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Abstract. A new framework for measuring functional diversity (FD) from multiple traits
has recently been proposed. This framework was mostly limited to quantitative traits without
missing values and to situations in which there are more species than traits, although the
authors had suggested a way to extend their framework to other trait types. The main purpose
of this note is to further develop this suggestion. We describe a highly flexible distance-based
framework to measure different facets of FD in multidimensional trait space from any
distance or dissimilarity measure, any number of traits, and from different trait types (i.e.,
quantitative, semi-quantitative, and qualitative). This new approach allows for missing trait
values and the weighting of individual traits. We also present a new multidimensional FD
index, called functional dispersion (FDis), which is closely related to Rao’s quadratic entropy.
FDis is the multivariate analogue of the weighted mean absolute deviation (MAD), in which
the weights are species relative abundances. For unweighted presence–absence data, FDis can
be used for a formal statistical test of differences in FD. We provide the ‘‘FD’’ R language
package to easily implement our distance-based FD framework.

Key words: functional composition; functional dispersion; functional divergence; functional diversity;
functional evenness; functional identity; functional richness; functional trait; multivariate dispersion.

INTRODUCTION

Functional diversity (FD) is a key driver of ecosystem

processes (Hooper et al. 2005), ecosystem resilience to

environmental change (Folke et al. 2004), and ecosystem

services (Dı́az et al. 2007). This has led to the

development of several indices for measuring FD (e.g.,

Petchey and Gaston 2002, Botta-Dukát 2005). Recently,

Villéger et al. (2008) have proposed three multidimen-

sional functional diversity (FD) indices for continuous

functional traits, each exploring a different aspect of

FD: functional richness (FRic), functional evenness

(FEve), and functional divergence (FDiv). We fully

agree with them that exploring different facets of FD in

multidimensional trait space, as they proposed, offers a

meaningful framework for measuring FD. That being

said, their framework was mostly limited to quantitative

traits without missing values and to situations where

there are more species than traits, although they had

suggested a way to extend their framework to other trait

types. The main purpose of this note is to further

develop this suggestion, highlighting its strengths and

pitfalls.

First, we illustrate how the original framework of

Villéger et al. (2008) can be generalized to a highly

flexible distance-based framework to measure FD from

any distance or dissimilarity measure, any number of

traits (including more traits than species), and from

different types of traits (i.e., quantitative, semi-quanti-

tative, and/or qualitative), while tolerating missing trait

values and allowing the weighting of individual traits.

This is a significant improvement over their original

framework, which could only deal with quantitative

traits, did not allow the use of only one trait or of more

traits than species, did not tolerate missing trait values,

and did not directly allow the weighting of individual

traits.

We also propose a new and intuitive multidimensional

FD index, called functional dispersion (FDis), which

presents several desirable properties. FDis is the mean

distance in multidimensional trait space of individual

species to the centroid of all species; it can account for

species abundances by shifting the position of the

centroid toward the more abundant species and

weighting distances of individual species by their relative

abundances. FDis is the multivariate analogue of the

weighted mean absolute deviation (MAD); this makes

the new index unaffected by species richness by

construction.
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In order for our distance-based FD framework to be

easily implemented, we have developed the ‘‘FD’’ R

language package (available online)4 for computing the

FRic, FEve, and FDiv indices of Villéger et al. (2008)

and our own FDis index under this framework, as well

as three other FD indices: the community-level weighted

means of trait values (CWM; Lavorel et al. 2008), Rao’s

quadratic entropy (Rao 1982, Botta-Dukát 2005), and

functional group richness (FGR) based on a posteriori

functional classifications (Petchey and Gaston 2006).

The flexibility of our distance-based FD framework and

its easy implementation in the ‘‘FD’’ package should

greatly facilitate the measurement of FD for a wide

range of ecological applications.

