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[1] Spatial structures within turbulent flow data were investigated through the use of a
new multivariate variation partitioning analysis technique involving principal coordinates
of neighbor matrices (PCNM), which is a form of distance-based eigenvector maps
(DBEM). The analysis revealed a significant (a = 0.01) spatial dependence, 58%, for the
mean and turbulent flow variables. The flow variables were obtained from
instantaneous two-dimensional velocities collected in situ along a streamwise section
that crosses over a pebble cluster in a gravel-bed river. Using the orthogonal property of
the PCNM variables, the explained variation was partitioned over four significant
(a = 0.01) spatial scales: very large (VL, 17%), large (L, 24%), medium (M, 6%) and fine
(F, 2%). Nearly 75% of the variance of the main turbulent flow indicators, such as the
root-mean-square of the streamwise and vertical velocity components and the mean
uv component Reynolds shear stress, was explained by the VL- and L-scale
PCNM submodels, which have streamwise and vertical length scales of the order of
Dx = 5.3H � 2.6H and Dy = 1.0H � 0.5H (where H is the flow depth), respectively.
Through a multivariate mapping procedure, clear spatial patterns within the
explained flow variables emerge around the cluster, where the flow separation zone seems
to play a significant role at a range of scales. As well, intervariable correlations at each
spatial scale, obtained through eigenvector scatterplots, show intricate relationships
between the flow variables. The interdependence of the Reynolds shear stress and
the u component turbulent energy is much stronger at the VL scale than at the L and M
scales. The application of PCNM analysis on the turbulent flow field shows the power of
the technique to resolve the relevant spatial scales and patterns, and demonstrates its
potential use in a variety of water resources studies.
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1. Introduction

[2] A recent trend in turbulent flow research is to attempt
to identify and characterize the temporal and spatial scales
of coherent flow structures over smooth as well as rough
beds [Adrian et al., 2000; Liu et al., 2001; Shvidchenko and
Pender, 2001; Chen and Hu, 2003; Roy et al., 2004]. Space-
time correlations of high-frequency velocity time series
have shown the existence of large depth-scaled coherent
flow structures consisting of high- and low-speed wedges
[Nakagawa and Nezu, 1981; Buffin-Bélanger et al., 2000;
Roy et al., 2004]. An alternative method of investigating the
spatial scales of turbulence is through the analysis of the
spatial distribution of the mean turbulent parameters of
interest. Following this approach, a few studies have inves-
tigated the spatial distribution of turbulence properties over
and around large roughness elements such as isolated clasts

or pebble clusters [Brayshaw et al., 1983; Paola et al.,
1986; Buffin-Bélanger and Roy, 1998; Lawless and Robert,
2001; Shamloo et al., 2001; Tritico and Hotchkiss, 2005]. In
natural gravel-bed rivers, the bed is made up of poorly
sorted clasts ranging in size from very coarse to fine grains,
which results in abrupt roughness transitions [Robert et al.,
1992]. These rapid changes in roughness have a direct effect
on the turbulent length scales and on the spatial patterns of
the mean and turbulent flow properties [Buffin-Bélanger
and Roy, 1998]. The mechanism responsible for these
changes is the shedding of vortices in the lee of protuberant
particles. Such vortices have a range of sizes and frequen-
cies [Kirkbride, 1993]. This suggests a high dependence of
the spatial pattern of turbulent flow structures on the
distribution of large clasts and of bed forms such as clusters
on the heterogeneous bed.
[3] The relationships between spatial patterns of turbulent

structure and large roughness elements on the bed were
investigated by Buffin-Bélanger and Roy [1998]. Through
an intense measurement scheme around a pebble cluster,
they were able to delineate six characteristic regions of the
flow field (acceleration, recirculation, shedding, reattach-
ment, upwelling, and recovering flow), and showed the
relationships between these regions and the protuberant
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clasts. While their study provided qualitative descriptions of
numerous flow variables and of their spatial patterns, it did
not attempt to quantitatively explain the dependence of the
flow variables on the spatial structure, and did not estimate
the proportion of the variation within the flow variables
explained by the spatial structures.
[4] In ecological studies, quantification of spatial struc-

ture is often obtained through trend surface analysis. This is
a standard method used to explain the variance associated
with spatial trends in variables measured at points in space
through polynomial regressions [Legendre and Legendre,
1998]. The higher the polynomial order, the finer the spatial
structures which can be explained. Yet the terms within the
polynomial are often highly correlated with one another,
which prevents the modeling of linearly independent struc-
tures at different scales [Borcard and Legendre, 2002].
Furthermore, trend surface analysis is devised to model
large-scale spatial structures with simple shapes and cannot
adequately model finer structures [Borcard and Legendre,
2002; Borcard et al., 2004].
[5] Borcard and Legendre [2002] have recently devel-

oped a new statistical spatial modeling method: principal
coordinates of neighbor matrices (PCNM). The method, the
theory for which has been further explored by Dray et al.
[2006], is a form of distance-based eigenvector maps
(DBEM), and has been successfully applied in aquatic
ecological studies to describe the dominant spatial scales
at which species variation occurs [Borcard et al., 2004;
Brind’Amour et al., 2005]. PCNM analysis resembles Four-
ier analysis and harmonic regression but has the advantage
of providing a broader range of signals and can also be used
with irregularly spaced data [Borcard and Legendre, 2002].
PCNM analysis is based on the orthogonal spectral decom-
position of the relationships among the spatial coordinates
of a sampling design [Borcard et al., 2004]. The orthogonal
property of the PCNM technique allows an exact partition-
ing (no intercorrelation) of the explained variance over
different spatial scales. PCNM analysis is used in conjunc-
tion with multiple regression to study the spatial structure of
a single variable, or with canonical redundancy analysis
(RDA) when studying the spatial structure of multiple
variables. RDA is an extension of multiple regression used
to model multivariate data. It is based on the eigenvalue
decomposition of the table of regressed fitted values, which
reduces the large number of associated (linearly correlated)
fitted vectors to a smaller composite of linearly independent
variables [Legendre and Legendre, 1998]. With eigenvalue
decomposition, most of the variability is often summarized
in the first few dimensions, which facilitates interpretation.
Eigenvalue analysis has been used to study turbulent
coherent structures through proper orthogonal decomposi-
tion (POD) [Liu et al., 2001], and is used extensively in
ecology with data sets which include large numbers
(hundreds, thousands) of interrelated variables.
[6] PCNM analysis bears some similarity to POD. For

