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Abstract:  Many methods and algorithms to generate random trees of many kinds 
have been proposed in the literature. No procedure exists however for the genera- 
tion of dendrograms with randomized fusion levels. Randomized dendrograms can 
be obtained by randomizing the associated cophenetic matrix. Two algorithms are 
described. The first one generates completely random dendrograrns, i.e., trees with 
a random topology, random fusion level values, and random assignment of the 
labels. The second algorithm uses a double-permutation procedure to randomize a 
given dendrogram; it proceeds by randomization of the fixed fusion levels, instead 
of using random fusion level values. A proof is presented that the double- 
permutation procedure is a Uniform Random Generation Algorithm s e n s u  Furnas 
(1984), and a complete example is given. 
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R~sum~: On retrouve darts la litt6rature plusieurs m6thodes et algorithmes 
destin6s h g6n6rer des arbres al~atoires de toutes sortes. I] n'existe cependant 
aucune proc&ture permettant la g6n6ration de dendrogrammes comportant des 
niveaux de fusion al6atoires. De tels dendrogrammes peuvent ~tre obtenus ~ par- 
fir des matrices coph6n6tiques associ6es. Nous d6crivons deux algorithmes pour 
ce faire. Le premier permet de g6n&er des dendrogrammes compl~tement 
al6atoires, c'est-~t-dire des arbres poss&tant une topologie al6atoire, des niveaux 
de fusion al6atoires ainsi que des feuilles 6dquet6es de fa~on al6atoire. Le 
deuxii~me algo- rithme utilise une proc&ture ~t double permutation afin de ran- 
domiser un dendrogramme dorm6; on proc de darts ce cas ~ la permutation des 
v6ritables niveaux de fusion au lieu de g6n~rer des niveaux al6atoires. Nous 
pr6sentons la preuve d6rnontrant que la proc6clure ~, double permutation 
repr6sente un Algorithme de Gdn6ration A16atoire Uniforme sensu Furnas 

(1984). Un exemple complet est 6galement foumi. 

Keywords: Random dendrograms; Random matrices; Uniform sampling; Tree 
algorithm; Monte Carlo studies; Clustering methodology. 

1. Introduction 

One recent trend in numerical taxonomy is to compare phylogenetic 
trees on the basis of a random distribution of such trees (Shao and Rohlf 
1983; Shao and Sokal 1986; Lapointe and Legendre 1990). In order to facili- 
tate the simulation procedure, simple methods have been developed to 
enumerate (Knott 1977; G~bel 1980; Solomon and Finkel 1980; Rohlf 1983), 
generate (Harding 1971; Nijenhuis and Wilf 1978; Rotem and Varol 1978; 
Proskurowski 1980; Gu6noche 1983; Fumas 1984; Oden and Shao 1984; 
Quiroz 1989), or count (Phipps 1975; Felsenstein 1978; Frank and Svensson 
1981; Murtagh 1984) random trees of different kinds. Most of the methods 
proposed so far have dealt with binary trees, although some have been sug- 
gested to enumerate (Rohlf 1983) or generate (Murtagh 1983) random den- 
drograms (definitions below). In a previous paper (Lapointe and Legendre 
1990), we have proposed a new method to compare hierarchical trees; that 
paper also includes a procedure to generate random cophenetic matrices, 
which are associated to dendrograms. The present paper presents the algo- 
rithm we used to generate these random dendrograms and provides a 
justification of the method, a complete example, and a proof that our pro- 
cedure is a Uniform Random Generation Algorithm (sensu Fumas 1984), or 
in other words an algorithm that generates each random element equiprob- 
ably. A detailed description is deemed necessary to allow other workers to 
duplicate and eventually to modify the method. 
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2. Definitions of Trees 

Several types of  trees are found in the literature, with sometimes 
different terminologies. All types of  trees are covered by the following 
definition: a tree is a connected graph without cycles. This definition means 
that for a given set of  objects represented by the nodes (= vertices) of the tree, 
there should be exactly one path from any one node to another along the 
branches (= edges) connecting them (Figure 1). 

The degree of a node of  the tree is the number of  edges connected to it. 
Terminal nodes or pendant vertices are always of degree one whereas intemal 
nodes are of  higher degrees. Terminal nodes are also said to be the leaves of  
the tree (except for degree-one roots). We define a tree as binary if none of  
its intemal nodes are of  a degree greater than three and as fully binary when 
all its internal nodes are of degree three exactly (Figure 2a). Non-binary 
altematives are trees with nodes of  degree greater than three (Figure 2b). 
When a tree contains one and only one internal node, it is said to be a star 
tree or a bush (Figure 2c). 

