
Vegetatio 80: 107-138, 1989. 
© 1989 Kluwer Academic Publishers. Printed in Belgium. 107 

Spatial pattern and ecological analysis 

Pierre Legendre I & Marie-Josre Fortin 2 
1 DOpartement de sciences biologiques, Universitd de Montrdal, C.P. 6128, Succursale A, Montreal, 
QuObec, Canada H3C 3J7; 2 Department of Ecology and Evolution, State University of New York, Stony 
Brook, NY  11794-5245, USA 

Accepted 17.1.1989 

Keywords: Ecological theory, Mantel test, Mapping, Model, Spatial analysis, Spatial autocorrelation, 
Vegetation map 

Abstract 

The spatial heterogeneity of populations and communities plays a central role in many ecological theories, 
for instance the theories of succession, adaptation, maintenance of species diversity, community stability, 
competition, predator-prey interactions, parasitism, epidemics and other natural catastrophes, ergoclines, 
and so on. This paper will review how the spatial structure of biological populations and communities 
can be studied. We first demonstrate that many of the basic statistical methods used in ecological studies 
are impaired by autocorrelated data. Most if not all environmental data fall in this category. We will look 
briefly at ways of performing valid statistical tests in the presence of spatial autocorrelation. Methods 
now available for analysing the spatial structure of biological populations are described, and illustrated 
by vegetation data. These include various methods to test for the presence of spatial autocorrelation in 
the data: univariate methods (all-directional and two-dimensional spatial correlograms, and two- 
dimensional spectral analysis), and the multivariate Mantel test and Mantel correlogram; other descrip- 
tive methods of spatial structure: the univariate variogram, and the multivariate methods of clustering 
with spatial contiguity constraint; the partial Mantel test, presented here as a way of studying causal 
models that include space as an explanatory variable; and finally, various methods for mapping ecological 
variables and producing either univariate maps (interpolation, trend surface analysis, kriging) or maps 
of truly multivariate data (produced by constrained clustering). A table shows the methods classified in 
terms of the ecological questions they allow to resolve. Reference is made to available computer programs. 

Introduction 

In nature, living beings are distributed neither 
uniformly nor at random. Rather, they are aggre- 
gated in patches, or they form gradients or other 
kinds of spatial structures. 

The importance of spatial heterogeneity comes 
from its central role in ecological theories and its 
practical role in population sampling theory. 

Actually, several ecological theories and models 
assume that elements of an ecosystem that are 
close to one another in space or in time are more 
likely to be influenced by the same generating 
process. Such is the case, for instance, for models 
of epidemics or other catastrophes, for the 
theories of competition, succession, evolution and 
adaptations, maintenance of species diversity, 
parasitism, population genetics, population 
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growth, predator-prey interactions, and social 
behaviour. Other theories assume that dis- 
continuities between homogeneous zones are 
important for the structure of ecosystems (succes- 
sion, species-environment relationships: Allen 
etal. 1977; Allen & Starr 1982; Legendre etaL 
1985) or for ecosystem dynamics (ergoclines: 
Legendre & Demers 1985). Moreover, the impor- 
tant contribution of spatial heterogeneity to eco- 
logical stability seems well established (Huffaker 
1958; May 1974; Hassell & May 1974; Levin 
1984). This shows clearly that the spatial or 
temporal structure of ecosystems is an important 
element of most ecological theories. 

Not much has been learned up to now about 
the spatial variability of communities. Most 19th 
century quantitative ecological studies were 
assuming a uniform distribution of living organ- 
isms in their geographic distribution area (Darwin 
1881; Hensen 1884), and several ecological 
models still assume, for simplicity, that biological 
organisms and their controlling variables are dis- 
tributed in nature in a random or a uniform way 
(e.g., simple models of population dynamics, 
some models of forest or fisheries exploitation, or 
of ecosystem productivity). This assumption is 
actually quite remote from reality since the en- 
vironment is spatially structured by various energy 
inputs, resulting in patchy structures or gradients. 
In fluid environments for instance (water, in- 
habited by aquatic macrophytes and phytoplank- 
ton, and air, inhabited by terrestrial plants), 
energy inputs of thermal, mechanical, gravita- 
tional, chemical and even radioactive origins are 
found, besides light energy which lies at the basis 
of most trophic chains; the spatio-temporal 
heterogeneity of energy inputs induces convection 
and advection movements in the fluid, leading to 
the formation of spatial or temporal discontinui- 
ties (interfaces) between relatively homogeneous 
zones. In soils, heterogeneity and discontinuities 
are the result ofgeomorphologic processes. From 
there, then, the spatio-temporal structuring of the 
physical environment induces a similar organi- 
zation of living beings and of biological processes, 
spatially as well as temporally. Strong biological 
activity takes place particularly in interface zones 

(Legendre & Demers 1985). Within homogeneous 
zones, biotic processes often produce an aggre- 
gation of organisms, following various spatio- 
temporal scales, and these can be measured 
(Legendre et al. 1985). The spatial heterogeneity 
of the physical environment thus generates a 
diversity in communities of living beings, as well 
as in the biological and ecological processes that 
can be observed at various points in space. 

This paper includes methodological aspects. 

Table 1. Methods for spatial surface pattern analysis, classi- 
fied by ecological questions and objectives. 

1) Objective: Testing for the presence of spatial autocorre- 
lation. 
1.1) Establish that there is no significant spatial auto- 

correlation in the data, in order to use parametric 
statistical tests. 

1.2) Establish that there is significant spatial autocorre- 
lation and determine the kind of pattern, or shape. 

Method 1: 

Method 2: 

Method 3: 

Correlograms for a single variable, using 
Moran 's /  or Geary'sc; two-dimensional 
spectral analysis. 
Mantel test between a variable (or multi- 
dimensional matrix) mad space (geographical 
distance matrix); Mantel test between a varia- 
ble and a model. 
Mantel correlogram, for multivariate data. 

2) Objective: Description of the spatial structure. 
Method 1: Correlograms (see above), variograms. 
Method 2: Clustering and ordination with spatial or tem- 

poral constraint. 

3) Objective: 
predictor. 
Method: 

Test causal models that include space as a 

Partial Mantel test, using three dissimilarity 
matrices, A, B et C. 

4) Objectives: Estimation (interpolation) and mapping. 
Method 1: Interpolated map for a single variable: trend 

surface analysis, that provides also the regres- 
sion residuals; other interpolation methods. 

Method 2: Interpolation taking into account a spatial 
autocorrelation structure function (vario- 
gram): kriglng map, for a single variable; pro- 
grams give also the standard deviations of the 
estimations, that may help decide where to 
add sampling locations. 

Method3: Multidimensional mapping: clustering and 
ordination with spatial constraint (see above). 



We shall define fn'st what spatial autocorrelation 
is, and discuss its influence on classical statistical 
methods. Then we shall describe the univariate 
and multivariate methods that we have had ex- 
perience with for the analysis of the spatial struc- 
ture of ecological communities (list not neces- 
sarily exhaustive), and illustrate this description 
with actual plant community data. Finally, recent 
developments in spatial analysis will be presented, 
that make it possible to test simple interrelation 
models that include space as an explanatory varia- 
ble. The methods described in this paper are also 
applicable to geology, pedology, geography, the 
earth sciences, or to the study of spatial aspects 
of the genetic heterogeneity of populations. These 
sciences have in common the study of observa- 
tions positioned in geographic space; such obser- 
vations are related to one another by their geo- 
graphic distances, which are the basic relations in 
that space. This paper is organized around a 
series of questions, of increasing refinement, that 
ecologists can ask when they suspect their data to 
be structured by some underlying spatial phe- 
nomenon (Table 1). 

Classical statistics and spatial structure 

We will first try to show that the methods of 
classical statistics are not always adequate to 
study space-structured ecological phenomena. 
This will justify the use of other methods (below) 
when the very nature of the spatial structure 
(autocorrelation) is of interest. 

In classical inferential statistical analysis, one 
of the most fundamental assumptions in hypoth- 
esis testing is the independence of the observa- 
tions (objects, plots, cases, elements). The very 
existence of a spatial structure in the sample space 
implies that this fundamental assumption is not 
satisfied, because any ecological phenomenon 
located at a given sampling point may have an 
influence on other points located close by, or even 
some distance away. The spatial structures we 
find in nature are, most of the time, gradients or 
patches. In such cases, when one draws a first 
sample (A), and then another sample (B) located 
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anywhere near the first, this cannot be seen as a 
random draw of elements; the reason is that the 
value of the variable observed in (A) is now 
known, so that if the existence and the shape of 
the spatial structure are also known, one can 
foresee approximately the value of the variable in 
(B), even before the observation is made. This 
shows that observations at neighbouring points 
are not independent from one another. Random 
or systematic sampling designs have been advo- 
cated as a way of preventing this possibility of 
dependence among observations (Cochran 1977; 
Green 1979; Scherrer 1982). This was then 
believed to be a necessary and sufficient safeguard 
against violations of the assumption of inde- 
pendence of errors. It is adequate, of course, when 
one is trying for instance to estimate the parame- 
ters of a local population. In such a case, a random 
or systematic sample of points is suitable to 
achieve unbiased estimation of the parameters, 
since each point a priori has the same probability 
of being included in the sample; we know of 
course that the variance, and consequently also 
the standard error of the mean, will be larger if the 
distribution is patchy, but their estimation 
remains unbiased. On the other hand, we know 
now that despite the random or systematic allo- 
cation of samples through space, observations 
may retain some degree of spatial dependence if 
the average distance between samples is smaller 
than the zone of spatial influence of the underlying 
ecological phenomenon;  in the case of large-scale 
spatial gradients, no sampling point is far enough 
to lie outside this zone of spatial influence. 

A variable is said to be autocorrelated (or 
regionalized) when it is possible to predict the 
values of this variable at some points of space [or 
time], from the known values at other sampling 
points, whose spatial [or temporal] positions are 
also known. Spatial [or temporal] autocorrela- 
tion can be described by a mathematical function, 
called structure function; a spatial autocorrelo- 
gram and a semi-variogram (below) are examples 
of such functions. 

Autocorrelation is not the same for all distance 
classes between sampling points (Table 2). It can 
be positive or negative. Most often in ecology, 
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Table2. Examples of spatial autocorrelation in ecology 
(non-exhaustive list). Modified from Sokal (1979). 

Sign of spatial 
autocorrelation 

Significant autocorrelation for 

short large 
distances distances 

Very often: any Aggregates or other 
phenomenon that is structures (e.g., 
contagious at short furrows) repeating 
distance (if the themselves trough 
sampling step is space. 
small enough). 

Avoidance (e.g., 
regularly spaced 
plants); sampling 
step too wide. 

Spatial gradient 
(if also significantly 
positive at short 
distance). 

autocorrelation is positive (which means that the 
variable takes similar values) for short distances 
among points. In gradients, this positive auto- 
correlation at short distances is coupled with 
negative autocorrelation for long distances, as 
points located far apart take very different values. 
Similarly, an aggregated structure recurring at 
intervals will show positive autocorrelation for 
distances corresponding to the gap between patch 
centers. Negative autocorrelation for short dis- 
tances can reflect either an avoidance phenome- 
non (such as found among regularly spaced plants 
and solitary animals), or the fact that the sampling 
step (interval) is too large compared to patch size, 
so that any given patch does not contain more 
than one sample, the next sample falling in the 
interval between patches. Notice finally that if no 
spatial autocorrelation is found at a given scale of 
perception (i.e., a given intensity of sampling), it 
does not mean that autocorrelation may not be 
found at some other scale. 