POD, the eigenvalue decomposition is performed directly
on a two-point correlation coefficient matrix of the flow
variable under investigation using Fourier modes which are
sinusoidal (quasi-trigonometric) eigenvectors termed
eignenfunctions [Moin and Moser, 1989; Berkooz et al.,
1993]. As POD is a direct eigenvalue decomposition of the
flow variable correlation matrix, the sum of the eigenvalues

is equal to the total variance of the flow variable matrix.
PCNM analysis is a regression technique which identifies
only the fraction of the total variance in a response variable
that is spatially dependent. An advantage of the PCNM
technique is that the PCNM variables represent the eigen-
value decomposition of the relationships of a specific
sampling grid, and can be used to analyze irregularly spaced
data with nonrectangular boundaries. PCNM analysis is, as
well, a multivariate regression technique; it offers the added
advantage over POD (which can only analyze a single
variable at a time) of allowing the analysis of all response
variables at once.
[7] Buffin-Bélanger and Roy [1998] investigated each

flow parameter, or ratio of flow parameters individually,
an approach common in studies investigating the turbulent
structure of flows [Bennett and Best, 1995; Lawless and
Robert, 2001]. This approach used for investigating spatial
patterns of flow structure could be greatly improved using
PCNM and RDA, which can identify and quantify the
spatial dependence of all flow parameters at once, thus
providing an efficient means of summarizing and interpret-
ing the spatial patterns. This paper examines the potential
use of PCNM analysis as a statistical tool for investigating
the spatial-scale dependence of turbulent flow processes as a
complement to traditional analyses. The paper revisits the
turbulent flow data reported by Buffin-Bélanger and Roy
[1998] adjacent to and overtop of a pebble cluster in a
gravel-bed river. Our study furthers the previous work by
explaining and partitioning the variance of the flow param-
eters over four spatial scales, providing a quantification of
the spatially explained variance, and indicating the inter-
correlations among the turbulence variables at each scale.
This leads to new insights into the turbulent flow field
around clusters and protuberant clasts in rivers by suggest-
ing the appropriate scale dependence of the turbulent flow
variables, and demonstrates the potential use of PCNM
analysis for a wider field of application in water resources
studies.

2. Field Measurements and Turbulent Statistics

[8] The collection and processing of the instantaneous
velocity measurements used in our study was described in
detail by Buffin-Bélanger and Roy [1998] and are briefly
summarized here. Velocity measurements were collected
from the Eaton North River, Quebec, Canada, on a stream-
wise x, � vertical y, transect plane with a mean height (H)
above the bed of 0.38 m and a streamwise length of 4.0 m.
The x–y plane crosses through the center of a naturally
formed pebble cluster. The crest of the cluster is located at
x = 0.77 m (Figure 1) and has a height (hs) of 0.20 m.
Electromagnetic current meters (ECMs) were used to
collect instantaneous streamwise u and vertical v velocity
measurements at a sampling frequency of 20 Hz. The
present study consists of 29 vertical profiles (the two most
upstream profiles of the original 31 were omitted due to
their inconsistent separation distances). Each profile con-
tains six to 13 vertical measurement locations (Figure 1).
In total, the data set consists of 340 velocity time series of
60 s duration. Each time series corresponds to a point on
the sampling grid of Figure 1. The spacing between
measurements along the vertical profiles is 0.02 m (with
the exception of two offset grid points at x = 1.1 m), while
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spacing in the streamwise direction varied from 0.1 to
0.15 m.
[9] The mean downstream velocity (U ), where the over

bar represents averaging over time, for the x–y plane is
0.28 m s�1 resulting in a Reynolds number Re of 8.0 � 104,
which indicates a fully turbulent regime. Buffin-Bélanger
and Roy [1998] investigated and presented a set of 22 flow
variables. These consisted of mean and turbulent statistics,
and ratios between some of the flow variables. For the
current study, we selected a subset of 15 variables to be used
as response variables in the PCNM analysis. This subset
was selected on the basis that they covered a range of spatial
patterns and scales in order to properly test the PCNM
method without introducing excessive redundancy between
the variables. As such, the flow variables included mean
flow statistics (U , V ); second-order moment statistics (root-
mean-square values, u0 and v0) which are a measure of the
turbulent intensity and had been shown by Buffin-Bélanger
and Roy [1998] to exhibit broad-scale spatial patterns; and
the third-order moment (skewness, Sku and Skv). Skewness
is a measure of the asymmetry of the velocity distribution,
and it reveals the presence of high-magnitude events within
the velocity signal [Buffin-Bélanger and Roy, 1998]. For
example, a positive Skv indicates intermittent, infrequent
events of vertical velocity directed toward the surface.
Previous boundary layer studies have observed near-bed
velocity distributions to be positively skewed [Grass, 1971].
[10] We have also included the average statistics of

turbulent events such as the percent of time (T) and the
frequency (f) of low-speed flow ejections (Q2) and high-speed
sweeps (Q4). Event statistics are estimated by conditionally
sampling the fluctuating component of the velocity signals
following Lu and Willmarth [1973]. Ejections (quadrant 2)
are defined by negative u and positive v excursions from the
mean, while sweeps (quadrant 4) are defined by positive u
and negative v excursions. Following Lu and Willmarth
[1973], a threshold hole size, Th = juvj/u0v, was used to
distinguish between stronger, more energetic, events (Th = 2)
and all events (Th = 0). The terminology for ‘‘hole’’
corresponds to the more quiescent contributions which are
obtained by subtracting events estimated with Th = 2 from
those estimated with Th = 0. Ejections and sweeps are a
common feature of turbulent flows over smooth and rough

boundaries [Grass, 1971], and contribute to the bulk of the
positive Reynolds shear stress [Williams et al., 1989]. The
event statistics displayed a more localized spatial pattern
than the mean turbulent statistics previously mentioned.
Mean Reynolds shear stress (�ruv) and integral timescale
(ITSu, ITSv) obtained from the autocorrelation functions of
the streamwise and vertical velocity time series were also
included. The mean shear stress is a measure of the mean
turbulent momentum exchange at a sampling location, and
ITS is a rough measure of the interval over which velocities
are autocorrelated, giving an estimation of the size of
turbulent coherent structures.
[11] The spatial mean values for the time-averaged tur-

bulent statistics, event statistics, and integral timescales are
presented in Table 1. Further details on the methods for
estimating these variables are presented by Buffin-Bélanger
and Roy [1998]. The spatial distributions of the standard-
ized values (z-scores) of the 15 flow variables are presented
in Figure 2. By investigating each subfigure as in the work
by Buffin-Bélanger and Roy [1998], clear spatial patterns
emerge. For instance, large patches of high u0 and v0, �ruv
are observed in the wake of the pebble cluster. The spatial
patterns of TQ4Th:0 and TQ2Th:2 are patchier, with some
better defined trends showing higher values in the wake of
the cluster advecting toward the water surface with distance
downstream from the cluster increases. While these and
other general spatial patterns were described by Buffin-
Bélanger and Roy [1998], they remain qualitative observa-
tions, and investigating each variable sequentially is
cumbersome and does not lead to a global view where the
interactions between the variables are fully exploited. To do
so requires a multivariate approach that can deal simulta-
neously with the interrelations between the flow variables
and with the spatial components of the data.