A tree is said to be rooted (= directed) when one of its nodes is labeled 
as the "root"  to induce a direction on the edges of  the tree. The presence of  
a root implies that there exist ancestry relations among the nodes, and that the 
branches are directed. The root is associated to the node representing the 
ancestor of  all the others vertices, whereas the terminal nodes are seen as the 
offsprings of  the intemal vertices located closer to the root (Figure 3). 

Labeled trees differ from unlabeled ones in that labels are assigned (or 
not) to the nodes of  the tree to refer to a given set of  objects. These objects 
usually represent taxa, called Evolutionary Units (EU) or Operational Taxo- 
nomic Units (OTU) in numerical taxonomy. They may also represent areas in 
historical biogeography (Rosen 1978), and so on. Labeled trees are fully 
labeled when all nodes are labeled, or terminally labeled when object names 
are associated to the terminal nodes only (Figure 4). 

When values are assigned to the branches of  a tree, representing a 
given function between two nodes, the tree is said to be weighted. Additive 
trees, also called path length trees, (Figure 5) are weighted trees in which the 
length of  the path connecting two nodes is equal to the sum of all the 
weighted edges along that path. 

Now, let a dendrogram be defined as a rooted weighted tree where all 
terminal nodes are at the same distance (path length) from the root (Figure 
6a). Dendrograms can be said to represent spherical trees with all terminal 
nodes placed on the circumference of  a sphere with a given radius. The 
center of  the sphere is the root of the dendrogram. Dendrograms will also be 
referred to as ultrametric trees, later on. In this kind of  tree, the internal 
nodes are ranked on the basis of  their relative distance to the root. Fusion 
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Figure 1. Three graphs: a is a tree, but b and c are not: b contains cycles, while c is not con- 
nected. 
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Figure 2. Tree a is a fully binary tree. Tree b is not binary since some internal nodes are of 
degree greater than three. Tree c is a star tree since it contains only one internal node. 
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Figure 3. Tree a is unrooted. Tree b is presented in its rooted form. 
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Figure 4. Tree a is unlabeled. Tree b is terminally labeled. Tree c is fully labeled. 
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Figure 5. A full-binary weighted and terminally labeled additive tree (a) and the correspond- 
ing path length matrix (b). 
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Figure 6. a: Representation of a binary terminally labeled dendrogram with all fusion levels 
distinct, b: The cophenetic matrix associated to that dendrogram, c: A binary terminally 
labeled dendrogram with two equal fusion levels (tied values), d: Its cophenetic matrix. 
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Figure 7. Dendrograms a ,  b and c are isomorphic,  while  d and e are dist inguishable.  

level values instead of ranks can be assigned to the internal nodes of a den- 
drogram at a level corresponding to the path length between that intemal 
node and its offspring terminal nodes. The root always has the highest fusion 
value (or highest rank) since it represents the internal node farthest to all pen- 
dant vertices. Reversals, therefore, are not legal in dendrograms; that is that 
if vertex y lies on the path between vertex x and the root, then the height (the 
"fusion level' ') of  vertex y must be greater than that of  vertex x. Like other 
weighted trees, dendrograms can be binary or not, labeled or unlabeled, but 
they are always rooted. They are binary when all fusion level values are dis- 
tinct; this is a sufficient but not necessary condition for a dendrogram to be 
binary (Figure 6c). 

A given dendrogram can be represented in different ways. Not all these 
representations are seen as different when considering the left-right flipping 
or pivoting of the vertical branches (Figure 7). We define as isomorphic or 
symmetrical a pair of  dendrograms that differ only in the pivoting order of 
their branches (a and b) or their labels (a and c). Likewise, distinguishable 
dendrograms must have distinct topologies (a and d) or different label posi- 
tions (a and e). 

