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Abstract Niche processes and other spatial processes,
such as dispersal, may simultaneously control beta diver-
sity, yet their relative importance may shift across spatial
and temporal scales. Although disentangling the relative
importance of these processes has been a continuing meth-
odological challenge, recent developments in multi-scale
spatial and temporal modeling can now help ecologists esti-
mate their scale-speciWc contributions. Here we present a
statistical approach to (1) detect the presence of a space–
time interaction on community composition and (2) esti-
mate the scale-speciWc importance of environmental and
spatial factors on beta diversity. To illustrate the applicabil-
ity of this approach, we use a case study from a temperate
forest understory where tree seedling abundances were
monitored during a 9-year period at 40 permanent plots.

We found no signiWcant space–time interaction on tree
seedling composition, which means that the spatial abun-
dance patterns did not vary over the study period. However,
for a given year the relative importance of niche processes
and other spatial processes was found to be scale-speciWc.
Tree seedling abundances were primarily controlled by a
broad-scale environmental gradient, but within the conWnes
of this gradient the Wner scale patchiness was largely due to
other spatial processes. This case study illustrates that these
two sets of processes are not mutually exclusive and can
aVect abundance patterns in a scale-dependent manner.
More importantly, the use of our methodology for future
empirical studies should help in the merging of niche and
neutral perspectives on beta diversity, an obvious next step
for community ecology.

Keywords Environmental control · Neutral theory · 
Niche · Space–time interaction · Spatial autocorrelation

Introduction

Disentangling the overall importance of deterministic pro-
cesses relative to stochastic processes on community pat-
terns has been a continuing challenge for ecologists (Barot
and Gignoux 2004; Ricklefs and Schluter 1993). For exam-
ple, environmental heterogeneity and dispersal have been
frequently cited as important deterministic and stochastic
processes controlling plant beta diversity, respectively, and
the corresponding views have been referred to as niche
assembly and dispersal assembly (Hubbell 2001). One
approach to estimate the relative importance of these pro-
cesses on beta diversity has been to partition the variation
of community composition between environmental and
a posteriori-selected spatial factors (Gilbert and Lechowicz
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2004; Jones et al. 2008; Karst et al. 2005; Legendre et al.
2005).

Both deterministic and stochastic processes readily give
rise to spatial patterns in community composition within a
given region (Soininen et al. 2007), and  assessing which of
these two sets of processes exerts stronger control over beta
diversity can be diYcult, particularly at local scales. Part of
this diYculty is due to the fact that both sets of processes
can lead to very similar patterns (Bell et al. 2006; Borcard
et al. 1992; Currie 2007) since the environment is typically
spatially structured (Bell et al. 1993; Legendre 1993). Tree
beta diversity, for example, has recently been found to be
associated with soil nutrient patterns on Barro Colorado
Island (John et al. 2007), yet in this same forest, stochastic
recruitment limitation had earlier been suggested as the
main driver of tree beta diversity (Hubbell et al. 1999).

Holyoak and Loreau (2006) have recently argued that a
key issue is to understand at which spatial scales may
Wtness equalization through demographic stochasticity
overcome niche diVerences, and that doing so may help to
reconcile empirical ecology with neutral community mod-
els. Although the importance of scale in ecological patterns
has gained considerable interest in the last two decades
(Levin 1992; Wiens et al. 1986), only recently have meth-
ods been developed to dissect the spatial variability of com-
munity data at multiple scales (Borcard and Legendre 2002;
Borcard et al. 2004). Used in a variation partitioning con-
text, such methods allow for the testing of predictions
related to the origin and maintenance of beta diversity
(Legendre et al. 2005).

Here we show how existing methods (e.g. principal
coordinate of neighbor matrices, canonical redundancy
analysis) can be combined to assess the scale-speciWc
importance of niche processes and other spatial processes
on beta diversity, using empirical data from standard com-
munity surveys. To illustrate the applicability of our meth-
odological approach, we present a case study from a
temperate forest understory where tree seedling abundances
were monitored during a 9-year period at 40 permanent
plots (Paquette et al. 2007). SpeciWcally, our aim was to
answer the following questions:

1. Do the spatial patterns of tree seedling abundance vary
through time during the 9-year-study period, i.e. is the
space–time interaction signiWcant?

2. What is the relative importance of niche processes and
other spatial processes on tree seedling beta diversity
across diVerent spatial scales for a given year?

Rationale of the statistical approach

Ecologists frequently gather community (e.g. species abun-
dances) and environmental data from sampling sites along

transects or across surfaces, and they do so for various pur-
poses. Yet, the underlying motivation for many of these
surveys is to unravel the processes that drive variation in
community composition across a given area (beta diver-
sity). When such sites have been surveyed repeatedly, one
Wrst needs to examine whether the spatial patterns dis-
played by the composition of the community signiWcantly
have varied through time since this would mean that the
underlying processes varied as well. This can be achieved
by testing the space–time interaction on community com-
position (P. Legendre et al., submitted), as shown in
Fig. 1a. A signiWcant space–time interaction should lead to
separate analyses for each sampling period in order to
detect potential temporal shifts in the relative importance of
niche processes and other spatial processes that drive beta
diversity (Fig. 1b–d). Conversely, if the space–time interac-
tion is not signiWcant, restricting the analyses to a particular
sampling period is suYcient because the results obtained
from diVerent periods should be qualitatively similar.

