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Summary

1. TheMantel test is widely used in biology, including landscape ecology and genetics, to detect spatial structures

in data or control for spatial correlation in the relationship between two data sets, for example community

composition and environment. The study demonstrates that this is an incorrect use of that test.

2. The null hypothesis of the Mantel test differs from that of correlation analysis; the statistics computed in the

two types of analyses differ.We examined the basic assumptions of theMantel test in spatial analysis and showed

that they are not verified in most studies. We showed the consequences, in terms of power, of the mismatch

between these assumptions and theMantel testing procedure.

3. TheMantel testH0 is the absence of relationship between values in two dissimilaritymatrices, not the indepen-

dence between two random variables or data tables. TheMantelR2 differs from theR2 of correlation, regression

and canonical analysis; these two statistics cannot be reduced to one another.Using simulated data, we show that

in spatial analysis, the assumptions of linearity and homoscedasticity of the Mantel test (H1: small values of D1

correspond to small values of D2 and large values of D1 to large values of D2) do not hold in most cases, except

when spatial correlation extends over the whole study area. Using extensive simulations of spatially correlated

data involving different representations of geographic relationships, we show that the power of theMantel test is

always lower than that of distance-basedMoran’s eigenvector map (dbMEM) analysis and that theMantelR2 is

always smaller than in dbMEM analysis, and uninterpretable. These simulation results are novel contributions

to theMantel debate. We also show that regression on a geographic distance matrix does not remove the spatial

structure from response data and does not produce spatially uncorrelated residuals.

4. Our main conclusion is that Mantel tests should be restricted to questions that, in the domain of application,

only concern dissimilarity matrices, and are not derived from questions that can be formulated as the analysis of

the vectors andmatrices fromwhich one can compute dissimilaritymatrices.

Key-words: landscape ecology, landscape genetics, Mantel test, Moran’s eigenvector maps

(MEM), network analysis, numerical simulations, redundancy analysis, spatially structured data

Introduction

The Mantel test was originally designed for analysing disease

clustering in epidemiological studies. In that procedure, Man-

tel (1967) related a matrix of spatial distances and a matrix of

temporal distances in a generalized regression approach. The

procedure was expanded byMantel & Valand (1970) to a non-

parametric form of analysis of the relationship between two

dissimilarity matrices computed from two sets of multivariate

data concerning the same n individuals or sampling units. Since

that paper, ‘the procedure, known as theMantel test in the bio-

logical and environmental sciences, includes any analysis relat-

ing two distance matrices or, more generally, two resemblance

or proximitymatrices’ (Legendre 2000).

In biology, Sokal (1979) was the first to use Mantel tests to

study patterns of geographic variation in taxonomic data. In

Sokal & Rohlf’s (1995) Biometry book, the Mantel test is pre-

sented as a general procedure to test the relationship between

multivariate data tables expressed as dissimilarity matrices in

biological problems; for these authors, the usefulness of the

Mantel test derived from the fact that ‘in evolutionary biology

and ecology, dissimilarity coefficients are frequently used to

measure the degree of difference between individuals, popula-

tions, species, or communities’ (Sokal &Rohlf 1995, p. 813). A

further generalization was proposed by Anselin (1995) who

showed that indices of spatial autocorrelation such asMoran’s

I and Geary’s c may be considered to be special cases of the

Mantel statistic.

The discussion and criticisms formulated in this study only

concern the spatial analysis applications of the Mantel test in

biology (ecology, genetics, evolutionary biology, landscape

ecology and landscape genetics). They do not concern the ori-

ginal test developed by Mantel for epidemiological studies,

where the question clearly involved the relationship between

two types of distances (temporal and spatial) separating

disease occurrences.

Applications to spatial analysis started when ecologists and

geneticists discovered that aMantel test offered an easy way of

introducing spatial relationships, in the form of a geographic

distance matrix, into a statistical framework for modelling*Correspondence author. E-mail: Pierre.Legendre@umontreal.ca
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multivariate data (Sokal 1979; Legendre & Troussellier 1988;

Legendre & Fortin 1989; Cushman et al. 2006). The Mantel

test quickly became a favourite statistical procedure for

researchers interested in spatial [or temporal] processes. That

was before more appropriate and powerful statistical proce-

dures, such as dbMEM analysis, used in the simulations

reported in this study, became available; see Legendre, Borcard

& Peres-Neto (2005), Legendre & Fortin (2010) and Dray

et al. (2012).

The main thesis of this study is that Mantel tests should

be restricted to questions that, in the domain of application,

only concern dissimilarity matrices, and are not derived from

questions that can be formulated as the analysis of ‘raw data

tables’, meaning the vectors and matrices from which one

can compute dissimilarity or distance matrices. Matrices of

geographic distances among sites derived from spatial coor-

dinates are included in the cases where Mantel tests may be

inappropriate. (i) We will show that the hypotheses of corre-

lation tests of significance of raw data tables differ from the

hypotheses that concern dissimilarity matrices; furthermore,

the statistics involved in the two types of analyses differ and

cannot be reduced to one another. (ii) We will refer to simu-

lation papers that have shown that analyses in the world of

raw data are consistently more powerful than in the world

of dissimilarities when both approaches are possible. Appen-

dix S1 (Supporting Information) retraces the history of the

applications of the Mantel test to spatial data analysis and

summarizes the most important simulation studies that have

shown that the approach lacks statistical power by a broad

margin. (iii) We will focus on the basic assumptions of line-

arity and homoscedasticity of the Mantel test in spatial

analysis. Simulations involving spatially autocorrelated data

will show that these assumptions are not verified in most

studies. (iv) Finally, using again simulations of spatially

autocorrelated data, we will show the consequences, in terms

of power, of the mismatch between these assumptions and

the Mantel procedure.

Formally, a dissimilarity index (or coefficient) is a function

that measures the difference between two vectors. A distance

index is a special type of dissimilarity that satisfies the metric

properties (minimum value of 0, positiveness, symmetry and

triangle’s inequality); the Euclidean distance is the most widely

used distance coefficient. In this study, the general term dissimi-

larity will be used except to designate a spatial or temporal

distance.

What is the null hypothesis of theMantel test?

Scientists who use Mantel tests when the analysis of raw data

tables is possible are usually under the impression that the two

types of methods are testing the same statistical hypothesis.

For example, Guillot & Rousset (2013) wrote in the caption of

their Fig. 2: ‘The null hypothesis tested [in the Mantel test] is

the independence between x and y’ (in that part of their paper,

x and y are two random variables, cf. their Fig. 1; they are not

dissimilarity matrices). That description of the null hypothesis

would be correct for the test of a correlation coefficient

between two random variables. It is incorrect, however, for the

Mantel test, which is a test of the absence of relationship

between the dissimilarities in two dissimilarity matrices. A cor-

rect formulation of H0 for theMantel test is the following: ‘H0:

The distances among objects in matrix DY are not (linearly or

monotonically) related to the corresponding distances in DX’

(Legendre & Legendre 2012, p. 600; italics added for empha-
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Fig. 1. (a) Map of a 20 9 20 pixel simulated autocorrelated surface.

The variogram range controlling the autocorrelation structure was 10.

Colour scale: fromdark red (low) to pale yellow (high values). (b) Rela-

tionship between geographic distances (D) among pixels (abscissa) and

dissimilarities (unsigned differences) computed from the simulated data

(response D) whose values are represented by colours in panel a. This

graph contains (202(202 – 1)/2) = 79 800 points (pairs of dissimilari-

ties). Because of point superposition, the D-D relationship central ten-

dency is not clear; a Lowess smoother (red line) was added to indicate

the central tendency of the relationship across the plot. (c) The geo-

graphic distances in the abscissa of panel b are replaced by distance

classes; the central tendencies of individual values of the response dis-

similarities within classes are represented by their means (blue circles)

andmedians (black squares); variation is represented by empirical 95%

coverage intervals, that is, intervals containing 95%of the response dis-

similarities in the class.
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sis). Similar formulations of the Mantel null hypothesis are

found in Legendre (2000, p. 41): ‘The simple Mantel test is a

procedure to test the hypothesis that the distances among

objects in a [distance] matrix A are linearly independent of the

distances among the same objects in another [distance] matrix

B’ and in Legendre & Fortin (2010, p. 835). In partial Mantel

test, mentioned in section ‘Assumptions of theMantel test’, H0

states that q(AB.C) = 0, where A, B and C are dissimilarity

matrices (Legendre 2000).

A complementary point is the demonstration by Legendre

& Fortin (2010) (their eqs. 1, 2 and 9) that the statistic used in

the Mantel test is unrelated to that used to test the R2 statistic

in [multiple] linear regression or redundancy analysis (RDA),

or the simple correlation coefficient r. Here, we highlight the

difference between theR2 statistics tested in redundancy analy-

sis (which is themultivariate form ofmultiple linear regression)

and in aMantel test.

In [multiple] linear regression and RDA, R2 is the ratio of

the sum of squared differences from the mean, or sum of

squares (SS) for short, of the fitted values to the sum of squares

of the data:

R2 ¼ SSðŶÞ
SSðYÞ eqn 1

(following usual notation), whose denominator is

SSðYÞ ¼
X

j¼1:p

X
i¼1:n

ðyij � �yjÞ2 eqn 2

where n is the number of observations and p is the number of

variables inmatrixY. This denominator can also be written as

SSðYÞ ¼
X

i[ h
Dih

2
� �

=n eqn 3

Proof of this equivalence if found in Appendix A1 of Legen-

dre & Fortin (2010).R2 represents the fraction of the total sum

of squares of the response data Y that is explained by the

explanatory variablesX.

Consider now two dissimilarity matrices, DY and DX, com-

puted from data vectors y and x or from matrices Y and X.

String out the lower diagonal portions of thesematrices as long

vectors dY and dX, each of length n(n – 1)/2. TheMantel corre-

lation, rM, is the correlation coefficient between these two vec-

tors. The square of rM is the coefficient of determinationR2
M of

the linear regression of dY on dX:

R2
M ¼ SSðcdYÞ

SSðdYÞ eqn 4

The denominator of that equation is

SSðdYÞ ¼
X

i[h
DihY � �DYð Þ2¼

X
i[h

D2
ihY �

P
i[h DihY

� �2
nðn� 1Þ=2

eqn 5

This formula is written using dissimilarity valuesDih to make it

comparable to Eqn 3. The important point here is that SS(dY)

in Eqn 5 is not equal to, is not a simple function of, and cannot

be reduced to SS(Y) in Eqn 3. They are different statistics, and

so areR2 andR2
M.

The statistic used in each test reflects its null hypothesis and,

because the null hypotheses differ, the statistics also differ and

are not interchangeable. Hence, these two tests are not equiva-

lent. This demonstration completes our proof that the Mantel

test is inappropriate to test a hypothesis of correlation between

two data vectors ormatrices of raw data.

Assumptions of theMantel test

TheMantel test makes two strong assumptions about the rela-

tionships between the two sets of dissimilarities, D1 and D2,

under comparison.

The first assumption is that the relationship is linear, if a

cross-product or a linear correlation coefficient is used as the

Mantel statistic, ormonotonic if the dissimilarities are replaced

by their ranks (Mantel 1967) or if a Spearman or Kendall

correlation coefficient is used to compute the Mantel statistic

(Dietz 1983). The linearity or monotonicity assumption is

linked to the choice of the statistic.

The second assumption, which is the basis for the alternative

hypothesis (H1) of the Mantel test, is that small values of D1

correspond to small values ofD2 and large values ofD1 to large

values of D2. Mantel stated this assumption (alternative

hypothesis H1) as follows in his 1967 paper (p. 209) in the con-

text of the disease clustering problem: ‘if there is time-space

clustering, cases in a cluster will be close both in time and

space, while unrelated cases will tend to have a larger average

separation in time and space’. In their Biometry textbook,

Sokal & Rohlf (1995, pp. 814 and 816) formulated in similar

terms the alternative hypothesis of the Mantel test for specific

biological examples.

This assumption may hold for space-time clustering of epi-

demiological data, but does it hold for the various extensions

of theMantel test that are currently done by biologists?Wewill

show in section ‘Simulations involving spatially autocorrelated

data: violation of the Mantel test assumptions’ that for spatial

analysis involving spatially autocorrelated data, that assump-

tion, which refers to the homoscedasticity of the distribution of

values in the distance–distance (D-D) plot, holds in a very

limited number of situations; what is found in most cases is

a hump-shaped or triangular distribution. This is a novel

contribution to theMantel debate.

Misuse of theMantel test to analyse
georeferenced data

In many applications, researchers incorrectly used the Mantel

and partial Mantel tests to assess hypotheses of relationships

between variables or data tables, not between dissimilarity

matrices. A list of examples is found in Legendre, Borcard &

Peres-Neto (2005, pp. 438–439). Based on the demonstration

reproduced in section ‘What is the null hypothesis of the Man-

tel test?’ and on numerical simulations, Legendre & Fortin

(2010) argued thatMantel and partialMantel tests should only

be used to test hypotheses that specifically concern dissimilari-

ties, not those derived artificially from hypotheses about the

raw data. In particular, to test the correlation between two spa-
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tially correlated vectors ormatrices of raw data, one cannot use

a partialMantel test computed after transforming the raw data

into dissimilarity matrices A and B and test H0: q(AB.C) = 0,

where C is some form of geographic distance or connexion

matrix. There are alternative ways of testing the significance of

the correlation between two raw data vectors or matrices while

controlling for spatial structure, as shown in Peres-Neto &

Legendre (2010) and in Legendre&Legendre (2012).

All simulation studies carried out to measure the capacity of

the partial Mantel test to control for (auto)correlation in data

have been done by generating raw data that were spatially cor-

related, for example Manly (1986), Oden & Sokal (1992),

Legendre, Borcard & Peres-Neto (2005), Legendre & Fortin

(2010), Guillot & Rousset (2013) and section ‘Simulations

involving spatially autocorrelated data: comparison of Mantel

test and dbMEM analysis’ of this study. Throughout, the

Mantel test was consistently shown to have low power in these

simulations, compared to analyses performed on the original

data. Appendix S1 reviews some of the papers that showed,

through simulations, important characteristics of tests of sig-

nificance in the presence of spatial correlation, including

Mantel and partialMantel tests.

Simulations involving spatially autocorrelated
data: violation of theMantel test assumptions

Spatially autocorrelated surfaces of different sizes and degrees

of autocorrelation were generated by Gaussian random field

simulations, using function RFsimulate() of package Random-

Fields (Schlather et al. 2014) in R, implementing a spherical

variogram model through function RMspheric(). Preliminary

results, generated on a small surface (20 9 20 pixels), will be

examined first.

Then, larger surfaces were generated in the same way and a

subset of points was sampled: on each surface, we selected 100

points forming a square regular grid surrounded by 5-pixel-

wide unsampled bands to reduce border effects in the sampled

data. The points of the gridwere spaced by 1–5 pixels; counting
the border bands, the surfaces had {20, 29, 38, 47, 56} pixels in
the horizontal and vertical directions, depending on the hori-

zontal and vertical spacing {1, 2, 3, 4, 5} of the sampled points.

Results for 5-pixel spacing will be examined. Similar (unre-

ported) results were obtained for the smaller surfaces with

horizontal and vertical spacing of 1–4 pixels. The results indi-

cate the following about the assumptions of theMantel test:

1. Linearity assumption of the D-D comparison – Let us

examine first the response surface simulated on the (20 9 20

pixels) grid with spacing = 1 pixel and autocorrelation

range = 10 units (Fig. 1a). The Lowess line in Fig. 1b and the

response to distance classes in Fig. 1c show that the dissimilari-

ties increased from geographic distance class 1 to 9 in this

example; this is close to the range value (10) of the controlling

variogram. The mean of the response dissimilarities decreased

as geographic distance increased further. Hence, the D-D rela-

tionship was not linear or monotonic. Similar results are

shown in Appendix S2 for larger (56 9 56 pixels) surfaces gen-

erated with different variogram range values. The only case

where theD-D relationship was approximately linear was that

with range = 70 (Fig. S1q–r), where the autocorrelation range
was near the maximum distance between pixels on the surface

(i.e. between the pixels in opposite corners, whose geographic

distance was 79�2 units).
2. Assumption that small values ofD1 correspond to small val-

ues ofD2, and large values ofD1 to large values ofD2 –Wewill

examine whether this assumption holds at least within the sec-

tions of theD-D plots within the range of the controlling vario-

gram. This is the portion between geographic distances 1 and 9

or 10 in Fig. 1b,c. The graph shows that whereas small values

ofD1 (response) correspond to small values ofD2 (geographic),

an increasingly broad range of response values is associated

with larger geographic distances, causing heteroscedasticity in

theD-D distribution. The same absence of homoscedasticD-D

relationships is found for the larger surfaces simulated with

various range values (Fig. S2.1). The D-D relationship on the

left of the geographic distance marking the end of the range of

autocorrelation of the simulated surface is hump-shaped or tri-

angular and, in any case, very far from homoscedasticity.

For spatially autocorrelated data, these two assumptions of

the Mantel test are violated and that partly explains its lack of

power. The violations are less important when autocorrelation

is equal to or larger than the size of the study area; that is the

case where the Mantel test performs best in terms of power, as

wewill see in the next section.

These two assumptions do not apply to the Mantel correlo-

gram (Oden & Sokal 1986; Sokal 1986; Borcard & Legendre

2012) where the response dissimilaritiesD1 are analysed in sep-

arate tests against a set of binary model matrices, each repre-

senting a geographic distance class.