GENERALIZATION TO A FLEXIBLE DISTANCE-BASED

FUNCTIONAL DIVERSITY (FD) FRAMEWORK

Villéger et al. (2008) suggested that ordination should

be used when there are more traits than species (a

situation that cannot be handled by their functional

richness [FRic] and functional divergence [FDiv] indices)

or when qualitative traits are present. In particular, they

proposed to use the principal coordinate analysis

(PCoA) axes from a Gower dissimilarity matrix (Gower

1971) among the species as the new traits to compute

their FD indices when there are qualitative traits in the

original (species 3 trait) matrix. We add that it is also

useful when some traits are semi-quantitative, when

missing trait values are present, and when individual

traits need to be weighted differently, because the Gower

dissimilarity index can handle all of these situations

(Gower 1971, Legendre and Legendre 1998, Podani

1999).

That being said, Villéger et al. (2008) did not provide

any details on how this approach should be implement-

ed. We believe that this is needed in order to better

highlight its strengths and pitfalls. This is especially

relevant given that the situations already listed here (i.e.,

presence of qualitative and semi-quantitative traits,

and/or missing values) are likely to be common in

functional trait data sets. For example, about one-third

of all plant functional traits from the standard list of

Cornelissen et al. (2003) are qualitative or semi-

quantitative.

The original FD framework of Villéger et al. (2008)

can actually be generalized to a flexible distance-based

FD framework in which (1) any appropriate distance

measure of choice is computed from the (species3 trait)

matrix, (2) this distance matrix is analyzed through

PCoA, and (3) the resulting PCoA axes are used as the

new traits to compute the FD indices. In that view, the

original approach of Villéger et al. (2008) simply

represents the particular case where all traits are

quantitative and where the Euclidean distance is used.

To be fair to them, our distance-based framework is in

line with what they proposed, i.e., to use the (standard-

ized) traits directly to compute FD if all traits are

quantitative, or to use the PCoA axes of a Gower

dissimilarity matrix if some traits are qualitative (in the

Gower dissimilarity, quantitative traits are ranged in the

[0–1] interval instead of being standardized). We simply

highlight that any distance measure can actually be used,

not only the Euclidean distance or the Gower dissim-

ilarity. Although we contend that one of these two

measures (Euclidean and Gower) will be appropriate in

many situations, other measures may be preferred for

particular applications. For example, other dissimilarity

measures can accommodate different types of variables

and missing values (Estabrook and Rogers 1966,

Pavoine et al. 2009).

Such a distance-based framework is not new for the

analysis of ecological data. For example, the use of

PCoA axes as variables has already been presented in

the context of multivariate analysis of variance (Legen-

dre and Anderson 1999) and general discriminant

analysis (Anderson and Robinson 2003). This previous

work has pointed out an important issue that needs to

be considered when using that approach, but which

Villéger et al. (2008) have not mentioned: what should

we do if PCoA returns negative eigenvalues? Indeed,

some distance matrices will not allow the distance

relationships among the objects to be fully represented

in a Euclidean space (Gower 1982). This problem can

result from the use of a semimetric or nonmetric distance

measure or from the presence of missing values

(Legendre and Legendre 1998); it can even arise with

most of the metric distance measures (Gower 1982). In

all these cases, PCoA can return negative eigenvalues.

The corresponding PCoA axes are not real, and

therefore cannot be used as traits to compute FD. If

one ignores these imaginary axes and uses only the ones

with positive eigenvalues, not all the variation of the

original trait data is represented, leading to biased

estimates of FD.

Three correction methods are available (Legendre and

Legendre 1998). The first two consist of adding the

smallest possible constant to either the distances

(Cailliez 1983) or the squared distances (Lingoes 1971,

Gower and Legendre 1986) so that all negative

eigenvalues are eliminated. The third one, which does

not work for all coefficients, consists of taking the

square root of the distances (see Legendre and Legendre

1998: Table 7.2). More details on these corrections

methods can be found in Legendre and Anderson

(1999).

Another potential pitfall regarding the use of PCoA

axes as traits concerns the standardization of traits.

Villéger et al. (2008) suggested standardizing traits in

order to make them dimensionally homogeneous and to

put equal weight to each trait in the estimation of FD.4 hhttp://cran.r-project.org/web/packages/FDi
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This is a sensible suggestion given that we rarely know a

priori if some traits are more important than others. As

such, the R code that they provided (available online)5 to

compute their FD indices automatically standardizes

each trait, without allowing the user to choose otherwise.