One way to estimate the relative contribution of niche
processes and other spatial processes on beta diversity is to
partition the variation of community composition between
environmental and spatial factors (Borcard et al. 1992;
Legendre et al. 2005), as shown in Fig. 1b–d. Provided that
the environment has been accurately quantiWed (with rele-
vant variables), the variation due to environmental factors
(spatially structured or not) can be attributed to niche pro-
cesses, while the residual spatial variation can be attributed
to other spatial processes (e.g. dispersal). However, it
should be noted that part of the “environment–space” frac-
tion could be due to other spatial processes that show fortu-
itous correlations with the environment (Bell et al. 2006)
and that the “pure space” fraction may hide the eVect of
some unmeasured spatially structured environmental vari-
ables (Borcard and Legendre 1994; Jones et al. 2008).

The main interest of our methodological approach lies in
the fact that prior to variation partitioning, we propose to
dissect the spatial structures of species abundances into
additive scale-speciWc models through principal coordi-
nates of neighbor matrices (PCNM) analysis (Fig. 1b; Bor-
card and Legendre 2002; Borcard et al. 2004; Dray et al.
2006). Traditionally, a popular way of modeling spatial
processes has been trend surface polynomial regression, but
this method can only model global structures, such as a gra-
dient, a single wave or a saddle (Legendre and Legendre
1998). On the other hand, PCNM analysis is much better at
modeling Wne-scale spatial structures than trend surface
polynomial regression, and it can model spatial structures
over a wide range of scales (Borcard and Legendre 2002).
Moreover, because the resulting PCNM variables are
orthogonal to each other, they can be combined into addi-
tive scale-speciWc models (Borcard and Legendre 2002;
Borcard et al. 2004). PCNM analysis is one of two types of
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recently developed spatial modeling methods that are based
on the eigenfunctions of spatial conWguration (i.e. connec-
tivity) matrices, both of which aim to create spatial predic-
tors that can be directly integrated into regression models
(GriYth and Peres-Neto 2006). A detailed description of
the PCNM procedure (along with freely available code to
easily perform the analysis) is given by Dray et al. (2006),
but it essentially consists in the following three steps:

1. Calculate a geographical (i.e. Euclidean) distance
matrix (D = [dij]) between the sampling sites.

2. Build a truncated connectivity matrix (W = [wij]) so
that wij = 0 (i.e. pairs of sites are not connected) when
dij > t (where t, the truncation distance, is a value
decided by the user which is larger than or equal to c,
which itself is the minimum distance which keeps all
sites connected, based on a minimum spanning tree
algorithm), while wij = [1 ¡ (dij/4t)2] when dij · t.

3. Compute the eigenvalues and eigenvectors of the cen-
tered matrix W.

The resulting eigenvectors with positive eigenvalues
(which we refer to as “PCNM variables”) can be used in
regression to model spatial structures at all spatial scales;
the eigenvectors with large eigenvalues describe global
structures, whereas the ones with small eigenvalues
describe local structures (Borcard and Legendre 2002).
Assessing the contribution of the environment on each
scale-speciWc spatial model through canonical redundancy

analysis (RDA, Legendre and Legendre 1998) can provide
new insights into the relative importance of niche processes
and other spatial processes on beta diversity (Fig. 1b–d), as
will be shown from our temperate forest case study.

Materials and methods

Study area

The study site is located within the Station de biologie des
Laurentides of Université de Montréal (SBL), Saint-Hippo-
lyte, Québec, Canada (45º59�N, 73º59�W). Both the study
site and study area have been described elsewhere in more
detail (Paquette et al. 2007; Savage 2001). The bedrock is
primarily composed of Precambrian anorthosite, and soils
are ferro-humic podzols which formed in sandy loams
derived from glacial till. The 30-year average annual pre-
cipitation is 1100 mm, 30% of which falls as snow, and the
mean annual temperature is 3.6°C. Forest tree cover is pri-
marily composed of Acer saccharum Marsh., A. rubrum L.
and Betula alleghaniensis Britt., but pioneer species, such
as Populus grandidentata Michx. and B. papyrifera Marsh.,
are also common. Acer pensylvanicum L. is an important
sub-canopy tree. The disturbance regime has been charac-
terized mostly by logging activities in the 19th and early
20th centuries as well as a major Wre which occurred in the
mid-1920s.