Simulations involving spatially autocorrelated
data: comparison ofMantel test and dbMEM
analysis

Despite several papers based on numerical simulations advis-

ing to the contrary (Appendix S1), theMantel test is still widely

used by ecologists and geneticists to carry out different forms

of spatial analyses. That incentive led us to compare the

power of the Mantel test to that of a test based on the original

(non-dissimilarity) data, using extensive simulations carried

out on the largest spatially autocorrelated surfaces of the

previous section.

Spatially autocorrelated data were generated using function

RFsimulate(), as in section ‘Simulations involving spatially

autocorrelated data: violation of theMantel test assumptions’.

The following statisticalmethodswill be compared to study the

relationship between the values associated to the points and

their geographic positions: (i) the Mantel test between dissimi-

larity matrices (with one-tailed tests in the upper tail; mantel()

function of the vegan package, Oksanen et al. 2013) and (ii)

spatial eigenfunction analysis using the form known as dis-

tance-based Moran’s eigenvector maps (dbMEM) (PCNM()

function of the PCNM package, Legendre et al. 2012). That

method is detailed in Legendre & Legendre (2012, Chapter 14)

and in the original publications (Borcard & Legendre 2002;

© 2015 The Authors. Methods in Ecology and Evolution © 2015 British Ecological Society, Methods in Ecology and Evolution, 6, 1239–1247
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Borcard et al. 2004;Dray, Legendre&Peres-Neto 2006) where

it was called PCNM analysis. Spatial eigenfunctions can be

used in linearmodels in the samewayas anyother set of explan-

atory variables. The analysis involvesmultiple linear regression

when the response data are univariate (as in our simulation

study) or redundancy analysis (RDA, Rao 1964) when it is

multivariate. In both cases, R2 and adjusted R2 statistics (R2
adj)

can be computed and tested for significance using a parametric

or permutational F-test (Legendre, Oksanen & ter Braak

2011). A permutational test based upon 999 random permuta-

tions of the response data will be used. No variable selection

will be carried out in this study; the analyses will be based upon

the whole set of eigenfunctions that model positive spatial cor-

relation, that is, thosewith positiveMoran’s I coefficients.

In all simulations, 1000 random autocorrelated surfaces

with 56 9 56 pixels were independently produced with vario-

gram ranges of {0, 5, 10, 15, 20, 25, 30, 35, 40} grid units. These
surfaces were sampled at 100 points forming a square regular

grid with horizontal and vertical spacing of 5 units.

SERIES 1 SIMULATIONS INVOLVING ALL PAIRWISE

GEOGRAPHIC DISTANCES

The simulated data sets were analysed with respect to geogra-

phy using a dbMEM regression and aMantel test. The trunca-

tion value for dbMEMgenerationwas the point spacing, 5 grid

units.Users of theMantel test often square-root the geographic

distances to increase the linearity of the relationships with the

response dissimilarities, so we carried out our study using both

the original and square-rooted geographic distances.

For each range value, the 1000 simulation results were sum-

marized by tallying how many data sets produced significant

dbMEM and Mantel results at the a = 0�05 significance level

(one-tailed tests in the upper tail); these numbers were divided

by 1000 to obtain rejection rates, which were plotted against

the variogram range values (Fig. 2a). Confidence intervals,

based on the binomial distribution, were also computed. They

are not visible in the graph because they were smaller than the

symbols representing the rejection rates.

Each dbMEM regression produced anR2 and anR2
adj statis-

tic. The means of these R2 and R2
adj across 1000 simulations

were computed for each variogram range value. The means

were actually computed on R2 transformed to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� R2

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� R2
adj

q
, which have symmetric distributions, and trans-

formed back to R2 and R2
adj. EachMantel test produced an rM

statistic, which was transformed toR2
M by squaring it; with this

transformation, the Mantel test is considered to be a form of

regression analysis, following Mantel (1967). Many users of

the Mantel test use that R2
M statistic and erroneously interpret

it as if it were equivalent to an R2 computed by regression on

the raw data. Note that there is no way of adjusting R2
M to

account for the number of explanatory variables in matrixD2.

Means of theR2
M values were computed as for the dbMEMR2

and R2
adj. The mean R2 statistics were plotted against vario-

gram range values (Fig. 2b) together with the meanR2
adj statis-

tics of dbMEM regression.
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Fig. 2. (a) Rejection rates (i.e. number of

rejections of H0 at the 0�05 significance level

divided by the number of simulations, 1000) of

the regression–dbMEM and Mantel tests as a

function of the variogram range in the simu-

lated data. (b) Mean R-squares of the two

methods of analysis. The mean adjusted R-

square (R2
adj) of the regression–MEM test,

which is an unbiased estimate of the explained

variation, is also shown. No R2
adj statistic is

available forMantel tests.
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The results (Fig. 2a) show first that the dbMEM analysis

and Mantel test had correct levels of type I error; type I error

was the rejection rate when there was no spatial autocorrela-

tion in the data (range = 0) or when the range of the variogram

used for generation of the data was not larger (range = 5) than

the interval between the sampled grid points (here 5 units). This

first result has been reported in other papers, for example Oden

&Sokal (1992), Legendre&Fortin (2010) andGuillot &Rous-

set (2013).

When the range of the variogram controlling the autocorre-

lation in the data was larger than 5, dbMEM analysis was

always farmore powerful than theMantel test (Fig. 2a).When

the range of the autocorrelation process became very large and

the patches nearly covered the whole surface (Fig. S2.1k), the

Mantel test became usable although its power remained lower

than that of dbMEM analysis. In all cases, the Mantel test

based on square-rooted geographic distances was slightlymore

powerful than the Mantel test based on untransformed geo-

graphic distances.

In a regression context, R2 is a useful measure of the vari-

ation of a response variable explained by explanatory data.

Fig. 2b shows that the Mantel test R2 (R2
M) was much smal-

ler than that of dbMEM regression. These two statistics are

not comparable: in dbMEM analysis, R2 measures how

much of the variance of the response data is explained by

geography. In the Mantel test, it measures the fraction of the

variance of the dissimilarities D1 explained by the geographic

distances D2. Hence, the Mantel R2
M cannot be interpreted as

an estimate of the R2 produced by an analysis of the original

data.

In our simulation functions, Mantel tests produced one-

tailed tests in the upper tail. This is the normal output of

vegan’s mantel() function and it was adequate for our study,

where wewanted (H1) to detect positive spatial autocorrelation

(SA) in the simulated data when SA was present. We checked,

however, what happened in the lower tail. In simulations with

variogram ranges of {0, 5}, there was no SA in the data

because the spacing between points on the sampled grid was 5;

as expected, the rejection rates in the upper and lower tails were

always near the significance level, 0�05. When there was SA in

the simulated data, the rejection rate in the upper tail increased,

as shown in Figs 2–3, while it decreased and became 0 in the

lower tail (not shown in the figures). It never went above the

significance level.

Legendre & Fortin (2010, their Fig. 4) showed complemen-

tary results. They simulated a univariate regular gradient cross-

ing a square map diagonally and added error (noise) to the

response data. As the amount of noise increased, power of the

methods of analysis decreased, as expected. The comparison

involved a linear regression of the response data on the geo-

graphic coordinates of the sampled points (i.e. a linear trend

surface analysis) and a simple Mantel test. The Mantel test

became non-significant after a small amount of noise was

added, whereas the F-test of the linear regression remained sig-

nificant for higher amounts of noise. So in that example again,

linear regression had higher power than theMantel test.
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Fig. 3. (a) Rejection rates (i.e. number of

rejections of H0 at the 0�05 significance level

divided by the number of simulations, 1000) of

the regression–dbMEM and Mantel tests as a

function of the variogram range in the simu-

lated data. Mantel tests were computed with

truncation levels (thresh in figure) of 5, 10, 15

and 20 grid units. (b) Mean R-squares of the

two methods of analysis. The mean adjusted

R-square (R2
adj) of the regression–MEM test,

which is an unbiased estimate of the explained

variation, is also shown. No R2
adj statistic is

available forMantel tests. For theMantel test,

the R-squares obtained in the truncated and

untruncated simulations are nearly identical

and superposed in the figure.
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SERIES 2 SIMULATIONS INVOLVING TRUNCATED

GEOGRAPHIC DISTANCE MATRICES

In these simulations, the matrix of geographic distances used

in Mantel tests was truncated at different levels (thresholds,

abbreviated thresh = {5, 10, 15, 20} grid units) and all dis-

tances larger than the truncation value were changed to the

largest distance in the data set, which was the distance between

the two opposite corners of the square grid (63�64 units). For

each simulation condition (range and thresh), the analysis was

repeated for 1000 independently generated surfaces. These sim-

ulations reproduced the method used by landscape ecologists

and geneticists who apply Mantel tests to truncated distance

matrices when they feel that the effect of the distance among

sites can only be perceived up to a certain distance where con-

tagion, dispersal of propagules in plants, or migration in ani-

mals, no longer creates spatial correlation among the sites

(Dyer & Nason 2004; Fortuna et al. 2009; Murphy et al.

2010).

The truncated data, each with 100 observations, were analy-

sed with respect to geography through a dbMEM regression

using the full set of eigenfunctions modelling positive spatial

correlation, as in series 1, and aMantel test using the truncated

geographic distancematrix (previous paragraph).

Rejection rates of the tests across the simulations are pre-

sented in Fig. 3a. For variogram ranges of 0 and 5, where there

was no autocorrelation in the data, all tests had correct type I

error as their rejection rates were close to the significance level.

When the range was larger than 5, dbMEM analysis was

always more powerful than the Mantel test for different trun-

cation distance values (thresh in the figure), except when the

truncation value was 5. The extreme case, with no truncation

of geographic distances (or thresh larger than the largest dis-

tance in the data set), corresponds to the results in Fig. 2a.

Hence, when more of the distances are kept (i.e. not truncated)

in the geographic matrix, the Mantel test has less power to

detect SA in the response data.

That the Mantel test with thresh = 5 had power identical to

dbMEManalysis may seem surprising. This is because the geo-

graphic matrix only contained two different values in that case:

D = 5 for points that were at that distance, and the largest dis-

tance in the data set, D = 63�63961, for all other pairs of

points. This was equivalent to the binary distance matrix used

to test for autocorrelation in the first distance class of aMantel

correlogram. Our results thus show that the Mantel test used

in this manner, with a single distance class, has the same power

for detection of spatial autocorrelation as the dbMEMmethod

of analysis. The simulation study of Borcard & Legendre

(2012) had already shown that the test of significance in multi-

variate Mantel correlograms had high power. That is fine but

it does not qualify theMantel test as the equivalent of dbMEM

analysis, which was developed to model the geographic distri-

bution of univariate or multivariate data at different spatial

scales, in addition to the production of a test for the presence

of spatial correlation in data. In any case, when researchers use

Mantel tests with truncated distance matrices, they have a spe-

cific ecological or genetic dispersion model in mind and they

do not truncate to keep only the first distance class. More

about this in theDiscussion.

The R2 results (Fig. 3b) tell the same story as reported in

Fig. 2b: the square of the Mantel correlation (R2
M) is always

extremely low.

SERIES 3 SIMULATIONS INVOLVING DELAUNAY

TRIANGULATIONS

In the interest of space, simulations involving Delaunay trian-

gulations are described in Appendix S3. The results are essen-

tially the same as those of the Series 2 simulations.

Does theMantel test capture the spatial variation
in response data?

Researchers who use Mantel tests in spatial analysis often

assume that theMantel correlation of a responseDmatrix on a

geographicDmatrix captures the spatial structure that may be

present in the response data and, consequently, that regressing

responseD on geographicD removes to a large extent the spa-

tial structure from the responseD, producing residuals without

spatial correlation. Appendix S4 shows that this is not the case

through a proof-by-example based upon simulated data.

Discussion

This study has shown that there are more implicit assumptions

behind the apparently simple decision to run a Mantel test in

the context of spatial analysis thanmeets the eye.

We provided detailed reasons why the Mantel test is inap-

propriate to study spatial relationships in response data and

supported themwith numerical simulation results. The reasons

invoked are as follows: (i) the hypothesis of correlation tests of

significance that concern raw data differs from that concerning

dissimilarity matrices; (ii) the statistics involved in the two

types of analyses differ and cannot be reduced to one another;

(iii) the Mantel test assumes linearity (or monotonicity) and

homoscedasticity in the D-D comparison plots and that is not

the case except in extreme cases where the range of spatial cor-

relation is equal to or larger than the size of the study area.

Furthermore, our simulation results showed the following:

1. When the range of the variogram controlling the degree of

spatial autocorrelation was larger than the interval between

sampled grid points, dbMEM analysis was always far more

powerful than theMantel test (Fig. 2a).

2. The Mantel R2
M cannot be interpreted as an estimate of the

R2 produced by an analysis of the original response data.

3. In simulations involving truncated distance matrices and

Delaunay graph distance matrices, dbMEM analysis was

always more powerful than theMantel test for different values

of the truncation distance, except when the truncation value

was equal to the interval between the sampled grid points,

which created a single distance class with value different from

the largest distance in the data set. When more of the distances

were kept (i.e. not truncated) in the geographic matrix, the

Mantel test had less power to detect SA in the response data.
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4. Simulations with a truncation value of 5 were equivalent to

a test of the first distance class in aMantel correlogram; it sim-

ply indicated the presence of significant SA in the first distance

class. However, when researchers use the Mantel test with

truncated distance matrices, they have a specific ecological or

genetic dispersion model in mind and they do not truncate to

keep only the first distance class.

5. Previous simulations in Legendre, Borcard & Peres-Neto

(2005) had shown that spatial variation was, at best, weakly

captured by direct regression of a response dissimilarity

matrix on a geographic distance matrix. In the present study,

we went further and showed that regression on a geographic

distance matrix does not control for the spatial structure

from response data, and does not produce residuals without

spatial correlation.

SHOULD THE MANTEL TEST BE USED IN SPATIAL

ANALYSIS?

Our conclusions and recommendations to users for spatial

analysis of ecological and genetic data are the following.

1. dbMEM analysis by regression or RDA is a more powerful

and informative method of spatial analysis than Mantel tests

conducted with distance matrices (truncated or not) or Dela-

unay triangulations. For one, the tests of significance in

dbMEM analysis have much greater power to detect SA in

data than Mantel tests. Secondly, dbMEM analysis is a

method for modelling the spatial structure in univariate or

multivariate response data at different scales; the fitted values

of the regression or RDA models can be mapped, providing a

visual representation of the structure at different spatial scales;

the R2
adj of univariate or multivariate models are unbiased esti-

mates of the portion of the information of the response data

explained by the eigenfunctions (Peres-Neto et al. 2006).

Groups of eigenfunctions representing the variation at differ-

ent spatial scales can be used in variation partitioning together

with othermatrices of explanatory variables.

2. Series 2 and 3 simulations showed that when the geographic

distance matrix or the Delaunay triangulation are truncated

and become binary, the Mantel test becomes identical to a test

of the first distance class in aMantel correlogram and that test

has the same power as the test of significance in dbMEM

analysis to detect spatial autocorrelation (SA) in response data.

The simulation study of Borcard & Legendre (2012) had

shown that the Mantel test, used in the context of the Mantel

correlogram, had good power to detect SA in data. By opposi-

tion, the present series of simulations showed that the ordinary

Mantel test has little power to detect SA in data, except in the

particular case where a single distance class is studied.

In studies of empirical data, scientists do not know the range

of action of SA in the response data. They can useMantel cor-

relogram analysis to discover it.

3. If ecologists want to use statistical tests to identify SA in field

data whose spatial relationships are represented by aDelaunay

triangulations or some other connection network, they should

check the theoretical framework of their study and decide

whether they expect positive or negative SA to be present, and

this for each graph distance. If negative SA is expected for

some graph distance, they should use dbMEM orMantel tests

accordingly: for dbMEM, they should use only the eigenfunc-

tions that model negative SA, whereas for Mantel analysis,

they should look for significance in the lower tail; these p-val-

ues are equal to or larger than 0�95 in the output of vegan’s

mantel() function.

To summarize, the Mantel test does not answer the same

question and assess the same hypothesis as its raw-data coun-

terparts. When the question concerns the spatial structure of

univariate or multivariate data, the lack of concordance of the

null hypothesis of theMantel test with the question produces a

test that has low power. In statistics, when several tests of sig-

nificance are available, one should choose the one that has the

highest power, that is, the highest capacity to detect an effect

when one is present. The low power of the Mantel test is a

symptom of its inadequacy. One should prefer a method with

high power, such as dbMEM analysis, to detect spatial struc-

tures in data.

PARTIAL MANTEL TEST

In ecology and genetics, many papers used partial Mantel tests

to control for spatial structures in the analysis of the relation-

ships between response and environmental data, using a geo-

graphic distance matrix as covariable. Oden & Sokal (1992)

were the first to demonstrate that partial Mantel tests had

inflated type I error rates in analyses of dissimilarity matrices

computed from independently autocorrelated data. Guillot &

Rousset (2013) repeated the Oden & Sokal study in a more

extensive way and came to the same conclusion (Appendix S1).

This is likely due to the fact that the partial Mantel test suffers

from the same problems as the simple test in the context of spa-

tial analysis: inadequate statistic (Eqn 5), lack of linearity of

the relationship, and triangular distribution of the distances.

Users of partial Mantel tests should know that when the

question of interest is stated in the world of raw data, the

analysis should be performed by partial regression or partial

canonical analysis and that these linear forms of partial analy-

sis offer greater power than partial Mantel tests. This is espe-

cially true in spatial analysis, where simulation studies have

shown that the partial Mantel test is less powerful than partial

canonical analysis (Legendre, Borcard & Peres-Neto 2005)

and can lead to erroneous conclusions (Oden& Sokal 1992).