3. PCNM Statistical Analysis

[12] The PCNM technique is used to explain the spatial
dependence and patterns of distributed variables over a
sampling grid. The advantage of the PCNM technique is
that the explained variance can be explicitly estimated for
each spatial scale. The PCNM variables (PCNMs) are
obtained by principal coordinate analysis (PCoA) of a

Figure 1. Sampling x–y transect plane with measurement
points (dots). Modified from Buffin-Bélanger and Roy
[1998].

Table 1. Spatial Means and Standard Deviations of the Flow

Variables

Variable Mean SD

U , m s�1 0.28 0.11
V , m s�1 0.00 0.01
u0, m s�1 0.05 0.01
v0, m s�1 0.04 0.01
�ruv, N m�2 0.60 0.66
Sku, m

3 s�3 0.15 0.38
Skv, m

3 s�3 0.02 0.27
TQ2Th:0, % 29.62 3.44
TQ4Th:0, % 28.58 3.82
TQ2Th:2, % 2.62 1.42
TQ4Th:2, % 2.95 1.27
fQ2Th:2, s

�1 0.34 0.13
fQ4Th:2, s

�1 0.40 0.13
ITSu, s 0.79 0.46
ITSv, s 0.31 0.20
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Figure 2. The x–y transect plot of standardized values (z-scores) of the mean and turbulent flow
statistics: (a) U , (b) V , (c) u0, (d) v0, (e) �ruv, (f) Sku, (g) Skv, (h) TQ2Th:0, (i) TQ4Th:0, (j) TQ2Th:2,
(k) TQ4Th:2, (l) fQ2Th:2, (m) fQ4Th:2, (n) ITSu, and (o) ITSv. Positive values are represented by solid
circles, and negative values are represented by open circles. Circle size indicates relative magnitude. Flow
is from left to right. Modified from Buffin-Bélanger and Roy [1998].
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truncated pair-wise geographical Euclidian distance matrix
among the sampling points. PCNM variables are thus
orthogonal to one another (null scalar product). PCNMs
are sinusoidal and of decreasing periods, and as such they
can be grouped into submodels corresponding to different
scales. Selecting the number of submodels to use and the
scale associated with each one (i.e., large, medium, and
fine) is a subjective process based on the objectives of the
analysis (the level of detail desired) and the similarity
between the significant PCNM periods. Once the submodels
are constructed, they are used as explanatory variables in
RDA. The sinusoidal property of the PCNM variables bears
some resemblance to spectral analysis using a Fourier
transformation of the autocorrelation function and wavelet
analysis. Wavelet analysis is often used to decompose time
series into time-frequency space to determine both the
dominant modes of variability and how those modes vary
in time. Similarly, PCNM analysis fits the grouped sinusoi-
dal PCNM variables to response variables. Here spatial data
are used, obtaining a decomposition describing the domi-
nant modes of variability, as well as their spatial variation.
Furthermore, PCNM analysis quantifies the fit by an R2

statistic within each scale. RDA is more interesting than
multiple regression because it can analyze several response
variables in a single analysis, and display graphically their
regressed interrelationships. In RDA, each canonical ordi-
nation axis corresponds to a direction in the response
variable space that is maximally correlated to a linear
combination of the explanatory variables. The orthogonal
nature of the PCNM variables means that the variance
explained by each PCNM submodel is unique and additive.
The total explained variance can therefore be partitioned
among the different PCNM submodels, or spatial scales.
[13] The main constraint for applying a PCNM analysis is

that best results are obtained when using a uniform sam-
pling grid with equally spaced x and y. Small irregularities
in the sampling grid result in an inability to explain the
finer-scale spatial structures. As the variation between
sampling point distances increases, the ability of the PCNM
technique to resolve the finer-scale spatial structures is
compromised (i.e., increases in the sample grid irregularities
result in an inability to explain larger and larger fine-scale
spatial structures). In the present analysis, the vertical
heights were multiplied by a factor of 7.65 to achieve a
roughly regular grid pattern between the streamwise and
vertical sampling points. This adjustment allowed the finer-
scale variation measured in the vertical dimension to be
retained and analyzed. Irregularities at the sampling grid
boundaries due to the nonhomogeneous bed and the pebble
cluster could not be avoided, and resulted in a loss of fine-
scale spatial explanation.
[14] Figure 3 illustrates the various steps involved in

producing the PCNM variables from the x–y sampling
points following PCNM analysis theory [Borcard and
Legendre, 2002]. A Euclidean distance (D1) matrix was
calculated for all possible distances between sampling
locations (Figures 3a and 3b) using the modified coordi-
nates. The D1 matrix was truncated at a threshold distance
(dt) which was equal to or larger than the minimum
between-site connection distance corresponding to the dis-
tance that kept all sampling locations connected together in
a network. Using hierarchical, single-linkage, agglomerative

cluster analysis, the appropriate dt was estimated to be
0.17 m. Unfortunately, because of the inherent irregularities
in the x–y sampling grid that were imposed from the irregular
bed topography, truncating the D1 matrix at 0.17 m resulted
in highly disrupted and distorted PCNM variables. This
distortion influenced the amplitude, phase, and period of the
sinusoids, thereby complicating their interpretation as the
PCNMs bear structures at several scales [Borcard and
Legendre, 2002]. The distortion decreased as dt was in-
creased, but by increasing dt, the explanation of fine-scale
variability was compromised, because inherently PCNM
variables are unable to explain any spatial variance at scales
less than dt [Legendre and Borcard, 2006]. The minimum
value which produced the fewest singularities was dt =
0.35 m, a value approximately twice as large as the dt
calculated with the cluster analysis. Consequently, any
spatial structure occurring in the flow variables at scales
below this threshold (Dx < 0.35 m andDy = 0.046 m) could
not be explained by our analysis, where Dx and Dy
represent the physical length scales in the streamwise and
vertical directions, respectively. This constraint should be
kept in mind when designing new studies.
[15] Distances between sampling points above dt were set