Fig. 1 Diagram showing the step-by-step statistical methodology.
9 This matrix is composed of variables which are the product of the Wrst
s/2 and t/2 spatial and temporal principal coordinates of neighbor
matrices (PCNM) variables, respectively (where s is the number of

sites and t the number of sampling times). ‡ The main factors, space
and time, are coded using orthogonal dummy variables. RDA Redun-
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Vegetation sampling

Tree seedling abundances were measured from Wve perma-
nent transects at the north-eastern tip of Lac Croche, sepa-
rated by approximately 50 m (Paquette et al. 2007).
Transects started at the edge of the lake and followed an
elevation gradient. Along each of the Wve transects, seven
to ten permanent 20 £ 20-m (400 m2) plots were estab-
lished approximately every 50 m. These plots are located
within an area of approximately 9 ha. Within each plot, all
mature trees [diameter at breast height (DBH) >10 cm]
were identiWed and measured in 2005. For tree seedlings
(DBH < 1 cm), ten 1-m2 quadrats were established every
2 m in a row in the center of the plot, and all tree seedlings
were counted by species every year (with the exception of
1999 and 2002). Data from those ten sub-quadrats were
then pooled.

Environmental variables

A number of environmental variables were measured in
each plot (Paquette et al. 2007). Slope (%) was measured
with a clinometer. Slope microtopography was judged on a
qualitative scale (concave, convex or Xat). Percentage
cover of surface rockiness (i.e. exposed bedrock and boul-
ders) was evaluated on a semi-quantitative cover scale
(1 · 1%; 2 = 1–5%; 3 = 5–15%; 4 = 15–25%; 5 = 25–50%;
6 = 50–75%; 7 ¸ 75%). We measured the following soil
variables: thickness of the organic (O) horizon, thickness of
the upper layer of soil, nearest the surface (horizon A),
presence of eluviation (E horizon) (Soil Survey Division
StaV 1993) and maximum root depth. Canopy openness
was estimated in August 2000 from hemispherical photo-
graphs taken in the middle of each plot at 1 m above the
ground (Englund et al. 2000), which were analyzed with the
Gap Light Analyzer (GLA) software (Frazer et al. 2000).
The age of the largest tree in each plot was evaluated from
cores taken in 1998 in order to have a general measure of
the successional status of each plot and integrate potential
historical eVects (i.e. time since last major canopy distur-
bance) on the underlying environment. Finally, we mea-
sured the geographic coordinates and elevation of each plot
with a diVerential global positioning system  (GPS; Trimble
Navigation, Sunnyvale, CA; estimated accuracy of 2 m).

Variations in soil chemistry at the watershed scale at
SBL can be largely attributed to topography and drainage
for the mineral horizons (F. Courchesne, personal commu-
nication), whereas for the organic horizons it is primarily
controlled by historical events (e.g. Wre, logging) and tree
composition (Bélanger et al. 2004). Although soil chemis-
try was not measured, earlier pedological studies at SBL
have shown that soil chemistry varied relatively little at the
scale of our study (i.e. a few hectares). For instance, the

mean percentage coeYcient of variation of physical and
chemical properties of soil litter, organic and mineral hori-
zons calculated from plots located in highly contrasted
areas of the 5-ha Hermine watershed (1 km from our study
site) was only 16.5% (Courchesne and Hendershot 1988;
Courchesne et al. 2005). Despite this, we acknowledge that
the absence of soil chemistry data is a limitation of the data-
set.

Statistical analyses

Space–time interaction

In order to test the space–time interaction, we used canoni-
cal RDA as a form of multivariate analysis of variance
(ANOVA) to test the relationship between a response
matrix (species abundance data) and two crossed factors
(Legendre and Anderson 1999). In this special case, space
and time were the two factors. When coding for two
crossed factors in a regression context, orthogonal dummy
variables (Draper and Smith 1981), also called Helmert
contrasts (Venables and Ripley 2002), can be used.
Although it is possible to test the eVect of space or time
separately with this approach, the space–time interaction, in
the no-replication case, cannot be tested in classical two-
way ANOVA because no degrees of freedom are left for
the denominator of the F statistic (P. Legendre et al., sub-
mitted). To circumvent this problem, an alternative is to use
spatial and temporal PCNM variables (Borcard and Legen-
dre 2002; Dray et al. 2006) to code for the space–time inter-
action (P. Legendre et al., submitted). With this approach,
the main factors, space and time, are coded using Helmert
contrasts, but the space–time interaction is modeled
(although under-Wtted) using variables that are the product
of the Wrst s/2 and t/2 spatial and temporal PCNM vari-
ables, respectively (where s is the number of sites and t the
number of sampling times). Empirical simulations have
shown that this model had correct Type I error and that its
power was equal or greater than other possible ANOVA
models (P. Legendre et al., submitted).

Our response matrix contained tree seedling abundances
from 1998 to 2006 (except for 1999 and 2002, during
which years tree seedlings were not sampled) from 40 per-
manent plots. Seedlings of 16 tree species were present in
the plots, but only three species (A. pensylvanicum, A.
rubrum and A. saccharum), which together accounted for
more than 97% of total seedling abundance, were consid-
ered in our analyses. Seedling abundances were Hellinger-
transformed so that the Hellinger distance—and not the
Euclidean distance—was preserved in RDA (Legendre and
Gallagher 2001). The use of the Hellinger distance
eVectively deals with the “species abundance paradox”
associated with the Euclidean distance, where the distance
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between two sites sharing no species can be smaller than
that between two sites that share species (Legendre and
Legendre 1998). Although no theoretical criteria exist for
selecting a particular data transformation for a given situa-
tion, the Hellinger transformation is well-suited for canoni-
cal partitioning and multivariate (M)ANOVA-like RDA of
species abundance data (Legendre and Gallagher 2001).