SHOULD THE MANTEL TEST BE USED AT ALL?

Mantel tests are valid and useful when applied to the study of

relationships among dissimilarities in dissimilarity matrices.

Such questions are rarely encountered in ecology and genetics,

but they exist; one example is found in Le Bouleng�e et al.

(1996). Mantel tests should simply not be used to test hypothe-

ses that concern the raw data fromwhich dissimilarity matrices

can be computed or to control for spatial structures in tests of

relationships between two autocorrelated data sets.

In population genetics, researchers often use the Mantel

method to test hypotheses of isolation by distance (IBD).What
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is the most appropriate and powerful method to test this

hypothesis should be the subject of a separate study. It seems

clear, however, that a Mantel correlogram or a multivariate

variogram would provide more complete and interesting

results than a Mantel test because these analyses would indi-

cate what is the range of the autocorrelation in the data. On

the other hand, a dbMEM analysis could be conducted to

detect and model the spatial correlation in the genetic data.

This is done by computing principal coordinates from the

genetic distance matrix and using them as response data in a

dbMEM analysis by RDA. After running these analyses,

researchers could decide what sets of results are themost useful

to answer their landscape genetic question.
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Appendix S1 

ANALYSIS OF SPATIALLY CORRELATED DATA AND MANTEL TEST: WHO HAS SHOWN WHAT? 

This section reviews some of the papers that showed important characteristics of tests of 
significance in the presence of spatial correlation, including Mantel and partial Mantel tests. 
Simulation studies previous published in the ecological and statistical literatures have touched 
upon different aspects of the problem of analysing the correlation between spatially correlated 
data. This brief review of the literature puts our simulation results in the context of the results that 
are already known about the Mantel and partial Mantel tests and show the significance of our 
new findings in that context.   

 Spatial autocorrelation is often taken to mean any kind of spatial dependence (or spatial 
structure) in data. More formally, one can distinguish induced spatial dependence, which is the 
type of spatial dependence present in a variable due to the causal influence of an explanatory 
variable that is spatially structured, and spatial autocorrelation in the strict sense which is the 
spatial dependence that remains in the residuals after the effects of all pertinent explanatory 
variables have been taken into account (Legendre & Legendre 2012, Section 1.1). 

• To our knowledge, Bivand (1980) was the first to publish a short series of simulation results 
showing that the test of significance of the correlation coefficient between two variables that 
were uncorrelated to each other but strongly spatially autocorrelated had inflated levels of type I 
error, meaning that the test rejected the null hypothesis more often than predicted by the α 
significance level. He also showed that when only one of the variables was autocorrelated, there 
was no such strong effect. In their well-cited book on spatial processes, Cliff & Ord (1981) 
included a figure (their Fig. 7.2) presenting some of the Bivand simulation results. 

• Manly (1986) simulated pairs of spatially correlated multivariate data on points on a map. The 
data were then transformed into distance matrices A and B and tested for significance by 
regressing A on B; a third distance matrix C representing geographic distances was included in 
the regression equation. For the test, the statistic was the regression coefficient bi, which was a 
partial regression coefficient since the C distances were also in the regression equation. The test 
of significance involved Mantel-like permutations of matrix A. The simulation results did not 
demonstrate any major effect of spatial correlation on the estimated values of the regression 
coefficients in simple (A ~ B) and multiple regression (A ~ B + C) on distance matrices. This 
may be due in part to the use of a suboptimal test statistic in the Manly (1986) paper. In the 1997 
edition of his book (p. 180), Manly modified the testing procedure, recommending to use the 
pivotal statistic ti = bi/SE(bi) where SE(bi) is the standard error of bi, instead of bi as the test 
statistic in the permutation test.  

• Smouse et al. (1986) suggested two ways of testing a partial Mantel statistic rM(AB.C). Their 
first method was the same as the original regression method of Manly (previous point). The 
second was to compute the residuals of the partial correlations of A on C and of B on C, then 
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carry out a simple Mantel test between the two residual matrices. Later, Oden & Sokal (1992) 
used numerical simulations to compare three methods of partial Mantel analysis in the situation 
where two data sets were spatially autocorrelated, but not correlated to each other. They devised 
two ways of simulating spatially autocorrelated data. The first one implemented the isolation-by-
distance model of population genetics, the second consisted in simulating spatial autocorrelation 
in matrices A and B using a spatial covariance matrix that specified the relationships among the 
points, which were exponentially declining with geographic distance. The simulations showed 
that the type I error rates of the three partial Mantel testing procedures were inflated in the 
presence of strong spatial autocorrelation.  

• Legendre (2000) used simulations to compare the type I error rates and powers of four 
permutation methods used for testing the correlation among distance matrices in partial Mantel 
tests. His simulations did not involve spatially autocorrelated data. The other studies that 
involved spatially autocorrelated data had simulated vectors or matrices of spatially 
autocorrelated data, which were then turned into distance matrices and analysed with a matrix C 
of geographic relationships as covariables. In the Legendre (2000) simulations on the contrary, 
three distance matrices were independently generated and were then correlated to one another 
using a correlation model. In that way, the tests of significance were really about correlations 
between the distance matrices, on which the null hypothesis of the Mantel test is based; the 
Mantel test does not test a hypothesis about correlation in the raw data. The simulation results 
showed that three of the permutation methods under study were appropriate, to the exclusion of 
method 3 (which was the second method of Smouse et al., 1986). 

• Following a NCEAS working group1, Legendre et al. (2002) published extensive simulation 
results showing that the test of significance of the Pearson correlation coefficient between two 
variables that were uncorrelated to each other but strongly spatially correlated (due either to 
induced spatial dependence or to true spatial autocorrelation) had inflated levels of type I error, 
which made the test invalid, and that this effect disappeared when only one of the variables was 
spatially correlated. These results confirmed the less extensive simulation results of Bivand 
(1980). They also showed that Dutilleul’s (1993) modified t-test for the correlation coefficient, 
which takes the spatial correlation of the variables into account, effectively corrected for the 
spatial correlation in the data and produced results with correct levels of type I error. 

• Castellano & Balletto (2002) used simulations to show that the type I error of the partial Mantel 
test was correct. These authors used incorrect partial testing procedures, so their conclusions 
remain doubtful. That paper started an exchange in the literature, which is discussed in Appendix 
3 of the Legendre & Fortin (2010) paper.  

• In 2005, Legendre et al. published a paper comparing canonical redundancy analysis (RDA) to 
Mantel tests for the analysis of simulated multivariate, spatially structured data. The questions 
were to determine (1) which method had the highest power to detect a relationship between the 
two data sets when they were spatially autocorrelated and (2) which method had the highest 
power to detect spatial structures in the data. The two data sets represented community 

                                                
1 Working Group “Integrating the Statistical Modeling of Spatial Data in Ecology”, 1999-2000, 
supported by the National Center for Ecological Analysis and Synthesis (NCEAS), a Center 
funded by NSF (Grant # DEB-94-21535), the University of California at Santa Barbara, and the 
State of California, USA. 
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composition data and environmental variables. The simulation results showed that partial RDA 
had much higher power than partial Mantel tests (1) to detect relationships between the two data 
sets when they were related and (2) to detect the presence of spatial structures in the species 
(response) data. In a follow-up paper (2008), additional simulations showed identical results for 
community composition data generated using Hubbell’s neutral model. The main conclusion of 
these papers was that the Mantel test is inappropriate to test hypotheses concerning correlations 
in raw data; its use should be restricted to the study of correlations between the distances in 
distance matrices. – These papers did not study the combination that was of interest in the Guillot 
& Rousset (2013) paper, i.e. two unrelated data sets that were both spatially autocorrelated. The 
2005 paper showed, however, that simple RDA and the simple Mantel test had correct levels of 
type I error when the two data sets were unrelated to each other and one of them was spatially 
autocorrelated. 

• The Legendre & Fortin (2010) paper was concerned with the relative powers of the Pearson and 
Mantel correlations (r and rM) for the study of genetic data. Preliminary simulations that did not 
involve spatially correlated data showed (again) that both methods had correct levels of type I 
error. More importantly, the simulations showed that in tests of significance of the relationship 
between simple variables and multivariate data tables, the power of linear correlation, regression 
and canonical analysis was far greater than that of the Mantel test and derived forms, meaning 
that the former methods are much more likely than the latter to detect a relationship when one is 
present in the data. Examples of difference in power are given for the detection of spatial 
gradients. Furthermore, the Mantel test does not correctly estimate the proportion of the original 
data variation explained by spatial structures. The Mantel test should not be used as a general 
method for the investigation of linear relationships or spatial structures in univariate or 
multivariate data. Its use should be restricted to tests of hypotheses that can only be formulated in 
terms of distances. An example of a study where the hypotheses clearly and only involved 
distances is Le Boulengé et al. (1996). 

• Finally, using simulations, Guillot & Rousset (2013) found that simple Mantel tests between 
two autocorrelated variables that were not correlated to each other had inflated rates of type I 
error, a result in the same line as those obtained for Pearson correlations by Bivand (1980) and by 
Legendre et al. (2002). That result is expected for two vectors or matrices of raw data that are not 
independent and identically distributed (abbreviated i.i.d.). For the same kind of data, they also 
found that partial Mantel tests did not adequately correct for the presence of spatial structures, so 
that the tests also had inflated type I error rates. The simulations carried out by Guillot & Rousset 
(ibid.) for partial Mantel tests are more detailed than those of Oden & Sokal (1992) and they 
confirm their conclusions. Guillot & Rousset must be commended for their effort, but one would 
have expected them to state that their conclusion had been published 21 years before, instead of 
claiming that result as their own. 

 Except for the Legendre (2000) paper, all the above-mentioned studies, including the 
Guillot & Rousset (2013) paper, simulated raw data that were spatially autocorrelated; they were 
then transformed into distance matrices for Mantel testing. Admittedly, that corresponds to the 
way most researchers use partial Mantel tests to assess the relationship between data sets while 
controlling the type I error rate inflation due to spatial autocorrelation. However, and as 
mentioned above, the partial Mantel test does not test the correlation between two data sets, but 
between the distances in two distance matrices. This explains why Oden & Sokal (1992) and 
Guillot & Rousset (2013) found that it did not correct adequately for spatial correlation in data 
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and had inflated type I error rates. The fault is not with the partial Mantel test but with the 
inadequacy of the data that were analysed using that method. In the Legendre (2000) simulations, 
on the contrary, the partial Mantel test was found to have correct type I error rates because the 
data that were subjected to it were distances that were intercorrelated (although not spatially 
correlated), and so they corresponded to the null hypothesis of the test. 
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Appendix S2 

ANALYSIS OF SIMULATED RANDOM AUTOCORRELATED SURFACES 

Random autocorrelated variables were generated by random Gaussian field simulations on a (56 
× 56 pixel) grid with autocorrelation controlled by a spherical variogram with range values of 
{0,5,10,20,30,40,50,60,70} pixel units. The values at 100 points forming a regular grid were 
sampled from each surface, with horizontal and vertical spacing of 5 pixel units. Examples of 
simulated surfaces are shown and analysed in Fig. S2.1 of this appendix. 
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Fig. S2.1. For each value of variogram range (Range = 0 to 70), one of the possible simulated 
surfaces is shown on the left, using a colour scale from dark red (low values) to pale yellow (high 
values). Right: a plot similar to Fig. 1c of the main paper is presented, where the means (circles) 
and medians (squares) of the dissimilarities computed from the simulated values of the response 
variable are shown as a function of the geographic distance classes. Each mean value is 
accompanied by its empirical 95% coverage interval. Mantel r and p-values of the D-D 
comparisons are shown underneath the response surface maps.  
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Appendix S3 

SERIES 3 SIMULATIONS INVOLVING DELAUNAY TRIANGULATIONS 

The purpose of the third series of simulations was to reproduce circumstances where the number 
of pairwise comparisons among sites is reduced to reflect species predation avoidance behaviour 
or limited dispersal abilities in fragmented landscapes (Braunisch et al. 2010). In such cases, 
species move through fragmented landscapes using nearby patches in a stepping-stone fashion 
instead of moving across inhospitable areas over long distances. A reduced number of pairwise 
steps among sites can also occur in translocation experiment field studies (Bélisle et al. 2001); 
likewise, in studies of invasive species that have not invaded the whole study area or the spread 
of genetically modified organisms (GMO) that hybridize with wild or unmodified cultivated 
forms in contact zones. To represent a limited number of edges linking sites, different types of 
networks have been developed, going from the minimum spanning tree (Gower & Ross 1969; 
Urban & Keitt 2001), to the more complex relative neighbourhood graph (Toussaint 1980), 
Gabriel graph (Gabriel & Sokal 1969; Naujokaitis-Lewis et al. 2013), and finally the Delaunay 
triangulation (Dirichlet 1850) and its landscape equivalent, the minimum planar graph (Fall et al. 
2007). The first four form a nested series of networks with increasing connectedness (Toussaint 
1980). By far the most commonly used algorithm in landscape ecology and genetics is the 
Delaunay network (e.g. Goldberg & Waits 2010; Koen et al. 2012) to represent the stepping-
stone behaviour of species (Saura et al. 2014). These Delaunay networks can then be truncated to 
match the species dispersal ability. 

 So we carried out a third series of simulations to study the power of truncated Delaunay 
networks. The edges of a Delaunay triangulation represent the spatial relationships between 
points. For each simulated surface, a random sample of N = 50 points was selected from the 
regular grid of 100 points, and a Delaunay triangulation and a matrix of dbMEM eigenfunctions 
were computed for the selected points.  

 Then, a “graph distance matrix” was computed along the edges of each Delaunay 
triangulation using function delaunay.distance() of the spatstat package (Baddeley et al. 2014). 
The distance was the number of edges along the shortest path between any pair of points in the 
connection network. In studies as those described above, researchers may choose to truncate the 
distance matrix, replacing any value larger than a selected threshold by a large distance, which 
can be the largest distance actually found in the matrix max.D (that was the case in our 
simulations), or by some larger distance chosen by the user. The following values of truncation 
threshold were used: thresh = {1, 3, 5, 10}). Since no graph distance was ever larger than 10 in 
our simulations, the simulations with thresh = 10 used the full graph distance matrix without any 
truncation. The autocorrelated data sets were analysed with respect to geography through a 
dbMEM analysis using the full set of eigenfunctions modelling positive spatial correlation, as in 
series 1 simulations, and a Mantel test using the truncated Delaunay “graph distance matrix”. 

 Fig. S3.1 shows the mean rejection rates obtained in the various simulations, for different 
amounts of SA (variogram ranges, above) and different truncation thresholds (thresh = {1, 3, 5, 
10}). The following observations can be made: 

• For Delaunay graph distance matrices truncated at distance 1, the results of the Mantel test had 
the same rejection rates as the dbMEM method for all amounts of SA in the response data. In 
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these matrices, only two distance classes are present: 1 and max.D. The latter was the largest 
value encountered in the Delaunay graph distance matrix; it varied from 7 to 10 in our 
simulations, depending on the selected subset of 50 points. This form of Mantel test is the same 
as that conducted for the first distance class in a Mantel correlogram. This equivalence of the two 
tests was encountered in the series 2 simulation results. More about this in the Discussion of the 
main paper. 

• For truncation levels larger than 1 (i.e. thresh = {3, 5, 10}), the power of the Mantel test was 
always much lower than that of the dbMEM test, except when no spatial autocorrelation was 
present in the data, which occurred when the range of the variogram was smaller than (range = 0) 
or equal to (range = 5) the spacing between the points of the regular grid; that spacing determined 
the closest possible spacing of pairs of points in the Delaunay triangulation. 

 The point where the power of the dbMEM test comes near 1 in Fig. S3.1a (i.e. when range 
= 20) cannot be compared to that same point in Figs. 2a and 3a (where power is nearly 1 at range 
= 10) because 100 data points were used in Figs. 2a and 3a whereas Fig. S3.1a used only 50 
points. 

 Fig. S3.1b shows that the R2 of the Mantel test is always smaller than the R2 and 

€ 

Radj
2

 of the 
dbMEM analysis. They are both equal to 0 when there is no spatial structure in the data, i.e. when 
the range of the variogram was 0 or 5 in our simulations. This simply illustrates the well-
established fact that the R2 of regression or canonical analysis is unrelated to the R2 of the Mantel 
test, as discussed in a previous paper (Legendre & Fortin 2010). 
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Fig. S3.1. (a) Rejection rates (i.e. number of rejections of H0 divided by the number of 
simulations, which was 1000) of the regression–MEM and Mantel tests as a function of the 
degree of autocorrelation (variogram range) in the simulated data involving Delaunay 
triangulations with various truncation levels (thresh = {1, 3, 5, 10}; thresh = 10 produces no 
truncation). (b) Median R-squares of the two methods of analysis. The median adjusted R-square 
(
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Radj
2 ) of the regression–MEM test, which is an unbiased estimate of the explained variation, is 

also shown. No 

€ 

Radj
2  statistic is available for Mantel tests. 
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Appendix S4 

REGRESSION ON A GEOGRAPHIC DISTANCE MATRIX DOES NOT CONTROL FOR SA IN DATA 

This Appendix offers a proof-by-example that regression on a geographic distance matrix does 
not control for the spatial correlation that may be found in response data. 

 Legendre et al. (2005) have already shown that spatial variation is, at best, weakly captured 
by regressing a response distance (or dissimilarity) matrix on a geographic distance matrix, 
whatever its form: D(XY), D(3rd degree polynomial of X and Y), or ln(D(XY)), where XY is a 
matrix of geographic coordinates. In this Appendix, we address the other facet of this question, 
which is: Does regression on a geographic distance matrix remove the spatial correlation in 
response data, producing residuals without spatial correlation?  