However, it is crucial that the PCoA axes are not

standardized prior to the estimation of FD. In a distance-

based approach, if traits are to be standardized, this needs

to be done prior to computing the (species 3 species)

distance matrix. PCoA axes are scaled to lengths equal to

the square roots of their eigenvalues, or in other words to

variances equal to the PCoA eigenvalues divided by (n�
1): the first axis always represents the largest proportion

of variation, while the additional axes represent progres-

sively smaller amounts of variation. Therefore, standard-

izing the PCoA axes prior to the estimation of FD would

give equal weight to each PCoA axis, which in turn would

distort trait space, leading to incorrect estimates of FD. It

would be unfair to blame Villéger et al. (2008) for this

potential pitfall, as they never mentioned whether PCoA

axes should be standardized or not when they are to be

used as traits. However, we believe that their silence on

the issue, coupled with the fact that their code

automatically standardizes traits before computing their

FD indices, could have led users to miscalculate FD. Our

new ‘‘FD’’ package (available online; see footnote 4)

avoids this potential pitfall.

WEIGHTING THE TRAITS

Villéger et al. (2008) have suggested standardizing all

traits to mean 0 and unit variance to give the same

weight to each trait in functional diversity (FD)

estimation. As mentioned previously, this is justified

by the fact that we rarely know a priori which traits are

the most important. Nonetheless, weighting of individ-

ual traits can a useful tool for FD estimation and has

been identified as an important area for future FD

research (Petchey and Gaston 2006). The Gower

dissimilarity index can be programmed to provide

different weightings to descriptors of mixed types, as

suggested by Legendre and Legendre (1998). Our ‘‘FD’’

package (see footnote 4) includes the ‘‘gowdis’’ function

to compute the Gower dissimilarity coefficient, with

options to assign different weights to individual

descriptors and to treat semi-quantitative variables as

described by Podani (1999). This coefficient is the

default used in the ‘‘dbFD’’ function of the ‘‘FD’’

package to measure FD under our distance-based

framework when some traits are semi-quantitative

and/or qualitative, or when weights are specified.

There is at least one obvious case where different

weightings would be required for adequately estimating

FD. When, for a given qualitative trait (e.g., for

flowering plants, pollinator type), an individual species

can have more than one attribute (e.g., bees, flies,

moths), this trait is typically reclassified into as many

binary (0, 1) variables as there are individual attributes

for that trait (e.g., bee pollinated, fly pollinated, moth

pollinated). However, doing so artificially increases the

weight given to that trait relative to other traits. A

sensible solution is to give a weight wi ¼ xi/bi to each

binary variable required to reclassify the trait, where xi is

the original weight given to trait i, and bi is the number

of binary variables required to re-code trait i.

FUNCTIONAL DISPERSION

One very intuitive measure of functional diversity
(FD) for a community of S species on which T

quantitative traits were measured is the dispersion (i.e.,

spread) of the S species in the T-dimensional space. In

univariate statistics, dispersion can be estimated by

measures such as the mean absolute deviation, the sum

of squared deviations from the mean (SS), the variance,

the standard deviation, or the range, among others.

Villéger et al. (2008) proposed a valuable framework to

explore distinct facets of FD, but only their functional

richness (FRic) index can estimate the dispersion of

species in trait space. It does so through the volume of

the minimum convex hull that includes all species, which

itself is a multivariate analogue of the range. Although

FRic is clearly useful, it is well known that the range is

not a reliable estimator of dispersion because it is highly

sensitive to outliers. In addition, FRic cannot integrate

information on relative abundances. Consequently, rare

species with extreme trait values will greatly inflate FRic.
This may or may not be a desirable property, depending

on the application. On the other hand, the functional

evenness (FEve) and functional divergence (FDiv)

indices of Villéger et al. (2008) are interesting and can

take into account the relative abundances of the species,

but they do not estimate the dispersion of species in trait

space. Indeed, they focus on the distribution of species

within the convex hull independently of its actual

volume (see Appendix A). Hence the development of a

reliable estimate of functional dispersion that could also

consider species relative abundances would be useful.