Sibson (1972) has defined two families of dendrograms that he calls 
Global-Order lnvariant (GOI) and Local-Order lnvariant (LOI). The rooted 
unranked binary trees studied in the present paper pertain to the LOI type 
(additive trees are thus weighted LOI trees) whereas rooted ranked binary 
trees are of the GOI type. Global-order dendrograms with actual fusion level 
values are fully-weighted dendrograms. The term dendrogram alone will be 
used either for GOI or for fully-weighted trees, with no distinction. 
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TABLE 1 

The Number of Different Unweighted Binary Trees (BT n ) and Dendrograms (19 n ) 
for a Given Number of Objects n. 

n BT n D n D n - BT n 

1 1 1 0 
2 1 1 0 
3 3 3 0 
4 15 18 3 
5 105 180 75 
6 945 2 700 1 755 
7 10 395 56 700 46 305 
8 135 135 1 587 600 1 452 465 
9 2 027 025 57 153 600 55 126 575 

10 34 459 425 2 571 912 000 2 537 452 575 

3. Dendrograms Versus Binary Trees 

The only difference between a rooted binary tree and a dendrogram lies 
in the fusion level information. Dendrograms have ranked intemal nodes 
whereas binary trees are unranked. Considering that, one easily understands 
that the number of  possible dendrograms differs from the number of  binary 
trees for the same number n of  objects. Phipps (1975) and Felsenstein (1978) 
have shown that the number (BTn) of unweighted rooted binary trees of  order 
n can be obtained from the formula: 

BT,, = (2n - 3)! 1 2"-2(n - 2)! (1) 

On the other hand, Frank and Svensson (1981) have shown that when there 
are no ties in the fusion levels, the number (Dn) of  topologically distinguish- 
able binary dendrograms (i.e., with all fusion levels distinct) of  order n is 
obtained as: 

D n  = n!  (n - 1)! / 2 n-1 (2) 

For a given number of  objects, there are many more distinguishable dendro- 
grams, for a given set o f  fusion levels without ties, than there are non- 
weighted rooted binary trees (Table 1). The gap becomes more important as 
the number  n o f  objects increases. With four objects, there are 15 possible 
rooted binary trees and 18 distinguishable dendrograms (Figure 8). In this 
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Figure 8. All  18 poss ib le  dis t inguishable  dendrograms  for 4 objects.  Topological  Type I is 
represented by dendrograms  a to I. Topological  Type 1I is represented  by  dendrograms  m to r. 
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example, binary trees corresponding to dendrograms m and p, n and q, and o 
and r, are not distinct because fusion level heights (or ranks) are not con- 
sidered in binary trees. That difference has to be taken into account when 
generating random trees. 

Fumas (1984) has published a two-step procedure for the generation of 
additive trees. His method consists of  assigning random lengths to the 
branches of  a previously generated binary tree. This approach has been 
extended to the generation of dendrograms by assigning random fusion level 
heights to the vertices, instead of random lengths to the edges (De Soete 
1984). Apart from these methods, most of  the enumeration and generation 
procedures proposed so far do not take into account the values of the fusion 
levels but only consider the rank order of the nodes (Murtagh 1983; Rohlf 
1983). We have developed a simple generation procedure for randomizing a 
fixed set of  fusion levels. This is a new way of generating random fully- 
weighted dendrograms, which are widely used for Monte Carlo simulations in 
classi fication studies. 

4. Monte Carlo Simulations Involving Random Trees 

As we have seen, the number of trees increases rapidly as a function of  
the number of objects, leading to some problems when the time comes to 
evaluate the distribution of some type of tree for a large number of objects. 
Random sampling must be used instead of complete enumeration in these 
large problems, thus accounting for the large literature on the generation of 
random trees. One important aspect of  the problem deals with the develop- 
ment of  algorithms capable of generating random trees equiprobably, drawing 
them at random from the set of all possible trees, for a given number of 
objects n. The trees generated must also be relevant to the hypothesis one 
wishes to test. 

The particular problem one often has to deal with in numerical taxon- 
omy is to compare two actual trees on the basis of a consensus index. The 
null hypothesis may state for instance that the two trees under comparison are 
as similar as random trees sampled uniformly from the correct distribution 
(Shao and Rohlf 1983; Shao and Sokal 1986; Page 1988; Lapointe and 
Legendre 1990). What is the correct distribution? Different questions, related 
to different kinds of tree, call for different distributions. One may wish to 
compare labeled or unlabeled, rooted or unrooted trees; one has to decide 
whether only binary trees, or trees of any other speci tic type, must be allowed 
in the generation; is one to consider also the lengths of the branches, and if 
so, should the trees be additive or ultrametric? Many combinations involving 
different options are possible. In any case, the comparison scheme is not sim- 
ple. 
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For the dendrograms considered in this paper, the derived tree is the 
result of  previous computations and transformations and can be symbolically 
described as follows: 