 We will approach this question using example data. We wrote an R function, called 
gen.SA.data(), that readers can use to generate a variable of simulated spatially autocorrelated 
data over a geographic surface (regular grid). The function is provided at the end of this 
Appendix. The calculation steps are the following: 

1. Check that the data do indeed contain spatially correlated data. To that aim, we apply dbMEM 
analysis to the response data using multiple linear regression, since there is a single response 
variable. If the data were multivariate, redundancy analysis (RDA) would be used instead of 
multiple regression. MEM analysis has been proven capable of identifying spatial correlation in 
response data (i.e. spatial structures of various kinds, be they the result of a process producing 
spatial autocorrelation in data, or the result of spatial dependence induced by explanatory 
variables); this has been demonstrated in Borcard & Legendre (2002), Borcard et al. (2004), Dray 
et al. (2006) and Legendre & Legendre (2012, Chapter 14). We make note of the R-square, 
adjusted R-square and p-value of the MEM analysis as proof of the presence of spatial correlation 
in the generated data. The function outputs a data matrix (“Surface”) from which a colour map of 
the generated data can be drawn. 

2. The function then carries out Mantel tests of the generated response data vs. geographic 
distances expressed in various forms: raw geographic distances (D(XY)), square-rooted distances 
(sqrt(D(XY))), and loge-transformed distances (ln(D(XY))). The R-square and p-value of each 
Mantel analysis is noted. 

3. From the output of the function, one can recuperate the generated data and the grid coordinates 
and compute distance matrices (see the Example run below). One can then compute a regression 
of the response distances on the geographic distances for each form: raw, square-rooted and log 
distances.  

4. We will focus on the fitted values and the residuals of these regressions. The residuals are not 
really distances (about half of the values are negative), but they can still be tested for the presence 
of spatial correlation. The residual distances are regressed on the set of MEM eigenfunctions 
recuperated from the gen.SA.data() function. Testing is carried out using the test of significance 
proposed by McArdle & Anderson (2001), which uses a response distance matrix directly for the 
calculation. We examine the R-square, adjusted R-square and p-value of the permutation tests of 
both the fitted distances and the residual distances. 
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5. If the test of the residual distances is not significant, it means that no significant spatial 
correlation has been identified in the residual distances. If the test is significant, and especially, if 
the adjusted R-square is high, we must conclude that spatial correlation is still present in the 
response data after residualization by regression on the various kinds of geographic distance 
matrices. If the test is significant but the adjusted R-square is lower than that of the regression of 
the generated data on MEM eigenfunctions, it means that regression on the geographic distance 
matrix has controlled the spatial correlation in the response data less efficiently than regression 
on MEM eigenfunctions. 

 The function and additional calculations will now be run to provide an example of the 
analysis. Readers are invited to run the function again (it will generate a different spatially 
autocorrelated surface every time) and check that the results are similar to those reported here. 

Example run 

1. Load the files containing the gen.SA.data() function, the dbRDA.D() function, and the 
necessary R packages. The list of packages and their locations are given in the Details paragraph 
of the gen.SA.data() function documentation.  

Functions gen.SA.data.R and dbRDA.D.R are included in this Appendix, from which they can be 
copied to text files and loaded to the R console.  

2. Function gen.SA.data() generates spatially autocorrelated data on a surface (square grid) 
and analyses it using MEM (by multiple linear regression) and Mantel tests. 

# Generate a 20×20 spatially autocorrelated (SA) surface (400 points) with variogram range = 5. 
Only the MEM eigenfunctions modelling positive SA are kept for regression analysis. 

res = gen.SA.data(nx=20, range=5, var=1, nperm1=999, nperm2=999) 
summary(res) 
           Length Class      Mode    
R2.dbMEM     2    -none-     numeric 
p.dbMEM      2    -none-     numeric 
R2.Mantel    3    -none-     numeric 
p.Mantel     3    -none-     numeric 
Surface    400    -none-     numeric 
surf       400    -none-     numeric 
grid.coord   2    data.frame list    
dbMEM      189    data.frame list    

dim(res$dbMEM) 
# [1] 400 189 

res$R2.dbMEM # R-square, adjusted R-square of MEM analysis by regression 
# [1] 0.9176085   0.8434561 
res$p.dbMEM # Parametric and permutational p-values 
# [1] 1.188061e-59   1.000000e-03 

# The presence of significant spatial autocorrelation in the response data is confirmed 

res$R2.Mantel # Mantel R-square for geographic D, sqrt(D), and ln(D) 
# [1] 0.0008160981   0.0012585326   0.0020933597 
res$p.Mantel  # Mantel p-values for geographic D, sqrt(D), and ln(D) 
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# [1] 0.038   0.012   0.003 

# Mantel analysis explains a very small fraction of the response distance matrix variation 

3. Plot a map of the original random autocorrelated surface 

require(graphics) 

image(1:20, 1:20, t(res$Surface), main="Map of response surface, Range=5", xlim=c(0,21), 
ylim=c(0,21), xlab="", ylab="", asp=1) 

 

Fig. S4.1. Map of the response surface generated on a 20×20 grid for this example. 

4. Check that the response data, expressed in distance matrix form, displays significant 
spatial structure. This analysis will confirm that the dbRDA.D() function produces the same R-
square, adjusted R-square and p-value as regular regression (results are shown above). 

# Load function dbRDA.D() to compute RDA following McArdle & Anderson (2001), using a 
dissimilarity matrix and a matrix of explanatory variables. 

res0.dbRDA = dbRDA.D(dist(res$surf), res$dbMEM, nperm=999, compute.eig=FALSE) 
# Rank of X centred = 189  

res0.dbRDA$Rsquare        # R-square and adjusted R-square; same results as above 
# [1] 0.9176085   0.8434561 
res0.dbRDA$P.perm # Permutational p-value 
# [1] 0.001 

5. Compute the fitted and residual distances and test them for spatial correlation 

# First, compute vectors containing the two distance matrices, unfolded 

0 5 10 15 20

0
5

10
15

20
Map of response surface, Range=5



 4 

Y.D.vec = as.vector(dist(res$surf))        # Response data D, vector length = 79800 

XY.D.vec = as.vector(dist(res$grid.coord))    # Geographic D, vector length = 79800 

# Regress response distances (Y.D) on simple geographic distances (XY.D) in vector form 

res.lm.D = lm(Y.D.vec ~ XY.D.vec) 

summary(res.lm.D)$r.squared     # Same as Mantel R-square above 
# [1] 0.0008160981 

5.1. Fitted distances  

fitted.D = fitted(res.lm.D)    # Length of the vector: 79800 

range(fitted.D) 
# [1] 1.039841    1.161839 

# Turn the fitted dissimilarities into a matrix with class "dist" 

fitted.D.mat <- as.dist(matrix(NA,400,400)) 
fitted.D.mat[] <- fitted.D 

# Do the fitted distances contain SA? dbRDA.D of the fitted distance matrix against MEM. 

res.dbRDA.fit = dbRDA.D(fitted.D.mat, res$dbMEM, nperm=999, compute.eig=FALSE) 

res.dbRDA.fit$Rsquare        # Fitted D: R-square and adjusted R-square 
# [1] 0.51806244    0.08431864 

res.dbRDA.fit$P.perm # Permutational p-value 
[1] 0.001 

# The fitted distances do account for a small albeit significant amount of SA, which was present 
in the generated data. 

5.2. Residual distances 

resid.D = residuals(res.lm.D)    # Length of the vector: 79800 

range(resid.D) 
# [1] -1.146697    4.388709 

length(which(resid.D < 0)) / (200*399)     # 0.5735589 
# In this particular example, 57.4% of the residual "distances" were negative. 

hist(resid.D) 

# Turn the residual dissimilarities into a matrix with class "dist" 

resid.D.mat = as.dist(matrix(NA,400,400)) 
resid.D.mat[] = resid.D 

# Do the residual distances contain SA? dbRDA of the residual distance matrix against MEM. 
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# Load function dbRDA.D() to compute RDA following McArdle & Anderson (2001), using a 
dissimilarity matrix and a matrix of explanatory variables. 

res.dbRDA = dbRDA.D(resid.D.mat, res$dbMEM, nperm=999, compute.eig=FALSE) 

summary(res.dbRDA) 

res.dbRDA$Rsquare        # Residual D: R-square and adjusted R-square 
# [1] 0.7151880   0.4588571 
res.dbRDA$P.perm # Permutational p-value 
# [1] 0.001 

# The residual distances do contain significant SA in substantial amount. 

 Readers are invited to regress the response distances (Y.D) on the square-rooted 
(sqrt(XY.D)) and log-transformed (ln(XY.D)) geographic distances, compute matrices of fitted 
and residual distances from the regressions, and test these distance matrices for presence of SA 
by MEM analysis using the dbRDA.D() function, following the script provided above where Y.D 
is regressed on XY.D. The detailed steps are not presented to save space. They have been 
computed, however, and the results are assembled in Table S4.1 for the random autocorrelated 
response data generated during our run of the gen.SA.data() function. The adjusted R-squares of 
the dbMEM.D analyses against MEM eigenfunctions are the statistics of interest because they 
represent unbiased estimates of the variance of the response data explained by the MEM 
eigenfunctions. The results are also presented in the form of a graph (Fig. S4.2). 

 

Table S4.1. Adjusted R-squares resulting from analysis against MEM eigenfunctions of the fitted 
and residual response distances, obtained by regression on three transformations of the 
geographic distances: raw geographic distances D(XY), square-rooted distances sqrt(D(XY)), and 
loge-transformed distances ln(D(XY)). 
 _______________________________________________ 
  Fitted.D_adj.R2  Residual.D_adj.R2 
 _______________________________________________ 
 D(XY) 0.08432 0.45886 
 sqrt(D(XY)) 0.14596 0.51057 
 ln(D(XY)) 0.26962 0.60410 
 _______________________________________________ 
 

 Firstly and foremost, the graph shows that the fitted distances account for a rather small 
fraction (blue symbols) of the spatial structure of the generated data that can be modelled by 
MEM eigenfunctions (black horizontal line). A surprisingly high amount of spatial correlation 
can be modelled by the same MEM eigenfunctions from the residual distances. Regression on 
any of the three types of geographic distance matrices has not controlled for the spatial structure 
in the response data since it has left a lot of that structure in the residual distances. Secondly, the 
graph shows that the square-root and log transformations of the geographic distances, before 
regression (or Mantel test), offer a slightly better performance in terms of capturing the spatial 
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autocorrelation of the response data than the original representation of the geographic 
relationships as a simple distance matrix computed from the geographic coordinates, D(XY), 
although we observe the surprising consequence that there is also more spatial autocorrelation left 
in the residuals with the transformed distances. This seems to be due to a distortion of the 
distances when regressing D(Y) on sqrt(D(XY)) or ln(D(XY)), which causes the appearance of 
spurious broad-scaled spatial structures in both the fitted values and the residuals. These 
structures can be identified as broad-scaled because they can be modelled by the first few largest-
scaled MEM eigenfunctions. These eigenfunctions model the broad-scaled structures generated in 
the fitted values and residuals of the regressions on sqrt(D(XY)) and ln(D(XY)) more strongly 
(meaning: higher R2) than in the fitted values and residuals of the regression on D(XY). Thus, 
regression on distance matrices is no better using sqrt(D(XY)) or ln(D(XY)) than using D(XY). A 
more detailed investigation of this phenomenon would be in order. 

 

Fig. S4.2. Adjusted R-squares resulting from analysis of the fitted (blue) and residual response 
distances (green), obtained by regression on three transformations of the geographic distances 
(abscissa), against MEM eigenfunctions: raw geographic distances D(XY), square-rooted 
distances sqrt(D(XY)), and loge-transformed distances ln(D(XY)). The adjusted R-square of the 
original regression analysis of the generated data against the MEM eigenfunctions is also 
presented (black horizontal line in the graph); this is the amount of explained variance that can be 
extracted from the response data by MEM analysis. 

 In any case, using three representations of the geographic relationships by distance matrices 
that are commonly used to represent spatial relationships in Mantel tests, the example has shown 
that the residual distances did contain significant spatial autocorrelation (SA). Hence, regression 
of the response distances on the geographic distance matrices did not “remove” or “control for” 
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spatial correlation in the response data, as is often assumed by users of Mantel tests or regression 
on distance matrices. 

 Readers are invited to generate new response data with the function gen.SA.data() and 
analyse them at leisure. 
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gen.SA.data R Documentation 
 
Generation of random SA data on a square grid 
 
Description 
 
This function generates random spatially autocorrelated (SA) data on a square grid with nx points 
in the X and Y directions and analyses it with dbMEM eigenfunctions and Mantel tests. 
 
Usage 
 
gen.SA.data(nx=20, surf=NULL, range=5, var=1, nperm1=0, nperm2=999) 
 
Arguments 
 
nx Number of rows and columns of the regular grid; n = nx^2. 
surf Vector with values for each point of the response surface. The vector may be a surf 

vector produced during a previous run of the function, or contain real univariate 
data about a surface forming a regular square grid. Default: surf=NULL. 

range Range parameter of the variogram for generation of SA on the surface. 
var Total variance of the simulated data. 
nperm1 Number of permutations for dbMEM analysis by regression. Default: nperm1=0. 
nperm2 Number of permutations for the Mantel tests. Default: nperm2=999. 
 
Details 
 
Required packages:  

• Load the {RandomFields} and {vegan} available from CRAN.  

• Load package {PCNM}. The source code (for Linux) and compiled Windows file are available 
from https://r-forge.r-project.org/R/?group_id=195. A Mac OSX file compiled for R 3.0.x is 
available on http://adn.biol.umontreal.ca/~numericalecology/Rcode/. 

If "surf" is NULL, a surface is simulated by Gaussian random fields controlled by a spherical 
variogram: 

If "surf" is not NULL and a "surf" vector of the correct size is provided (length=nx^2), 
containing values for each point of the response surface, the dbMEM and Mantel analyses will be 
carried out on that surface. 
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Value 
 
Function gen.SA.data returns a list containing the following results: 
 
R2.dbMEM R-square and adjusted R-square of dbMEM analysis by regression. 
p.dbMEM p-values (parametric and permutational) of dbMEM analysis by regression. 
R2.Mantel Mantel correlations squared with geo.D, sqrt(geo.D) and log(geo.D). 
p.Mantel Mantel test p-values with geo.D, sqrt(geo.D) and log(geo.D). 
Surface The generated surface presented as a matrix. 
surf The generated data presented as a vector. 
grid.coord A matrix with grid coordinates, from which D.geo can be recomputed. 
dbMEM The matrix of dbMEM spatial eigenvectors.  

References 

Legendre, P. & Legendre, L. (2012) Numerical Ecology, 3rd English edition. Elsevier Science 
BV, Amsterdam.  

Schlather, M., Malinowski, A., Oesting, M., Boecker, D., Strokorb, K., Engelke, S., Martini, J., 
Menck, P., Gross, S., Burmeister, K., Manitz, J., Singleton, R., Pfaff, B. and R Core Team 
(2014). RandomFields: Simulation and Analysis of Random Fields. R package version 
3.0.10. http://CRAN.R-project.org/package=RandomFields 

 
Author 
 
Pierre Legendre, Département de sciences biologiques, Université de Montréal 
License: GPL (>=2) 
 
Example  
 
# Generate a new random 20x20 spatially autocorrelated (SA) surface with variogram range = 5. 
 
res = gen.SA.data(nx=20, range=5, var=1, nperm1=999, nperm2=999) 
 
# Reanalyse the surface generated during the previous run. A new surface is not generated if 
parameter surf is not NULL. The surf vector provided must be of the correct length, nx^2.  
 
res2 = gen.SA.data(nx=20, surf=res$surf, range=5, var=1, nperm1=999, nperm2=999) 
 