In classical tests of hypotheses, statisticians 
count one degree of freedom for each independent 
observation, which allows them to choose the 
statistical distribution appropriate for testing. 
This is why it is important to take the lack of 
independence into account (that results from the 
presence of autocorrelation) when performing a 
test of statistical hypothesis. Since the value of the 

observed variable is at least partially known in 
advance, each new observation contributes but a 
fraction of a degree of freedom. The size of this 
fraction cannot be determined, however, so that 
statisticians do not know the proper reference 
distribution for the test. All we know for certain 
is that positive autocorrelation at short distance 
distorts statistical tests such as correlation, regres- 
sion, or analysis of variance, and that this distor- 
tion is on the 'liberal' side (Bivand 1980; Cliff & 
Ord 1981); this means that when positive spatial 
autocorrelation is present in the small distance 
classes, classical statistical tests determine too 
often that correlations, regression coefficients, or 
differences among groups are significant, when in 
fact they are not. Solutions to these problems 
include randomization tests, the corrected t-test 
proposed by Cliff & Ord (1981), the analysis of 
variance in the presence of spatial autocorrelation 
developed by Legendre et al. (submitted), etc. See 
Edgington (1987) for a general presentation of 
randomization tests; see also Upton & Fingleton 
(1985) as well as the other references in the 
present paper, for applications to spatial analysis. 
Another way out, when the spatial structure is 
simple (e.g., a linear gradient), is to extract the 
spatial component first and conduct the analysis 
on the residuals (see: trend surface analysis, 
below), after verifying that no spatial autocorrela- 
tion remains in the data. 

The situation described above also applies to 
classical multivariate data analysis, which has 
been used extensively by ecologists for more than 
two decades (Orl6ci 1978; Gauch 1982; Legendre 
& Legendre 1983a, 1984a; Pielou 1984). The spa- 
tial and temporal coordinates of the data points 
are usually neglected during the search for eco- 
logical structures, which aims at bringing out 
processes and relations among observations. 
Given the importance of the space and/or time 
component in ecological theory, as argued in the 
Introduction, ecologists are now beginning to 
study these important relationships. Ordination 
and clustering methods in particular are often 
used to detect and analyse spatial structures in 
vegetation analysis (e.g., Andersson 1988), even 
though these techniques were not designed specifi- 
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cally for this purpose. Methods are also being 
developed that take spatial or temporal relation- 
ships into account during multivariate data 
analysis. These include the methods of con- 
strained clustering presented below, as well as the 
methods of constrained ordination developed by 
Lee (1981), Wartenberg (1985a,b) and ter Braak 
(1986, 1987) where one may use the geographical 
coordinates of the data points as constraints. 

Spatial analysis is divided by geographers into 
point pattern analysis, which concerns the distribu- 
tion of physical points (discontinuous phe- 
nomena) in space - for instance, individual plants 
and animals; line pattern analysis, a topological 
approach to the study of networks of connections 
among points; and surface pattern analysis for the 
study of spatially continuous phenomena, where 
one or several variables are attached to the 
observation points, and each point is considered 
to represent its surrounding portion of space. 
Point pattern analysis is intended to establish 
whether the geographic distribution of data points 
is random or not, and to describe the type of 
pattern; this can then be used for inferring 
processes that might have led to the observed 
structure. Graphs of interconnections among 
points, that have been introduced by point pattern 
analysis, are now widely used also in surface pat- 
tern analysis (below), where they serve for in- 
stance as basic networks of relationships for 
constrained clustering, spatial autocorrelation 
analysis, etc. The methods of point pattern 
analysis, and in particular the quadrat-density 
and the nearest-neighbour methods, have been 
widely used in vegetation science (e.g., Galiano 
1982; Carpenter & Chaney 1983) and need not be 
expounded any further here. These methods have 
been summarized by a number of authors, includ- 
ing Pielou (1977), Getis & Boots (1978), Cicrri 
et al. (1977) and Ripley (1981, 1987). The expos6 
that follows will then concentrate on the methods 
for surface pattern analysis, that ecologists are 
presently experimenting with. 

Testing for the presence of a spatial structure 

Let us first study one variable at a time. If the map 
of a variable (see Estimation and mapping, below) 
suggests that a spatial structure is present, eco- 
logists will want to test statistically whether there 
is any significant spatial autocorrelation, and to 
establish its type unambiguously (gradient, 
patches, etc.). This can be done for two diametri- 
cally opposed purposes: either (1)one wishes to 
show that there is no spatial autocorrelation, 
because one wants to perform parametric statisti- 
cal hypothesis tests; or (2) on the contrary one 
hopes to show that there is a spatial structure in 
order to study it more thoroughly. In either case, 
a spatial autocorrelation study is conducted. 
Besides testing for the presence of a spatial struc- 
ture, the various types of correlograms, as well as 
periodograms, provide a description of the spatial 
structure, as will be seen. 

Spatial autocorrelation coefficients 

In the case of quantitative variables, spatial auto- 
correlation can be measured by either Moran's I 
(1950) or Geary's c (1954) spatial autocorrelation 
coefficients. Formulas are presented in App. 
1. Moran's I formula behaves mainly like 
Pearson's correlation coefficient since its numera- 
tor consists of a sum of cross-products of centered 
values (which is a covariance term), comparing in 
turn the values found at all pairs of points in the 
given distance class. This coefficient is sensitive 
to extreme values, just like a covariance or a 
Pearson's correlation coefficient. On the contrary, 
Geary's c coefficient is a distance-type function, 
since the numerator sums the squared differences 
between values found at the various pairs of 
points being compared. 

The statistical significance of these coefficients 
can be tested, and confidence intervals can be 
computed, that highlight the distance classes 
showing significant positive or negative autocor- 
relation, as we shall see in the following examples. 
More detailed descriptions of the ways of com- 
puting and testing these coefficients can be found 
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in Sokal & Oden (1978), Cliff & Ord (1981) or 
Legendre & Legendre (1984a). Autocorrelation 
coefficients also exist for qualitative (nominal) 
variables (Cliff & Ord 1981); they have been used 
to analyse for instance spatial patterns of sexes in 
plants (Sakai & Oden 1983; Sokal & Thomson 
1987). Special types of spatial autocorrelation 
coefficients have been developed to answer 
specific problems (e.g., Galiano 1983; Estabrook 
& Gates 1984). 

A correlogram is a graph where autocorrelation 
values are plotted in ordinate, against distances 
(d) among localities (in abscissa). When com- 
puting a spatial correlogram, one must be able to 
assume that a single 'dominant '  spatial structure 
exists over the whole area under study, or in other 
words, that the main large-scale structure is the 
same everywhere. This assumption must actually 
be made for any structure function one wishes to 
compute; other well-known functions, also used 
to characterize spatial pattems, include the vario- 
gram (below), Goodall 's (1974) paired-quadrat 
variance function, the two-dimensional correlo- 
gram and periodogram (below), the multivariate 
Mantel correlogram (below), and Ibanez' (1981) 
auto-D 2 function. 

In correlograms, the result of a test of signifi- 
cance is associated with each autocorrelation 
coefficient; the null hypothesis of this test is that 
the coefficient is not significantly different from 
zero. Before examining each significant value in 
the correlogram, however, we must first perform 
a global test, taking into account the fact that 
several tests (v) are done at the same time, for a 
given overall significance level ~. The global test 
is made by checking whether the correlogram 
contains at least one value which is significant at 
the ~' = ~/v significance level, according to the 
Bonferroni method of correcting for multiple tests 
(Cooper 1968; Miller 1977; Oden 1984). The 
analogy in time series analysis is the Portmanteau 
Q-test (Box & Jenkins 1970). Simulations in 
Oden's 1984 paper show that the power of Oden's 
Q-test, which is an extension for spatial series of 
the Portmanteau test, is not appreciably greater 
than the power of the Bonferroni procedure, 
which is computationally a lot simpler. 

Readers already familiar with the use of cor- 
relograms in time series analysis will be reassured 
to know that whenever the problem is reduced to 
one physical dimension only (time, or a physical 
transect) instead of a bi- or polydimensional 
space, calculating the coefficients for different dis- 
tance classes turns out to be equivalent to com- 
puting the autocorrelation coefficients of time 
series analysis. 

All-directional correlogram 

When a single correlogram is computed over all 
directions of the area under investigation, one 
must make the further assumption that the phe- 
nomenon is isotropic, which means that the auto- 
correlation function is the same whatever the 
direction considered. In anisotropic situations, 
structure functions can be computed in one 
direction at a time; this is the case for instance 
with two-dimensional correlograms, two-dimen- 
sional spectral analysis, and variograms, all of 
which are presented below. 

Example 1 - Correlograms are analysed mostly 
by looking at their shape, since characteristic 
shapes are associated with types of spatial struc- 
tures; determining the spatial structure can pro- 
vide information about the underlying generating 
process. Sokal (1979) has generated a number of 
spatial patterns, and published the pictures of the 
resulting correlograms. We have also done so 
here, for a variety of artificial-data structures 
similar to those commonly encountered in ecology 
(Fig. 1). Fig. la illustrates a surface made of 9 
bi-normal bumps. 100 points were sampled fol- 
lowing a regular grid of 10 x 10 points. The varia- 
ble 'height' was noted at each point and a correlo- 
gram of these values was computed, taking into 
account the geographic position of the sampled 
points. The correlogram (Fig. lb) is globally sig- 
nificant at the ~ = 5 ~  level since several indi- 
vidual values are significant at the Bonferroni- 
corrected level ~' -- 0.05/12 = 0.00417. Examin- 
ing the individual significant values, can we find 
the structure's main elements from the correlo- 
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gram? Indeed, since the alternation of positive 
and negative values is precisely an indication of 
patchiness (Table 2). The first value of spatial 
autocorrelation (distance class 1), corresponding 
to pairs of neighbouring points on the sampling 
grid, is positive and significant; this means that 
the patch size is larger than the distance between 
2 neighbouring points. The next significant posi- 
tive value is found at distance class 4: this one 
gives the approximate distance between succes- 
sive peaks. (Since the values are grouped into 12 
distance classes, class4 includes distances 
between 3.18 and 4.24, the unit being the distance 
between 2 neighbouring points of the grid; the 
actual distance between neighbours is 3.4 units). 
Negative significant values give the distance 
between peaks and troughs; the first of these 
values, found at distance class 2, corresponds 
here to the radius of the basis of the bumps. 
Notice that if the bumps were unevenly spaced, 
they could produce a correlogram with the same 
significant structure in the small distance classes, 
but with no other significant values afterwards. 
Since this correlogram was constructed with 
equal distance classes, the last autocorrelation 
coefficients cannot be interpreted, because they 
are based upon too few pairs of localities (see 
histogram, Fig. lc). 

The other artificial structures analysed in Fig. 1 
were also sampled using a 10 x 10 regular grid of 
points. They are: 
- Linear gradient (Fig. ld). The correlogram has 

an overall 5~o level significance (Bonferroni 
correction). 

- Sharp step between 2 fiat surfaces (Fig. le). 
The correlogram has an overall 5 ~o level signifi- 
cance. Comparing with Fig. ld shows that cor- 
relogram analysis cannot distinguish between 
real data presenting a sharp step and a gradient 
respectively. 