to a value (dm = 1.4 m), which is 4 times higher than dt
(Figure 3c), in order to retain only the distances smaller than
dt between neighboring sites (sampling points) within the
D1 matrix [Borcard et al., 2004]. The eigenvalues and
principal coordinates (eigenvectors) of the truncated D1

matrix were obtained using PCoA (Figure 3d). Of the 340
eigenvalues obtained, 180 were positive. A forward selec-
tion permutation procedure from the CANOCO program
[ter Braak and Smilauer, 2002] was used to determine
which PCNMs explained a significant (a = 0.01) level of
variation in the flow variables. Twenty-nine significant
PCNMs were identified, and they were subjectively classi-
fied into four submodels according to the scales of their
respective periods: very large scale (VL), large scale (L),
medium scale (M), and fine scale (F). One PCNM from
each class is presented in Figure 3e. The PCNMs can be
seen as a series of two-dimensional (2-D) sinusoidal curves
of decreasing periods.
[16] The largest detectable scale, which is linked to the

period of the first PCNM, is dictated by the spatial extent
of the farthest sampling locations. For instance, when
computed from a distance matrix corresponding to n equi-
distant objects arranged as a straight line, the largest period
is equal to n + 1 [Borcard and Legendre, 2002]. From
Figure 3e, the streamwise period of PCNM 1 can be
estimated as x � 4 m, while the period of PCNM 13 is
x � 0.6 m. The physical length scales, Dx and Dy,
associated with each PCNM class were estimated from the
mean half-period of the grouped PCNMs. Dx and Dy are
presented in Table 2 along with the range and number of
PCNMs included per class. As indicated in Table 2, the
maximum streamwise scale is around 5.3H, and the mini-
mum streamwise scale is equivalent to the flow depth
(1.0H); the mean flow depth is H = 0.38 m. Any streamwise
spatial variation in the data occurring at scales above and
below these thresholds could not be resolved by our analysis.
[17] The PCNM submodels were used as explanatory

(independent) variables in multiple regressions and canoni-
cal RDA (Figure 3f) for the turbulent flow data obtained
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from Buffin-Bélanger and Roy [1998] and listed in Table 1.
The flow variables were standardized, and both the multi-
ple regressions and the RDA were computed using the
CANOCO program [ter Braak and Smilauer, 2002]. The
global model (containing 180 PCNMs) and all canonical
axes of the submodels were tested for significance (a = 0.01)
using 999 Monte Carlo unrestricted permutations. The sig-
nificant ‘‘fitted site scores’’ from each submodel were
plotted on the sampling point coordinates, thus providing a
means to interpret the spatial patterns of the results at each
scale. The ‘‘fitted site scores’’ are the values obtained from
the RDA. The term ‘‘fitted site scores’’ is commonly used in
canonical analysis; it designates the principal components of
the table of fitted values of the multiple regressions. ‘‘Fitted
site scores’’ are calculated by multiplying the canonical
eigenvectors by the fitted response variables. The spatial
patterns and relative magnitude of each correlated flow

variable can be directly interpreted from these plots. Scat-
terplots of the RDA eigenvectors focusing on the correla-
tions between the fitted response variables are also presented
to give information on the correlations between the turbulent
statistics at each submodel scale.

Figure 3. Methodology for developing principal coordinates of neighbor matrices (PCNM) variables.
(a) Example of sampling locations with Euclidian links between coordinates. (b) Euclidian distance (D1)
matrix. (c) Truncated D1 matrix (neighboring matrix) truncated at dt = 1.0 by dm. (d) Principal coordinate
(eigenvector) matrix, indicating positive, zero, and negative eigenvalues. (e) Examples of PCNMs
(positive eigenvalued principal coordinates) representing very large scale (PCNM 1), large scale
(PCNM 5), medium scale (PCNM 13), and fine scale (PCNM 37). The size of the circles is proportional
to the magnitude of the PCNM variable values (positive values solid). Flow is from left to right.
(f) Response (flow) matrix and explanatory (PCNM) matrix used in multiple regression and canonical
analysis. Modified from Borcard and Legendre [2002].

Table 2. Scale Classification of the Significant PCNM Variablesa

Scale
PCNM
Range

Number of
PCNMs

Physical Scale, m

Dx/H Dy/H

Very large (VL) 1–2 2 5.3 1.0
Large (L) 3–10 8 2.6 0.5
Medium (M) 11–21 10 1.6 0.3
Fine (F) 22–58 9 1.0 0.14

aH = 0.38 m is the mean flow depth.
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[18] The contribution of the independent variables (global
PCNM model or PCNM submodels, in the present study) to
the explanation of the response variables is given by the
bimultivariate redundancy statistic (or canonical R2) and its
adjusted form, the adjusted bimultivariate redundancy sta-
tistic (or adjusted canonical R2, Ra

2). The adjusted form is
corrected for the explanation that would be provided by the
same number of random explanatory variables measured
over the same number of observation points. The correction
formula is the same as for the adjusted coefficient of
multiple determination in multiple regression [Ezekiel,
1930]. The canonical R2 can also be computed as the sum
of the RDA canonical eigenvalues divided by the total
variance in the array of standardized response variables.
Because of the adjustment, the sum of the submodels Ra

2

does not equal the Ra
2 of all PCNM variables.

4. Results

[19] In the following, results of the RDA performed on
the global model using all 180 PCNMs (positive eigenval-
ues) are discussed and compared with the explained vari-
ance obtained using a more traditional trend surface
analysis. The RDA and the multiple regression results
performed on the four submodels are presented. The spatial
decomposition of the explained variance is presented by
plotting the ‘‘fitted site scores’’ of each significant RDA
canonical axes. The correlations between flow variables for
each submodel are discussed using eigenvector scatterplots.

4.1. Global PCNM Model RDA

[20] The global RDA based on 180 PCNMs explains a
significant portion of the variance of the mean and turbulent
flow statistics. The adjusted bimultivariate redundancy

statistic, Ra
2, is Ra

2 = 0.58 with an F statistic of 3.64 and
an associated p < 0.001. The significantly large portion of
the explained global variance clearly indicates the spatial
dependence of the flow field parameters. For comparison
purposes, an RDA was performed on the flow variables
using a third-order polynomial created from the x–y sam-
pling location coordinates. While the explained variance of
the trend surface analysis was much lower (Ra

2 = 0.34, F =
20.5, p < 0.01) than for the PCNM analysis, this technique
was still able to demonstrate the presence of a large-scale
spatial pattern. Yet further interpretation is limited due to the
highly correlated terms which prevent the modeling of
independent structures at different scales [Borcard and
Legendre, 2002].

