthetic model shown in Fig. 5. This
model contains all the causal arrows of the
smaller models, except for the weaker
(dashed) link from CHL A to BNA because
that link disappears when one controls for
the effect of SPACE (model a). The CHL A
variable has no direct influence on the BNA
bacteria (as shown and discussed above), its
influence being included in and measured
through the influence of the particulate or-
ganic carbon (POC variable). Part of the
POC gradient may reflect continental run-
offs, explaining why BNA is related to POC.
And, despite the significant partial influence
of POC on BNA (partial Mantel statistic =
0.168, when controlling for SPACE), the
variability in the spatial gradient of the BNA
that remains unexplained, as measured by
the partial Mantel statistic (SPACE-BNA)-
POC = 0.462, is much more important.

So much for the Bna bacteria. Let us ex-
amine now the factors influencing the abun-
dance variability of the bacteria growing on
marine agar (variable Ma), which are pre-
sumably mostly of marine origin. We do not
mean to say, of course, that all bacteria
growing on marine agar are necessarily of
marine origin, since we have shown that
some bacteria from an urban wastewater
treatment center can grow on marine agar
(Troussellier 1987). Mean values for the Bna
and the Ma bacteria (Table 1), however,
show that the Bna bacteria can at best con-
tribute little to the Ma counts.

Data analysis was carried out in the same
way as for the Bna bacteria. The chief fea-
ture of these models (Fig. 6) is that the spa-
tial gradient of the MA distance matrix, dis-
played in Fig. 2b and demonstrated in the
spatial correlogram as well as in the simple
Mantel test (Table 4, upper triangle), is to-
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tally ““explained away” by CHL A and POC.
This situation is opposite to that observed
for the BNA bacteria, where most of the
spatial gradient remained unexplained after
controlling for CHL A or for POC. Again,
if the POC spatial gradient is the result of
the phytoplankton gradient plus a hydro-
logical gradient reflecting continental run-
offs, it may explain why the MA bacteria
that can use organic particulate substrate are
still significantly related to POC, even when
controlling for the effect of CHL A.

Conclusions

We have clearly shown here that even
highly significant correlations among envi-
ronmental variables can be spurious (Bna-
Chl a) while others can be real (Ma- Chl a),
so that it is important to pursue the analysis
further, examining other hypotheses. When
data represent samples taken from a piece
of geographic space, as is so often the case
in environmental studies, the analysis of the
spatial structure itself is a good way of de-
tecting spurious correlations, spatial posi-
tion being a good candidate for generating
such false relations because of the autocor-
related nature of most environmental vari-
ables. We have also shown how spatial po-
sition can be introduced as a variable in the
study of relationships in microbial ecology
and in particular in the framework of mod-
eling.

Even though the relationship between to-
tal counts of bacteria (AODC) and phyto-
plankton has been demonstrated a number
of times in aquatic environments, we have
failed to find it in the study of bacteria re-
sponding to bioMérieux nutrient agar (BNA
distance matrix). These bacteria, which are
presumably of continental origin, have been
shown to display a spatial gradient that can
only partly be explained by the particulate
organic carbon variable (POC) and not at
all by phytoplankton biomass (variable CHL
A), despite the existence of a spurious cor-
relation between BNA and CHL A. This
spatial gradient is probably linked to the
diffusion of continental water through the
lagoon; the partial explanation of the vari-
ations of the BNA bacteria by the POC vari-
able would then be that POC is partly a
tracer of continental water. On the other

Legendre and Troussellier

hand, the spatial gradient of the environ-
mental heterotrophs growing on marine agar
(MA distance matrix), which are expected
to be mostly of marine origin, can be en-
tirely explained by POC and CHL A. This
study has then shown that different seg-
ments of the bacterial community that both
react positively to variations of particulate
organic carbon may vary in their depen-
dence on phytoplankton biomass.
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