DerivedDendrogram = ClusteringMethod (Distances (TrueTree) + noise) (3) 

Randomization of the derived dendrogram is but one of many other possible 
ways of looking at the problem. Instead, one might approach the tree com- 
parison by randomizing the raw data with bootstrapping methods (Felsenstein 
1985; Nemec and Brinkhurst 1988). The emphasis could also be placed on 
the distance measure or the clustering method used. There is more than one 
way to deal with this problem. Each method is based on a specific 
hypothesis. However, a direct comparison of the actual derived trees may 
represent the only alternative when no other information is available besides 
the dendrograms published in the literature. This paper deals with that case. 

When comparing actual dendrograms, three levels of  information may 
be of interest. (a) The user may only wish to take the bifurcation pattern into 
account, which leads to the generation of binary trees by randomization. Fur- 
nas (1984) considered at length the generation of such local order invariant 
trees. (b) One may wish to consider more information, taking into account 
the ranks of fusion levels in the generation of trees and thus implying the ran- 
domization of global order invariant trees, as described by Murtagh (1983). 
(c) Last, all the information available may be preserved by considering the 
actual values of the fusion levels instead of their ranks. This third approach is 
the subject of this paper, which introduces a "metric dimension" not found in 
either of  the other two approaches dealing with local order invariant or global 
order invariant dendrograms (Sibson 1972). Figure 9 presents some dendro- 
grams that are considered identical, or not, depending on which comparison 
criterion is used. A binary tree comparison, for instance, would capture no 
differences among these dendrograms. A global order approach would distin- 
guish a from b but not from c. The metric approach views all three dendro- 
grams as different since identical ranked trees can still have distinct fusion 
values (e.g., a v e r s u s  c). That this extra information is important seems obvi- 
ous to us. The final part of this paper proposes a new algorithm designed to 
generate random dendrograms considering the metric information embedded 
in the fusion levels. 

5. Correspondence Between Dendrograms, 
Packed Representations, and Cophenetic Matrices 

Every dendrogram is composed of a topology - -  a "shape"  s e n s u  

Harding (1971), which can be labeled in different ways. Shapes representing 
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unlabeled dendrograms can be defined by a vector of fusion values (or ranks) 
associated with the intemal nodes of a given dendrogram. Only ( n -  1) 
values are sufficient and necessary to define this vector, which then represents 
a "packed representation" of the corresponding topology (Murtagh 1984). 
Every permutation order of this fusion level vector corresponds to a shape. 
Shapes, however, are invariant under left-fight pivoting of the branches 
(Harding 1971). There exists indeed a surjective mapping of the set of per- 
mutation orders onto the set of shapes. That is that every shape is the image 
of at least one permutation order but more than one order can represent the 
same shape. Still, one can generate every random shape by a simple uniform 
permutation of the fusion level vector (Figure 10). We will also demonstrate 
below that the precise distribution pattem of these shapes allows the uniform 
generation of dendrograms when labeling the topologies uniformly. 

Labeled dendrograms can be uniquely represented by an ultrametric 
matrix (Figures 6b and 6d) containing the n(n - 1) / 2 fusions among all pairs 
of objects of the corresponding tree (Hartigan 1967). There is a one-to-one 
correspondence between this so-called cophenetic matrix (Sokal and Rohlf 
1962) and its associated dendrogram. A matrix is ultrametric when it satisfies 
the following axioms for all triplets of objects a, b and c (see for example 
Sneath and Sokal 1973): 

Identity i fa  = b then D(a,b) = 0 (4) 
Definiteness i fa  ~ b then D(a,b) > 0 (5) 
Symmetry D(a,b) = D(b,a)  (6) 
Ultrametricity D(a,b) < max [D(a,c), D(b,c)] (7) 

where D is some appropriate measure of dissimilarity or distance. With real 
data, the definiteness condition (expression 5) could be violated when two 
objects have a zero distance between them, but let us ignore that situation for 
the sake of the demonstration. 

Using the ultrametric property (inequation 7), one can easily build the 
cophenetic matrix corresponding to a given vector of fusion levels. Or, one 
can instead generate other random matrices using random fusion values, thus 
reducing the problem of randomizing dendrograms to the production of ran- 
dom cophenetic matrices, with the constraint that the resulting randomized 
matrix must still be ultrametric. Both the packed representation and the 
cophenetic matrix are crucial in the algorithms that follow. 