4.2. PCNM Submodels RDA

[21] The results of the RDA performed using the four
PCNM submodels indicate an unequal partitioning of the
global variance between scales: VL, Ra

2 = 0.17; L, Ra
2 = 0.24;

M, Ra
2 = 0.06; and F, Ra

2 = 0.02. All submodels were
significant at a = 0.01. The partitioned Ra

2 values indicate
that a substantial portion of the variation of the mean and
turbulent flow statistics is explained by the models at very
large and large spatial scales; these scales are of the order of
Dx = 5.3H � 2.6H and Dy = 1.0H � 0.5H. The medium-
scale and fine-scale submodels explain much smaller por-
tions of the variation. These results are perhaps related to
previous observations indicating that turbulent flow in
gravel-bed rivers organizes itself into large depth-scaled
coherent structures [Shvidchenko and Pender, 2001; Roy et
al., 2004] which are surrounded by small-scale isotropic
random eddies [Townsend, 1976]. Our results suggest that
the turbulent flow variables contain a high spatial depen-
dence, while at smaller scales the turbulent flow variables
are more randomly distributed. The lack of spatial structure
in the finer-scale submodels may also be caused by the poor
resolution of finer scales due to the irregular sampling grid
and the dt used. While depth is a more commonly used
variable for scaling turbulent coherent structures, the VL-
and L-scale spatial scales could also be scaled by roughness
element height (hs) Dx = 10hs � 5hs and Dy = 2hs � 1hs.
The simple relationship between the VL and L scales and
roughness element height supports previous work by
Kirkbride [1993] suggesting the dependence of the shed-
ding spatial patterns on bed roughness elements.

4.3. PCNM Submodel Multiple Regressions

[22] A multiple regression was conducted on each flow
variable in order to isolate the response of individual flow
variables by submodel. The unadjusted coefficient of mul-
tiple determination (R2) represents the explained variation
of the response variables by the PCNM submodel and
provides a global account of the fit of each model. Details
about the variance explained by each PCNM submodel, for
each individual flow variable, are presented in Figure 4. The
PCNM analysis summed over all scales explains nearly
80% of the spatial variation in U , u0, v0, and �ruv, with 75%
being explained by the VL- and L-scale submodels. In other
words, large-scale flow patterns are responsible for 75% of
the variance in U , u0, v0, and �ruv. This finding is com-
parable to that of Liu et al. [2001], who found, through
POD, that large-scale motions with length scales, Dx > 1.6H

Figure 4. Fraction of explained variance (unadjusted
coefficient of multiple determination, R2) for individual
mean and turbulent flow variables, for each significant
PCNM submodel (p < 0.05): very large scale (VL), large
scale (L), medium scale (M), and fine scale (F).
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and Dy = 0.3H � 2H, contained 50% of the total turbulent
kinetic energy and two thirds to three quarters of the
Reynolds shear stress at Re = 5300 � 30 000. Their
laboratory experiments were conducted on a smoothed wall
rectangular channel and demonstrated the similarities of
large-scale motions over smooth- and rough-walled flows.
The R2 for U is more than twice as large as that of V . This
is perhaps due to the influence of the pebble cluster on the v
component velocity which generally has weaker spatial
correlations than the u component [Nakagawa and Nezu,
1981]. The variance in V is explained in approximately
equal portions by the VL, L, and M scales, indicating an
equal superposition of scales within the x–y plane. Slightly
more variance is explained for v0 than is for u0 and similarly
more variance is explained for ITSv than for ITSu. This is
seen in the z-score plots, as well (Figure 2), where the
spatial patterns of v0 and ITSv are more regular than those of
u0 and ITSu, respectively. While this result is counterintui-
tive, given the v component’s weaker spatial correlations, it
indicates that the v component turbulent statistics are
influenced in a more spatially uniform manner by the pebble
cluster than their u component counterparts.
[23] We expected the medium- and fine-scale submodels

to explain a greater percentage of their variability, given that
we specifically included turbulent statistics of higher
moments (i.e., Sku) and of more localized variability (ITSu)
in our flow parameter data set. The R2 values for the M- and
F-scale submodels are inconsistently distributed between
these turbulent variables and do not explain as much of the
variability as the larger-scale submodels. It is possible that
the resolution of the F-scale PCNMs was too coarse to pick
up the fine-scale details where structures had periods too
short to be represented. The higher minimum truncation
distance and irregular sampling grid may have resulted in
the distortion of the finer-scale PCNM variables resulting in
a loss of fine-scale resolution.

4.4. Spatial Decomposition and Intercorrelation of
PCNM Submodel Flow Variables

[24] Using the multivariate analysis of all flow variables,
we mapped the ‘‘fitted site scores’’ of each significant
canonical axis for the four submodels investigated
(Figure 5). All canonical axes presented are significant at
a = 0.01 with the exception of the M-scale canonical axis 2
which is significant at a = 0.05. These maps provide a
spatial decomposition of the explained variance for each
axis and allow for the perception of spatial patterns within
the data. The Ri

2 bar graphs included on the right-hand side
of Figure 5 indicate the unadjusted fraction of variance
explained for each response variable. Since the canonical
axes are orthogonal, the fractions of variation they express
(Ri

2, where i is the canonical axis index) are linearly
independent of one another. Table 3 provides a summary
of the unadjusted Ri

2 values for each flow variable expressed
by the significant canonical axes of each submodel. The
unadjusted coefficients of multiple determination, R2,
obtained from all 29 significant PCNMs are, as well,
included in the far right hand column of Table 3.
4.4.1. Very Large Scale Submodel
[25] The ‘‘fitted site score’’ plots of the VL-scale sub-

model, Figures 5a and 5b, display a depth-scale spatial
pattern of Dx = 5.3H and Dy = 1.0H within the turbulent