We suggest using multivariate dispersion (Anderson et

al. 2006) as a multidimensional index of functional

dispersion (FDis). In that view, FDis is the mean

distance of individual species to the centroid of all

species in the community (Fig. 1a). Details on how to

compute multivariate dispersions in PCoA space from

any distance or dissimilarity measure and how to correct

for negative eigenvalues are given by Anderson (2006).

FDis can account for relative abundances by computing

the weighted centroid of the X ¼ [xij] (species 3 trait)

matrix in the following way:

c ¼ ½ci� ¼
X

ajxijX
aj5 hhttp://www.ecolag.univ-montp2.fr/softwarei
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where c is the weighted centroid in the i-dimensional

space, aj the abundance of species j, and xij the attribute

of species j for trait i (Fig. 1b). This implies that traits

are quantitative, but we described in the Generalization

to a flexible distance-based functional diversity (FD)

framework section how other trait types (i.e., semi-

quantitative, qualitative) can be handled as well through

principal coordinate analysis (PCoA). FDis, the weight-

ed mean distance z̄ to the weighted centroid c, is then

computed as

FDis ¼
X

ajzjX
aj

where aj is the abundance of species j and zj is the

distance of species j to the weighted centroid c.

These two modifications over Anderson’s (2006)

procedure essentially shift the position of the centroid

toward the more abundant species and weigh distances

of individual species to this weighted centroid by their

relative abundances (Fig. 1b). When all species have

equal abundances (i.e., presence–absence data; Fig. 1a),

FDis is simply the unweighted mean distance to the

centroid as originally described by Anderson (2006).

FDis has no upper limit and requires at least two species

to be computed. For communities composed of only one

species, we suggest that FDis should be 0.

We ran simulations to compare FDis to the FD indices

of Villéger et al. (2008) and to Rao’s quadratic entropyQ

(Rao 1982, Botta-Dukát 2005, Ricotta 2005), a popular

multidimensional FD index that is conceptually similar

to FDis and can also account for species relative

abundances. To do so, we created 20 000 artificial

communities of 5–100 species drawn from a common

pool of 500 species via the ‘‘simul.dbFD’’ function of our

‘‘FD’’ package. Values for three functional traits were

generated following a normal distribution. Relative

abundances were generated from a lognormal distribu-

tion. FDis was moderately positively related to FRic (r¼
0.425, Fig. 2a) and FDiv (r¼ 0.475, Fig. 2b), and weakly

with FEve (r¼ 0.214, Fig. 2c). On the other hand, FDis

showed a strong positive linear relationship with Rao’sQ

(r ¼ 0.966, Fig. 2d). Both FDis and Rao’s Q were little

influenced by species richness (FDis, r ¼ 0.274, Fig. 2e;

Rao’s Q, r ¼ 0.264, Fig. 2f ). For completeness, we

repeated our simulations with presence–absence data

(Appendix B). Results were very similar, with the

exception that FDiv and FEve were less associated with

FDis (r¼ 0.110 and r¼ 0.131, respectively).

The strong positive correlation between FDis and

Rao’s Q was expected given that both indices aim at

estimating the dispersion of species in trait space,

weighted by their relative abundances. However, they

do so differently. When abundances are frequencies (i.e.,

counts of individuals), Rao’s Q expresses the mean

distance between two randomly selected individuals

(Botta-Dukát 2005). On the other hand, FDis is the

weighted mean distance of individual species to their

weighted centroid, where weights are their relative

abundances (Fig. 1); this is the multivariate analogue of

the weighted mean absolute deviation (MAD). Although

both indices are clearly associated, one potential

advantage of FDis over Rao’sQ is that in the unweighted

case (i.e., with presence–absence data), it opens possibil-

ities for formal statistical tests for differences in FD

between two or more communities through a distance-

based test for homogeneity of multivariate dispersions

(Anderson 2006), which itself is a multivariate extension

of Levene’s (1960) test on absolute deviations.