6. Generating Random Dendrograms 

Generating random GOI dendrograms is like generating ranked binary 
trees and requires the generation of a tree followed by random assignment of 
ranks onto the nodes. Our method proceeds in the reverse order, using the 
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Figure 9. Three dendrograms differing in various aspects. 
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Figure 10. The six topologies resulting from the permutations of the fusion level vector, 
Topological Type I is represented by the isomorphic dendrograms a, c, e and L Topological 
Type 1I is represented by the isomorphic dendrograms b and d. Packed representations are 
presented under each tree. 
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ranks to construct the tree. The procedure implies the generation of a random 
"shape"  followed by random labeling of this shape: 

(1) Given a vector containing n - 1 ranks, one can construct an unlabeled 
dendrogram corresponding to that rank order, as explained in Section 
7. The ranks specify the merging order of the clusters of  the 
corresponding "shape".  

(2) Given a vector containing n labels, the next operation is to assign 
those labels at random onto the leaves of the unlabeled tree. 

This method produces GOI dendrograms equiprobably (proof in Sec- 
tion 9). To generate fully-weighted dendrograms, one simply has to assign 
random fusion values to the nodes of a GOI dendrogram constructed using the 
general algorithm described above, substituting random metric fusion levels 
for the ranks. A possible alternative is to generate random cophenetic 
matrices instead of dendrograms. 

7. Generating Completely Random Cophenetic Matrices 

A "completely random" cophenetic matrix represents a random fully- 
weighted dendrogram, which is a tree with random fusion level values, ran- 
dom topology, and random position of the labels. To generate such matrices, 
one has to proceed in three steps: (a) create a random vector of fusion level 
values (i.e., a packed representation of a random weighted shape); (b) fill the 
random cophenetic matrix; and finally (c) relabel at random the leaves of that 
matrix. These steps are easily incorporated into a straightforward algorithm 
to generate matrices of order n (see Table 2). 

Generate random fusion levels - -  This first operation consists of generating 
a random vector of  fusion levels. Procedure RANDVECT returns a vector 
containing n - 1 random values drawn at random from a uniform distribution. 

Filling the cophenetic matrix - -  Using only the fusion values, one can fill 
the entire random cophenefic matrix. To do so, we proceed in two steps. 
First, the random vector of fusion levels is written in the off-diagonal of  an 
empty triangular matrix. From this off-diagonal, the rest of the matrix is filled 
using the ultrametric property (inequation 7). The FILLMAT procedure exe- 
cutes this operation by repeatedly applying the ultrametric axiom to specific 
triplets of  objects. Both its time and space complexity are O(n2). 

If the user prefers to obtain random fully-weighted dendmgrams 
instead of random cophenetic matrices, it is unnecessary to reconstruct the 
entire half-matrix. The fusion level vector can lead directly to the dendro- 
gram by specifying the order of the merges. It is essentially like performing a 
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TABLE 2 
Procedures  o f  the Comple te  and Constra ined Randomiza t ion  Algor i thms  

p r o c e d u r e  R A N D V E C T ;  
begin 

for i := 1 to n-1 d o  
Vect[i] := Randoml ;  

end; 

p r o c e d u r e  P E R M V E C T ;  
begin 

f o r  i := 1 to n-1 do  
Vectperm[i]  := Vect[Address(i)]  2 

e n d ;  

p r o c e d u r e  F I L L M A T ;  
begin 
{initialization o f  the off-diagonal} 

for i := 1 to n-1 d o  
Matr ix[ i , i+l]  := Vect[i]; 

{fill the matrix} 
f o r  i := 1 to n-2 d o  

f o r  j := i+2 to  n d o  
if  Matr ix[i , j -1]  > Mat r ix [ j - l , j ]  t h e n  

Matrix[i,j] := Matrix[i , j-1] 
e l s e  

Matrix[i,j] := Matr ix[ j - l , j ]  
e n d ;  

p r o c e d u r e  P E R M M A T ;  
begin 

for i := 1 to  n d o  
for j := i+ 1 to  n d o  

Matperm[i , j ]  := Matrix[Address(i) ,Address(j)]3;  
e n d ;  

1 Random is a uniform pseudo-random generating function. 
2 Address is a randomly permuted vector of the integers~ 1 to n-1 while Vect contains the 

actual fusion levels of the reference dendrogram. Notice that the pseudo-random number 
generator is re-seeded after each use, so that the values in PER M V E C T have no influence 
on those in P E R M M A T .  