- 9 thin bumps (Fig. If); each is narrower than in 
Fig. la. Even though 2 of the autocorrelation 
coefficients are significant at the ct = 5 ~o level, 
the correlogram is not, since none of the 
coefficients is significant at the Bonferroni- 
corrected level e' = 0.00417. In other words, 2 
autocorrelation coefficients as extreme as those 

encountered here could have been found 
among 12 tests of a random structure, for an 
overall significance level ~ = 5 ~ .  100 sampling 
points are probably not sufficient to bring out 
unambiguously a geometric structure of 9 thin 
bumps, since most of the data points do fall in 
the flat area in-between the bumps. 

- Single thin bumps (Fig. lg), about the same 
size as one of the bumps in Fig. la. The correlo- 
gram has an overall 5~o level significance. 
Notice that the 'zone of influence' of this single 
bump spreads into more distance classes than 
in (b) because the phenomenon here is not 
limited by the rise of adjacent bumps. 

- Single fat bump (Fig. lh): a single bi-normal 
curve occupying the whole sampling surface. 
The correlogram has an overall 5 ~o level signifi- 
cance. The 'zone of influence' of this very large 
bump is not much larger on the correlogram 
than for the single thin bump (g). 

- 100 random numbers, drawn from a normal 
distribution, were generated and used as the 
variable to be analysed on the same regular 
geographic grid of 100 points (Fig. li). None of 
the individual values are significant at the 5 ~o 
level of significance. 

- N a r r o w  wave (Fig. lj): there are 4 steps 
between crests, so that there are 2.5 waves 
across the sampling surface. The correlogram 
has overall 5 ~ level significance. The distance 
between successive crests of the wave show up 
in the significant value at d = 4, just as in (b). 

- Wide wave (Fig. lk): a single wave across the 
sampling surface. The correlogram has overall 
5 ~o level significance. The correlogram is the 
same as for the single fat bump (h). This shows 
that bumps, holes and waves cannot be dis- 
tinguished using correlograms; maps are neces- 
sary. • 
Ecologists are often capable of formulating 

hypotheses as to the underlying mechanisms or 
processes that may determine the spatial phe- 
nomenon under study; they can then deduct the 
shape the spatial structure will display if these 
hypotheses are true. It is a simple matter then to 
construct an artificial model-surface correspond- 
ing to these hypotheses, as we have done in Fig. 1, 



and to analyse that surface with a correlogram. 
Although a test of significance of the difference 
between 2 correlograms is not easy to construct, 
because of the non-independence of the values in 
each correlogram, simply looking at the 2 correlo- 
grams - the one obtained from the real data, and 
that from the model data - suffices in many cases 
to find support for, or to reject the correspond- 
ence of the model-data to the real data. 

Material :  Vegetation data  - These data were 
gathered during a multidisciplinary ecological 
study of the terrestrial ecosystem of the Munici- 
palit6 R6gionale de Comt6 du Haut- S aint-Laurent 
(Bouchard et al. 1985). An area of approximately 
0.5 km 2 was sampled, in a sector a few km north 
of the Canada-USA border, in southwestern 
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Fig. 2. Position of the 200 vegetation quadrats, systemati- 
cally sampled in Herdman (Qu6bec), during the summer of 
1983. From Fortin (1985). 
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Qurbec. A systematic sampling design was used 
to survey 200 vegetation quadrats (Fig. 2) each 10 
by 20 m in size. The quadrats were placed at 50-m 
intervals along staggered rows separated also by 
50 m. Trees with more than 5 cm diameter at 
breast height were noted and identified at species 
level. The data to be analysed here consist of the 
abundance of the 28 tree species present in this 
territory, plus geomorphological data about the 
200 sampling sites, and of course the geographical 
locations of the quadrats. This data set will be 
used as the basis for all the remaining examples 
presented in this paper. 

E x a m p l e 2  - The correlogram in Fig. 3 de- 
scribes the spatial autocorrelation (Moran's I) of 
the hemlock, Tsuga canadensis.  It is globally sig- 
nificant (Bonferroni-corrected test, ~ = 5 ~o). We 
can then proceed to examining significant in- 
dividual values: can we find the structure's main 
elements from this correlogram ? The first value of 
spatial autocorrelation (distance class 1, includ- 
ing distances from 0 to 57 m), corresponding to 
pairs of neighbouring points on the sampling grid, 
is positive and significant; this means that the 
patch size is larger than the distance between two 
neighbouring sampling points. The second peak 
of this correlogram (distance class 9, whose center 
is the 485 m distance) can be readily interpreted 
as the distance among peak centers, in the spatial 
distribution of the hemlock; see Fig. 10, where 
groups 3, 7 and 11 have high densities of hemlocks 
and have their centers located at about that 
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Fig. 3. All-directional spatial correlogram of the hemlock 
densities (Tsuga canadensis). Abscissa: distance classes; the 
width of each distance class is 57 m. Ordinate: Moran's I 
statistics. Symbols as in Fig. 1. 



116 

distance. The last few distance classes cannot be 
interpreted, because they each contain < 1 ~o of 
all pairs of localities. • 

Two-dimensional correlogram 

All-directional correlograms assume the phe- 
nomenon to be isotropic, as mentioned above. 
Spatial autocorrelation coefficients, computed as 
described in App. 1 for all pairs of data points, 
irrespective of the direction, produce a mean 
value of autocorrelation, smoothed over all direc- 
tions. Indeed, a spatial autocorrelation coefficient 
gives a single value for each distance class, which 
is fine when studying a transect, but may not be 
appropriate for phenomena occupying several 
geographic dimensions (typically 2). Anisotropy 
is however often encountered in ecological field 
data, because spatial patterns are often generated 
by directional geophysical phenomena. Oden & 

Sokal (1986) have proposed to compute correlo- 
grams only for object pairs oriented in pre-speci- 
fled directions, and to represent either a single, or 
several of these correlograms together, as seems 
fit for the problem at hand. Computing structure 
functions in pre-specified directions is not new, 
and has traditionally been done in variogram 
analysis (below). Fig. 4 displays a two-dimen- 
sional spatial correlogram, computed for the 
sugar-maple Acer saccharum from our test vege- 
tation data. Calculations were made with the very 
program used by Oden & Sokal (1986); the same 
information could also have been represented by 
a set of standard correlograms, each one corre- 
sponding to one of the aiming directions. In any 
case, Fig. 4 clearly shows the presence of aniso- 
tropy in the structure, which could not possibly 
have been detected in an all-directional correlo- 
gram: the north-south range of A. saccharum is 
much larger (ca 500 m) than the east-west range 
(200 m). 

Fig. 4. Two-dimensional  correlogram for the sugar-maple 
Aeer saccharum. The directions are geographic and are the 
same as in Fig. 2. The lower half  o f  the correlogram is sym- 
metric to the upper half. Each ring represents  a 100-m dis- 
tance class. Symbols are as follows: full boxes are significant 
Moran ' s  I coefficients, half-boxes are non-significant values; 
dashed  boxes are based on too few pairs and are not  con- 
sidered. Shades  of  gray represent  the values taken by 
Moran ' s  I :  from black ( + 0 . 5  to +0.2)  through hachured  
( + 0.2 to + 0.1), heavy dots ( + 0.1 to - 0.1), light dots  ( - 0.1 
to - 0.2), to white ( - 0.2 to - 0.5). 

Two-dimensional spectral analysis 

This method, described by Priestly (1964), Rayner 
(1971), Ford (1976), Ripley (1981) and Renshaw 
& Ford (1984), differs from spatial autocorre- 
lation analysis in the structure function it uses. As 
in regular time-series spectral analysis, the method 
assumes the data to be stationary (no spatial 
gradient), and made of a combination of sine 
patterns. An autocorrelation function rgh, as well 
as a periodogram with intensity I(p, q), are com- 
puted. 

Just as with Moran's /, the autocorrelation 
values are a sum of cross products of lagged data; 
in the present ease, one computes the values of the 
function rg h for all possible combinations of lags 
(g, h) along the 2 geographic sampling directions 
(App. 1); in Moran's I on the contrary, the lag d 
is the same in all geographic directions. Besides 
the autocorrelation function, one computes a 
Schuster two-dimensional periodogram, for all 
combinations of spatial frequencies (p, q) (App. 
1), as well as graphs (first proposed by 
Renshaw & Ford, 1983) called the R-spectrum 



and the ®-spectrum that summarize respectively 
the frequencies and directions of the dominant 
waves that form the spatial pattern. See App. 1 for 
computational details. 

Two-dimensional spectral analysis has recently 
been used to analyse spatial patterns in crop 
plants (McBratney & Webster 1981), in forest 
canopies (Ford 1976; Renshaw & Ford 1983; 
Newbery et  al. 1986) and in other plants (Ford & 
Renshaw 1984). The advantage of this technique 
is that it allows analysis of anisotropic data, 
which are frequent in ecology. Its main dis- 
advantage is that, like spectral analysis for time 
series, it requires a large data base; this has 
prevented the technique from being applied to a 
wider array of problems. Finally, one should 
notice that although the autocorrelogram can be 
interpreted essentially in the same way as a 
Moran's correlogram, the periodogram assumes 
on the contrary the spatial pattern to result from 
a combination of repeatable patterns; the periodo- 
gram and its R and ® spectra are very sensitive 
to repeatabilities in the data, but they do not 
detect other types of spatial patterns which do not 
involve repeatabilities. 

E x a m p l e 3  - Fig. 5a shows the two-dimen- 
sional periodogram of our vegetation data for 
A c e r s a c c h a r u m .  For the sake of this example, and 
since this method requires the data to form a 
regular, rectangular grid, we interpolated sugar- 
maple abundance data by kriging (see below) to 
obtain a rectangular data grid of 20 rows and 12 
columns. The periodogram (Fig. 5a) has an 
overall 5 Yo significance, since 4 values exceed the 
critical Bonferroni-corrected value of 6.78; these 
4 values explain together 72~o of the spatial 
variance of our variable, which is an appreciable 
amount. 

The most  prominent values are the tall blocks 
located at (p, q) = (0, 1) and (0, - 1); together, 
they represent 62~o of the spatial variance and 
they indicate that the dominant phenomenon is an 
east-west wave with a frequency of 1 (which 
means that the phenomenon occurs once in the 
east-west direction across the map). This struc- 
ture has an angle of ® = tan -1 (0/[1 or 
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Fig. 5. (a) Two-dimensional periodogram. The ordinate 
represents the intensity of the periodogram. (b) R-spectrum. 
(c) O-spectrum. Bonferroni-corrected significant values in 
the spectra are represented by dark squares, for an overall 
significance level of 5%. 

- 1]) = 0 ° and is the dominant feature of the 
O-spectrum; with its frequency 
R = x / (0z+  12)= 1, it also dominates the 
R-spectrum. This east-west wave, with its crest 
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elongated in the north-south direction, is clearly 
visible on the map of Fig. 13a. 

The next 2 values, that ought to be considered 
together, are the blocks (1, 2) and (1, 1) in the 
periodogram. The corresponding angles are 
O = 26.6 ° and 45 ° (they form the 4th and 5th 
values in the O-spectrum), for an average angle of 
about 35 o ; the R frequencies of the structure they 
represent are x / (p  2 + q2) = 2.24 and 1.41, for an 
average of 1.8. Notice that the values of p and q 
have been standardized as if the 2 geographic axes 
(the vertical and horizontal directions in Fig. 13) 
were of equal lengths, as explained in App. 1; 
these periodogram values indicate very likely the 
direction of the axis that crosses the centers of the 
2 patches of sugar-maple in the middle and 
bottom of Fig. 13a. 

Two other periodogram values are relatively 
high (5.91 and 5.54) but do not pass the 
Bonferroni-corrected test of significance, proba- 
bly because the number of blocks of data in our 
regular grid is on the low side for this method. In 
any case, the angle they correspond to is 90 ° , 
which is a significant value in the ®-spectrum. 
These periodogram values indicate obviously the 
north-south direction crossing the centers of the 
2 large patches in the upper and middle parts of 
Fig. 13a (R = 2). 