FDis is, by construction, unaffected by species

richness, can be computed from any distance or

dissimilarity measure (Anderson et al. 2006), can handle

any number and type of traits (including more traits

than species), is not strongly influenced by outliers, and

can take into account species relative abundances. FDis

also satisfies all criteria but the first one (i.e., to be

constrained between 0 and 1 for convenience) of Mason

et al. (2003) if traits are standardized prior to its

computation (see Appendix C). FDis does not satisfy

FIG. 1. An example showing how functional dispersion
(FDis) is computed. The n individual species in a two-
dimensional trait space are represented by black circles whose
sizes are proportional to their abundances. Vector xj represents
the position of species j, vector c is the centroid of the n species
(white square), zj is the distance of species j to centroid c, and aj
is the abundance of species j. In panel (a), all species have equal
abundances (i.e., presence–absence data). In that case, c ¼ [ci],
where ci is the mean value of trait i, and FDis is the mean of
distances z of individual species to c. In panel (b), species have
different abundances. In that case, the position of c is weighted
by the species relative abundances, such that it shifts toward the
more abundant species. Individual distances z of species to c are
weighted by their relative abundances to compute FDis.
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the set monotonicity criterion (i.e., a subset of a

community should be no more diverse than the whole

community) of Ricotta (2005) because removing species

that are close to the centroid effectively increases the

dispersion of species in trait space. This represents an

interesting ecological signal, not a methodological

artifact. In our simulations (Fig. 2), FDis satisfied the

set concavity criterion of Ricotta (2005), since the total c
diversity of the pooled set of communities was greater

(FDisc ¼ 1.584) than the mean a-diversity of all

communities (FDisā ¼ 1.519). Further investigation is

required to confirm whether this property can be

generalized.

BRIDGING THE GAP BETWEEN THEORY AND PRACTICE

For a functional diversity (FD) framework to be most

useful it has to be easily implemented by ecologists, if

possible with freely available software. As such, we

applaud the efforts made by Villéger et al. (2008) to

provide the code to compute their FD indices in the

freely available R language environment (R Develop-

ment Core Team 2009). Likewise, we provide the ‘‘FD’’

R package (see footnote 4) to easily implement our

distance-based FD framework. Our ‘‘FD’’ package

includes numerous elements of flexibility (see Appendix

D). First, whereas the ‘‘F_RED’’ function of Villéger et

al. (2008) only allowed quantitative traits to be used, the

FIG. 2. Simulation results (20 000 communities) showing (a) the relationships between FRic and FDis, (b) FDiv and FDis, (c)
FEve and FDis, (d) Rao’s Q and FDis, (e) species richness and FDis, and (f ) species richness and Rao’s Q.
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‘‘dbFD’’ function of our ‘‘FD’’ package allows for a

wide range of input options, including the use of a

(species 3 species) distance matrix. Second, ‘‘F_RED’’

did not allow the use of more traits than species for any

of the three FD indices it returned. For FRic and FDiv,

this was supported by the fact that no convex hull can be

computed when there are more dimensions (i.e., traits)

than points (i.e., species), but this was unnecessary for

FEve, which does not have that limitation. Our ‘‘dbFD’’

function can deal with any number of traits. Indeed,

more traits than species can always be used for FDis and

FEve. For FRic and FDiv, when the goal is to compare

several communities, this problem is elegantly solved by

selecting a subset of principal coordinate analysis

(PCoA) axes such that T ¼ Smin � 1, where Smin is the

number of species in the community with the fewest

species and T the number of PCoA axes to be used as

traits. However, doing so entails dimensionality reduc-

tion, which implies some loss of information. Such

information loss can be quantified via the R2-like ratio

in PCoA (Legendre and Legendre 1998). Third, in

‘‘dbFD,’’ FRic is generally measured as the convex hull

volume, but when there is only one quantitative trait it is

measured as the range. For a single semi-quantitative

trait, FRic is the range of the ranks. Conversely, when

only qualitative and semi-quantitative traits are present,

FRic is measured as the number of unique trait-value

combinations in a community.