# The vector may be a surf vector produced during a previous run of the function, as in this 
example, or contain univariate data on some other surface forming a regular square grid. 
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!
gen.SA.data <- function(nx=20, surf=NULL, range=5, var=1, nperm1=0, nperm2=999)!
{! !
# Load packages!
! require(RandomFields)!
! require(vegan)!
! require(PCNM)!
! cat("Function RFsimulate() of RandomFields 3.0.10 is used with R 3.0\n")!
# Package Random Fields options!
! RFoptions(spConform=FALSE)!
! RFoptions(seed=NULL)!
#!
a <- system.time({             # How much time for the calculations?!
! !
! coord <- 1:nx!
! n <- nx^2!
! grid.coord <- expand.grid(coord, coord)!
! colnames(grid.coord) <- c("Easting", "Northing")!
#!
# If no surface is provided, one is generated here!
! if(is.null(surf)) {!
! ! surf     <- vector(mode="numeric", length=n)!
! ! ## Simulate autocorrelated surface with spherical variogram model!
! ! model = RMspheric(var=var, scale=range)!
! ! Surface <- RFsimulate(model = model, x=coord, y=coord, grid=TRUE) !
! ! ### If a nugget is sought, argument err.model in RFsimulate  !
! ! ### can be used: err.model=RMnugget(var=var)!
! ! #!
! ! for(k in 1:n) surf[k] <- Surface[grid.coord[k,2], grid.coord[k,1]]!
! ! } else {!
# else, the "surf" data provided are used for the analysis!
! ! if(length(surf) != n) stop("The 'surf' vector provided is not of length 
nx^2")!
! ! Surface <- matrix(surf,nx,nx,byrow=TRUE)!
! ! }!
! Y.D <- dist(surf)!
#!
# Construct dbMEM eigenfunctions. Keep the eigenfunctions modelling positive SA!
! geo.D <- dist(grid.coord)!
! dbMEM.grid <- PCNM(geo.D,thresh=1,dbMEM=TRUE)!
! dbMEM <- dbMEM.grid$vectors!
#!
# dbMEM analysis by regression. No selection of the eigenfunctions!
! lm.res <- lm(surf ~ .,data=as.data.frame(dbMEM))!
! R2.dbMEM <- c(summary(lm.res)$r.squared, summary(lm.res)$adj.r.squared)!
! F.vec <- summary(lm.res)$fstatistic!
! #!
! # Compute the regression parametric p.value!
! p.dbMEM.temp <- pf(F.vec[1], F.vec[2], F.vec[3], lower.tail=FALSE)[[1]]!
! #!
! if(nperm1==0) { !
! ! # Output only the parametric regression test p.value!
! ! p.dbMEM <- c(p.dbMEM.temp, NA) !
! ! } else {!
! ! # Output the parametric and permutation test p.values!
! ! p.dbMEM <- c(p.dbMEM.temp, 
R2.test.perm(surf,dbMEM,nperm=nperm1,dbMEM=TRUE)$P)!
! ! }!
# Mantel test using vegan's mantel() function!
! res.Mantel1 <- mantel(Y.D, geo.D, permutations=nperm2)!
! res.Mantel2 <- mantel(Y.D, sqrt(geo.D), permutations=nperm2)!
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! res.Mantel3 <- mantel(Y.D, log(geo.D), permutations=nperm2)!
! R2.Mantel <- !
! ! c(res.Mantel1$statistic^2, res.Mantel2$statistic^2, 
res.Mantel3$statistic^2)!
! p.Mantel <- c(res.Mantel1$signif, res.Mantel2$signif, res.Mantel3$signif)!
})!
a[3] <- sprintf("%2f",a[3])!
cat("Calculation time =",a[3]," sec",'\n')!
#!
list(R2.dbMEM=R2.dbMEM, p.dbMEM=p.dbMEM, R2.Mantel=R2.Mantel, p.Mantel=p.Mantel, 
Surface=Surface, surf=surf, grid.coord=grid.coord, dbMEM=as.data.frame(dbMEM))!
}!
!
R2.test.perm <- function(Y, X, nperm=999, dbMEM=FALSE)!
#!
# Permutation test for R2 statistic in regression or RDA.!
#!
# Parameters of the function --!
# Y : Matrix or vector of response data.!
# X : Matrix of explanatory data, e.g. a file of dbMEM.!
# nperm : Number of permutations for the test.!
# dbMEM=FALSE: Normal computation of statistics for regression or RDA:!
#              Centre X, QR decomposition of X, compute adjusted R-square.!
# dbMEM=TRUE : Do not centre X since the matrix of dbMEM is centred.!
#              Do not compute the adjusted R-square.!
# License: GPL-2 !
# Author:: Pierre Legendre, June 2014!
{!
! Y.c <- scale(Y,center=TRUE,scale=FALSE)           # Centre Y!
! SS.Y <- sum(Y.c^2)!
! X <- as.matrix(X)!
! n <- nrow(X)!
! if(!dbMEM) X <- scale(X,center=TRUE,scale=FALSE)  # Centre X if not dbMEM!
! Q <- qr(X)                                        # QR decompostion of X!
! Yfit.X <- qr.fitted(Q, Y.c)                       # Compute fitted values!
# Compute statistics!
! Rsquare <- sum(Yfit.X^2)/SS.Y!
! m <- Q$rank!
! residualDF <- n-m-1!
! F <- (Rsquare*residualDF)/((1-Rsquare)*m)!
! if(dbMEM) { adjRsq <- NA !
! ! } else {!
! ! totalDF <- n-1!
! ! adjRsq <- 1-((1-Rsquare)*totalDF/residualDF) }!
# Permutation test of F!
! if(nperm > 0) {!
! ! nPGE <- 1!
! ! for(i in 1:nperm) {!
! ! ! YfitPerm <- qr.fitted(Q, sample(Y.c))!
! ! ! RsquarePerm <- sum(YfitPerm^2)/SS.Y!
! ! ! FPerm <- (RsquarePerm*residualDF)/((1-RsquarePerm)*m)!
! ! ! if(FPerm >= F) nPGE <- nPGE+1!
! ! ! }!
! ! P <- nPGE/(nperm+1)!
! ! } else { P <- NA }!
#!
if(dbMEM) { out <- list(P=P)  !
! } else {!
! out <- list(Rsquare=Rsquare, F=F, P=P, adjRsq=adjRsq, nperm=nperm, m=m, !
! residualDF=residualDF) }!
}



dbRDA.D R Documentation 
 
dbRDA F-test for response data in dissimilarity matrix form 
 
Description 
 
Compute the dbRDA F-test of significance between response data represented by a Euclidean or 
non-Euclidean dissimilarity matrix and a matrix of explanatory variables, using the method of 
McArdle and Anderson (2001). 
 
Usage 
 
dbRDA.D(D, X, nperm=999, option=3, compute.eig=FALSE, coord=FALSE, 

rda.coord=2, pos.RDA.val=FALSE) 
 
Arguments 
 
D Dissimilarity matrix (class matrix or dist) representing the response data. D may 

be Euclidean or non-Euclidean. 
X Rectangular matrix of explanatory variables for the RDA (class data.frame or 

matrix). Factors must be recoded as dummy variables or Helmert contrasts. 
option =1 : Original McArdle-Anderson (2001) equation 4. Slow, not recommended. 
 =2 : McArdle-Anderson equation, simplified. 
 =3 : Least-squares solution after orthogonalization of X. 
compute.eig =TRUE : the eigenvalues and eigenvectors of D are computed. Do not use with very 

large matrices (slow). 
coord =TRUE : compute the principal coordinates corresponding to the positive 

eigenvalues of D. This option requires compute.eig=TRUE. 
rda.coord Number of RDA ordination coordinates to compute, for example 2 (default value). 
pos.RDA.val =TRUE : store only positive RDA eigenvalues in the output list. 
 =FALSE : store all RDA eigenvalues in the output list. 
 
Details 
 
Compute the dbRDA F-test of significance. The response is represented by a Euclidean or non-
Euclidean dissimilarity matrix; X is a matrix of explanatory variables, as in regular RDA.  

The F-statistic is obtained without prior computation of the eigenvalues and eigenvectors of the 
dissimilarity matrix, hence no correction has to be made to eliminate the negative eigenvalues. 
Three computation methods are available, all derived from McArdle and Anderson (2001). 

The eigenvalues and eigenvectors of D are computed if compute.eig=TRUE. If coord=TRUE, the 
principal coordinates corresponding to the positive eigenvalues of D are computed. 
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The function may fail to produce a meaningful RDA test of significance and ordination axes if D 
is extremely non-Euclidean. This is the case with some forms of genomic distances. 

Computation options: 

option=1 — The original F-statistic of McArdle and Anderson (2001), eq. 4: 

 F = SSYhat / sum(diag(I.minus.H %*% G %*% I.minus.H)) 

 Degrees of freedom are added to this equation when writing the output list. 

option=2 — Simplified equation: 

 F = SSYhat/(SSY-SSYhat) 

option=3 — Orthogonalize matrix X by PCA before computing projector H. No inversion. 

 Compute SSYhat, then F = SSYhat/(SSY-SSYhat) 

Options 2 and 3 are equivalent; they require half the computing time of option 1. 

 
Value 
 
Function dbRDA.D returns a list containing the following results: 
 
F F-statistic. 
Rsquare R-square and adjusted R-square statistics. 
P.perm Permutational p-value of RDA R-square (test based on F). 
SS.total Trace of Gower-centred matrix G. The trace is equal to the total sum of 

squares of Y and to the sum of the eigenvalues of D. 
PCoA.values Eigenvalues (if they are computed, i.e. if compute.eig=TRUE). 
PCoA.vectors Principal coordinates for the positive eigenvalues of D. 
RDA.values RDA eigenvalues. 
RDA.rel.values RDA relative eigenvalues.  
RDA.cum.values RDA cumulative relative eigenvalues. 
RDA.coord Ordination coordinates of objects on selected RDA axes.  

References 

Legendre, P. (2014) Interpreting the replacement and richness difference components of beta 
diversity. Global Ecology and Biogeography, 23, 1324–1334. 

Legendre, P. & Legendre, L. (2012) Numerical Ecology, 3rd English edition. Elsevier Science 
BV, Amsterdam.  

McArdle, B.H. & Anderson, M.J. (2001) Fitting multivariate models to community data: a 
comment on distance-based redundancy analysis. Ecology, 82, 290–297.  
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Author 
 
Pierre Legendre, Département de sciences biologiques, Université de Montréal 
License: GPL (>=2) 
 
Example  
 
# Load function dbRDA.D() 
 
# 1. Analysis of mite data with the percentage difference (alias Bray-Curtis) dissimilarity 
 
require(vegan) 
data(mite) 
data(mite.env) # The first 2 environmental variables are quantitative 
sel = c(14,24,31,41,49,64) # Select 6 sites for the example 
mite.BC = vegdist(mite[sel,], "bray")    # The D matrix will produce one negative eigenvalue  
res = dbRDA.D(mite.BC, mite.env[sel,1:2], nperm=999, compute.eig=TRUE) 
res$Rsquare 
res$P.perm 
# Plot the ordination on PCoA axes 1 and 2 
plot(res$RDA.coord) 
text(res$RDA.coord, labels=rownames(mite.env[sel,]), pos=3) 
 
# 2. Compare RDA to dbRDA.D results using Euclidean distance 
 
mite.hel = decostand(mite, "hellinger") 
mite.hel.D = dist(mite.hel) 
# RDA solution 
rda.out = rda(mite.hel ~ SubsDens+WatrCont, data=mite.env) 
RsquareAdj(rda.out) 
anova(rda.out, step=1000, perm.max=1000) 
# dbRDA.D solution 
dbRDA.out = dbRDA.D(mite.hel.D, mite.env[,1:2], nperm=999, compute.eig=TRUE) 
dbRDA.out$F 
dbRDA.out$Rsquare 
dbRDA.out$P.perm 
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!
dbRDA.D <- function(D, X, nperm=999, option=3, compute.eig=FALSE, coord=FALSE, 
rda.coord=2, positive.RDA.values=FALSE)!
{!
! D <- as.matrix(D)!
! X <- as.matrix(X)!
! n <- nrow(D)!
! epsilon <- .Machine$double.eps!
#!
# Gower centring, matrix formula. Legendre & Legendre (2012), equation 9.42!
! One <- matrix(1,n,n)!
! mat <- diag(n) - One/n!
! G <- -0.5 * mat %*% (D^2) %*% mat!
! SSY <- sum(diag(G))!
! # LCBD <- diag(G)!
#!
# Principal coordinate analysis after eigenvalue decomposition of D!
! if(compute.eig) {!
! ! eig <- eigen(G, symmetric=TRUE)!
! ! values <- eig$values     # All eigenvalues!
! ! vectors <- eig$vectors   # All eigenvectors, scaled to lengths 1!
! ! if(coord) {!
! ! ! select <- which(values > epsilon)!
! ! ! princ.coord <- vectors[,select] %*% diag(sqrt(values[select]))!
! ! ! } else { princ.coord <- NA }!
! ! } else {!
! ! values <- princ.coord <- NA!
! ! }!
#!
# Compute projector matrix H ("hat" matrix in the statistical literature)!
! X.c <- scale(X, center=TRUE, scale=FALSE)   # Centre matrix X!
! m <- qr(X.c, tol=1e-6)$rank                 # m = rank of X.c!
! cat("Rank of X centred =",m,"\n")!
! if(m==1) { !
! ! H <- (X.c[,1] %*% t(X.c[,1]))/((t(X.c[,1]) %*% X.c[,1])[1,1]) !
! ! } else {!
! ! if(option<3) {  !
! ! ! # if(det(t(X.c)%*%X.c)<epsilon) stop ('Collinearity detected in X')!
! ! ! if(m < ncol(X.c)) stop ('Collinearity detected in X')!
! ! ! H <- X.c %*% solve(t(X.c) %*% X.c) %*% t(X.c)!
! ! ! #!
! ! ! # option=3: compute projector H from orthogonalized X; no inversion!
! ! ! } else {!
! ! ! X.eig <- eigen(cov(X.c))!
! ! ! k <- length(which(X.eig$values > epsilon))!
! ! ! X.ortho <- X.c %*% X.eig$vectors[,1:k]  # F matrix of PCA!
! ! ! XprX <- t(X.ortho) %*% X.ortho!
! ! ! H <- X.ortho %*% diag(diag(XprX)^(-1)) %*% t(X.ortho)!
! ! ! }!
! }!
#!
# Compute the F statistic: McArdle & Anderson (2001), equation 4 modified!
! HGH <- H %*% G %*% H!
! SSYhat <- sum(diag(HGH))!
! #!
! if(option==1) {!
! ! I.minus.H <- diag(n) - H!
! ! den1 <- sum(diag(I.minus.H %*% G %*% I.minus.H))!
! ! F <- SSYhat/den1     # F statistic without the degrees of freedom!
! ! Rsquare <- F/(F+1)!
! } else {!
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! ! F <- SSYhat/(SSY-SSYhat)  # F statistic without the degrees of freedom!
! ! Rsquare <- SSYhat/SSY     # or equivalent: Rsquare <- F/(F+1)!
! }!
! RsqAdj <- 1-((1-Rsquare)*(n-1)/(n-1-m))!
#!
# Permutation test of F!
! if(nperm > 0) {!
! ! nGE=1!
! ! for(i in 1:nperm) {!
! ! ! order <- sample(n)!
! ! ! Gperm <- G[order, order]!
! ! ! H.Gperm.H <- H %*% Gperm %*% H!
! ! ! SSYhat.perm <- sum(diag(H.Gperm.H))!
! ! ! #!
! ! ! if(option==1) {!
! ! ! ! den <- sum(diag(I.minus.H %*% Gperm %*% I.minus.H))!
! ! ! ! F.perm <- SSYhat.perm/den!
! ! ! } else {!
! ! ! ! F.perm <- SSYhat.perm/(SSY-SSYhat.perm)!
! ! ! }!
! ! ! if(F.perm >= F) nGE=nGE+1!
! ! ! }!
! ! P.perm <- nGE/(nperm+1)!
! ! } else { P.perm <- NA }!
#!
# Compute RDA ordination coordinates!
! if(rda.coord > 0) {!
! ! HGH.eig <- eigen(HGH, symmetric=TRUE)!
! ! # kk <- length(which(HGH.eig$values > epsilon))!
! ! RDA.values <- HGH.eig$values!
! ! rel.eig <- RDA.values/SSY!
! ! cum.eig <- cumsum(rel.eig) !
! ! kk <- length(which(rel.eig > epsilon))!
! ! if(positive.RDA.values) {!
! ! ! RDA.values <- RDA.values[1:kk]!
! ! ! rel.eig <- rel.eig[1:kk]!
! ! ! cum.eig <- cum.eig[1:kk]!
! ! ! }!
! ! k <- min(rda.coord, kk)!
! ! if(k >= 2) {!
! ! RDA.coord <-sweep(HGH.eig$vectors[,1:k],2,sqrt(RDA.values[1:k]),FUN="*")!
! ! ! } else {!
! ! ! RDA.coord <- NA!
! ! ! cat("k =",k," -- Fewer than two RDA eigenvalues > 0\n")!
! ! ! }!
! ! } else { RDA.values <- rel.eig <- cum.eig <- RDA.coord <- NA }!
#!
list(F=F*(n-m-1)/m, Rsquare=c(Rsquare,RsqAdj), P.perm=P.perm, SS.total=SSY, 
PCoA.values=values, PCoA.vectors=princ.coord, RDA.values=RDA.values/(n-1), 
RDA.rel.values=rel.eig, RDA.cum.values=cum.eig, RDA.coord=RDA.coord)!
}



Appendix S5 

SOFTWARE USED IN THE SIMULATIONS 

This Appendix presents the software used in the simulations reported in section “Simulations 
involving spatially autocorrelated data: comparison of Mantel test and dbMEM analysis” of the 
paper. A separate R function was written for each series of simulations. This function was called 
by a set of R commands that produced output files. These files of R commands were run in batch 
mode. 