These results are consistent with the two- 
dimensional correlogram (Fig. 4) and with the 
variograms (Fig. 9), and confirm the presence of 
anisotropy in the A. saccharum data. They were 
computed using the program of Renshaw & Ford 
(1984). Ford (1976) presents examples of vege- 
tation data with clearer periodic components.  • 

The Mantel test 

Since one of the scopes of community ecology is 
the study of relationships between a number of 
biological variables - the species - on the one 
hand, and many abiotic variables describing the 
environment on the other, it is often necessary to 
deal with these problems in multivariate terms, to 
study for instance the simultaneous abundance 
fluctuations of several species. A method of carry- 

ing out such analyses is the Mantel test (1967). 
This method deals with 2 distance matrices, or 
2 similarity matrices, obtained independently, 
and describing the relationships among the same 
sampling stations (or, more generally, among the 
same objects). This type of analysis has two chief 
domains of application in community ecology. 

Let us consider a set of n sampling stations. In 
the first kind of application, we want to compare 
a matrix of ecological distances among stations 
(X) with a matrix of geographic distances (Y) 
among the same stations. The ecological dis- 
tances in matrix X can be obtained for instance by 
comparing all pairs of stations, with respect to 
their faunistic or floristic composition, using one 
of the numerous association coefficients available 
in the literature; notice that qualitative (nominal) 
data can be handled as easily as quantitative data, 
since a number of coefficients of association exist 
for this type of data, and even for mixtures of 
quantitative, semi-quantitative and qualitative 
data. These coefficients have been reviewed for 
instance by Orl6ci (1978), by Legendre & 
Legendre (1983a and 1984a), and by several 
others; see also Gower & Legendre (1986) for a 
comparison of coefficients. Matrix Y contains 
only geographic distances among pairs of 
stations, that is, their distances in m, km, or other 
units of measurement. The scope of the study is 
to determine whether the ecological distance 
increases as the samples get to be geographically 
farther apart, i.e., if there is a spatial gradient in 
the multivariate ecological data. In order to do 
this, the Mantel statistic is computed and tested 
as described in App. 2. Examples of Mantel tests 
in the context of spatial analysis are found in 
Ex. 8 in this paper, as well as in Upton & 
Fingleton's book (1985). 

The Mantel test can be used not only in spatial 
analysis, but also to check the goodness-of-fit of 
data to a model. Of course, this test is valid only 
if the model in matrix Y is obtained independently 
from the similarity measures in matrix X - either 
by ecological hypothesis, or else if it derives from 
an analysis of a different data set than the one 
used in elaborating matrix X. The Mantel test 
cannot be used to check the conformity to a 



matrix X of a model derived from the X data. 
Goodness-of-fit Mantel tests have been used 
recently in vegetation studies to investigate very 
precise hypotheses related to questions of impor- 
tance, like the concept of climax (McCune & 
Allen 1985) and the environmental control model 
(Burgman 1987). Another application can be 
found in Hudon & Lamarche (in press) who 
studied competition between lobsters and crabs. 

Example 4 - In the vegetation area under study, 
2 tree species are dominant, the sugar-maple Acer 
saccharum and the red-maple A. rubrum. One of 
these species, or both, are present in almost all of 
the 200 vegetation quadrats. In such a case, the 
hypothesis of niche segregation comes to mind. It 
can be tested by stating the null hypothesis that 
the habitat of the 2 species is the same, and the 
alternative hypothesis that there is a difference. 
We are going to test this hypothesis by comparing 
the environmental data to a model corresponding 
to the alternative hypothesis (Fig. 6), using a 
Mantel test. The environmental data were chosen 
to represent factors likely to influence the growth 
of these species. The 6 descriptors are: quality of 
drainage (7 semi-quantitative classes), stoniness 
of the soil (7 semi-quantitative classes), topo- 
graphy (11 unordered qualitative classes), 
directional exposure (the 8 sectors of the compass 
card, plus class 9 -- fiat land), texture of horizon 
1 of the soil (8 unordered qualitative classes), and 
geomorphology (6 unordered qualitative classes, 
described in Example 8 below). These data were 

X:  Environmental similarity matrix Y: Dominance model matrix 

Sugar-maple Red-maple Sugar-maple Red-maple 

Fig. 6. Comparison of environmental data (matrix X) to the 
model (matrix Y), to test the hypothesis of niche segregation 
between the sugar-maple and the red-maple. 
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used to compute an Estabrook-Rogers similarity 
coefficient among quadrats (Estabrook & Rogers 
1966; Legendre & Legendre 1983a, 1984a). The 
Estabrook & Rogers similarity coefficient makes 
it possible to assemble mixtures of quantitative, 
semi-quantitative and qualitative data into an 
overall measure of similarity; for the descriptors 
of directional exposure and soil texture, the partial 
similarities contributing to the overall coefficient 
were drawn from a set of partial similarity values 
that we established, as ecologists, to represent 
how similar are the various pairs of semi-ordered 
or unordered classes, considered from the point of 
view of tree growth. The environmental similarity 
matrix is represented as X in Fig. 6. 

The ecological hypothesis of niche segregation 
between A. saccharum and A. rubrum can be 
translated into a model-matrix of the alternative 
hypothesis as follows: each of the 200 quadrats 
was coded as having either A. saccharum or 
A. rubrum dominant. Then, a model similarity 
matrix among quadrats was constructed, contain- 
ing l's for pairs of quadrats that were dominant 
for the same species (maximum similarity), and 
O's for pairs of quadrats differing as to the domi- 
nant species (null similarity). This model matrix is 
represented as Y in Fig. 6, where it is shown as if 
all the A. saccharum-dominated quadrats came 
first, and all the A. rubrum-dominated quadrats 
came last; in practice, the order of the quadrats 
does not make any difference, insofar as it is the 
same in matrices X and Y. 

One can obtain the sampling distribution of the 
Mantel statistic by repeatedly simulating realiza- 
tions of the null hypothesis, through permutations 
of the quadrats (corresponding to the lines and 
columns) in the Y matrix, and recomputing the 
Mantel statistic between X and Y (App. 2). If 
indeed there is no relationship between matrices 
X and Y, we can expect the Mantel statistic to 
have a value located near the centre of this sam- 
pling distribution, while if such a relation does 
exist, we expect the Mantel statistic to be more 
extreme than most of the values obtained after 
random permutation of the model matrix. The 
Mantel statistic was computed and found to be 
significant at p < 0.00001, using in the present 
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case Mantel's t test, mentioned in the remarks of 
App. 2, instead of the permutation test. So, we 
must reject the null hypothesis and accept the idea 
that there is some measurable niche differentia- 
tion between A. saccharum and A. rubrum. Notice 
that the objective of this analysis is the same as 
in classical discriminant analysis. With a Mantel 
test, however, one does not have to comply with 
the restrictive assumptions of discriminant analy- 
sis, assumptions that are rarely met by ecological 
data; furthermore, one can model at will the rela- 
tionships among plants (or animals) by com- 
puting matrix X with a similarity measure appro- 
priate to the ecological data, as well as to the 
nature of the problem, instead of being imposed 
the use of an Euclidean, a Mahalanobis or a 
chi-square distance, as it is the case in most of the 
classical multivariate methods. In the present 
case, the Mantel test made it possible to use a 
mixture of semi-quantitative and qualitative varia- 
bles, in a rather elegant analysis. 

To what environmental variable(s) do these 
tree species react? This was tested by a series of 
a posteriori tests, where each of the 6 environ- 
mental variables was tested in turn against the 
model-matrix Y, after computing an Estabrook & 
Rogers similarity matrix for that environmental 
variable only. Notice that these a posteriori tests 
could have been conducted by contingency table 
analysis, since they involve a single semi-quantita- 
tive or qualitative variable at a time; they were 
done by Mantel testing here to illustrate the 
domain of application of the method. In any case, 
these a posteriori tests show that 3 of the environ- 
mental variables are significantly related to the 
model-matrix: stoniness (p < 0.00001), topogra- 
phy (p = 0.00028) and geomorphology 
(p < 0.00001); the other 3 variables were not 
significantly related to Y. So the three first varia- 
bles are likely candidates, either for studies of the 
physiological or other adaptive differences 
between these 2 maple species, or for further 
spatial analyses. One such analysis is presented 
as Ex. 8 below, for the geomorphology descrip- 
tor. • 

The Mantel correlogram 

Relying on a Mantel test between data and a 
model, Sokal (1986) and Oden & Sokal (1986) 
found an ingenious way of computing a correlo- 
gram for multivariate data; such data are often 
encountered in ecology and in population 
genetics. The principle is to express ecological 
relationships among sampling stations by means 
of an X matrix of multivariate distances, and then 
to compare X to a Y model matrix, different for 
each distance class; for distance class 1, for 
instance, neighbouring station pairs (that belong 
to the first class of geographic distances) are 
linked by l's, while the remainder of the matrix 
contains zeros only. A first normalized Mantel 
statistic (r) is calculated for this distance class. 
The process is repeated for each distance class, 
building each time a new model-matrix Y, and 
recomputing the normalized Mantel statistic. The 
graph of the values of the normalized Mantel 
statistic against distance classes gives a multi- 
variate correlogram; each value is tested for sig- 
nificance in the usual way, either by permutation, 
or using Mantel's normal approximation (remark 
in App. 2). [Notice that if the values in the X 
matrix are similarities instead of distances, or else 
if the l 's and the O's are interchanged in matrix Y, 
then the sign of each Mantel statistic is changed.] 
Just as with a univariate correlogram (above), one 
is advised to carry out a global test of significance 
of the Mantel correlogram using the Bonferroni 
method, before trying to interpret the response of 
the Mantel statistic for specific distance classes. 

Example 5 - A similarity matrix among sam- 
piing stations was computed from the 28 tree 
species abundance data, using the Steinhaus 
coefficient of similarity (also called the Odum, or 
the Bray and Curtis coefficient: Legendre & 
Legendre 1983a, 1984a), and the Mantel correlo- 
gram was computed (Fig. 7). There is overall sig- 
nificance in this correlogram, since many of the 
individual values exceed the Bonferroni-corrected 
level ~' = 0.05/20 = 0.0025. Since there is signifi- 
cant positive autocorrelation in the small distance 
classes and significant negative autocorrelation in 
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Fig. 7. Mantel correlogram for the 28-species tree com- 
munity structure. See text. Abscissa: distance classes (one 
unit of distance is 57 m); ordinate: standardized Mantel 
statistic. Dark squares represent significant values of the 
Mantel statistic (p < 0.05). 

the large distances, the overall shape of this cor- 
relogram could be attributed either to a vegetation 
gradient (Fig. ld) or to a structure with steps 
(Fig. le). In any case, the zone of positive auto- 
correlation lasts up to distance class 4, so that the 
average size of the 'zone of influence' of multi- 
variate autocorrelation (the mean size of asso- 
ciations) is about 4 distance classes, or (4 
classes × 57 m) ~ 230 m. This estimation is con- 
firmed by the maps in Fig. 10, where many of the 
associations delimited by clustering have about 
that size. • 

Detection and description of spatial structures 

As mentioned above, the different types of cor- 
relograms, outlined in the section entitled 'Testing 
for the presence of a spatial structure', do provide 
a description of spatial structures. Other methods, 
that are more exclusively descriptive, can also be 
used for this purpose. They are presented in this 
section. 