We added other multidimensional FD indices in our

‘‘FD’’ package. The community-level weighted means of

trait values (CWM) is a direct extension of the ‘‘biomass

ratio hypothesis’’ (Grime 1998) and represents function-

al composition (sometimes called functional identity).

Because functional composition has been shown to be a

key driver of ecosystem processes (e.g., Mokany et al.

2008), we felt that the inclusion of CWM was important.

CWM can be multidimensional, as it is a vector

containing as many elements as there are traits. When

the goal is to compare several communities, PCoA axes

could be computed from the CWM data, using an

appropriate distance measure, and these axes could be

used as an index of functional composition. As

previously mentioned, correction for negative eigenval-

ues may be necessary. Multivariate analyses could then

be used to compare functional composition between

groups of communities (e.g., Legendre and Anderson

1999) or to carry out spatial analysis of functional

diversity (Legendre et al. 2005). As far as we know,

CWM has been used strictly for quantitative traits, but

our ‘‘FD’’ package extends it to qualitative and semi-

quantitative traits. Another addition is functional group

richness (FGR), which is computed from an a posteriori

classification of species based on their functional traits

(i.e., the ‘‘data-defined’’ approach of Gitay and Noble

[1997]). This differs from commonly used a priori

classifications such as C4 grasses, C3 grasses, or legumes

(e.g., Tilman et al. 1997), which generally follow a

‘‘deductive approach’’ (Gitay and Noble 1997). FGR

computed from a priori functional classifications has

been shown to be a poor predictor of ecosystem

processes (Wright et al. 2006, Mokany et al. 2008), yet

it is unclear whether this also applies to a posteriori

classifications. It may turn out to be so, in which case

FGR could still be useful for descriptive purposes.

CONCLUSION

Villéger et al. (2008) have set the stage well for the

development of a multidimensional and multifaceted

framework for functional ecology. The purpose of this

note was to improve their framework. First, we

described how the approach of Villéger et al. (2008)

could be generalized to a flexible distance-based

functional diversity (FD) framework. Second, we

presented a new FD index, functional dispersion (FDis).

FDis is the weighted mean distance in multidimensional

trait space of individual species to the weighted centroid

of all species, where weights correspond to the relative

abundances of the species. Finally, we provided the

‘‘FD’’ R language package (see footnote 4) to easily

implement our distance-based FD framework. We

believe that our distance-based FD framework and our

code represent significant improvements over the orig-

inal approach described by Villéger et al. (2008), yet we

see it simply as a second step and believe that our

contribution can certainly be improved upon in the

future. We will welcome suggestions to make our

distance-based FD framework, and its implementation

in our ‘‘FD’’ package, even more useful and flexible.

Doing so will help in increasing the ability of ecologists

to understand and predict the functional consequences

of human-induced changes in biodiversity, a major

contemporary goal for ecology.
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APPENDIX A

A figure showing that FDiv and FEve do not estimate functional dispersion (Ecological Archives E091-022-A1).

APPENDIX B

Simulation results with presence–absence data (Ecological Archives E091-022-A2).

APPENDIX C

A list of criteria for functional diversity indices tested on FDis (Ecological Archives E091-022-A3).

APPENDIX D

A table listing the main features of the ‘‘dbFD’’ function (Ecological Archives E091-022-A4).
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APPENDIX A. Two communities C1 (grey circles, grey polygon) and C2 (black circles, black 
polygon) each composed of 20 species. Although the species in C1 are obviously less 
dispersed in two-dimensional functional trait space than the species in C2, both communities 
obtain a FDiv value of 0.808 and a FEve value of 0.935. In contrast the FDis values of C1 and 
C2 are 0.697 and 1.395, respectively.



APPENDIX B. Simulation results (20,000 communities, presence-absence data) showing (a) the 
relationship between FRic and FDis, (b) FDiv and FDis, (c) FEve and FDis, (d) Rao’s Q and 
FDis, (e) species richness and FDis, and (f) species richness and  Rao’s Q.