Files shows in the following pages: 

Series 1 simulations involving all pairwise geographic distances (see paper, Fig. 2) 

• Simulation function: file LFB.simul1.R 

• Running the simulation function: file run.LFB.simul1.batch.txt 

Series 2 simulations involving truncated geographic distance matrices (see paper, Fig. 3) 

• Simulation function: file LFB.simul2.R 

• Running the simulation function: files run.LFB.simul2.batch1.txt, run.LFB.simul2.batch2.txt, 
run.LFB.simul2.batch3.txt, run.LFB.simul2.batch4.txt 

Series 3 simulations involving Delaunay triangulations (see Appendix S3, Fig. S3.1) 

• Simulation function: file LFB.simul3.R 

• Running the simulation function: files run.LFB.simul3.batch1.txt, run.LFB.simul3.batch2.txt, 
run.LFB.simul3.batch3.txt, run.LFB.simul3.batch4.txt 

The simulation functions call upon packages RandomFields, vegan and spatstat available on 
CRAN, and package PCNM available on http://r-forge.r-project.org/R/?group_id=195 for Linux 
and Windows versions, and on http://adn.biol.umontreal.ca/~numericalecology/FonctionsR/ for a 
Mac OSX compiled version. 
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!
LFB.simul1 <- function(nsim=100, spacing=3, range=5, mean=0.0, nugget=0.0, var=1, nperm1=99, 
nperm2=99, R.option=2)!
#!
# Task: Simulation function for the Legendre, Fortin & Borcard paper.!
# Map sizes are chosen to harbour 100 sampling units (n=100) with spacing of !
# {1,2,3,4,5} with a buffer zone of 5 pixels all around the sampled area.!
#!
# Parameters of the function --!
#!
# nsim : number of surfaces to be simulated.!
# spacing = {1,2,3,4,5} for size of simulation surface = {20,29,38,47,56}.!
# range : range of the variogram for generation of SA on the surface.!
# mean  : mean of the simulated data!
# nugget: nugget parameter!
# var   : total variance of the simulated data; var = nugget + sill.!
# nperm1 : number of permutations for dbMEM analysis.!
# nperm2 : number of permutations for Mantel analysis.!
#!
# Simulation of Gaussian random fields controlled by a spherical variogram:!
# R.option=2 : With R 2.15, use function GaussRF() of RandomFields 2.0.66 !
# R.option=3 : With R 3.0, use function RFsimulate() of RandomFields 3.0.10!
#!
# Permutational test in dbMEM analysis: see function R2.test.perm().!
#!
# Value (output list) --!
#!
# rej.dbMEM : rejection rates, dbMEM analysis, parametric and permutation tests.!
# rej.Mantel : rejection rates, Mantel analysis, permutation test.!
# R.dbMEM : R-square & adj. R-square of indiv. simulations dbMEM anal. (matrix).!
# p.dbMEM : p-values (param. & perm.) of individual simul. dbMEM anal. (matrix).!
# r.Mantel : Mantel correlation of individual simulations with geoD and sqrt(geo.D).!
# p.Mantel : p-values of individual simulations, Mantel with geoD and sqrt(geo.D).!
# param : vector listing the run parameters: {nsim,spacing,range,nperm1,nperm2}.!
# geo.D : geographic distance matrix for the grid sample, shown only if nsim=1.!
# Y.D : response distance matrix for the grid sample, shown only when nsim=1.!
# Surface : matrix with the whole response surface, shown only when nsim=1.!
#           A map can be plotted using image(x$Surface)!
#!
# References --!
#!
# Schlather, M., P. Menck, R. Singleton, B. Pfaff and R Core team (2013). !
#    RandomFields: Simulation and analysis of random fields. !
#    R package version 2.0.66. http://CRAN.R-project.org/package=RandomFields!
#!
# Schlather, M., A. Malinowski, M. Oesting, D. Boecker, K. Strokorb, S. Engelke, !
#    J. Martini, P. Menck, S. Gross, K. Burmeister, J. Manitz, R. Singleton, !
#    B. Pfaff and R Core Team (2014). RandomFields: Simulation and Analysis !
#    of Random Fields. R package version 3.0.10. !
#    http://CRAN.R-project.org/package=RandomFields!
#!
# License: GPL-2 !
# Authors: Pierre Legendre and D. Borcard, June 2014!
{!
require(RandomFields)!
require(vegan)!
require(PCNM)!
param <-c(nsim=nsim, spacing=spacing, range=range, nperm1=nperm1, nperm2=nperm2)!
#!
if(R.option==2) {!
! cat("Function GaussRF() of RandomFields 2.0.66 is used with R 2.15\n")!
! } else if(R.option==3) {!
! cat("Function RFsimulate() of RandomFields 3.0.10 is used with R 3.0\n")!
! RFoptions(spConform=FALSE)!
! RFoptions(seed=NULL)!
! } else { stop("Error in R.option parameter") }!
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#!
# Set up the simulation surface and the sampling grid parameters!
size <- 9*spacing+11     # size = {20,29,38,47,56} depending on "spacing"!
coo <- 1:size    # Coordinates of points on simulation surface in each direction!
#!
# Coordinates of the sample of n=100 points on the surface!
grid.coord <- expand.grid(seq(6,(size-5),spacing), seq(6,(size-5),spacing))!
n <- nrow(grid.coord)!
geo.D <- dist(grid.coord)!
#!
# Construct dbMEM eigenfunctions!
! dbMEM.grid <- PCNM(geo.D,thresh=spacing,dbMEM=TRUE)!
! dbMEM <- as.data.frame(dbMEM.grid$vectors)!
! Q <- qr(as.matrix(dbMEM))!
#!
# Prepare matrix and vectors to receive the simulation results!
surf     <- vector(mode="numeric", length=n)!
R.dbMEM  <- matrix(NA,nsim,2)!
colnames(R.dbMEM) <- c("R.square","adj.R.square")!
p.dbMEM  <- matrix(NA,nsim,2)!
colnames(p.dbMEM) <- c("Parametric.P","Permutational.P")!
r.Mantel <- matrix(NA,nsim,2)!
p.Mantel <- matrix(NA,nsim,2)!
colnames(r.Mantel) <- c("Mantel(Y.D,geo.D)","Mantel(Y.D,sqrt(geo.D))")!
colnames(p.Mantel) <- c("Mantel(Y.D,geo.D)","Mantel(Y.D,sqrt(geo.D))")!
###!
# Main simulation loop!
a <- system.time({             # How much time for the simulations?!
#!
for(kk in 1:nsim) {!
! if(range==0) { !
! ! surf <- rnorm(n) !
! ! } else {!
! ! ## Simulate autocorrelated surface with spherical variogram model!
! ! if(R.option==2) {!
! ! ! Surface <- GaussRF(coo, coo, model="spherical", grid=TRUE, !
! ! ! ! param=c(mean=mean, var=var, nugget=nugget, scale=range)) !
! ! ! }!
! ! if(R.option==3) {!
! ! ! model = RMspheric(var=var, scale=range)!
! ! ! Surface <- RFsimulate(model = model, x=coo, y=coo, grid=TRUE) !
! ! ! ### DB: if a nugget is sought, argument err.model in RFsimulate  !
! ! ! ###     can be used: err.model=RMnugget(var=var)!
! ! ! }!
! ! #!
! ! for(k in 1:n) surf[k] <- Surface[grid.coord[k,2], grid.coord[k,1]]!
! ! }!
! Y.D <- dist(surf)!
! #!
! # dbMEM analysis by regression. No selection of the eigenfunctions!
! lm.res <- lm(surf ~ .,data=dbMEM)!
! R.dbMEM[kk,] <- c(summary(lm.res)$r.squared, summary(lm.res)$adj.r.squared)!
! F.vec <- summary(lm.res)$fstatistic!
! # Parametric test results (for the time being)!
! p.dbMEM[kk,1] <- pf(F.vec[1], F.vec[2], F.vec[3], lower.tail=FALSE)!
! if(nperm1==0) { p.dbMEM[kk,2] <- NA } else {!
! ! p.dbMEM[kk,2]<-R2.test.perm(surf,dbMEM,nperm=nperm1,Q=Q, dbMEM=TRUE)$P }!
! # Mantel test using vegan's mantel() function!
! res.Mantel1 <- mantel(Y.D, geo.D, permutations=nperm2)!
! res.Mantel2 <- mantel(Y.D, sqrt(geo.D), permutations=nperm2)!
! r.Mantel[kk,1] <- res.Mantel1$statistic!
! r.Mantel[kk,2] <- res.Mantel2$statistic!
! p.Mantel[kk,1] <- res.Mantel1$signif!
! p.Mantel[kk,2] <- res.Mantel2$signif!
! }!
rej.dbMEM <- !



Page 3 of 3LFB.simul1.R
Saved: 2015-06-16 14:04:06 Printed For: Pierre Legendre

! c(length(which(p.dbMEM[,1]<=0.05)),length(which(p.dbMEM[,2]<=0.05)))/nsim!
rej.Mantel <- c(length(which(p.Mantel[,1]<=0.05)),length(which(p.Mantel[,2]<=0.05)))/nsim!
#!
})!
a[3] <- sprintf("%2f",a[3])!
cat("Simulation time =",a[3]," sec",'\n')!
#!
# Save Surface, geo.D and Y.D only if a single simulation has been produced!
if(nsim==1) {Surface<-Surface; geo.D=geo.D; Y.D<-Y.D} !
! else {Surface<-NULL; geo.D=NULL; Y.D<-NULL}!
#!
out <- list(rej.dbMEM=rej.dbMEM, rej.Mantel=rej.Mantel, R.dbMEM=R.dbMEM, p.dbMEM=p.dbMEM, 
r.Mantel=r.Mantel, p.Mantel=p.Mantel, param=param, geo.D=geo.D, Y.D=Y.D, Surface=Surface)!
}!
!
R2.test.perm <- function(Y, X, nperm=999, Q=NULL, dbMEM=FALSE)!
# Permutation test for R2 statistic in regression or RDA!
# Some operations on X=dbMEM are transferred to the main function LFB.simul1()!
# in the case of dbMEM analysis.!
#!
# Parameters of the function --!
# Y : Matrix or vector of response data.!
# X : Matrix of explanatory data, e.g. a file of dbMEM.!
# nperm : Number of permutations for the test.!
# dbMEM=FALSE: Normal computation of statistics for regression or RDA:!
#              Centre X, QR decomposition of X, compute adjusted R-square.!
# dbMEM=TRUE : Do not centre X since the matrix of dbMEM is centred.!
#              Do not compute the adjusted R-square.!
# License: GPL-2 !
# Author:: Pierre Legendre, June 2014!
{!
Y.c <- scale(Y,center=TRUE,scale=FALSE)    # Centre Y!
SS.Y <- sum(Y.c^2)!
X <- as.matrix(X)!
n <- nrow(X)!
if(!dbMEM) {!
! X <- scale(X,center=TRUE,scale=FALSE)  # Centre X!
! Q <- qr(X)                             # QR decompostion of X!
! }!
Yfit.X <- qr.fitted(Q, Y.c)!
# Compute statistics!
Rsquare <- sum(Yfit.X^2)/SS.Y!
m <- Q$rank!
residualDF <- n-m-1!
F <- (Rsquare*residualDF)/((1-Rsquare)*m)!
if(dbMEM) { adjRsq <- NA } else {!
! totalDF <- n-1!
! adjRsq <- 1-((1-Rsquare)*totalDF/residualDF)!
! }!
# Permutation test of F!
if(nperm > 0) {!
! nPGE <- 1!
! for(i in 1:nperm) {!
! ! YfitPerm <- qr.fitted(Q, sample(Y.c))!
! ! RsquarePerm <- sum(YfitPerm^2)/SS.Y!
! ! FPerm <- (RsquarePerm*residualDF)/((1-RsquarePerm)*m)!
! ! if(FPerm >= F) nPGE <- nPGE+1!
! ! }!
! P <- nPGE/(nperm+1)!
! } else { P <- NA }!
#!
if(dbMEM) { out <- list(P=P) } !
else {out <- list(Rsquare=Rsquare, F=F, P=P, adjRsq=adjRsq, nperm=nperm, m=m, 
residualDF=residualDF) }!
}



File run.LFB.simul1.batch.txt — Batch run for series 1 simulations  
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul1.R" 
source("LFB.simul1.R") 
 
res1.5.0 = LFB.simul1(nsim=1000, spacing=5, range=0, nperm1=999, nperm2=999) 
#  
res1.5.5 = LFB.simul1(nsim=1000, spacing=5, range=5, nperm1=999, nperm2=999) 
#  
res1.5.10 = LFB.simul1(nsim=1000, spacing=5, range=10, nperm1=999, nperm2=999) 
#  
res1.5.15 = LFB.simul1(nsim=1000, spacing=5, range=15, nperm1=999, nperm2=999) 
#  
res1.5.20 = LFB.simul1(nsim=1000, spacing=5, range=20, nperm1=999, nperm2=999) 
#  
res1.5.25 = LFB.simul1(nsim=1000, spacing=5, range=25, nperm1=999, nperm2=999) 
#  
res1.5.30 = LFB.simul1(nsim=1000, spacing=5, range=30, nperm1=999, nperm2=999) 
#  
res1.5.35 = LFB.simul1(nsim=1000, spacing=5, range=35, nperm1=999, nperm2=999) 
#  
res1.5.40 = LFB.simul1(nsim=1000, spacing=5, range=40, nperm1=999, nperm2=999) 
# 
save(res1.5.0,res1.5.5,res1.5.10,res1.5.15,res1.5.20,res1.5.25,res1.5.30,res1.5.35,res1.5.40, 
file="simul1,spacing=5.9_runs_sqrt.RData") 
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!
LFB.simul2 <- function(nsim=100, spacing=5, range=10, thresh=20, maxD=NULL, mean=0.0, 
nugget=0.0, var=1, nperm1=99, nperm2=99, R.option=2)!
#!
# Task: Simulation function for the Legendre, Fortin & Borcard paper.!
# Map sizes are chosen to harbour 100 sampling units (n=100) with spacing of !
# {1,2,3,4,5} with a buffer zone of 5 pixels all around the sampled area.!
#!
# In the LFB.simul2 simulations, autocorrelated surfaces are generated with different !
# range values, as in the LFB.simul1 function. However, instead of considering the whole !
# matrix of geographic distances among points, the distances larger than the truncation !
# distance ("thresh") are changed to the largest distance in the data set (maxD). A Mantel !
# test is then computed. !
# !
# Details --!
#!
# Different values of "thresh" will be used in separate runs. Graphs will be drawn for the !
# different "thresh" values, showing the rejection rates and the R-squares of dbMEM and !
# Mantel analyses as a function of the autocorrelation range values.!
# !
# Parameters of the function --!
#!
# nsim : number of surfaces to be simulated.!
# spacing = {1,2,3,4,5} for size of simulation surface = {20,29,38,47,56}.!
#           This is also the truncation threshold used by function PCNM.!
# range : range of the variogram for generation of SA on the surface.!
# thresh: truncation distance for Mantel tests; {5,10,15,20} in our simulations.!
# maxD  : distance to use when geo.D[geo.D > thresh] <- maxD.!
#         For spacing = 5, maxD = 63.63961.!
# mean  : mean of the simulated data.!
# nugget: nugget parameter.!
# var   : total variance of the simulated data; var = nugget + sill.!
# nperm1 : number of permutations for dbMEM analysis.!
# nperm2 : number of permutations for Mantel analysis.!
#!
# Simulation of Gaussian random fields controlled by a spherical variogram:!
# R.option=2 : With R 2.15, use function GaussRF() of RandomFields 2.0.66 !
# R.option=3 : With R 3.0, use function RFsimulate() of RandomFields 3.0.10!
#!
# Permutational test in dbMEM analysis: see function R2.test.perm().!
#!
# Value (output list) --!
#!
# rej.dbMEM : rejection rates, dbMEM analysis, parametric and permutation tests.!
# rej.Mantel : rejection rates, Mantel analysis, permutation test.!
# R.dbMEM : R-square & adj. R-square of indiv. simulations dbMEM anal. (matrix).!
# p.dbMEM : p-values (param. & perm.) of individual simul. dbMEM anal. (matrix).!
# r.Mantel : Mantel correlation of individual simulations (vector) with geoD.!
# p.Mantel : p-values of individual simulations, Mantel analysis (vector).!
# param : vector listing the run parameters: {nsim,spacing,range,nperm1,nperm2}.!
# geo.D : geographic distance matrix for the grid sample, shown only if nsim=1.!
# Y.D : response distance matrix for the grid sample, shown only when nsim=1.!
# Surface : matrix with the whole response surface, shown only when nsim=1.!
#           A map can be plotted using image(x$Surface)!
#!
# References --!
#!
# Schlather, M., P. Menck, R. Singleton, B. Pfaff and R Core team (2013). !
#    RandomFields: Simulation and analysis of random fields. !
#    R package version 2.0.66. http://CRAN.R-project.org/package=RandomFields!
#!
# Schlather, M., A. Malinowski, M. Oesting, D. Boecker, K. Strokorb, S. Engelke, !
#    J. Martini, P. Menck, S. Gross, K. Burmeister, J. Manitz, R. Singleton, !
#    B. Pfaff and R Core Team (2014). RandomFields: Simulation and Analysis !