The variogram 

The semi-variogram (Matheron 1962), often 
called variogram for simplicity, is related to spa- 
tial correlograms. It is another structure function, 
allowing to study the autocorrelation phenome- 
non as a function of distance; however this 
method, on which the kriging contouring method 

is based (below), does not lend itself to any 
statistical test of hypothesis. The variogram is a 
univariate method, limited to quantitative varia- 
bles, allowing to analyse phenomena that occur in 
one, 2 or 3 geographic dimensions. Burrough 
(1987) gives an introduction to variogram analysis 
for ecologists. 

Before using the variogram, one must make 
sure that the data are stationary, which means 
that the statistical properties (mean and variance) 
of the data are the same in the various parts of the 
area under study, or at least that they follow the 
'intrinsic hypothesis', which means that the incre- 
ments between all pairs of points located a given 
distance d apart have a man zero and a finite 
variance that remains the same in the various 
parts of the area under study; this value of 
variance, for distance class d, is twice the value of 
the semi-variance function 7(d). This relaxed 
form of the stationarity assumption makes it pos- 
sible to use the variogram, or for that matter any 
other structure function (for instance spatial auto- 
correlograms), with ecological data. Of course, a 
large-scale spatial structure, if present, will neces- 
sarily be picked up by the structure function and 
may mask finer spatial structures~ large-scale 
trends, in particular, should be removed by regres- 
sion (trend surface analysis) or some other form 
of modelling before the presence of other, finer 
structures can be investigated. 

There are two types of variograms: the experi- 
mental and the theoretical. The experimental 
variogram (semi-variogram) is computed from the 
data using the formula in App. 1. It is presented 
as a plot of 7(d) (ordinate) as a function of dis- 
tance classes (d), just like a correlogram. As 
noticed in App. 1, 7(d) is a distance-type 
function, so that it is related to Geary's c 
coefficient. The experimental variogram can be 
used as a description of the structure function of 
the spatial phenomenon and in this way it is of 
help in understanding the spatial structure. 

The variogram was originally designed by min- 
ing engineers, as a basis for the contouring method 
known as kriging (below). This is how it became 
known to ecologists, among whom its use is 
spreading (Burrough 1987). To be useful for 
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kriging, a theoretical variogram has to be fitted to 
the experimental one; the adjustment of a 
theoretical variogram to the experimental 
function provides the parameters used by the 
kriging method. The most important of these 
parameters are (1)the range of influence of the 
spatial structure, which is the distance where the 
variogram stops increasing; (2)the sill, which is 
the ordinate value of the flat portion of the vario- 
gram, where the semi-variance is no longer a 
function of direction and distance, and cor- 
responds to the variance of the samples; and 
eventually (3) the nugget effect (see below). As in 
any type of nonlinear curve fitting, the user must 
decide what type of nonlinear function is wanted 
to adjust to his experimental variogram; this step 
requires both experience, and insight into the 
ecological process under study. Several types of 
theoretic functions are often used for this adjust- 
ment. 4 of them, the most common ones, are 
described in App. 1 and illustrated in Fig. 8. Dif- 
ferences between these theoretic functions lie 
mostly in the shape of the left-hand part of the 
curves, near the origin. A linear variogram indi- 
cates a linear spatial gradient; this model has no 
sill. Gaussian, exponential and spherical variograms 
give a measure of the size of the spatial influence 
of the process (patch size, if the phenomenon is 
patchy), as well as the shape of the drop of this 
influence as one gets farther away from the center 
of the phenomenon;  the exponential model does 
not necessarily have a sill. A flat variogram, also 
called 'pure nugget effect', indicates the absence 
of a spatial structure in the data, at least at the 
scale the observations were made. The so-called 
nugget effect refers to variograms that do not go 

Fig. 8. Four of the most 
models. 
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through the origin of the graph, but display some 
amount of variance even at distance zero; this 
effect may be caused by some intrinsic random 
variability in the data (sampling variance), or it 
may suggest that the sampling has not been per- 
formed at the right spatial scale. Variograms have 
recently been used to measure the fractal dimen- 
sion of environmental gradients (Phillips 1985). 

Mining engineers compute separate variograms 
for different spatial directions, to determine if the 
spatial structure is isotropic or not. We have seen 
above that this procedure has now been extended 
to correlograms as well. The spatial structure is 
said to be isotropic when the variograms are the 
same regardless of the direction of measurement. 
2 different kinds of anisotropy can be detected: 
geometric anisotropy and stratified anisotropy. 
Geometric anisotropy (same sill, different ranges) 
is measured by the anisotropy ratio, which is equal 
to the range of the variogram in the direction 
producing the longest range, divided by the range 
in the direction with the smallest range. Stratified 
(or zonal) anisotropy (different sills, same range) 
refers to the fact that the sills of the variograms 
may not be the same in different directions. In the 
presence of one or the other type of anisotropy, or 
both, there are three solutions to obtain accepta- 
ble interpolated maps by kriging: one can com- 
pute compromise variogram parameters, using 
the formulas in David (1977) or in Journel & 
Huijbregts (1978); secondly, one can use a kriging 
program that makes use of the parameters of 
variograms computed separately in different 
directions of the physical space (2 or 3, depending 
on the problem); or finally, one can use 'general- 
ized intrinsic random functions of order k'  
(Matheron 1973) that allow for linear or quadratic 
trends in the data. 

Example 6 - Experimental variograms were 
computed by Fortin (1985), for A. saccharum, in 
the 45 ° and 90 ° directions (window: 22°), and in 
all directions (Fig. 9). Comparing the 45 o and 90 o 
variograms shows the presence of anisotropy, as 
was observed in Fig. 4. The range in the 45 ° 
variogram (dashed line) is about 445 m, while the 
range in the 90 ° variogram is about 685 m, so that 
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Fig. 9. Three experimental variograms computed for the 
Acer saccharum data. See text. Abscissa: distance classes. 
Ordinate: values of the semi-variance function 7(d). Dashed 
lines: ranges. Modified from Fortin (1985). 

the anisotropy ratio can be computed as 
685/445 ~ 1.5. The all-directions variogram does 
not clearly render this information. • 
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Clustering methods with spatial contiguity constraint 

Describing multivariate structures can be done by 
the methods of clustering, which are classical 
methods of multivariate data analysis, and in 
particular by clustering with spatial contiguity 
constraint. If the clustering results are represented 
on a map, the multivariate structure of the data - 
plant associations for instance - will be clearly 
described by the map. 

Clustering with spatial contiguity constraint 
has been suggested by many authors since 1966 
(e.g., Ray & Berry 1966; Webster & Burrough 
1972; Lefkovitch 1978, 1980; and others), in such 
different fields as pedology, political science, 
economy, psychometry and ecology. Starting 
from multivariate data, the common need of these 
authors was to establish geographical regions 
made of adjacent sites (i.e., a choropleth map: see 
'Estimation and mapping' below) which would be 
homogeneous with respect to certain variables. In 
order to do this, it is necessary (1) to compute a 
matrix of similarity among sites from the variables 
on which these homogeneous regions have to be 
based (of course, this step applies only to cluster- 
ing methods that are similarity-based), then 
(2) proceed with any of the usual clustering 
methods, with the difference that one constrains 
the algorithm to cluster only these sites or site 
groups that are geographically contiguous. The 
constraint is provided to the program in the form 
of a list of connections, or spatial links, among 
neighbouring localities. Connections may be 
established in a variety of ways: see App. 1. 
Adding such constraints to existing programs 
raises algorithmic problems which we will not 
discuss here. Clustering with constraint has inter- 
esting properties. On the one hand, it reduces the 
set of mathematically possible solutions to those 
that are geographically meaningful; this avoids 
the well-known problem of clustering methods, 
where different solutions may be obtained after 
applying different clustering algorithms to the 
same data set; constraining all these algorithms to 
produce results that are geographically consistent 
forces them to converge towards very similar 
solutions. On the other hand, the partitions 
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obtained in this way reproduce a larger fraction of 
the structure's spatial information than equivalent 
partitions obtained without constraint (Legendre 
1987). Finally, constrained agglomerative cluster- 
ing is faster with large data sets than the uncon- 
strained equivalent, because the search for 'the 
next pair to join' is limited to adjacent groups only 
(Openshaw 1974; Lebart 1978). 

Example 7 -  A vegetation map was constructed 
from our test data, as follows. (1)The same 
Steinhaus similarity matrix among stations was 
used as in Ex. 5; it is based upon the 28 tree 
species abundance data. (2) The spatial relation- 
ships among sampling quadrats were represented 
by a list of connections among close neighbours; 
the list was established in the present case by the 
Delaunay triangulation method (App. 1). The 
presence of a connection between 2 quadrats 
tells the clustering programs that these 2 locali- 

9 

4 

2 ~ 4 

Fig. 10. Map of the multivariate vegetation structure (28 
species), obtained by constrained clustering. (a) Space-con- 
strained agglomerative proportional-link linkage, at the level 
where 13 groups were obtained; the five unclustered quadrats 
are materialized by dots. (b) Optimization of the previous 
map by space-constrained k-means clustering. 

ties are located close to one another and thus may 
eventually be included in the same cluster, if their 
ecological similarity allows. (3)Agglomerative 
clustering with spatial contiguity constraint was 
conducted on the similarity matrix. The spatial 
contiguity constraint was read by the program 
from the list of connections, or 'link edges', 
described above. We used a proportional-link 
linkage agglomerative algorithm (with 50~o con- 
nectedness: Sneath 1966), that produced a series 
of maps, one for each clustering level (Legendre 
& Legendre 1984b). The map with 13 groups was 
retained as being ecologically the most meaningful 
(Fig. 10a); 5 quadrats remain unclustered at that 
level. Recognizing 13 groups implies that the 
mean area per association is 740000 m2/13 = 
56 923 m2/association, corresponding to an aver- 
age area diameter of (56923) 1/2 = 238.6 m; this 
compares very well with the average size of the 
zone of influence of our species associations 
found in the Mantel correlogram, 230 m (Ex. 5). 

Agglomerative clustering may have produced 
small distortions of the resulting map, because of 
the hierarchical nature of the classification that 
results from such sequential algorithms. So, we 
tried to render our 13 groups as homogeneous as 
possible in terms of vegetation composition, using 
a k-means algorithm (MacQueen 1967) with spa- 
tial contiguity constraint. A k-means algorithm 
uses an iterative procedure of object reallocation 
to minimize the sum of within-group dispersions. 
This type of algorithm tends to produce compact 
clusters in the variable space (here, the vegetation 
data), which is exactly what we are looking for; 
there is no reason however to expect this phe- 
nomenon to affect the shape of the clusters in 
geographic space. We provided our program with 
the list of constraining connections computed in 
step 2 above, with the 13-group classification 
obtained in step 3 to be used as the starting con- 
figuration (temporarily allocating the 5 un- 
clustered quadrats to the group that enclosed 
them geographically), and with a set of principal 
coordinates computed from the Steinhaus simi- 
larity matrix (since our k-means program com- 
putes within-group variances from raw variables, 
and not from a similarity or distance matrix). The 



map of the optimized groups is shown in Fig. 10b. 
The number of groups remained the same, of 
course, but 19 objects out of 200 changed group 
(10~o). 4 groups remained unmodified: groups 
number 1, 6, 10 and 13 in Fig. 10. 