3 A d d r e s s  contains a randomly permuted vector of the integers 1 to n (as in the 
P E R M M A T  procedure) corresponding to the new positions of the objects in the matrix. 
In real programs, it is preferable to address the randomly permuted Address  vector by 
indirection, instead of actually permuting the matrix. 
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clustering operation on the matrix, only simpler, it is simpler because one 
never needs to look outside the off-diagonal to find what to merge next, nor to 
re-estimate distances to clusters, since the ultrametric inequality is assumed 
to hold. In that situation, FILLMAT must be replaced by a tree reconstruction 
procedure. The random generation process is then reduced to O(n) complex- 
ity. 

Labeling the cophenetic matrix (or the dendrogram) - -  This operation 
simply consists of permuting at random the object labels, corresponding to 
rows and columns of the matrix, to change the positions of the objects in the 
corresponding dendrogram. The PERMMAT procedure returns a randomly 
permuted matrix called Matperm[ij]. Alternatively, one can design a PERM- 
LABELS procedure that would execute the same task for dendrograms. 

This three-step method can produce "completely random" cophenetic 
matrices sampled from an infinite population, each representing a random 
ranked tree in which random heights are assigned to the internal nodes. The 
procedure therefore might be regarded as an algorithm for generating global- 
order invariant dendrograms with random fusion level values. 

8. Generating Constrained Random Cophenetic Matrices 

The algorithm described above can generate a random cophenetic 
matrix corresponding to a random dendrogram of any order n. This "com- 
pletely randomized" approach is, however, not suitable when one wishes to 
build reference distributions of the association between random matrices for 
the comparison of real dendrograms. The RANDVECT procedure (Table 2) 
allows all possible fusion values to occur in the generation process. In the 
case of real dendrograms, this property is not desirable because the various 
dissimilarity coefficients that are used to construct dendrograms differ in the 
distributions of their values (Hajdu 1981; Gower and Legendre 1986). When 
generating fusion values from a uniform pseudo-random number generator, 
the resulting vector is not comparable to the real set of fusion values in the 
actual dendrogram. 

To overcome the problem of the randomization of fusion values, one 
might think of generating the fusion levels from a distribution which is 
relevant to the dissimilarity coefficient that was used to compute the reference 
dendrogram. This task may be very difficult without any a priori information 
about the underlying distributions of all possible coefficients. An easy way to 
approach this problem is to constrain the fusion levels of the random vector, 
forcing them to take the same values as in the actual dendrogram. In that 
simpler case, a randomization of a cophenetic matrix can be obtained by 
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randomizing the fusion level positions, instead of generating random fusion 
level values. This constrained randomization will insure that the random den- 
drograms remain comparable to the real one. 

The algorithm we propose proceeds by double permutation. First, the 
actual vector of fusion levels is permuted. This vector is written in the off- 
diagonal of the random matrix, and the matrix is filled using the FILLMAT 
procedure. Then, the objects are relabeled using the permuted Address vector 
in the PERMMAT procedure, as above. 

The only difference between the complete and the constrained randomi- 
zation is the replacement of RANDVECT by the PERMVECT procedure (see 
Table 2), that returns new addresses for the fusion values by permuting the 
values of the real vector of fusion levels, as read from the cophenetic matrix 
associated with the actual dendrogram. PERMVECT therefore may be seen 
as a procedure that permutes the elements of a packed representation, 
whereas RANDVECT is generating random packed representations. 

This constrained randomization algorithm generates random dendro- 
grams from the set of all possible non-isomorphic dendrograms given a fixed 
vector of fusion levels. When the number of objects n is small, the complete 
set of dendrograms can be generated instead of a random subset. To do so, 
one has to change the PERMVECT procedure to a complete enumeration 
loop that generates all possible permutations of the given vector of fusion lev- 
els. 

The remainder of this "constrained algorithm" is identical to the 
"complete approach". We still generate fully-weighted dendrograms. The 
distinction lies in the fusion values that are not generated randomly but con- 
strained to take fixed values. We are in fact simply permuting the fusion 
values of a dendrogram. If only ranks were to be considered instead of fusion 
levels, no difference would exist between the two procedures since the gen- 
eration of a random rank vector is identical to the permutation of a given set 
of ranks. The distinction between the two algorithms becomes important here 
because we are dealing with metric values instead of ranked fusion values 
(see Figure 9). 