We used a mixed model in which space was considered
to be a random factor and time Wxed, and both factors and
interaction were tested accordingly using RDA (Legendre
and Anderson 1999). Space was considered random
because we had no a priori reason for establishing transects
at these speciWc locations, while time was considered Wxed
because we were interested in this speciWc time period, dur-
ing which no major canopy disturbance occurred. When
testing for the interaction, the main factors, space and time,
were used together as covariables in the analysis. If the
interaction is not signiWcant, space and time can be tested
by the usual test without replication. When the P value of
the interaction test is close to 0.05, indicating a possible
lack of power, it is recommended that the test of the main
factors be duplicated using the interaction term as a covari-
able (P. Legendre et al., submitted). If the interaction is sig-
niWcant, the spatial structure should be modeled for each
time period separately. Since there was a signiWcant spatial
linear trend in the data, two series of analyses were con-
ducted: the Wrst one on the original seedling abundances;
the second on the detrended abundances.

Multi-scale spatial modeling

Spatial PCNM analyses were conducted to dissect the
multi-scale spatial structures of tree seedling abundances.
To generate the PCNM variables, we Wrst calculated a geo-
graphical (i.e. Euclidean) distance matrix between plots.
The truncation value t was the largest value in the minimum
spanning tree linking the sites (Legendre and Legendre
1998), and the truncated connectivity matrix W was con-
structed following the procedure described in the Rationale
of the statistical approach section (see also Dray et al.
2006). Twenty-six PCNM variables were obtained, which
corresponded to the number of eigenvectors with positive
eigenvalues (Borcard et al. 2004).

Seedling abundances were detrended because a signiW-
cant linear trend was present, which indicated a spatial
structure at a broader scale than the sampling extent (Bor-
card et al. 2004). This step is important because a large
number of PCNM variables would be required to model a
linear trend, which may obscure Wner-scale spatial struc-
tures that are present in the data (Borcard et al. 2004). For-
ward selection (� = 0.10) of all 26 spatial PCNM was then
conducted. Fitted values were kept to model the spatial
structures at multiple scales: broad scale (linear trend),

meso scale (selected from PCNM 1–12 for the 2005 data:
PCNM 2, 5–9) and Wne scale (selected from PCNM 13–26
for the 2005 data: PCNM 13–15, 22, 24, 25). It is important
to note that our use of the terms “broad”, “meso” or “Wne”
scales have no absolute meaning, but are instead relative to
the particular sampling design under study and constrained
by its grain (i.e. resolution) and spatial extent (i.e. surface
covered). To help visualize how these three spatial scales
relate to each other in our study, we show the scale-speciWc
spatial models of A. rubrum, the most abundant tree seed-
ling species on our study site, in Fig. 2. Non-spatial varia-
tion was estimated from the residuals of the RDA involving
forward-selected PCNM variables from detrended abun-
dances. We also conducted spatial PCNM analyses on sin-
gle-species abundances (A. pensylvanicum, A. rubrum and
A. saccharum). In that case, abundances were Wrst log-
transformed to make their distributions more symmetrical.

Variation partitioning

We assessed the relative weight of niche processes versus
other spatial processes on multi-scale spatial patterns
through partial RDA. We used the same set of environmen-
tal variables in all analyses, which were chosen by forward
selection (� = 0.10; only the variables that were selected for
2 years or more were retained). Eight out of ten environ-
mental variables were selected (canopy openness; eleva-
tion; age of largest tree; surface rockiness; slope; slope
microtopography; thickness of soil litter and humic layer;
thickness of horizon A).

First, partial RDAs involving the three seedling species
was used to partition the variation due to environment and
space (geographic coordinates and the set of forward-
selected PCNM variables, e.g. 12 PCNM variables for the
2005 data). The relative weight of each independent fraction
was estimated following the methodology described by
Peres-Neto et al. (2006). We then tested the eVect of the
environmental factors on four spatial models: the broad scale
(linear trend), “Wner scales” (PCNM model) and the meso-
scale and Wne-scale models (dissected from the “Wner scales”
model). The Wtted values of each spatial model were used in
these analyses. Finally, the eVect of the environmental fac-
tors on the residual non-spatial variation was also tested.

Second, we conducted analyses on individual tree seed-
ling species in which we incorporated the basal area of
mature parent trees of the same species (DBH > 10 cm) as
an additional explanatory variable in order to assess the
potential inXuence of seed rain input on seedling abundance
patterns, since dispersal limitation has often been identiWed
as a key stochastic process. Seed rain was not directly mea-
sured in this study, but we assumed that a higher abundance
of parent trees in a particular plot would lead to a higher
seed rain in that plot. We partitioned the variation of
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individual Acer seedling species spatial patterns (linear
trend, meso scale and Wne scale) between environmental
variables and basal area of Acer trees. Again, the relative
weight of each independent fraction was estimated (Peres-
Neto et al. 2006).