Page 2 of 4LFB.simul2.R
Saved: 2015-06-16 14:48:50 Printed For: Pierre Legendre

#    of Random Fields. R package version 3.0.10. !
#    http://CRAN.R-project.org/package=RandomFields!
#!
# License: GPL-2 !
# Authors: Pierre Legendre and D. Borcard, July 2014!
{!
require(RandomFields)!
require(vegan)!
require(PCNM)!
param <-c(nsim=nsim, spacing=spacing, range=range, thresh=thresh, nperm1=nperm1, 
nperm2=nperm2)!
#!
if(R.option==2) {!
! cat("Function GaussRF() of RandomFields 2.0.66 is used with R 2.15\n")!
! } else if(R.option==3) {!
! cat("Function RFsimulate() of RandomFields 3.0.10 is used with R 3.0\n")!
! RFoptions(spConform=FALSE)!
! RFoptions(seed=NULL)!
! } else { stop("Error in R.option parameter") }!
#!
# Set up the simulation surface and the sampling grid parameters!
size <- 9*spacing+11     # size = {20,29,38,47,56} depending on "spacing"!
coo <- 1:size    # Coordinates of points on simulation surface in each direction!
#!
# Coordinates of the sample of n=100 points on the surface!
grid.coord <- expand.grid(seq(6,(size-5),spacing), seq(6,(size-5),spacing))!
n <- nrow(grid.coord)!
geo.D <- dist(grid.coord)!
# cat("maxD =",maxD,"\n")!
if(is.null(maxD)) maxD <- max(geo.D)!
cat("maxD =",maxD,"\n")!
#!
# Construct dbMEM eigenfunctions!
! dbMEM.grid <- PCNM(geo.D,thresh=spacing,dbMEM=TRUE)!
! dbMEM <- as.data.frame(dbMEM.grid$vectors)!
! Q <- qr(as.matrix(dbMEM))!
# Truncate geographic matrix D for Mantel test!
geo.D[geo.D > thresh] <- maxD!
# Prepare matrix and vectors to receive the simulation results!
surf     <- vector(mode="numeric", length=n)!
R.dbMEM  <- matrix(NA,nsim,2)!
colnames(R.dbMEM) <- c("R.square","adj.R.square")!
p.dbMEM  <- matrix(NA,nsim,2)!
colnames(p.dbMEM) <- c("Parametric.P","Permutational.P")!
r.Mantel <- vector(mode="numeric", length=nsim)!
p.Mantel <- vector(mode="numeric", length=nsim)!
###!
# Main simulation loop!
a <- system.time({             # How much time for the simulations?!
#!
for(kk in 1:nsim) {!
! if(range==0) { !
! ! surf <- rnorm(n) !
! ! } else {!
! ! ## Simulate autocorrelated surface with spherical variogram model!
! ! if(R.option==2) {!
! ! ! Surface <- GaussRF(coo, coo, model="spherical", grid=TRUE, !
! ! ! ! param=c(mean=mean, var=var, nugget=nugget, scale=range)) !
! ! ! }!
! ! if(R.option==3) {!
! ! ! model = RMspheric(var=var, scale=range)!
! ! ! Surface <- RFsimulate(model = model, x=coo, y=coo, grid=TRUE) !
! ! ! ### DB: if a nugget is sought, argument err.model in RFsimulate  !
! ! ! ###     can be used: err.model=RMnugget(var=var)!
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! ! ! }!
! ! #!
! ! for(k in 1:n) surf[k] <- Surface[grid.coord[k,2], grid.coord[k,1]]!
! ! }!
! Y.D <- dist(surf)!
! #!
! # dbMEM analysis. No selection of the eigenfunctions!
! lm.res <- lm(surf ~ .,data=dbMEM)!
! R.dbMEM[kk,] <- c(summary(lm.res)$r.squared, summary(lm.res)$adj.r.squared)!
! F.vec <- summary(lm.res)$fstatistic!
! # Parametric test resuts (for the time being)!
! p.dbMEM[kk,1] <- pf(F.vec[1], F.vec[2], F.vec[3], lower.tail=FALSE)!
! if(nperm1==0) { p.dbMEM[kk,2] <- NA } else {!
! ! p.dbMEM[kk,2]<-R2.test.perm(surf,dbMEM,nperm=nperm1,Q=Q, dbMEM=TRUE)$P }!
! # Mantel test using vegan's mantel() function!
! res.Mantel <- mantel(Y.D, geo.D, permutations=nperm2)!
! r.Mantel[kk] <- res.Mantel$statistic!
! p.Mantel[kk] <- res.Mantel$signif!
! }!
rej.dbMEM <- !
! c(length(which(p.dbMEM[,1]<=0.05)),length(which(p.dbMEM[,2]<=0.05)))/nsim!
names(rej.dbMEM) <- c("p.param", "p.perm")!
rej.Mantel <- length(which(p.Mantel <= 0.05))/nsim!
#!
})!
a[3] <- sprintf("%2f",a[3])!
cat("Simulation time =",a[3]," sec",'\n')!
#!
# Save Surface, geo.D and Y.D only if a single simulation has been produced!
if(nsim==1) {Surface<-Surface; geo.D=geo.D; Y.D<-Y.D} !
! else {Surface<-NULL; geo.D=NULL; Y.D<-NULL}!
#!
out <- list(rej.dbMEM=rej.dbMEM, rej.Mantel=rej.Mantel, R.dbMEM=R.dbMEM, p.dbMEM=p.dbMEM, 
r.Mantel=r.Mantel, p.Mantel=p.Mantel, param=param, geo.D=geo.D, Y.D=Y.D, Surface=Surface)!
}!
!
R2.test.perm <- function(Y, X, nperm=999, Q=NULL, dbMEM=FALSE)!
# Permutation test for R2 statistic in regression or RDA!
# Some operations on X=dbMEM are transferred to the main function LFB.simul1()!
# in the case of dbMEM analysis.!
#!
# Parameters of the function --!
# Y : Matrix or vector of response data.!
# X : Matrix of explanatory data, e.g. a file of dbMEM.!
# nperm : Number of permutations for the test.!
# dbMEM=FALSE: Normal computation of statistics for regression or RDA:!
#              Centre X, QR decomposition of X, compute adjusted R-square.!
# dbMEM=TRUE : Do not centre X since the matrix of dbMEM is centred.!
#              Do not compute the adjusted R-square.!
# License: GPL-2 !
# Author:: Pierre Legendre, June 2014!
{!
Y.c <- scale(Y,center=TRUE,scale=FALSE)    # Centre Y!
SS.Y <- sum(Y.c^2)!
X <- as.matrix(X)!
n <- nrow(X)!
if(!dbMEM) {!
! X <- scale(X,center=TRUE,scale=FALSE)  # Centre X!
! Q <- qr(X)                             # QR decompostion of X!
! }!
Yfit.X <- qr.fitted(Q, Y.c)!
# Compute statistics!
Rsquare <- sum(Yfit.X^2)/SS.Y!
m <- Q$rank!
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residualDF <- n-m-1!
F <- (Rsquare*residualDF)/((1-Rsquare)*m)!
if(dbMEM) { adjRsq <- NA } else {!
! totalDF <- n-1!
! adjRsq <- 1-((1-Rsquare)*totalDF/residualDF)!
! }!
# Permutation test of F!
if(nperm > 0) {!
! nPGE <- 1!
! for(i in 1:nperm) {!
! ! YfitPerm <- qr.fitted(Q, sample(Y.c))!
! ! RsquarePerm <- sum(YfitPerm^2)/SS.Y!
! ! FPerm <- (RsquarePerm*residualDF)/((1-RsquarePerm)*m)!
! ! if(FPerm >= F) nPGE <- nPGE+1!
! ! }!
! P <- nPGE/(nperm+1)!
! } else { P <- NA }!
#!
if(dbMEM) { out <- list(P=P) } !
else {out <- list(Rsquare=Rsquare, F=F, P=P, adjRsq=adjRsq, nperm=nperm, m=m, 
residualDF=residualDF) }!
}



File run.LFB.simul2.batch1.txt — Batch run for series 2 simulations, thresh=5 
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul2.R" 
source("LFB.simul2.R") 
 
res2.5.0.5 = LFB.simul2(nsim=1000, spacing=5, range=0, thresh=5, nperm1=0, nperm2=999) 
#  
res2.5.5.5 = LFB.simul2(nsim=1000, spacing=5, range=5, thresh=5, nperm1=0, nperm2=999) 
#  
res2.5.10.5 = LFB.simul2(nsim=1000, spacing=5, range=10, thresh=5, nperm1=0, nperm2=999) 
#  
res2.5.15.5 = LFB.simul2(nsim=1000, spacing=5, range=15, thresh=5, nperm1=0, nperm2=999) 
#  
res2.5.20.5 = LFB.simul2(nsim=1000, spacing=5, range=20, thresh=5, nperm1=0, nperm2=999) 
#  
res2.5.25.5 = LFB.simul2(nsim=1000, spacing=5, range=25, thresh=5, nperm1=0, nperm2=999) 
#  
res2.5.30.5 = LFB.simul2(nsim=1000, spacing=5, range=30, thresh=5, nperm1=0, nperm2=999) 
#  
res2.5.35.5 = LFB.simul2(nsim=1000, spacing=5, range=35, thresh=5, nperm1=0, nperm2=999) 
#  
res2.5.40.5 = LFB.simul2(nsim=1000, spacing=5, range=40, thresh=5, nperm1=0, nperm2=999) 
# 
save(res2.5.0.5,res2.5.5.5,res2.5.10.5,res2.5.15.5,res2.5.20.5,res2.5.25.5,res2.5.30.5,res2.5.35.5, 
res2.5.40.5, file="simul2,spacing=5,thresh=5.RData") 
 
 
  



File run.LFB.simul2.batch2.txt — Batch run for series 2 simulations, thresh=10 
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul2.R" 
source("LFB.simul2.R") 
 
res2.5.0.10 = LFB.simul2(nsim=1000, spacing=5, range=0, thresh=10, nperm1=0, nperm2=999) 
#  
res2.5.5.10 = LFB.simul2(nsim=1000, spacing=5, range=5, thresh=10, nperm1=0, nperm2=999) 
#  
res2.5.10.10 = LFB.simul2(nsim=1000, spacing=5, range=10, thresh=10,nperm1=0,nperm2=999) 
#  
res2.5.15.10 = LFB.simul2(nsim=1000, spacing=5, range=15, thresh=10,nperm1=0,nperm2=999) 
#  
res2.5.20.10 = LFB.simul2(nsim=1000, spacing=5, range=20, thresh=10,nperm1=0,nperm2=999) 
#  
res2.5.25.10 = LFB.simul2(nsim=1000, spacing=5, range=25, thresh=10,nperm1=0,nperm2=999) 
#  
res2.5.30.10 = LFB.simul2(nsim=1000, spacing=5, range=30, thresh=10,nperm1=0,nperm2=999) 
#  
res2.5.35.10 = LFB.simul2(nsim=1000, spacing=5, range=35, thresh=10,nperm1=0,nperm2=999) 
#  
res2.5.40.10 = LFB.simul2(nsim=1000, spacing=5, range=40, thresh=10,nperm1=0,nperm2=999) 
#  
save(res2.5.0.10,res2.5.5.10,res2.5.10.10,res2.5.15.10,res2.5.20.10,res2.5.25.10,res2.5.30.10, 
res2.5.35.10,res2.5.40.10, file="simul2,spacing=5,thresh=10.RData") 
 
 
  



File run.LFB.simul2.batch3.txt — Batch run for series 2 simulations, thresh=15 
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul2.R" 
source("LFB.simul2.R") 
 
res2.5.0.15 = LFB.simul2(nsim=1000, spacing=5, range=0, thresh=15, nperm1=0, nperm2=999) 
#  
res2.5.5.15 = LFB.simul2(nsim=1000, spacing=5, range=5, thresh=15, nperm1=0, nperm2=999) 
#  
res2.5.10.15 = LFB.simul2(nsim=1000, spacing=5, range=10, thresh=15,nperm1=0,nperm2=999) 
#  
res2.5.15.15 = LFB.simul2(nsim=1000, spacing=5, range=15, thresh=15,nperm1=0,nperm2=999) 
#  
res2.5.20.15 = LFB.simul2(nsim=1000, spacing=5, range=20, thresh=15,nperm1=0,nperm2=999) 
#  
res2.5.25.15 = LFB.simul2(nsim=1000, spacing=5, range=25, thresh=15,nperm1=0,nperm2=999) 
#  
res2.5.30.15 = LFB.simul2(nsim=1000, spacing=5, range=30, thresh=15,nperm1=0,nperm2=999) 
#  
res2.5.35.15 = LFB.simul2(nsim=1000, spacing=5, range=35, thresh=15, nperm1=0,nperm2=999 
#  
res2.5.40.15 = LFB.simul2(nsim=1000, spacing=5, range=40, thresh=15,nperm1=0,nperm2=999) 
#  
save(res2.5.0.15,res2.5.5.15,res2.5.10.15,res2.5.15.15,res2.5.20.15,res2.5.25.15,res2.5.30.15, 
res2.5.35.15,res2.5.40.15, file="simul2,spacing=5,thresh=15.RData") 
 
 
  



File run.LFB.simul2.batch4.txt — Batch run for series 2 simulations, thresh=20 
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul2.R" 
source("LFB.simul2.R") 
 