9. Example and Justification of the Constrained Randomization 

We have seen that in the case of four objects, 18 dendrograms can be 
distinguished (Figure 8). Let us now verify that the double-permutation pro- 
cedure allows each of these dendrograms to occur equiprobably given a fixed 
set of fusion levels. 

We already know that the algorithm proceeds in two major steps 
designed (a) to generate a random topology ("shape") and (b) to relabel that 
topology randomly. The first step encompasses the PERMVECT and 
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FILLMAT procedures, and the second step is performed by the PERMMAT 
procedure. 

We will work out in detail the four-object, three-different-fusion-levels 
case. Suppose that we are dealing with a real vector of fusion levels contain- 
ing dissimilarity values 1,2 and 3. The PERMVECT procedure allows 3! = 6 
different ways to order these values, corresponding to six unlabeled trees 
(Figure 10). In reality, only two non-isomorphic topologies are distinguish- 
able among those six because of symmetry of shapes. Type I is represented 
by dendrograms a, c, e, and f while Type II is represented by dendrograms b 
and d. The probability of each topological type to occur is 4/6 = 2/3 for Type 
I and 2/6 = 1/3 for Type II. These values are in agreement with the frequen- 
cies of Type I and Type II topologies represented in the 18 dendrograms (Fig- 
ure 8) that are distinguishable for four objects (Type I = 12/18 = 2/3; Type II 
= 6/18 = 1/3). 

Now that we have two different possible unlabeled topologies, we have 
to label them, that is, to address the positions of the objects on these topolo- 
gies. This operation is performed by the PERMMAT procedure that allows 
every permutation of the object order to occur equiprobably. For 4 objects, 
there are 4! = 24 such different orders. Let us now label both topological 
types in each of  the 24 possible ways. For Type I (Figure 11), we see that 12 
dendrograms are distinguishable after the identification of symmetrical trees. 
Each dendrogram was obtained twice by the labeling operation (a is iso- 
morphic to g; b to h; etc.). All trees have the same probability of occurrence: 
2/24 = 1/12. For Type II (Figure 12), fewer dendrograms are possible because 
each tree has four symmetrical forms (a, b, g, h; etc.). The probability of 
occurrence of each dendrogram of Type II is then 4/24 = 1/6. 

Now, if we combine Figures 11 and 12 to obtain all possible dendro- 
grams, we see that 18 distinguishable forms are produced by the double- 
permutation procedure; twelve are of Type I and six of Type II. In other 
words, the probability of each topology to occur being 2/3 and 1/3, we have 
for Type I, 2/3 x 1/12 = 1/18, and for Type II, 1/3 x I/6 = 1/18 chances of 
obtaining one distinguishable dendrogram, the probability being the same for 
members of both topological types. This example shows that the double- 
permutation procedure allows every non-isomorphic dendrogram of Figure 8 
to occur equiprobably. Higher numbers of objects n could be analyzed in the 
same way. 

Let us now demonstrate that this example can be extended to a general 
theorem. 

Theorem: Given any number of  objects n, the probability of  each distin- 
guishable dendrogram o f  order n to occur is the same for every topological 
type. 
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Figure 11. All possible  orders o f  the labels for topological  Type I. 
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Corollary:  Our algorithm is a Uniform Random Generation Algorithm, 
sensu Furnas (1984). 

Proof." If this is true, each dendrogram should be generated with a probability 
corresponding to 1 /D,  where D~ is given by equation (2). Thus, 

1 / D n  = 1 / [n!  (n  - 1)! / 2 n - l ]  = 2 n-1 / (n!  (n - 1)!)  (8) 

The double-permutation algorithm proceeds in two steps. The first permuta- 
tion is applied to the vector of fusion level values (or ranks) containing n - 1 
elements. This permutation allows the (n - 1)! distinct orders of the vector to 
occur equiprobably. Some permutations of these packed representations 
represent identical topological types or shapes, however. Each distinguish- 
able unlabeled tree may correspond to different permutation orders. Murtagh 
(1984) has defined a recurrence function to calculate the number of iso- 
morphic unlabeled dendrograms of order n containing m internal nodes 
(m < n / 2) with exactly two offspring terminal nodes. The number of distinct 
topological types resulting from the permutation of the fusion level vector is a 
function of the value m. One can show that for any topology (T1) of order n 
with m internal nodes with exactly two offspring terminal nodes, the number 
of isomorphic permutations is equal to: 