The analyses were performed in the R-language environ-
ment  (R Development Core Team 2007) using the pack-
ages “vegan” (Oksanen et al. 2007) for RDA, variation
partitioning and Hellinger transformation of species abun-
dances, “spacemakeR” (Dray et al. 2006) for the construc-
tion of PCNM variables and “packfor” (Dray 2005) for the
forward selection of explanatory variables in RDA. The

tests of the interaction of the main factors in the presence of
the interaction were conducted using the R-language func-
tion “manovRDa”, which is provided as Electronic Supple-
mentary Material S1. This function allows one to test the
eVect of space, time and their interaction in one single step,
with the choice of time and space being considered as Wxed
or random factors. The test of space and time without repli-
cation was conducted using the “rda” function of the
“vegan” package. In all tests of signiWcance, 9999 permuta-
tions were used. Following Anderson and Legendre (1999),
permutation of the raw data is adequate for ANOVA since
there are no outlier values in the factors.

Fig. 2 Spatial patterns of Acer 
rubrum seedling abundances at 
diVerent scales. Data from the 
2005 census (n = 40) are shown 
and are centered on their mean. 
Filled circles positive values, 
empty circles negative values, 
larger circles larger absolute 
values. a Log-transformed seed-
ling abundances, b “detrended 
abundances” corresponding to 
the residual variation after 
regression on geographic coordi-
nates of the sites, c “broad scale” 
corresponding to a linear trend in 
seedling abundances. Other spa-
tial models are calculated from 
detrended abundances, using 
diVerent sets of PCNM vari-
ables: d meso (PCNM 2, 6, 7, 
11), e Wne (PCNM 17, 18, 
21, 22, 24)
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Results

The space–time interaction on trees seedling abundances
was not signiWcant (P = 0.094; Table 1). Even after control-
ling for the strong spatial linear trend in seedling abun-
dances, the space–time interaction was still not signiWcant
(P = 0.055; Table 1), although it was very close to the usual
� = 0.05 level. We thus considered that the spatial patterns
of abundance were stable though time and that the temporal
variation was common to all sites. Tests of the main factors
space and time showed that tree seedling abundances in this
forest were strongly spatially structured (P · 0.0001) and
also signiWcantly varied in time (P · 0.0001; Table 1); this
was true irrespective of the exclusion or inclusion of the
interaction as covariable in the models (Table 1).

We then assessed the relative importance of niche pro-
cesses and other spatial processes on the data for 2005
using variation partitioning (Fig. 3). Since spatial patterns
were similar through time during the period 1998–2006,
analyses performed on other years yielded highly similar
results to the ones presented here. In the global analysis
(Fig. 3, top pie chart), the proportion of variation in seed-
ling abundances explained through space alone (“pure spa-
tial” fraction) was 42%, sevenfold higher than the variation
attributed to environment alone. The covariation between
space and environment explained an additional 42% of the
variation of tree seedling abundances. Unexplained residual
variation accounted for only 10% of the variation of seed-
ling abundances.

Spatial variation, either alone or in conjunction with the
environment, accounted for 84% of the total variation of
tree seedling abundances (Fig. 3, top pie chart). This spatial
structure was primarily due to a highly signiWcant
(P · 0.0001) linear trend which explained 68% of the total
variation in seedling abundances (Fig. 3, middle left pie
chart). Even after removing the linear trend in seedling
abundances, there remained a highly signiWcant spatial
structure in the detrended data (adjusted-R2, or Ra

2 = 0.49,
P · 0.0001), which explained 16% of the total variation of

seedling abundances [calculated by multiplying the residual
variation of the RDA after extracting the linear trend in
seedling abundances with the Ra

2  of the RDA of the PCNM
variables on the detrended abundances, i.e. (1 ¡ 0.68) £
0.49 = 0.16]. This spatial model corresponds to the “Wner

Table 1 EVects of space, time 
and their interaction on tree 
seedling abundances

Seedling 
abundances

Spatially detrended 
abundances

R2 Fa P R2 Fa P

Source

Space £ time – 1.2247 0.094 – 1.2248 0.0549

Interaction excluded in model

Space 0.767 0.2832 0.0001* 0.449 0.0702 0.0001*

Time 0.025 0.0593 0.0001* 0.058 0.0593 0.0001*

Interaction included in model

Space 0.767 23.7889 0.0001* 0.449 5.8930 0.0001*

Time 0.025 4.0635 0.0001* 0.058 4.0636 0.0001*

* Values are signiWcant 
at P · 0.05

All tests were performed using 
9999 permutations of the raw 
data
a Pseudo-F

Fig. 3 Relative inXuence of environment (Env.) and space on tree
seedling abundances at diVerent scales, using the data from 2005. The
importance of each spatial model is indicated by the percentage (calcu-
lated using Ra

2)  above each chart (in boxes). The importance of each
spatial (or non-spatial) model is given in boxes. The percentage varia-
tion corresponding to each fraction (Ra

2)  is included in the pie charts.
* P · 0.05, *** P · 0.001, **** P · 0.0001. 9 Cannot be tested
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scales” model found in the middle pie chart of the middle
row in Fig. 3. This model was further dissected into two
spatial models, meso (PCNM 2, 5–9) and Wne scale (PCNM
13–15, 22, 24, 25), which respectively explained 9 and 7%
of the total variation of seedling abundances (Fig. 3, bottom
pie charts). Each of these scale-speciWc spatial models was
signiWcant (P · 0.05).