res2.5.0.20 = LFB.simul2(nsim=1000, spacing=5, range=0, thresh=20, nperm1=0, nperm2=999) 
#  
res2.5.5.20 = LFB.simul2(nsim=1000, spacing=5, range=5, thresh=20, nperm1=0, nperm2=999) 
#  
res2.5.10.20 = LFB.simul2(nsim=1000, spacing=5, range=10, thresh=20,nperm1=0,nperm2=999) 
#  
res2.5.15.20 = LFB.simul2(nsim=1000, spacing=5, range=15, thresh=20,nperm1=0,nperm2=999) 
#  
res2.5.20.20 = LFB.simul2(nsim=1000, spacing=5, range=20, thresh=20,nperm1=0,nperm2=999) 
#  
res2.5.25.20 = LFB.simul2(nsim=1000, spacing=5, range=25, thresh=20,nperm1=0,nperm2=999) 
#  
res2.5.30.20 = LFB.simul2(nsim=1000, spacing=5, range=30, thresh=20,nperm1=0,nperm2=999) 
#  
res2.5.35.20 = LFB.simul2(nsim=1000, spacing=5, range=35, thresh=20,nperm1=0,nperm2=999) 
#  
res2.5.40.20 = LFB.simul2(nsim=1000, spacing=5, range=40, thresh=20,nperm1=0,nperm2=999) 
#  
save(res2.5.0.20,res2.5.5.20,res2.5.10.20,res2.5.15.20,res2.5.20.20,res2.5.25.20,res2.5.30.20, 
res2.5.35.20,res2.5.40.20, file="simul2,spacing=5,thresh=20.RData") 
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!
LFB.simul3 <- function(nsim=100, spacing=5, range=10, N=50, thresh=NULL, maxD=NULL, 
new.Del=TRUE, mean=0.0, nugget=0.0, var=1, nperm1=99, nperm2=99, R.option=3)!
#!
# Task: Simulation function for the Legendre, Fortin & Borcard paper.!
# Map sizes are chosen to harbour 100 sampling units (n=100) with spacing of !
# {1,2,3,4,5} with a buffer zone of 5 pixels all around the sampled area.!
#!
# In the LFB.simul3 simulations, autocorrelated surfaces are generated with different !
# range values, as in the LFB.simul1 function. In this function, however, N points are !
# selected at random from among the 100 points of the regular sampling grid. A Delaunay !
# triangulation is constructed among these points. New distances are computed among these !
# N points; the distance is the minimum number of Delaunay segments separating two points.!
#!
# Details --!
#!
# For the N selected points, a Delaunay triangulation is computed, as well as a matrix of !
# dbMEM eigenfunctions. If "thresh" is not NULL, the matrix of Delaunay graph distances is !
# truncated, which means that any value larger than a selected threshold is replaced by !
# the largest distance actually found in the matrix, max.D. The simulated response values !
# for the N selected points are kept in a vector. The Mantel test is computed for the !
# truncated matrix of Delaunay graph distances. !
#!
# Different values of "thresh" will be used in separate runs. Graphs will be drawn for the !
# different "thresh" values, showing the rejection rates and the R-squares of dbMEM and !
# Mantel analyses as a function of the autocorrelation range values.!
#!
# Permutation test in dbMEM analysis are carried out by function R2.test.perm.!
#!
# Simulation of Gaussian random fields controlled by a spherical variogram:!
# R.option=2 : With R 2.15, use function GaussRF() of RandomFields 2.0.66 !
# R.option=3 : With R 3.0, use function RFsimulate() of RandomFields 3.0.10!
#!
# Parameters of the function --!
#!
# nsim : number of surfaces to be simulated.!
# spacing = {1,2,3,4,5} for size of simulation surface = {20,29,38,47,56}.!
# range : range of the variogram for generation of SA on the surface.!
# N     : Number of points to sample on the regular grid.!
# thresh: truncation D of Delaunay triangulation for Mantel tests.!
# maxD  : distance to use when geo.D[geo.D > thresh] -- !
#         Use the maximum distance on the grid if maxD=NULL: sqrt(9^2*2)*5!
#         Use the user-defined value of maxD if maxD is not NULL.!
# new.Del=TRUE : New Delaunay triangulation and MEM file for every SA surface.!
#        =FALSE: A single Delaunay triangulation and MEM file for all simulations.!
# mean  : mean of the simulated data!
# nugget: nugget parameter!
# var   : total variance of the simulated data; var = nugget + sill (PL check).!
# nperm1 : number of permutations for dbMEM analysis.!
# nperm2 : number of permutations for Mantel analysis.!
#!
# Value (output list) --!
#!
# rej.dbMEM : rejection rates, dbMEM analysis, parametric and permutation tests.!
# rej.Mantel : rejection rates, Mantel analysis, permutation test.!
# R.dbMEM : R-square & adj. R-square of indiv. simulations dbMEM anal. (matrix).!
# p.dbMEM : p-values (param. & perm.) of individual simul. dbMEM anal. (matrix).!
# r.Mantel : Mantel correlations of individual simulations (vector) with geoD.!
# p.Mantel : p-values of individual simulations, Mantel analysis (vector).!
# param : vector of run parameters: {nsim,spacing,range,thresh,nperm1,nperm2}.!
# Del.D : Delaunay distance matrix for the grid sample, shown only if nsim=1.!
# Y.D : response distance matrix for the grid sample, shown only when nsim=1.!
# Surface : matrix with the whole response surface, shown only when nsim=1.!
#           A map can be plotted using image(x$Surface)!
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#!
# References --!
#!
# Schlather, M., P. Menck, R. Singleton, B. Pfaff and R Core team (2013). !
#    RandomFields: Simulation and analysis of random fields. !
#    R package version 2.0.66. http://CRAN.R-project.org/package=RandomFields!
#!
# Schlather, M., A. Malinowski, M. Oesting, D. Boecker, K. Strokorb, S. Engelke, !
#    J. Martini, P. Menck, S. Gross, K. Burmeister, J. Manitz, R. Singleton, !
#    B. Pfaff and R Core Team (2014). RandomFields: Simulation and Analysis !
#    of Random Fields. R package version 3.0.10. !
#    http://CRAN.R-project.org/package=RandomFields!
#!
# License: GPL-2 !
# Authors: Pierre Legendre and D. Borcard, July 2014!
{!
require(spatstat)!
require(RandomFields)!
require(vegan)!
require(PCNM)!
param <-c(nsim=nsim, spacing=spacing, range=range, thresh=thresh, nperm1=nperm1, 
nperm2=nperm2)!
#!
if(R.option==2) {!
! cat("Function GaussRF() of RandomFields 2.0.66 is used with R 2.15\n")!
! } else if(R.option==3) {!
! cat("Function RFsimulate() of RandomFields 3.0.10 is used with R 3.0\n")!
! RFoptions(spConform=FALSE)!
! RFoptions(seed=NULL)!
! } else { stop("Error in R.option parameter") }!
#!
# Set up the simulation surface and the sampling grid parameters!
size <- 9*spacing+11     # size = {20,29,38,47,56} depending on "spacing"!
coo <- 1:size    # Coordinates of points on simulation surface in each direction!
#!
# Coordinates of the sample of n=100 points on the surface!
grid.coord <- expand.grid(seq(6,(size-5),spacing), seq(6,(size-5),spacing))!
n <- nrow(grid.coord)!
if(N > n) stop("N is larger than the number of points on the sample grid")!
#!
if(!new.Del) { # Use the same Delaunay triangulation and MEM file for all surfaces!
! # Select N points for Delaunay triangulation!
! vec.N = sort(sample(n, N))    # Selected N points for Delaunay triangulation!
! print(vec.N)!
! cat(vec.N,"\n")!
! coord.N = grid.coord[vec.N,]  # Coordinates of the selected points!
! # Delaunay triangulation -- D matrix in number of steps along the triangulation!
! Del.D <- as.dist(delaunay.distance(ppp(coord.N[,1],coord.N[,2],xrange=c(1,size),!
!                  yrange=c(1,size))))!
! if(is.null(maxD)) maxD. <- max(Del.D)!
! cat("new.Del=FALSE: maxD. in Delaunay =",maxD.,"\n")!
! # Truncate the Delaunay matrix D that will be used for the Mantel test!
! Del.D[Del.D > thresh] <- maxD.!
! # Construct dbMEM eigenfunctions!
! ! geo.D <- dist(coord.N)!
! ! dbMEM <- PCNM(geo.D,dbMEM=TRUE,silent=TRUE)!
! ! dbMEM <- as.data.frame(dbMEM.N$vectors)!
! ! Q <- qr(as.matrix(dbMEM))!
! }!
#!
# Prepare matrix and vectors to receive the simulation results!
surf     <- vector(mode="numeric", length=N)!
R.dbMEM  <- matrix(NA,nsim,2)!
colnames(R.dbMEM) <- c("R.square","adj.R.square")!
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p.dbMEM  <- matrix(NA,nsim,2)!
colnames(p.dbMEM) <- c("Parametric.P","Permutational.P")!
r.Mantel <- vector(mode="numeric", length=nsim)!
p.Mantel <- vector(mode="numeric", length=nsim)!
MaxD <- 0!
###!
# Main simulation loop!
a <- system.time({             # How much time for the simulations?!
# !
for(kk in 1:nsim) {!
! if(new.Del) { # New Delaunay triangulation and MEM file for every SA surface!
! ! repeat {  ### try() : procedure to go around a bug in package deldir!
! ! ! vec.N = sort(sample(n, N))    # Selected points for Delaunay triangulation!
! ! ! coord.N = grid.coord[vec.N,]  # Coordinates of the selected points!
! ! ! tmp <- ppp(coord.N$Var1/size,coord.N$Var2/size)!
! ! ! # if(!is.ppp(tmp)) cat(kk,"No\n") else cat(kk,"Yes\n")!
! ! ! tst = try(Del.D <- delaunay.distance(tmp), silent=TRUE)!
! ! ! if(class(tst)=="matrix") {!
! ! ! ! break } else { cat("kk =",kk,"### Error in delaunay.dist()\n") }!
! ! ! }!
! ! !
! ! Del.D <- as.dist(Del.D)!
! ! if(is.null(maxD)) maxD. <- max(Del.D)!
! ! if(maxD. > MaxD) MaxD <- maxD.!
! ! # cat(kk,"- maxD. =",maxD.,"\n")!
! ! # Truncate the Delaunay matrix D that will be used for the Mantel test!
! ! Del.D[Del.D > thresh] <- maxD.!
! ! # Construct dbMEM eigenfunctions!
! ! ! geo.D <- dist(coord.N)!
! ! ! dbMEM.N <- PCNM(geo.D,dbMEM=TRUE,silent=TRUE)!
! ! ! dbMEM <- as.data.frame(dbMEM.N$vectors)!
! ! ! Q <- qr(as.matrix(dbMEM))!
! ! }!
! if(range==0) { !
! ! surf <- rnorm(N) !
! ! } else {!
! ! ## Simulate autocorrelated surface with spherical variogram model!
! ! if(R.option==2) {!
! ! ! Surface <- GaussRF(coo, coo, model="spherical", grid=TRUE, !
! ! ! ! param=c(mean=mean, var=var, nugget=nugget, scale=range)) !
! ! ! }!
! ! if(R.option==3) {!
! ! ! model = RMspheric(var=var, scale=range)!
! ! ! Surface <- RFsimulate(model = model, x=coo, y=coo, grid=TRUE) !
! ! ! ### DB: if a nugget is sought, argument err.model in RFsimulate  !
! ! ! ###     can be used: err.model=RMnugget(var=var)!
! ! ! }!
! ! #!
! ! for(k in 1:N) surf[k] <- Surface[coord.N[k,2], coord.N[k,1]]!
! ! }!
! if(nsim==1) return(list(coord.N=coord.N, surf=surf, Del.D=Del.D, dbMEM=dbMEM, N=N))!
! Y.D <- dist(surf)!
! #!
! # dbMEM analysis. No selection of the eigenfunctions!
! lm.res <- lm(surf ~ .,data=dbMEM)!
! R.dbMEM[kk,] <- c(summary(lm.res)$r.squared, summary(lm.res)$adj.r.squared)!
! F.vec <- summary(lm.res)$fstatistic!
! # Parametric test resuts (for the time being)!
! p.dbMEM[kk,1] <- pf(F.vec[1], F.vec[2], F.vec[3], lower.tail=FALSE)!
! if(nperm1==0) { p.dbMEM[kk,2] <- NA } else {!
! ! p.dbMEM[kk,2]<-R2.test.perm(surf,dbMEM,nperm=nperm1,Q=Q, dbMEM=TRUE)$P }!
! # Mantel test using vegan's mantel() function!
! res.Mantel <- mantel(Y.D, Del.D, permutations=nperm2)!
! r.Mantel[kk] <- res.Mantel$statistic!
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! p.Mantel[kk] <- res.Mantel$signif!
! }!
rej.dbMEM <- !
! c(length(which(p.dbMEM[,1]<=0.05)),length(which(p.dbMEM[,2]<=0.05)))/nsim!
names(rej.dbMEM) <- c("p.param", "p.perm")!
rej.Mantel <- length(which(p.Mantel <= 0.05))/nsim!
if(new.Del) cat("new.Del=TRUE: MaxD in Delaunay =",MaxD,"\n")!
#!
})!
a[3] <- sprintf("%2f",a[3])!
cat("\n","Simulation time =",a[3]," sec",'\n')!
#!
# Save Surface, Del.D and Y.D only if a single simulation has been produced!
if(nsim==1) {Surface<-Surface; Del.D<-Del.D; Y.D<-Y.D} !
! else {Surface<-NULL; Del.D<-NULL; Y.D<-NULL}!
#!
out <- list(rej.dbMEM=rej.dbMEM, rej.Mantel=rej.Mantel, R.dbMEM=R.dbMEM, p.dbMEM=p.dbMEM, 
r.Mantel=r.Mantel, p.Mantel=p.Mantel, param=param, Del.D=Del.D, Y.D=Y.D, Surface=Surface)!
}!
!
R2.test.perm <- function(Y, X, nperm=999, Q=NULL, dbMEM=FALSE)!
# Permutation test for R2 statistic in regression or RDA!
# Some operations on X=dbMEM are transferred to the main function LFB.simul1()!
# in the case of dbMEM analysis.!
#!
# Parameters of the function --!
# Y : Matrix or vector of response data.!
# X : Matrix of explanatory data, e.g. a file of dbMEM.!
# nperm : Number of permutations for the test.!
# dbMEM=FALSE: Normal computation of statistics for regression or RDA:!
#              Centre X, QR decomposition of X, compute adjusted R-square.!
# dbMEM=TRUE : Do not centre X since the matrix of dbMEM is centred.!
#              Do not compute the adjusted R-square.!
# License: GPL-2 !
# Author:: Pierre Legendre, June 2014!
{!
Y.c <- scale(Y,center=TRUE,scale=FALSE)    # Centre Y!
SS.Y <- sum(Y.c^2)!
X <- as.matrix(X)!
n <- nrow(X)!
if(!dbMEM) {!
! X <- scale(X,center=TRUE,scale=FALSE)  # Centre X!
! Q <- qr(X)                             # QR decompostion of X!
! }!
Yfit.X <- qr.fitted(Q, Y.c)!
# Compute statistics!
Rsquare <- sum(Yfit.X^2)/SS.Y!
m <- Q$rank!
residualDF <- n-m-1!
F <- (Rsquare*residualDF)/((1-Rsquare)*m)!
if(dbMEM) { adjRsq <- NA } else {!
! totalDF <- n-1!
! adjRsq <- 1-((1-Rsquare)*totalDF/residualDF)!
! }!
# Permutation test of F!
if(nperm > 0) {!
! nPGE <- 1!
! for(i in 1:nperm) {!
! ! YfitPerm <- qr.fitted(Q, sample(Y.c))!
! ! RsquarePerm <- sum(YfitPerm^2)/SS.Y!
! ! FPerm <- (RsquarePerm*residualDF)/((1-RsquarePerm)*m)!
! ! if(FPerm >= F) nPGE <- nPGE+1!
! ! }!
! P <- nPGE/(nperm+1)!
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! } else { P <- NA }!
#!
if(dbMEM) { out <- list(P=P) } !
else {out <- list(Rsquare=Rsquare, F=F, P=P, adjRsq=adjRsq, nperm=nperm, m=m, 
residualDF=residualDF) }!
}



File run.LFB.simul3.batch1.txt — Batch run for series 3 simulations, thresh=1 
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul3.R" 
source("LFB.simul3.R") 
 
res3.5.0.1 = LFB.simul3(nsim=1000, spacing=5, range=0, thresh=1, nperm1=999, nperm2=999) 
#  
res3.5.5.1 = LFB.simul3(nsim=1000, spacing=5, range=5, thresh=1, nperm1=999, nperm2=999) 
#  
res3.5.10.1 = LFB.simul3(nsim=1000, spacing=5, range=10, thresh=1,nperm1=999,nperm2=999) 
#  
res3.5.15.1 = LFB.simul3(nsim=1000, spacing=5, range=15, thresh=1,nperm1=999,nperm2=999) 
#  
res3.5.20.1 = LFB.simul3(nsim=1000, spacing=5, range=20, thresh=1,nperm1=999,nperm2=999) 
#  
res3.5.25.1 = LFB.simul3(nsim=1000, spacing=5, range=25, thresh=1,nperm1=999,nperm2=999) 
#  
res3.5.30.1 = LFB.simul3(nsim=1000, spacing=5, range=30, thresh=1,nperm1=999,nperm2=999) 
#  
res3.5.35.1 = LFB.simul3(nsim=1000, spacing=5, range=35, thresh=1,nperm1=999,nperm2=999) 
#  
res3.5.40.1 = LFB.simul3(nsim=1000, spacing=5, range=40, thresh=1,nperm1=999,nperm2=999) 
#  
save(res3.5.0.1,res3.5.5.1,res3.5.10.1,res3.5.15.1,res3.5.20.1,res3.5.25.1,res3.5.30.1,res3.5.35.1, 
res3.5.40.1, file="simul3,spacing=5,thresh=1.RData") 
 
 
  



File run.LFB.simul3.batch2.txt — Batch run for series 3 simulations, thresh=3 
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul3.R" 
source("LFB.simul3.R") 
 
res3.5.0.3 = LFB.simul3(nsim=1000, spacing=5, range=0, thresh=3, nperm1=999, nperm2=999) 
#  
res3.5.5.3 = LFB.simul3(nsim=1000, spacing=5, range=5, thresh=3, nperm1=999, nperm2=999) 
#  
res3.5.10.3 = LFB.simul3(nsim=1000, spacing=5, range=10, thresh=3,nperm1=999,nperm2=999) 
#  
res3.5.15.3 = LFB.simul3(nsim=1000, spacing=5, range=15, thresh=3,nperm1=999,nperm2=999) 
#  
res3.5.20.3 = LFB.simul3(nsim=1000, spacing=5, range=20, thresh=3,nperm1=999,nperm2=999) 
#  
res3.5.25.3 = LFB.simul3(nsim=1000, spacing=5, range=25, thresh=3,nperm1=999,nperm2=999) 
#  
res3.5.30.3 = LFB.simul3(nsim=1000, spacing=5, range=30, thresh=3,nperm1=999,nperm2=999) 
#  
res3.5.35.3 = LFB.simul3(nsim=1000, spacing=5, range=35, thresh=3,nperm1=999,nperm2=999) 
#  
res3.5.40.3 = LFB.simul3(nsim=1000, spacing=5, range=40, thresh=3,nperm1=999,nperm2=999) 
#  
save(res3.5.0.3,res3.5.5.3,res3.5.10.3,res3.5.15.3,res3.5.20.3,res3.5.25.3,res3.5.30.3,res3.5.35.3, 
res3.5.40.3, file="simul3,spacing=5,thresh=3.RData") 
 
 
 
  



File run.LFB.simul3.batch3.txt — Batch run for series 3 simulations, thresh=5 
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul3.R" 
source("LFB.simul3.R") 
 
res3.5.0.5 = LFB.simul3(nsim=1000, spacing=5, range=0, thresh=5, nperm1=999, nperm2=999) 
#  
res3.5.5.5 = LFB.simul3(nsim=1000, spacing=5, range=5, thresh=5, nperm1=999, nperm2=999) 
#  
res3.5.10.5 = LFB.simul3(nsim=1000, spacing=5, range=10, thresh=5,nperm1=999,nperm2=999) 
#  
res3.5.15.5 = LFB.simul3(nsim=1000, spacing=5, range=15, thresh=5,nperm1=999,nperm2=999) 
#  
res3.5.20.5 = LFB.simul3(nsim=1000, spacing=5, range=20, thresh=5,nperm1=999,nperm2=999) 
#  
res3.5.25.5 = LFB.simul3(nsim=1000, spacing=5, range=25, thresh=5,nperm1=999,nperm2=999) 
#  
res3.5.30.5 = LFB.simul3(nsim=1000, spacing=5, range=30, thresh=5,nperm1=999,nperm2=999) 
#  
res3.5.35.5 = LFB.simul3(nsim=1000, spacing=5, range=35, thresh=5, nperm1=999,nperm2=999 
#  
res3.5.40.5 = LFB.simul3(nsim=1000, spacing=5, range=40, thresh=5,nperm1=999,nperm2=999) 
#  
save(res3.5.0.5,res3.5.5.5,res3.5.10.5,res3.5.15.5,res3.5.20.5,res3.5.25.5,res3.5.30.5,res3.5.35.5, 
res3.5.40.5, file="simul3,spacing=5,thresh=5.RData") 
 
 
 
  



File run.LFB.simul3.batch4.txt — Batch run for series 3 simulations, thresh=10 
 
# Load the necessary R packages  
 
# Source the function for calculation, file "LFB.simul3.R" 
source("LFB.simul3.R") 
 
res3.5.0.10 = LFB.simul3(nsim=1000, spacing=5, range=0, thresh=10,nperm1=999,nperm2=999) 
#  
res3.5.5.10 = LFB.simul3(nsim=1000, spacing=5, range=5, thresh=10,nperm1=999,nperm2=999) 
#  
res3.5.10.10 =LFB.simul3(nsim=1000,spacing=5,range=10,thresh=10,nperm1=999,nperm2=999) 
#  
res3.5.15.10 =LFB.simul3(nsim=1000,spacing=5,range=15,thresh=10,nperm1=999,nperm2=999) 
#  
res3.5.20.10 =LFB.simul3(nsim=1000,spacing=5,range=20,thresh=10,nperm1=999,nperm2=999) 
#  
res3.5.25.10 =LFB.simul3(nsim=1000,spacing=5,range=25,thresh=10,nperm1=999,nperm2=999) 
#  
res3.5.30.10 =LFB.simul3(nsim=1000,spacing=5,range=30,thresh=10,nperm1=999,nperm2=999) 
#  
res3.5.35.10 =LFB.simul3(nsim=1000,spacing=5,range=35,thresh=10,nperm1=999,nperm2=999) 
#  
res3.5.40.10 =LFB.simul3(nsim=1000,spacing=5,range=40,thresh=10,nperm1=999,nperm2=999) 
#  
save(res3.5.0.10,res3.5.5.10,res3.5.10.10,res3.5.15.10,res3.5.20.10,res3.5.25.10,res3.5.30.10, 
res3.5.35.10,res3.5.40.10, file="simul3,spacing=5,thresh=10.RData") 
 
 
 
 
 
 