flow variables. These scales are strikingly similar to the
large-scale flow structures found in previous studies
[Shvidchenko and Pender, 2001; Roy et al., 2004]. Values
of u0, �ruv, Sku, Skv, TQ4Th:0, TQ2Th:2, and fQ2Th:2 are
strongly expressed by the first canonical axis (Figure 5a)
while U and v0 are strongly expressed by the second
canonical axis (Figure 5b). The first canonical axis indicates
that high values of u0, �ruv, Skv, TQ4Th:0, TQ2Th:2, and
fQ2Th:2 and low-magnitude Sku occur in a large region above
and adjacent to the cluster between x = 0.35 and 1.5 m; the
inverse trend occurs farther downstream between x = 2.1 and
3.7 m. The second canonical axis reveals a zone of low U
and high v0 between x = 1.3 and 2.6 m. Farther downstream
between x = 2.6 and 4.0 m, this trend is reversed. Differences
between u0 and v0 indicate that u0 is of greater magnitude near
the pebble cluster, while v0 is larger farther downstream. The
elevated fQ2Th:2, positive Skv, and negative Sku in the near-
wake are an indication of ejecting structures, while down-
stream, the reverse skewness trend indicates high-speed
sweeps in the x = 2.1 to 3.7 m range.
[26] The eigenvectors for the VL scale (Figure 6a) reveal

high correlation between u0 and �ruv, and TQ4Th:0 and
TQ2Th:2. U is negatively correlated with V and displays a
near-zero correlation with u0 and �ruv. The inhomogeneous
bed and the turbulence generated in the recirculation and
shedding zones in the near-wake of the pebble cluster [Buffin-
Bélanger and Roy, 1998] are likely responsible for disrupting
the large-scale spatial correlation between U and u0.
4.4.2. Large-Scale Submodel
[27] The large-scale PCNM submodel explains the great-

est fraction of the variance in the flow data. The physical
scale of this submodel Dx = 2.6H and Dy = 0.5H is still
within the range of sizes described as large-scale structures
in previous studies [Liu et al., 2001; Nakagawa and Nezu,
1981]. Most of the explained variance is expressed by the
first canonical axis (R1

2 = 0.16). The fraction of R1
2 expressed

by individual flow variables (Figures 5c–5f) differs slightly
from the VL-scale submodel. U , u0, v0, �ruv, TQ2Th:0,
TQ4Th:2, and fQ4Th:2 are strongly expressed by the first axis.
Sku and U are strongly expressed by the second (R2

2 = 0.13)
and the third (R3

2 = 0.1) canonical axes, respectively. The
PCNMs of the L-scale submodel vertically discriminate
scales of 0.5H and, as such, are better able to distinguish
spatial patterns which bisect the water column. Conversely,
the VL-scale submodel was restricted to investigating
depth-scale structures (Dy = 1.0H).
[28] The maps of the ‘‘fitted site scores’’ of the first

canonical axis (Figure 5c) show zones of increased magni-
tude U and positive V overtop (stoss side) of the pebble
cluster and in the far-wake (x = 0.7–2.8 m). In the upstream
zone, the flow constriction induced by the pebble cluster
causes a suppression of the turbulence statistics as flow is
forced overtop of the cluster [Buffin-Bélanger and Roy,
1998]. The far-wake is characterized by fluid upwelling
[Buffin-Bélanger and Roy, 1998]. These characteristic zones
were discussed by Buffin-Bélanger and Roy [1998], and
through the current analysis are related to large-scale
turbulent flow structures. Between these two zones lies
the near-wake region (x = 0.8 m to 2.2 m) which consists
of a recirculation and eddy shedding zone [Buffin-Bélanger
and Roy, 1998]. The recirculation zone is found here to be
characterized by large-scale patterns of low magnitude U ,
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high magnitude u0, v0, �ruv, and a dominance of smaller
magnitude ejections (TQ2Th:0) and high magnitude sweeps
(TQ4Th:2). The PCNM technique was able to clearly show
the division (shearing) caused by the shedding/recirculation

zone and the overlying fluid. The shear layer is initiated at
the crest of the pebble cluster and is inclined toward the
water surface. The second axis (Figure 5d) explains much of
the variance in the distal downstream portion of the x–y

Figure 5. Significant canonical axes of the ‘‘fitted site scores’’ (p < 0.05) plotted on the sampling
location coordinates: (a) VL-axis1, (b) VL-axis2, (c) L-axis1, (d) L-axis2, (e) L-axis3, (f) L-axis4, (g) M-
axis1, (h) M-axis2, and (i) F-axis1. Positive values are represented by solid circles. The right-hand bar
graphs present the fraction of variance for each flow variable explained by the canonical axes (open =
negative correlations, solid = positive). Flow is from left to right.
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transect, where high-magnitude Sku occurs in the upper
water column, indicating infrequent events of accelerated
fluid which coincide with the high-magnitude sweeps (Q4
events) also indicated by the analysis. The trend is reversed
closer to the bed in the distal zone. Canonical axis 3
indicates elevated U upstream of the cluster and higher in
the water column, and all variables are only weakly
explained by canonical axis 4. The between variable corre-

lations (Figure 6b) are similar to those discussed for the VL
scale. While the VL-scale plot indicates a much higher
correlation between u0 and �ruv than between v and �ruv,
the L-scale plot shows a near equal correlation between u0/v0

and �ruv.
4.4.3. Medium-Scale Submodel
[29] The PCNMs of the medium-scale submodel have

multiple periods over the x–y transect plane in the stream-

Figure 5. (continued)

Table 3. Estimated Fractions of Unadjusted Variance (Ri
2) of Flow Variables Expressed by Significant Canonical Axesa

Very Large Scale Large Scale Medium Scale Fine Scale All Scales

R1
2 R2

2 R1
2 R2

2 R3
2 R4

2 R1
2 R2

2 R1
2 R2

U 0.01 0.30 0.27 0.01 0.10 0.05 0.01 0.02 0.03 0.88

V 0.08 0.05 0.06 0.03 0.00 0.00 0.00 0.11 0.01 0.51

u0 0.23 0.06 0.26 0.07 0.00 0.01 0.08 0.00 0.02 0.78
v0 0.04 0.32 0.27 0.00 0.08 0.05 0.04 0.03 0.00 0.88
�ruv 0.22 0.07 0.41 0.01 0.00 0.02 0.06 0.00 0.02 0.82
Sku 0.15 0.01 0.04 0.13 0.00 0.00 0.01 0.01 0.05 0.48
Skv 0.11 0.03 0.01 0.00 0.04 0.02 0.12 0.00 0.01 0.39
TQ2Th:0 0.01 0.04 0.31 0.01 0.03 0.01 0.00 0.00 0.00 0.51
TQ4Th:0 0.26 0.00 0.09 0.03 0.07 0.00 0.11 0.00 0.06 0.63
TQ2Th:2 0.25 0.00 0.02 0.09 0.02 0.01 0.07 0.00 0.08 0.56
TQ4Th:2 0.01 0.05 0.29 0.07 0.03 0.00 0.01 0.00 0.00 0.56
fQ2Th:2 0.16 0.01 0.00 0.08 0.03 0.01 0.08 0.00 0.06 0.46
fQ4Th:2 0.00 0.05 0.28 0.05 0.03 0.01 0.00 0.01 0.00 0.52
ITSu 0.01 0.02 0.03 0.01 0.00 0.06 0.01 0.01 0.01 0.21
ITSv 0.02 0.07 0.01 0.00 0.05 0.04 0.00 0.08 0.03 0.36
Canonical eigenvalue 0.10b 0.07b 0.16b 0.04b 0.03b 0.02b 0.04b 0.02c 0.02b

aOnly significant canonical axes of each submodel are presented. The bottom row presents the unadjusted canonical eigenvalues (li) of each significant
axis (li are estimated as the mean Ri