The 2 13-group classifications were compared 
to the raw species abundance data in a series of 
contingency tables. This work was facilitated by 
dividing first each species' abundance range into 
a few classes, following the method described by 
Legendre & Legendre (1983b). Comparing the 
interpretations of the 2 classifications, the groups 
produced by the k-means classification were 
slightly easier to characterize than those produced 
by the agglomerative classification. Their main 
biotic characteristics are the following: 
- Open area, with rare A. saccharum: Group 1. 
- A. rubrum stands, Group 2. 
-Oldfield-birch stands, Betula populifolia, lo- 

cated between the A. rubrum and A. saccharum 
areas: Group 10. 

- A. saccharum stands: Groups 4 and 12. 
- Stands dominated by white pine Pinus strobus 

and aspen Populus tremuloides: Group 6. 
- Hemlock stands, Tsuga canadensis: Groups 

3, 7 and 11. 
- Species diversity is highest in the three follow- 

ing groups of stands, dominated by black ash 
Fraxinus nigra and yellow birch Betula alle- 
ghaniensis: 
- In the bottom of a kettle, with aspen Populus 

tremuloides, white cedar Thuja occidentalis 
and American elm Ulmus americana: 
Group 5. 

- With red ash Fraxinus pennsylvanica and 
basswood Tilia americana: Groups 8 and 9. 

- Fence-shaped region (formerly cleared land) 
characterized by white cedar Thuja occidentalis 
and American elm Ulmus americana but, con- 
trary to group 5, with few F. nigra and 
B. alleghaniensis: Group 13. • 
Univariate or multivariate data that form a 

transect in space, instead of covering a surface, 
often need to be summarized by identifying break- 
ing points along the series. Several authors have 
proposed to use clustering methods with con- 
tiguity constraint in a single dimension (space or 
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time). One such program was developed in P.L.'s 
lab to analyse ecological successions, with the 
explicit purpose of locating the abrupt changes 
that may occur along successional series of com- 
munity structure; before each group fusion, a 
statistical permutation test is performed, that 
translates into statistical terms the ecological 
model of the development of communities by 
abrupt structure jumps (Legendre etaL 1985). 
Since then, this method has been used to segment 
spatial transects of ecological data (Galzin & 
Legendre 1988), as well as paleontological series 
(Bell & Legendre 1987). Other applications are in 
progress, including the reconstruction of climatic 
fluctuations by studying tree rings, and the seg- 
menting of pollen stratigraphic data. Other 
methods for segmenting such series, taking into 
account the spatial or temporal contiguity of 
samples, have been proposed by Fisher (1958) for 
univariate economic data, by Webster (1973) for 
soil data, by Hawkins & Merriam for univariate 
(1973) and for multivariate (1974) geologic data, 
by Gordon & Birks (1972, 1974) and by Gordon 
(1973) for pollen stratigraphic data. This work 
has been summarized by Legendre (1987). 

C a u s a l  m o d e l l i n g  

Although empirical models are used by ecologists 
and have their usefulness, modelers often prefer to 
include only the specific (ecological) hypotheses 
they may have about the factors and mechanisms 
determining the process under study. The purpose 
of modelling is then to verify that experimental or 
field data do support these hypotheses ('causes'), 
and to confirm the relational way in which they 
are assembled into the model. Given the impor- 
tance of space in our ecological theories, this 
review of spatial analysis methods would not be 
complete without mentioning how space can be 
included in the calculation of relationships among 
variables. 2 variables may appear related if 
both of them are linked to a common third one; 
space is a good candidate for creating such false 
correlations, since 2 variables may actually 
seem to be linked because they are driven by a 
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common spatial gradient. Even if correlation does 
not mean causality, the absence of correlation, 
monotonic or linear, is sufficient to abandon the 
hypothesis of a causal link between 2 variables. 
It is thus important for ecologists interested in 
causal relationships to check whether the spatial 
gradient of A could be explained, at least in part, 
by a spatially structured variable B, or if an 
apparent correlation between 2 variables is not 
to be ascribed to a common spatial structure (an 
unmeasured or untested space-structured varia- 
ble causing A and B independently). There is still 
some way to go before space can be included as 
a variable in complex ecological models, but we 
will show how it can at least be included in simple 
models. 

Partial Mante l  test 

How can a partial correlation between two varia- 
bles be calculated, controlling for a space effect? 
Smouse et al. (1986) dealt with this problem and 
suggested expressing the variations of each of the 
two variables by matrices (A and B) that contain 
the differences in values between all sampling 
station pairs. On the other hand, as in the Mantel 
test, the 'space' variable is expressed by a matrix 
of geographic distances among stations 
(matrix C). Actually, matrices A and B could as 
well be multivariate distance matrices. A partial 
Mantel statistic is calculated between A and B, 
controlling for the effect of matrix C. The Smouse 
et al. partial Mantel statistic has the same formula 
as a partial product-moment correlation 
coefficient, computed from standardized Mantel 
statistics. Actually, the computations are done as 
follows in order to test the partial Mantel statistic 
between A and B, controlling for the effect of 
matrix C: (1) compute matrix A' that contains the 
residuals of the linear regression of the values of 
A over the values of C; (2)likewise, compute 
matrix B' of the residuals of the linear regression 
of the values of B over the value~ of C; (3)com- 
pute the Mantel statistic between A' and B' 
(which is just another way of obtaining the partial 
Mantel statistic between A and B controlling for 

C, as in Pearson partial correlations). (4) Test as 
usual, either by permuting A' or B', or by Mantel's 
normal approximation. This is equivalent to what 
would be obtained by permuting all 3 matrices. 
Partial Mantel tests are not easy to interpret; 
Legendre & Troussellier (1988) have shown the 
consequences, in terms of significant Mantel and 
partial Mantel statistics, of all the possible three- 
matrices models implying space. As in the case of 
the Mantel test (App. 2), the restrictive influence 
of the linearity assumption has not been fully 
investigated yet for partial Mantel tests. 

This type of analysis has numerous applica- 
tions for studying variables distributed in space. 
Actually, 3 other forms of test of partial asso- 
ciation involving 3 distance matrices have been 
proposed. 2 of these are based upon the Mantel 
test, one by anthropologists (Dow & Cheverud 
1985), the second one in the field of psychometry 
(Hubert 1985); the third one involves multiple 
regressions on distance matrices (Manly 1986; 
Krackhardt 1988). 

E x a m p l e  8 - We will use our vegetation data to 
study the much debated question of the environ- 
mental control of vegetation structures. We will 
study in particular the relationship between vege- 
tation structure and the geomorphology of the 
sampling sites. Of course, vegetation structures 
are most often autocorrelated, and this can be due 
either to the fact that biological reproduction is a 
contagious process, or to some linkage between 
vegetation and substrate conditions, since soil 
composition, geomorphology, and so on, are 
autocorrelated. So, if we find a relationship 
between vegetation and geomorphology, we will 
ask the following additional question: do the data 
support the hypothesis of a causal link between 
vegetation structure and geomorphology, or is the 
observed correlation spurious, resulting from the 
fact that both vegetation and geomorphology fol- 
low a common spatial structure, through some 
unstudied factor that could affect both? 

Since our vegetation data are multivariate (28 
tree species), they will be represented in the com- 
putations by a matrix of multivariate Steinhaus 
ecological similarities, as in Ex. 5. Space is repre- 



Table 3. Above the diagonal: simple standardized Mantel 
statistics and associated probabilities. Below the diagonal: 
partial Mantel statistics and associated probabilities. Tests 
of significance are one-tailed. 

Mantel Vegetation 
ests structure 

Vegetation 
structure 

Geomorphology 0.09397 
p = 0.000 

Space 0.12384 0.36449 
p = 0.000 p = 0.000 

Geomor- Space 
phology 

0.15054 0.17053 
p = 0.000 p = 0.000 

- 0.38073 
p = 0.000 

sented by a matrix of geographic distances among 
quadrats. The geomorphology variable (6 un- 
ordered qualitative classes: moraine ridge, strati- 
fied till ridge, reworked till, kettle, relict channel, 
Champlain sea deposits) was used to compute a 
simple matching similarity coefficient. Similarities 
were transformed into distances (D = 1 -  S) 
before computing the Mantel tests. 

The results of the simple and partial Mantel 
tests are presented in Table 3. The 3 simple 
Mantel tests (above the diagonal) show that both 
the vegetation structure and the geomorphology 
are autocorrelated, as expected, and also that 
there exists a significant relation between vege- 
tation and geomorphology. Notice that the 
Mantel statistic values do not behave like pro- 
duct-moment correlation coefficients, and do not 
have to be large in absolute value to be significant. 
All 3 partial Mantel tests (Smouse et  al. 1986) are 
significant at the Bonferroni-corrected level 
c~' = 0.05/3 --- 0.01667. Of special interest to us is 
the unique influence of geomorphology on the 
vegetation structure, compared to the influence of 
space. To decide among the various possible 
models of interrelations among these 3 groups 
of variables, we have to consider in turn all 3 
possible competing models, and proceed by elimi- 
nation, as follows. (1) The first model states that 
the vegetation spatial structure is caused by the 
spatial structure of geomorphology [ Space 
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Geomorphology-~ Vegetation structure]. If this 
model were supported by the data, then we would 
expect the partial Mantel statistic (Space. 
Vegetation), controlling for the effect of 
Geomorphology, not to be significantly different 
from zero; this condition is not met in Table 3. 
(2) The second model states that there is a spatial 
component in the vegetation data, which is inde- 
pendent from the spatial structure in geomor- 
phology [Geomorphology .-- Space ~ Vegetation 
structure]. If this model were supported by the 
data, we would expect the partial Mantel statistic 
(Geomorphology • Vegetation), controlling for the 
effect of Space, not to differ significantly from 
zero, a condition that is not met in Table 3. 
(3) The third possible model (Fig. 11) claims that 
the spatial structure in the vegetation data is 
partly determined by the spatial gradient in the 
geomorphology, and partly by other factors not 
explicitly identified in the model. According to 
this model, all 3 simple and all 3 partial Mantel 
tests should be significantly different from zero. 
This is indeed what we find in Table 3. 

Although this decomposition of the correlation 
would best be accomplished by computing stand- 
ard partial regression-type coefficients (as in path 
analysis), we can draw some conclusions by 
looking at the partial Mantel statistics. They show 
that the Mantel statistic describing the influence 
of geomorphology on vegetation structure is 
reduced from 0.15 to 0.09 when controlling for the 
effect of space. The proper influence of 
geomorphology on vegetation is then 0.09, while 
the difference (0.06) is the part of the influence of 
geomorphology on vegetation that corresponds to 
the spatial component of geomorphology 
(0.15 × 0.38 = 0.06). On the other hand, the par- 
tial Mantel statistic describing the spatial determi- 

I Space  I ~ [  G e o m o r p h o l o g y  ] 

Fig. I 1. Diagram of interrelationships between vegetation 
structure, geomorphology and space. 
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nation of the vegetation structure not accounted 
for by geomorphology is still large (0.12) and sig- 
nificant; this shows that other space-related fac- 
tors do influence the vegetation structure, which 
is then not entirely spatially determined by 
geomorphology. Work is in progress on other 
hypotheses to fill the gap. • 

Estimation and mapping 

Any quantitative study of spatially structured 
phenomena usually starts with mapping the varia- 
bles. Ecologists, like geographers, usually satisfy 
themselves with rather unsophisticated kinds 
of map representations. The 2 most common 
kinds are (1) divisions of the study area into non- 
overlapping regions, since 'many areal phe- 
nomena studied by geographers [and ecologists] 
can be represented in 2 dimensions as a set of 
contiguous, nonoverlapping, space-exhaustive 
polygons' (Boots 1977), and (2)isoline maps, or 
contoured maps, used for instance by geographers 
to represent altitudes on topographic maps, where 
the nested isolines represent different intensities 
of some continuous variable. Both types can be 
produced by computer software. Before attempt- 
ing to produce a map, especially by computer, 
ecologists must make sure that they satisfy the 
following assumption: all parts of the 'active' 
study area must have a non-null probability of 
being found in one of the states of the variable to 
be mapped. For instance, in a study of terrestrial 
plants, the 'active' area of the map must be defined 
in such a way as to exclude water masses, roads, 
large rocky outcrops, and the like. 