The analyses showed that the inXuence of spatially struc-
tured environmental variation on tree seedling beta diver-
sity decreased from broad- to Wne-spatial scales (Fig. 3).
More than half (Ra

2 =0.56,  P · 0.0001) of the broad-scale
spatial structure of seedling abundances was explained by
the environment, whereas the PCNM spatial model (“Wner
scales” model, Fig. 3) was weakly, but signiWcantly, inXu-
enced by the environment (Ra

2 =0.16,  P = 0.0228). Once
this PCNM spatial model was further dissected, we found
that the inXuence of the spatially structured environmental
variation further decreased from the meso scale (8%) to the
Wne scale (6%) (Fig. 3).

A highly signiWcant (P · 0.0001) RDA environmental
model which explained 48% of the total variation of seed-
ling abundances (corresponding to 42% spatially structured
environmental variation + 6% non-spatial environmental
variation in Fig. 3, top pie chart) showed that A. pensylani-
cum and A. saccharum were more abundant at higher eleva-
tions and under denser canopies, while A. rubrum was more
abundant at lower elevations and under sparser canopies
(results not presented). Moreover, A. pensylvanicum and
A. saccharum occurred in sites where deeper rooting was
observed, and there was a trend for A. pensylvanicum to be
more abundant in deeper soils with less surface stoniness.
The broad-scale spatial model (i.e. linear gradient), which
explained 68% of the total variation in seedling abundances
(Fig. 3), was primarily explained by elevation, and second-
arily by canopy openness and the age of the largest tree.

Analyses conducted on individual species showed that
mature tree basal area (variable Tree in Fig. 4) was a poor
predictor of seedling abundance patterns at all scales,
except for A. saccharum at the broadest scale. The environ-
mental variables explained a greater portion of the variation
of the broad-scale spatial patterns than tree basal area for
A. pensylvanicum and A. rubrum (Fig. 4). However, the
covariation between environmental factors and parent tree
basal area explained a large fraction of the A. saccharum
spatial patterns at the broadest scale (Fig. 4) and, conse-
quently, it was not possible to distinguish between the rela-
tive inXuences of mature trees and the environment in that
case because of confounding. At Wner spatial scales, both
the environment and tree basal area weakly explained seed-
ling spatial patterns (Fig. 4).

In addition, analyses conducted on individual species
showed a similar scale-dependent inXuence of niche pro-
cesses versus other spatial processes to what we had previ-

ously shown (Fig. 4). They further indicated that this
inXuence was species-speciWc (Fig. 4). For example, at the
broadest scale, environmental factors strongly explained
the A. pensylvanicum seedling spatial patterns, while they
had a weaker eVect on the A. rubrum seedling patterns
(Fig. 4). Not all species showed similar spatial patterns,
even though all were strongly spatially structured (40–
92%). Acer rubrum showed a weaker spatial structure at the
broadest scale than the other two species, but it was more
strongly spatially structured at Wner scales (Figs. 2, 4).
Despite those diVerences, the progressively smaller inXu-
ence of the environment from the broader to Wner scales as

Fig. 4 Relative inXuence of environment (Env.) and tree (diameter at
breast height > 10 cm) basal area (Tree) on spatial patterns of tree
seedling abundance at diVerent scales, using the data from 2005. Non-
spatial variation is not shown. The importance of each spatial model
(calculated using Ra

2)  is given above each pie chart. 9 P · 0.1,
* P · 0.05, ** P · 0.01, *** P · 0.001, **** P · 0.0001

Acer saccharum

Acer pennsylvanicum

Environment
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Tree

Pure space
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28% **** 34% *** 3% †
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123



Oecologia (2009) 159:377–388 385
well as the increasing dominance of other spatial processes
at Wner scales were consistent across species.

Discussion

Because of the dominant contribution of a primarily envi-
ronmentally controlled broad-scale spatial structure (mostly
due to elevation), our results suggest that niche partitioning
is the main process inXuencing tree seedling abundances in
this temperate forest. While this general conclusion about
the dominance of niche processes is consistent with those
drawn from previous studies (Gilbert and Lechowicz 2004;
Jones et al. 2006; Karst et al. 2005; Tuomisto et al. 2003),
dissecting the spatial structure of community composition
at diVerent scales allowed us to see that environmental con-
trol could not account for the Wner-scale spatial patterns of
tree seedling abundances, which can be attributed to other
spatial processes (e.g. dispersal).