2 value for all 15 response variables); and the far right column presents the unadjusted coefficients of multiple
determination (R2) using all 29 significant PCNMs. Monte Carlo significance test (999 unrestricted permutations).

bHere p � 0.01.
cHere p � 0.05.
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wise and vertical directions, producing a ‘‘checkerboard’’
pattern. The variance explained by this scale is between
Dx = 1.6H and Dy = 0.3H. The R1

2 expressed by individual
flow variables is much smaller than for the two larger
scales; only two variables, Skv and TQ4Th:0, are moderately
expressed (Figure 5g). The shedding/recirculation zone
identified at the larger scales is further subdivided into
two distinct zones. The overlying shedding zone with
elevated medium-scale turbulent statistics (positive Skv
and elevated TQ4Th:0) initiates at the tip of the pebble
cluster, while the recirculation zone below is characterized
by decreased turbulent statistics at the medium scale. The
second canonical axis explains pockets of elevated V and
ITSv directly above the pebble cluster (Figure 5h). These
two variables are also highly correlated at the medium scale,
as shown by the eigenvector plot (Figure 6c). The plot also
indicates a tighter grouping of turbulent statistics than for

the two larger scales, where u0, Skv, �ruv, TQ2Th:2, TQ4Th:0,
and fQ2Th:2 are closely correlated.
4.4.4. Fine-Scale Submodel
[30] All flow response variables are weakly expressed at

the F scale (Figure 5i), perhaps indicating that the resolution
of the F-scale PCNMs (constrained by the selected dt) is too
coarse to pick up the fine-scale details. The larger residual
variance in the higher moment and more localized turbulent
statistics supports this point. The pattern of scatter in the
plotted ‘‘fitted site scores’’ for the F-scale submodel
(Figure 5i), which we include for completeness, is difficult
to interpret. The effects of the irregular sampling grid
preferentially distort the smaller-scale PCNMs and could
be a factor for the apparent random patchiness. On the other
hand, the random patchiness observed may have a physical
basis in terms of turbulence theory, where at small scales,
turbulent motion tends toward local isotropy [Townsend,

Figure 6. Eigenvector scatterplots. Canonical axis 1 is the abscissa, while canonical axis 2 is the
ordinate: (a) very large scale, (b) large scale, (c) medium scale, and (d) fine scale.
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1976]. The apparent randomly scattered values of Figure 5i
may represent fine-scale random autocorrelation between
neighboring sampling locations.

5. Discussion

[31] Herein the PCNM method provides a powerful
means of describing multivariate spatial patterns within
the turbulent flow data. The turbulent flow field over very
rough boundaries appears to be well organized at a range of
scales identified and quantified by the PCNM analysis. The
technique was able to decompose and summarize the
complex interrelations of the flow variables over a range
of scales. The explanation of 75% of the variation in the
standard turbulent parameters u0, v0, and �ruv by spatial
descriptors of Dx = 5.3H � 2.6H and Dy = 1.0H � 0.5H
indicates that the turbulent energy and shear stress form
consistent, large-scale spatial patterns under the influence of
a pebble cluster. The relative importance of the large-scale
modes is consistent with previous smooth-walled POD
studies [Liu et al., 2001] and highlights the similarities
between smooth- and rough-walled flows. Previous studies
comparing smooth- and rough-wall boundary layers have
shown that in the outer boundary layer, y/H > 0.2, turbulent
intensities and macrolength scales are weakly effected by
roughness size [Grass, 1971; Nezu and Nakagawa, 1993].
Both smooth and rough boundary layers produce sweep and
ejection events, irrespective of the surface roughness, even
though their generation mechanisms close to the bed are
different (as no viscous sublayer is present in rough bound-
ary layers), and it has been found that both types of
boundary layers are scaled by roughness size [Grass and
Mansour-Tehrani, 1996; Smith, 1996]. Large-scale coherent
structures are a common feature of turbulent flows
[Shvidchenko and Pender, 2001; Roy et al., 2004], and
have been found to be little affected by the shedding
vortices of large roughness elements [Lacey and Roy, 2007].
[32] The large-scale patterns observed in our study are

determined from the spatial distribution of time-averaged
flow parameters and, as such, are not equivalent to the
depth-scale, time-dependent, coherent flow structures
reported in previous studies based on the analysis of
turbulent events [Shvidchenko and Pender, 2001; Roy et
al., 2004]. Yet the similar scaling suggests that flow depth is
the limiting scale for both the spatial patterns of turbulent
properties and the large-scale coherent turbulent structures.
The dependence of the spatial patterns of the flow param-
eters on the heterogeneous bed is implied by the simple
relationship of the VL- and L-scale PCNM submodels with
pebble cluster height (Dx = 10hs � 5hs and Dy = 2hs �
1.0hs). The streamwise spatial extent of the L-scale sub-
model is equal to the distance estimated in experiments by
Best and Brayshaw [1985] from their roughness element to
the reattachment point. The high explanation of flow
variables at the L scale is perhaps due to the clear distinction
between patterns occurring within and outside of the pebble
cluster wake zone. The direct cluster height scaling supports
the view that the general flow structure can be linked to the
spatial distribution of roughness elements on the river bed
[Clifford et al., 1992].
[33] The observations made from the ‘‘fitted site scores’’

regarding the spatial differences between u0 and v0, and the
inverse relationship between Skv and Sku, were similarly

interpreted by Buffin-Bélanger and Roy [1998] and can be
seen to some degree in the z-score turbulent flow plots
(Figures 2c, 2d, 2f, and 2g). Buffin-Bélanger and Roy
[1998] gave general descriptions of the turbulent flow
variable spatial patterns but were unable to give scale-
dependent, quantitative results. Through PCNM analysis,
we are able to estimate the proportion of variances (R1