Since the map derives in most cases from 
samples obtained from a surface, intermediate 
values have to be est imated by interpolation; or, 
in the case of a regular sampling grid, one can map 
the surface as a juxtaposition of regular tiles 
whose values are given by the points in the center 
of the tiles. One should notice that interpolated 
maps can only represent one variable at a time; 
thus these methods are not multivariate, although 
it is possible in some cases to superpose two or 
three maps. When it does not seem desirable or 

practicable to map each variable or each species 
separately, it remains then possible to map, 
instead, synthetic environmental variables such 
as species diversity, or else the first few principal 
axes from a principal components or a corre- 
spondence analysis, for instance. 

Several methods exist for interpolated map- 
ping. These include trend surface analysis, local 
weighted averaging, Fourier series modelling, 
spline, moving average, kriging, kernel estimators, 
and interpolation by drawing boundaries (in 
which case the resulting maps may be called 
'choropleth maps' or 'tessellations'). They have 
been reviewed by several authors, including Tapia 
& Thompson (1978), Ripley (1981, ch. 4), Lam 
(1983), Bennett etal .  (1984), Burrough (1986, 
ch. 8), Davis (1986) and Silverman (1986). Com- 
puter programs can provide an estimate of the 
variable at all points of the surface considered; 
the density of reconstructed points is either 
selected by the user or set by the program. 
Contouring algorithms are used to draw maps 
from the fine grid of interpolated points. 

Besides simple linear interpolation between 
closest neighbours, trend surface analysis is per- 
haps the oldest form of spatial interpolation used 
by ecologists (Gittins 1968; Curtis & Bignal 
1985). It consists in fitting to the data, by regres- 
sion, a polynomial equation of the x and y coordi- 
nates of the sampling localities. The order of the 
polynomial is determined by the user; increasing 
the order increases the number of parameters to 
be fitted and so it produces a better-fitting map, 
with the inconvenient that these parameters 
become more and more difficult to interpret eco- 
logically. For instance, the commonly used 
equation of degree one is written: 

~. = b o + b l x  + bzy  (1) 

where $ is the estimated value of the response 
variable z (the one that was measured and is to be 
mapped), while the b's are the three regression 
parameters. A second-degree polynomial model 
is: 

= b o + bax + b2y + b3x 2 + b4xy + b s y  2 (2) 
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Fig. 1 2 .  ( a )  Trend surface map o f A c e r  saccharum, sixth order polynomial. The observation points are identified by numbers. 
Shades of  gray and numbers form a scale that represents the estimated frequencies of  sugar-maples. (b) Map of the regression 
residuals. From Fortin ( 1 9 8 5 ) .  

Besides the map of the fitted values @), trend 
surface analysis programs usually provide also a 
map of residuals (z - ~), representing the varia- 
tion left undescribed by the interpolated map. 
Fig. 12a illustrates the map of the 6th order poly- 
nomial adjusted to the A. saccharum data. Com- 
pared to Fig. 13 (kriged map) the contouring 
obtained is still crude, although 28 parameters 
have been adjusted. Fig. 12b is the map of regres- 
sion residuals, showing the variations in A. sac- 
charum frequencies not expressed by the trend 
surface map. Burrough (1987) presents an exam- 
ple of trend surface analysis of soil data. Since 
trend surface analysis computes a single poly- 

nomial regression equation for the whole surface, 
the resulting map cannot have the precision that, 
more local criteria can provide. For that reason, 
it is used in ecology mostly to compute and 
remove large-scale trends, using the first degree 
equation in most cases, prior to further spatial 
analyses that can be conducted on the residual 
values. Trends can also be detected and modelled 
by autoregressive methods (e.g., Edwards & 
Coull 1987). Another valid use of trend surface 
analysis is the predictive modelling of spatial dis- 
tributions of organisms, using geographic coordi- 
nates alone as predictors; or, one can use other 
predictive variables to build such a model, alone 
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Fig. 13. (a) Map ofAcer saccharum obtained by kriging, and (b) map of the standard deviations of the estimations. From Fortin 
(1985). 

or in conjunction with geographic coordinates, 
using multiple regression or some other form of 
modelling. 

Kriging, developed by mining engineers and 
named after Krige (1966) to estimate mineral 
resources, usually produces a more detailed map 
than ordinary interpolation. Contrary to trend 
surface analysis, kriging uses a local estimator 
that takes into account only data points located 
in the vicinity of the point to be estimated, as well 
as the autocorrelation structure of the phenome- 
non; this information can be provided either by 
the variogram (see above), or by generalized 
intrinsic random functions of order k (Matheron 
1973) that allow to make valid interpolation in 
the case of non-stationary variables (Journel & 
Huijbregts 1978). The variogram is used as fol- 
lows during kriging: the kriging interpolation 
method estimates a point by considering all the 
other data points located in the observation cone 
of the variogram (given by the direction and 

window aperture angles), and weighs them using 
the values read on the adjusted theoretic vario- 
gram at the appropriate distances; furthermore, 
kriging splits this weight among neighbouring 
points, so that the result does not depend upon 
the local density of points. Kriging programs pro- 
duce not only a map of resource estimates but also 
one of the standard deviations of these esti- 
mations (David 1977; Journel & Huijbregts 
1978); this map may help identify the regions 
where sampling should be intensified, the map 
being often obtained from a much smaller number 
of samples than in Fig. 13. 

The problem of mapping multivariate phe- 
nomena is all the more acute because cartography 
seems essential to reach an understanding of the 
structures brought to light for instance by correlo- 
gram analysis. What could be done in the multi- 
variate case? How could one combine the varia- 
bility of a large number of variables into a single, 
simple and understandable map? Since 



Table 4. The following programs are available to compute 
the various methods of spatial analysis described in this 
paper. This list of programs is not exhaustive. 

Package Methods of spatial analysis 

BLUEPACK 

CANOCO 

CORR2D 

GEOSTAT 

Kellogg's 

NTSYS-PC 

'R' 

SAAP 

SASP 

SYMAP 

UNIMAP 

Variogram, kriging. 

Constained ordinations: canonical 
correspondence analysis, redundancy 
analysis. 

Two-dimensional correlogram. 

Variogram, kriging. 

Variogram, kriging. 

Simple Mantel test. 

Spatial autocorrelation (quantitative 
and nominal data), simple Mantel 
test, partial Mantel tests, Mantel cor- 
relogram, clustering with spatial con- 
tiguity constraint, clustering with time 
constraint. A variety of connecting 
networks. 

Spatial autocorrelograms (Moran's/ 
and Geary's c). 

Two-dimensional spectal analysis. 

Trend surface analysis; other inter- 
polation methods. 

Variogram, kriging; other interpolation 
methods. 

- The BLUEPACK package is available from: Centre de 
grostatistique et de morphologie mathrmatique, 35 rue 
Saint-Honorr, F-77305 Fontainebleau Cedex, France. 

- The CANOCO program is available from Cajo J.F. ter 
Braak, Agricultural Mathematics Group, TNO Institute 
for Applied Computer Science, Box 100, NL-6700 AC 
Wageningen, The Netherlands. 

- The CORR2D program written by Geoffrey M. Jacquez is 
available from Applied Biostatistics Inc., 100 North 
Country Road, Bldg. B, Setauket, New York 11733, USA. 

- The GEOSTAT package is available from: Geostat Sys- 
tems International Inc., 4385 rue Saint-Hubert, Suite 1, 
Montrral, Qurbec, Canada H2J 2X1. 

- The Kellogg's programs are available from the Computer 
Laboratory, W.K. Kellogg Biological Station, Michigan 
State University, Hickory Corners, Michigan 49060, USA. 

- The NTSYS package, developed by F. James Rohlf, is 
available in PC version from Applied Biostatistics Inc., 100 
North Country Road, Bldg. B, Setauket, New York 11733, 
USA. 

- 'The R package for multivariate data analysis', developed 
by Alain Vaudor (P. Legendre's lab.: see title page), is 
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constrained clustering, explained in some detail 
above, produces groups that can be mapped - and 
indeed constrained clustering programs can be 
made to draw these maps directly (Fig. 10) - we 
have here a way of producing heuristic maps out 
of multivariate data. The methods of constrained 
ordination developed by Lee (1981), by 
Wartenberg (1985a, b) and by ter Braak (1986, 
1987) are other ways of accomplishing this. They 
differ from the simple mapping of principal com- 
ponents or correspondence analysis scores, 
mentioned at the beginning of this section, in that 
they take into account the spatial relationships 
among samples; they resemble them in that it may 
be necessary to draw several maps in order to 
represent the variability extracted by all the 
important but orthogonal axes. MacDonald & 
Waters (1988) give examples of palynological 
maps obtained using Lee's Most Predictable Sur- 
face Analysis (MPS); other examples are found in 
Wartenberg (1985a,b). These methods should 
find ample use among community ecologists, who 
study essentially multivariate (multi-species) phe- 
nomena. 

Conclusion 

Where should ecologists stand? As we have seen, 
the physical environment is not homogeneous, 
and most ecological theories are based on precise 

available for Macintosh microcomputers, VAX, and IBM 
mainframes. English and French speaking versions. 

- The SAAP package is a set of FORTRAN programs 
available from Daniel Wartenberg, Department of 
Environmental and Community Medicine, Robert Wood 
Johnson Medical School, 675 Hoes Lane, Piscataway, 
New Jersey 08854, USA. 

- The SASP program is available from E. Renshaw, Depart- 
ment of Statistics, University of Edinburgh, King's 
Buildings, Mayfield Road, Edinburgh EH9 3JZ, United 
Kingdom. 

- SYMAP is not distributed any longer by Laboratory for 
Computer Graphics and Spatial Analysis, Harvard Uni- 
versity, USA. It is however still available at many com- 
puting centers. 

- UNIMAP is available from: European Software Contrac- 
tors A/S, Narregade, DK-2800 Lyngby, Denmark. 
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assumptions about the spatial structure of popu- 
lations and communities. If we rely upon models 
that assume, as many still do for simplicity, that 
biological populations are distributed uniformly 
or at random in space, chances of obtaining valid 
predictions are small since the ecological reality is 
quite different. So, in the descriptive or hypothe- 
sis-generating phase of a research, ecologists who 
sample spatial distributions of organisms should 
consider a priori that their data are structured in 
space (i.e., are autocorrelated); they should then 
test for the presence of spatial autocorrelation, 
and describe the spatial structure using maps and 
spatial structure functions. In some cases, it may 
be adequate to remove large-scale spatial struc- 
tures by regression or model-fitting in order to 
carry out classical statistical analyses on residu- 
als, but in doing so, one must be careful not to 
remove one of the important determinants of the 
processes under study, since heterogeneity is 
functional in ecosystems. In the hypothesis-testing 
(model-testing) phase of a research, when two 
variables or groups of variables linked by a causal 
hypothesis are both autocorrelated, one should 
test whether their correlation, if significant, could 
be spurious and due to a similar spatial structure 
present in both. This in turn could give clues as 
to the identity of some other spatially autocorre- 
lated causal variable that may have given them 
their common autocorrelated structure. In a 
world where spatial structuring is the rule rather 
than the exception, this precaution can prevent 
one from reaching unwarranted conclusions. 