APPENDIX C. Nine criteria for an index of functional diversity (Mason et al. 2003), with tests 
using artificial data sets, A and B. Two FDis values correspond to the two distance measures 
applied: upper = Euclidean distance without any transformation, lower = mean character 
difference (i.e. Gower) after standardization by range. To meet each criterion, the diversity of 
community A should be lower than that of community B, or equal, as indicated. OK √ = the 
criterion was met. Numerical examples follow Botta-Dukát (2005).

Criterion Character Abundance FDis Character Abundance FDis OK?
1: Is constrained to a 0-1 range (for 
convenience) and use that range well

A 1 10 0 B 0.00001 10 37.3625
0 1 10 0 close 0.01 10 0.3736

1 10 to 1 1 10
1 10 100 10

2: Reflects the range of character values 
present, since that is the point of the index

A 2 1 2.0000 B 0.1 1 36.1125 √
lower 4 1 0.0200 higher 1 1 0.3615 √
diversity 6 1 diversity 10 1

8 1 100 1

3: Reflects the contribution of each species in 
proportion to its abundance: a community is not 
functionnally diverse if all species with extreme 
character values are present in very minor 
amounts

A 0.1 1 4.9500 B 0.1 10 36.1125 √
lower 1 100 0.0495 higher 1 10 0.3615 √
diversity 10 100 diversity 10 10

100 1 100 10

4: Decreases when the abundance of a minor 
species with an extreme character value 
decreases

A 0.1 0.1 16.2295 B 0.1 1 16.3489 √
lower 1 10 0.1625 higher 1 10 0.1637 √
diversity 10 100 diversity 10 100

100 1000 100 1000

5: Does not change much when a species 
present in minute amount disappears

A 0.1 0.000001 16.2162 B 16.2162 √
equal 1 10 0.1623 1 10 0.1623 √
diversity 10 100 10 100

100 1000 100 1000

6: Is unaffected by the units in which the 
character is measured

A 0.1 1 16.3489 B 0.001 1 0.1635
equal 1 10 0.1637 0.01 10 0.1637 √
diversity 10 100 0.1 100

100 1000 1 1000

7: Is symmetrical with regard to small and large 
values that are equally far from the mean

A 2 1 0.3986 B 8 1 0.3986 √
equal 4 10 0.0664 6 10 0.0664 √
diversity 6 100 4 100

8 1000 2 1000

8: Is unaffected by the units in which the 
abundance is measured

A 0.1 1 16.3489 B 0.1 100 16.3489 √
equal 1 10 0.1637 1 1000 0.1637 √
diversity 10 100 10 10000

100 1000 100 100000

9: Is unaffected when a species is split in two 
(i.e. replaced by two with the same character 
value, with the same total abundance), because 
taxonomic species itself is not relevant for 
functional diversity

A 0.1 1 16.3489 B 0.1 1 16.3489 √
equal 1 10 0.1637 1 10 0.1637 √
diversity 10 100 10 100

100 1000 100 500
100 500



APPENDIX D. Main differences between ‘F_RED’ and ‘dbFD’.

 F_RED dbFD
Input - traits   
Allows quantitative (i.e. continuous) traits? yes yes
Allows qualitative (i.e. categorical) traits? no yes
Allows semi-quantitative (i.e. ordinal) traits? no yes
Tolerates missing values? no yes
Allows one trait only? no yes
Can have more traits than species? no yes
Can be a species × species distance matrix? no yes
Allows weighting of individual traits? no yes

Input - abundances
Allows sites with only one species? no yes
Allows sites with only two species? no yes
Can be missing? no yes

Options   
Can standardize traits or not? no yes
Can weigh indices by abundances or not? no yes
Different ways of measuring FRic depending on the situation? no yes
Can FRic be standardized by the global hull volume (or other)? no yes

Can respect S > 2T condition* when FRic is the convex hull volume? no yes
Computes Rao’s quadratic entropy Q? no yes
Computes FDis (functional dispersion)? no yes
Computes CWM (community-weighted trait means)? no yes
Computes FGri (functional group richness)? no yes

Notes: S is the number of functionally singular species in the community, and T is the number 
of traits. *This condition was suggested by Villéger et al. (2008) for comparing FRic values 
between communities.