We attribute the Wne-scale spatial patterns of tree seed-
ling abundances to other spatial processes because these
spatial patterns showed little covaration with the underlying
environment; however, the possibility that these Wne-scale
patterns may be partly due to unmeasured spatially struc-
tured environmental variables cannot be excluded. For
example, the coexistence of A. rubrum and A. saccharum
within a given area has been explained through spatial vari-
ation in soil chemistry, with A. saccharum outcompeting
A. rubrum on more nutrient-rich and less acidic soils, and
vice versa (Host et al. 1987; Nowacki et al. 1990). Unfortu-
nately, soil chemistry data were not available for the dataset
used here. While several of the environmental variables
measured likely acted as surrogates for variation in soil
chemistry within the study site at the broadest scale (i.e. lin-
ear trend), it is unclear whether those same environmental
variables adequately represented variation in soil chemistry
at the Wnest spatial scales. Consequently, we cannot disre-
gard the possibility that our analyses may have underesti-
mated the importance of niches in explaining the Wne-scale
spatial structures of tree seedling composition and abun-
dance. This illustrates that the strength of the results
obtained from our methodological approach greatly
depends on the quality and relevance of the environmental
variables used in the analyses and that conclusions must be
weighted accordingly (see Jones et al. 2008 for more
details).

Despite this limitation, our results support the hypothesis
that environmental heterogeneity should be more important
at broader scales, whereas the inXuence of other spatial pro-
cesses, such as dispersal, should become increasingly stron-
ger at Wner spatial scales (e.g. Gilbert and Lechowicz 2004;
Jones et al. 2006). However, the niche model has so far
received stronger empirical support at various spatial scales

ranging from global to local (Gilbert and Lechowicz 2004;
Jones et al. 2006; Karst et al. 2005; Tuomisto et al. 2003;
Van der Gucht et al. 2007). The strategy used to compare
the relative strength of niche processes and other spatial
processes (often strictly referred to as “dispersal”) at diVer-
ent scales has simply been to compare the results from
diVerent sampling schemes (either from the same system or
from diVerent systems) conducted at distinct spatial scales
(Cottenie 2005; Freestone and Inouye 2006; Jones et al.
2006; Karst et al. 2005; Van der Gucht et al. 2007). On the
other hand, our statistical approach allowed us to dissect
the spatial structure of a single region at multiple scales and
assess the contributions of niche processes and other spatial
processes at each of the identiWed scales, thereby opening
new possibilities. Importantly, while several earlier studies
have used trend surface polynomial regression to model
space (Cottenie 2005; Gilbert and Lechowicz 2004; Karst
et al. 2005; Van der Gucht et al. 2007), our approach is
based on PCNM analysis, which is much more powerful for
modeling the Wne-scale spatial structures (Borcard and
Legendre 2002) where dispersal and other biotic spatial
processes are expected to become important.

Analyses conducted on individual species also revealed
a progressively decreasing inXuence of the environment
from broader to Wner spatial scales. A good relationship
between tree seedling and parent tree abundances may have
been expected given that dispersal limitation has often been
proposed as an important stochastic mechanism that inXu-
ences community patterns (Chave and Leigh 2002), but our
results showed that the abundance of parent trees was a
rather poor predictor of tree seedling patterns at all scales.
The fact that all three species are wind-dispersed (Burns
and Honkala 1990) may have decreased the likelihood of
Wnding strong covariation between the abundance of
mature trees (which were generally around 15–20 m high)
and tree seedling abundances over the 20 m £ 20-m plot.
Strong spatial uncoupling between seed rain and seedling
recruitment patterns has often been observed in temperate
forests for wind-dispersed species (e.g. Acer sp.) and is
generally attributed to stochastic post-dispersal events
(Houle 1992). Moreover, the lack of a relationship between
the basal area of parent trees and seedling abundances
likely arose from the fact that there is very high intraspe-
ciWc variability in fecundity and dispersal in temperate tree
species (Clark et al. 2004).

Still, there appeared to be relationships between spatial
patterns and seed dispersal strategy. Acer saccharum and
A. pensylvanicum both disperse their seeds after leaf shed
in the fall when forest foliage density is at its lowest (Hibbs
and Fischer 1979; Houle 1999), whereas A. rubrum dis-
perses them in early summer when foliage density is high
(Burns and Honkala 1990; Houle 1994). Low foliage den-
sity greatly increases dispersal eYciency and the likelihood
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of long-distance dispersal events (Nathan and Katul 2005),
which may explain why A. saccharum and A. pensylvani-
cum were structured at broader spatial scales than
A. rubrum. Similar relationships between tree or sapling
spatial patterns and dispersal mode have previously been
shown for trees in temperate (Schwarz et al. 2003) and
tropical forests (Seidler and Plotkin 2006).

Our results on species–environment relationships were
consistent with earlier Wndings on the autecology of the tree
species. For example, Hibbs et al. (1980) found that A. pen-
sylvanicum increased in density with elevation in Massa-
chusetts forests, something which we also observed. In
addition, the strong dichotomy between A. rubrum and A.
saccharum seedling abundances appeared to be linked to
canopy openness and to the presence of large trees of the
early-successional P. grandidentata in lower elevation sites
(indicating past disturbances), where more A. rubrum seed-
lings were found. Indeed, A. rubrum is somewhat less toler-
ant to shade than A. saccharum (Ashton et al. 1999) and
can be favored by forest disturbances (Abrams 1998).