Tl(n,m) = 2 "-m-1 (9) 

In this formula, (n - m  - 1) is the number of fusion levels that can be per- 
muted, once those levels (m) that have exactly two terminal nodes have been 
excluded. SinCe each of these (n - m - 1) fusion levels is binary, only two 
altematives are possible by permuting its two derived vertical branches; this 
is why 2 n-'~-I gives the total number of isomorphic permuted packed 
representations of the corresponding shapes. Therefore, the probability (P) of 
each non-isomorphic unlabeled dendrogram is given by: 

P [T1(n,m)] = 2 n-m-1 / (n - 1)! (10) 

which represents the first step of the double-permutation procedure. 
Once the first permutation is completed, a second permutation is per- 

formed, this time on the labels for the leaves of the tree. This operation 
allows n! different orderings of the labels to occur equiprobably. Similar to 
the packed representations, some label permutations represent isomorphic 
labeling of the dendrograms. The number of such isomorphic orders (T2) for 
a given dendrogram with n leaves is also a function of m: 
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T2(n,m ) = 2" (11) 

The probability (P) of each distinguishable ordering of the labels for a given 
shape is: 

P [T2(n,m)] = 2"* / n! (12) 

That corresponds to the final step of the constrained randomization algorithm. 

The combination of equations 10 and 12 represents the probability of 
each dendrogram T of order n with m nodes, each with exactly two terminal 
descendant nodes: 

P [T(n,m)] = P [Tl(n,m)] •  [T2(n,m)] 

= 2 n - ' - 1  / (n - 1)! •  / n! 

= 2 "-1 / ( (n  - 1)! n ! )  (13) 

which is equal to the value for 1 /D,, obtained from Equation 8. Thus, the 
double-permutation algorithm generates each distinguishable labeled dendro- 
gram with a probability equal to 1 / D n and the procedure is a Uniform Ran- 
dom Generation Algorithm. ,, 

10. Conclusion 

This paper presented two algorithms that are useful for comparing den- 
drograrns. Both methods are generating global order dendrograrns equiprob- 
ably. The first algorithm generates dendrograms with random fusion values, 
whereas the second procedure generates dendrograms with fixed fusion lev- 
els. 

The "completely random" algorithm should be used in Monte Carlo 
studies where a distribution of some statistic based on completely randomized 
trees is needed. Studies of that type include the papers by Shao and Rohlf 
(1983) and Shao and Sokal (1986) who generated reference distributions for 
testing the significance of consensus indices between trees. These authors 
used trees without specified fusion levels. Using our first algorithm, similar 
distributions could now be worked out for trees with speci fled fusion levels 
(i.e., fully-weighted dendrograms). 

Our second method, the "constrained algorithm", is intended to answer 
a different type of problem, that is, the comparison of two dendrograrns 
obtained independently. Such problems are found in all fields where 
classifications are used: evolutionary biology, biogeography, ecology, 
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sociometry, psychometrics, econometrics, and so on. One of these dendro- 
grams is usually obtained from clustering data, while the second one may 
either be known a priori, or, like the first dendrogram, be the result of  a clus- 
ter analysis. Such comparisons usually imply the computation of some form 
of consensus or agreement measure. When a test is needed of  the statistical 
significance of  the agreement, the reference distribution can be generated 
after repeated random permutations of the dendrograms, followed by re- 
computation of the agreement measure. Examples include Lapointe and 
Legendre (1990), based on a modified form of the Faith and Belbin (1986) 
consensus index, and Page (1990). When the agreement statistic chosen 
varies as a function of the fusion levels, and not only as a function of the tree 
topology and position of the leaves, then one might choose to limit the possi- 
ble fusion levels to those found in the real dendrogram being permuted, in 
order to eliminate that effect from the reference distribution, hence from the 
statistical test. If the chosen agreement measure varies only as a function of 
the tree topology and leaf positions, as it is the case for instance with the 
consensus-fork index (Colless 1980) and Mickevich's (1978) index, then 
either one of the algorithms presented in this paper would be adequate for 
generating the random trees. 

Both methods described in this paper can be modified to allow the gen- 
eration of random additive trees (Lapointe and Legendre, submitted). Com- 
pletely random path length matrices can be generated by the combination of 
random ultrametric (Figure 6) and star (Figure 2c) components. One could 
also use a constrained approach in that case to obtain relevant additive trees 
for comparison purposes. Further developments in that area are badly 
needed. 
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