2)
associated with each flow variable at each spatial scale. The
L-scale PCNM submodel clearly shows the division caused
by the shedding/recirculation zone and the overlying fluid,
and the M-scale PCNM submodel provides further detail on
the shedding/shear layer. While similar spatial patterns were
observed by Buffin-Bélanger and Roy [1998], PCNM anal-
ysis quantifies and efficiently summarizes the dependent
turbulent parameters associated with these spatial patterns
(i.e., high u0, v0, �ruv, TQ2Th:0, TQ4Th:2, and fQ4Th:2 at the
L scale (Figure 5c), and high Skv and TQ4Th:0 at the M scale
(Figure 5g)).
[34] Plotting the ‘‘fitted site scores’’ is an advantage of

this multivariate analysis because it provides an effective
means of summarizing the numerous flow variables into
a single plot (at each scale), as well as provides a means
of determining which variables are strongly or weakly
expressed. Large-scale spatial patterns of the strongly
expressed variables can be readily identified from the
‘‘fitted site scores’’ plots. These large-scale patterns are, in
some instances, difficult to distinguish on the z-score plots
(Figure 2) due to the superposition of smaller-scale turbu-
lent patterns. An additional advantage of the PCNM tech-
nique is that correlations between flow variables at each
scale can be investigated through eigenvector scatterplots
(Figure 6). These correlations are related to the entire study
area and do not differentiate between different flow regions
(i.e., upstream and downstream of the cluster), yet still give
valuable information on the relationships between flow
variables over different scales. For example, the VL-scale
submodel revealed high correlation between u0 and �ruv,
while the L-scale and M-scale submodels estimated similar
correlations between u0 and �ruv, and v0 and �ruv. While
correlations do not indicate a causal link, these results do
indicate that at the largest scales, the Reynolds shear stress
and the u component turbulent energy show a much
stronger interdependence than for the v component.
[35] The main drawback of the PCNM method is the

dependence of the PCNM variables on the uniformity of
the sampling grid (i.e., the greater the inconsistency within
the sampling grid, the greater the loss of fine-scale structure
explanation). When large inconsistencies are present in the
sampling grid, the PCNMs are still orthogonal and properly
describe the sampling space; yet instead of containing
regular sinusoidal waves, individual PCNMs are composed
of sinusoidal waves of multiple scales [Borcard et al.,
2004]. This makes it difficult to partition the PCNMs into
different scales. In our study, a larger truncation distance
was selected to avoid PCNM inconsistencies, and as a
result, the explanation of fine-scale variability was limited.
The more localized, higher moment and event statistics
were much less explained (higher residual variation) than
the larger-scale core turbulent statistics. Understanding this
constraint will help us design future studies.
[36] The PCNM technique illustrated here, using the

characterization of the turbulent flow field, is a powerful
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statistical tool with a much broader application in fluvial
geomorphology. Considering the recent interest in reach-
scale spatial attributes and patterns [Emery et al., 2003;
Clifford et al., 2005], PCNM analysis could provide a new
way of looking at the ecological and physical environmental
variables on a scale basis. For instance, research investigat-
ing the spatial scales and patterns over which physical
habitat units and ecological (biotic) units interact, could
profit from the use of PCNM analysis. Proposed hierarchi-
cal models group physical habitat units such as ‘‘river
styles’’ [Thomson et al., 2001] and ‘‘physical biotopes’’
[Newson and Newson, 2000] at different scales. These
classifications, such as the ‘‘river styles’’ geomorphic chan-
nel classification system [Thomson et al., 2001], can be
quite cumbersome due to the number of parameters required
to place rivers into the correct unit at each scale. Physical
units or flow parameters, which are relevant at one scale, are
not necessarily important to biota at other scales. Hierar-
chical cluster analysis has been used as a spatial statistical
tool to define physical units, yet lacks the differentiation of
patterns between scales [Emery et al., 2003]. PCNM anal-
ysis is a much more powerful technique to provide spatially
explicit and scale-dependent relationships between flow
variables and aquatic species data. These scale-dependent
(hierarchical) spatial patterns could be used to determine the
habitat units important for geomorphologists and ecologists.
Similarly to Clifford et al. [2005], conducting PCNM
analysis on the high-resolution velocity and depth data
estimated by a hydrodynamic model would provide a
powerful appraisal tool for river rehabilitation projects.

6. Conclusions

[37] PCNM analysis successively partitioned the variance
(according to characteristic spatial scales) associated with
the mean and turbulent flow variables calculated from
instantaneous velocities measured over an in situ turbulent
flow field in the presence of a pebble cluster in a gravel-bed
river. The variation was partitioned over four spatial scales:
very large, large, medium, and fine. The full model signif-
icantly explained 58% of the variance in the data (Ra

2), while
the submodels VL, L, M, and F explained significant (a =
0.01) portions of the variance (17%, 24%, 6%, and 2%,
respectively). The PCNM analysis was able to demonstrate
a high spatial dependence within the flow variables and to
quantify the dominant spatial scales and patterns of the core
turbulent variables in the mean and turbulent flow data. The
VL and L scales explained 75% of the variance of the main
turbulent flow indicators u0, v0, and �ruv. The L-scale
submodel explained the largest percentage of the variance
throughout most of the flow variables. Our results suggest
that flow depth and roughness element height are appropri-
ate scales for the time-averaged spatial patterns which were
observed.
[38] The usefulness of the PCNM statistical technique is

that it quantifies the spatial dependence of individual
response variables over a user-defined range of spatial
scales. The method provides a spectral decomposition for
spatially irregular sampling locations which is much more
powerful than currently used methods of quantifying spatial
structure (i.e., trend surface analysis). In our study, the
mapped ‘‘fitted site scores’’ of the PCNM submodels not
only provided similar information to the z-score flow

parameter plots, but also allowed for the quantification of
the explained variance and for the identification of scale
differences within the flow variables. PCNM analysis by
canonical RDA was able to summarize the core spatially
dependent variables in only a few plots, allowing for a rapid
analysis and quantification of spatial patterns. The intercor-
relations among individual response variables at each spatial
scale are illustrated through eigenvector scatterplots. The
technique allows researchers to refine their analysis and to
examine in detail the structure of the data. This is a
considerable advantage over the practice often followed in
analyses of spatial structures in hydrodynamics, where plots
of each flow variable are investigated in turn. The PCNM
technique is a powerful tool to understand the spatial
relations among complicated sets of variables. The present
application to turbulent flow dynamics around a pebble
cluster, a problem of great complexity, illustrates the power
of the method and its potential for a broad range of
applications in water resources and the Earth sciences.
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