We found that seedling abundances varied little through
time, although this variation was signiWcant. On the other
hand, by using our methodology to test for the space–time
interaction, we found that this temporal variation did not
vary through space (i.e. non-signiWcant space–time interac-
tion). Given that A. rubrum and A. saccharum do not main-
tain permanent seed banks in the soil, that seedlings readily
germinate after seed fall, but that the majority of these do
not survive throughout the Wrst season (Houle 1991; Houle
1994), the observed temporal variation of seedling abun-
dances may be primarily linked to yearly variations in seed
rain, which lead to brief increases in the 1-year-old tran-
sient seedling bank. However, because tree seedlings in the
dataset were deWned by size and not age, we cannot directly
test this hypothesis.

We also found that tree seedling abundances were
strongly spatially structured, but that about half of this
spatial structure occurred in conjunction with environmen-
tal variables. Although this Wnding was not surprising
given that the natural physical environment is typically
spatially structured (Bell et al. 1993), this highlights a
drawback of variation partitioning for such tests—i.e. that
the strong covariation between environment and space
found in nature makes it diYcult to decisively discriminate
between niche processes and other spatial processes (Bell
et al. 2006; Gilbert and Lechowicz 2004). At meso to very
broad scales, it is possible to reduce this covariation
through a study design that decouples environmental and
geographical distances (e.g. Gilbert and Lechowicz 2004),
but at more local scales (e.g. less than a few hectares),
such an approach is not feasible because of the inherently
strong spatial autocorrelation of the physical environment
(Karst et al. 2005).

Consequently, the strength of our methodological
approach was to dissect the spatial structure of species
abundances into additive scale-speciWc models with PCNM
analysis and to test the inXuence of the environment at each
of these scales. This brought new insights on the relative
importance of niche processes and other spatial processes
that control tree seedling beta diversity in this forest, allow-
ing us to go beyond the simple observation of a strong envi-
ronment-to-space correlation in variation partitioning
analyses. While an evenly distributed contribution of the
environment across spatial scales would have brought no
further information, the strong uneven cross-scale contribu-
tion of the environment suggested that the relative weight
of niche processes and other spatial processes may be scale-
dependent. The results obtained from our case study sug-
gested that tree seedling abundances were primarily con-
trolled by a broad-scale environmental gradient (largely
due to elevation), but that within the conWnes of this gradi-
ent the Wner scale patchiness could be due to other spatial
processes (e.g. tree fecundity, dispersal, herbivory). It must
be noted that, as with all types of spatial analyses, our
results are constrained by the grain (i.e. resolution) of the
sampling design since no spatial structures at scales Wner
than the grain size can possibly be modeled.

Our use of PCNM analysis yields new perspectives to
disentangle the importance of niche processes and other
spatial processes that control beta diversity. Because they
are orthogonal to each other, PCNM variables can be used
instead of dummy variables to model for the space–time
interaction in MANOVA-like RDA (Legendre and Ander-
son 1999; P. Legendre et al., submitted). A signiWcant
space–time interaction indicates that spatial patterns var-
ied through time and suggests that the importance of the
underlying processes may have varied as well, thus
prompting further analyses conducted at diVerent times.
In a given ecosystem, it is possible that spatial patterns
would be primarily structured by the environment during
some time intervals, while other spatial processes would
be dominant in others. All of these predictions can be
tested with the combined use of canonical variation parti-
tioning and PCNM analysis. Importantly, PCNM analysis
brings new insight into the scale-speciWc inXuence of
niche processes and other spatial processes on beta
diversity by looking at the cross-scale distribution of the
inXuence of environmental variables on community
composition.

Because our methodological approach relies on PCNM
analysis, it is best suited to sampling designs where the spa-
tial and temporal coverage of the geographical surface and
time period sampled, respectively, is not too irregular (Bor-
card and Legendre 2002). While somewhat irregularly sam-
pled data can still be analyzed with our approach (as shown
in our tree seedling case study, where the spatial coverage
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is not perfectly regular, and where some years were missing),
strongly irregular data would yield individual PCNM
variables which would show spatial (or temporal) struc-
tures at several scales, thus complicating interpretation
(Borcard and Legendre 2002). In addition, large gaps in the
spatial coverage of the geographical surface would yield
fewer Wne-scale PCNM variables, thus limiting the strength
of our approach.

In conclusion, dissecting the spatial structure of tree
seedling abundance at diVerent spatial scales allowed us to
Wnd that tree diversity in this forest may be primarily main-
tained through niche partitioning at broader spatial scales,
while other spatial processes may allow the coexistence of
functionally similar species at Wner scales. Because the
environmental variables used in our case study were some-
what limited, the value of our study primarily lies in illus-
trating how our method can be used and the type of results
it can yield—and not necessarily in the nature of the results
obtained per se. Despite this limitation, our results support
the view that niche processes and other spatial processes
are not mutually exclusive but, rather, contribute diVerently
depending on spatial scales. More importantly, our study
provides researchers with an appropriate statistical method-
ology to estimate the scale-speciWc importance of environ-
mental and spatial factors on beta diversity. Given the
fundamental nature of this question, our methodological
approach should be of great practical value for future tests.
Such future tests will be crucial for the merging of niche
and neutral perspectives, an obvious next step for commu-
nity ecology.
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