Statistical methods of spatial analysis (descrip- 
tive or inferential) are currently under develop- 
ment, and already they offer a way of answering 
many relevant questions about populations and 
communities (Table 1): demonstration of the 
existence of spatial or temporal structures, de- 
scription of these structures, univariate or multi- 
variate mapping, comparison with models, analy- 
sis of the influence of spatial structures on 
assumed causal links between variables, statisti- 
cal analyses which do not assume the inde- 
pendence of the observations. Programs available 
for spatial analysis are becoming widely available. 
Some are listed in Table 4; this list is not exhaus- 
tive. 

We can expect the spatial approach to ecologi- 
cal problems to bring about a quantic jump for 
ecologists and population geneticists who had 
learned a type of statistics where one had to hide 
space or time structures. It is now possible to 
use these structures and to integrate them into our 
analyses as fully-fledged controlled variables. 
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Appendix 1 
Formulas and technical points 

Spatial autocorrelation analysis 

Ho: there is no spatial autocorrelation. The values of the 
variable are spatially independent. Each value of the ! 
coefficient is equal to E(1) = -(n - 1)- 1 ~ 0, where E(1) is 



the expectation o f / a n d  n is the number of data points; each 
value of the c coefficient equals E(c) = 1. 

H~: there is significant spatial autocorrelation. The values 
of the variable are spatially dependent. The value of the I 
coefficient is significantly different from 
E(1) = - (n - 1)- ~ ~ 0; the value of c is significantly dif- 
ferent from E(c) = 1. 

l (d)  = [n ~ ~ wo(y i - y ) ( y j -  Y)] / [WY~(y i -  y)2] (1) 

c(d) = [(n - 1) ~ ~ wo(y , - yj)Z]/[2W ~ (Yi - y)2] (2) 

These coefficients are computed for each distance class d. 
The values of the variable are the y's. All summations are for 
i and j varying from 1 to n, the number of data points, but 
exclude the cases where i = j. The w0's take the value I when 
the pair ( i , j )  pertains to distance class d (the one for which 
the coefficient is computed), and 0 otherwise. W is the sum 
of the wo's, or in other words the number of pairs (in the 
whole square matrix of distances among points) taken into 
account when computing the coefficients for the given dis- 
tance class. Moran's coefficient varies generally from - 1 to 
1, but sometimes it can exceed - 1 or + 1 (Fig. ld, h, k); 
positive values of Moran's I correspond to positive auto- 
correlation. Geary's coefficient varies from 0 to some indeter- 
minate positive value which rarely exceeds 3 in real cases; 
values of c smaller than 1 correspond to positive auto- 
correlation. These coefficients can be tested for significance; 
formulas for computing the standard error of the estimated 
statistics can be found in Cliff & Ord (1981), S okal & Oden 
(1978) and Legendre & Legendre (1984a). A special form of 
spatial autocorrelation coefficient for nominal (qualitative) 
data is described by Cliff & Ord (1981) and by Sokal & Oden 
(1978). 

Technical points: 

- Spatial autocorrelation analysis should not be performed 
with fewer than ca. 30 localities, because the number of 
pairs of localities in each distance class then becomes too 
small to produce significant results. 

- There are two ways of dividing distances into classes: 
either by forming equal distance classes, or classes with 
equal frequencies. This last solution makes it possible to 
compute valid coefficients even in the right-hand part of 
the correlogram (Sokal 1983); with equal distance classes 
on the contrary, the number of pairs of points becomes too 
small for valid testing in the large distance classes (Fig. lc). 

- Spatial autocorrelation analysis cannot be performed with 
a data set that contains a lot of double zeros, because the 
degree of autocorrelation would then be overestimated 
and would reflect the fact that the localities share their 
absence for that variable, which is not what is intended in 
most applications. 

- Euclidean distances between pairs of localities may not be 
the best way of expressing geographic relationships when 
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analysing ecological data. Instead, one could use 1/d or 
1/d 2 (Mantel 1967; Jumars et al. 1977), or some other 
appropriate transformation (Estabrook & Gates 1984). 

- In cases where the Euclidean distance is felt to be meaning- 
less, one can use instead some topological network of 
connections between localities (see: Connecting networks, 
below) and compute distances in terms of number of edges 
along this network. 

Two-dimensional spectral analysis 

The spatial autocorrelation matrix contains all pairs of 
sample autocorrelation values rgh, corresponding to all possi- 
ble lags (g, h) where g is the lag along the x geographic axis 
of sampling and h is the lag along the y axis. Each value rgh 
is the ratio of the sample autocovariance at lag (g, h) to the 
sample variance of the yo's. The sample autocovariance Sg h 
is computed as 

m - - g  

sg h = (1~ran) ~ ~ (Yc,.J)- fi)(Y¢i+g.j+h) - Y) (3) 
i = l  j 

where 0 < g < m and - n < h < n; m and n are respectively 
the number of rows and columns of the geographic sampling 
grid. The second summation is taken over j = 1 . . . . .  n - h if 
h > 0 and over j = Jh[ + 1 . . . .  , n i fh  < 0. There is no need 
to compute the whole autocorrelation surface ( - m < g < m) 
since the surface is a reverse image of itself round either of 
the zero lag axes. 

The Schuster periodogram can also be computed, again 
for all possible combinations of lags (g, h). The periodogram 
is a more compact description of the spatial pattern than the 
full two-dimensional correlogram. Periodograms and power 
spectra are often expressed as functions of frequencies 
instead of periods (frequency = 1/period). For convenience, 
frequencies are here multiplied by the size of the series 
(m or n) so that a wave that occupies the whole length 
(m or n) of a side of the sampling area has a frequency 
(p or q) of 1. The range of frequencies considered is then 
p = 0 . . . . .  (m/2) and q = ( - n/2) . . . . .  ((n/2) - 1) where (m/2) 
and (n/2) are respectively the Nyquist frequencies (highest 
frequency in the observation window) in directions x and y 
of the sampling surface. The sign of q gives the direction of 
travel of the sine wave under study. As in time series analysis, 
the intensity of the periodogram I(p,  q), for each frequency 
combination, measures the amount of variance of variable y 
that is explained by the given combination of frequencies 
(p, q), after fitting to the data, by least squares, a Fourier 
series (sum of sines and cosines) with the given combination 
of frequencies. See formulas in Renshaw & Ford (1984), for 
instance. The periodogram is presented as a three-dimen- 
sional plot, with frequencies (p, q) along the axes of the 
controlling plane, and the intensity of the periodogram 
I(p,  q) as the response variable. 

The polar spectrum of the data aims at measuring the 
frequencies and angular directions of the dominant wave pat- 
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terns present in the data. 2 graphs, first proposed by 
Renshaw & Ford (1983), are produced. The first one, called 
the R-spectrum, measures the frequencies of the waves form- 
ing the spatial pattern. The R-spectrum is a graph of the 
average response I(p,  q) of all the elements in the periodo- 
gram that have approximately the same frequency magnitude 
R = x/(p 2 + q2). The second one, called the O-spectrum, 
measures the directions (angles) of the waves. It is presented 
as a graph of the average response I(p,  q) of all the elements 
in the periodogram that have approximately the same angle 
O = tan-~(p/q) (0 ° < O <  180°). In these graphs, the 
values along the abscissa (that is, the various R and O values) 
are first divided into a manageable number of classes before 
the graphs are drawn. 

The I(p,  q) values have been scaled to have an average 
value of 1, so that a data set with no spatial structure should 
produce an R-spectrum and a O-spectrum with values close 
to 1. Since the individual values of l (p ,  q) in the periodogram 
are approximately distributed as (lO0/mn)z~2), then they can 
be tested for significance against a critical value of 
(lO0/mn)z~,. 2). In the same way, particular values in the 
graphs of the R- and O-spectra that correspond to intervals 
containing, say, k individual values of I, can be tested for 
significance against a critical value o f / =  [l/(2k)] Z~,, 2k)' AS 
in all cases of multiple testing, one should apply the usual 
Bonferroni correction and use the corrected significance level 
• ' = ~/v where v is the number of tests performed simultane- 
ously; this point had not been emphasized by the above- 
mentioned authors. Actual use of two-dimensional spectral 
analysis shows that the spectra are the most useful instru- 
ments for interpreting the spatial structure; the periodogram 
has more of a descriptive value. 

Variogram 

The experimental semi-variogram (often called the vario- 
gram) is a plot of the values of semi-variance as a function 
of distance. The estimator of the semi-variance function is 

7(d) = [1/(2ha)] ~ [Y(i+d)- Y(O) 2] (4) 

where n d is the number of pairs of points located at distance 
d from one another. The summation is for i varying from 1 
to nd. Just like Geary's c autocorrelation coefficient (above), 
this structure function is a distance-type function; the dif- 
ference lies mainly in the denominator of the function. 

Some of the most often used theoretic variogram models 
are the following (Fig. 8). Other models are proposed by 
Journel & Huijbregts (1978). 

Linear model: 7(d) = Co + bd where b is the slope and Co is 
the intercept (nugget effect). 

Exponential model: 7(d) = Co + C [1 - exp ( -  Idl/a)] 
where Co is the nugget effect and C = sill - Co; a is the range. 

Sphericaimodel: 7(d) = Co + C [(3d/2a) - (d3/2a3)] ifd < a, 
while 7(d) = Co + C if d > a. 

Gaussian model: 7(d) = Co + C [1 - exp( -  dZ/a2)]. 

Technical points: 

- As in correlograms, variograms are computed for distance 
classes, which implies that the number of pairs of points 
used in the computation decreases as distance increases 
(Fig. lc). Thus, only about the first two-thirds of a vario- 
gram should be taken into account when describing the 
spatial structure. 

- With ecological data, the stationarity property is rare and 
the data often contain some overall trend, called 'drift' in 
the kriging jargon; drift can affect significantly the accuracy 
of kriging. Thus in the presence of non-stationarity and 
drift, the use of 'generalized intrinsic random functions of 
order k' is recommended, instead of a variogram, to esti- 
mate the autocorrelation structure. 

Connecting networks 

Graphs of interconnections among points are used to 
describe spatial interrelations for such data analysis methods 
as constrained clustering, spatial autocorrelation analysis, 
and other methods that require information about 
neighbouring localities. In the case of a regular square grid 
of sampling locations, the solution is simple, since one can 
connect each point to its neighbours in all 4 directions 
('rook's move'), or else in all 8 directions ('queen's move') if 
he so chooses. If the regular sampling design has the form of 
staggered rows, as in Fig. 2 for instance, connections (also 
called 'link edges') may be established with neighbours in all 
6 directions. If the sampling localities are irregular tiles that 
touch one another and cover the whole surface under study, 
a natural choice is to connect localities that have a border in 
common. 

It often happens, however, that the sampling localities do 
not form a regular pattern. In such cases, one should wonder 
first if the ecological problem under study would not provide 
a natural way of deciding what the close neighbours are. If 
no such ecological criterion can be found, then one can rely 
on the more arbitrary geometric criteria. The most commonly 
used graph-theoretic criteria are the minimum spanning tree 
(Gower & Ross 1969), the Gabriel graph (Gabriel & Sokal 
1969), or the Delaunay triangulation which is simply an 
algorithmic method of dividing a plane into triangles that 
obey some precise set of rules (Miles 1970; Ripley 1981; 
Watson 1981). It is interesting to note that the minimum 
spanning tree is a subset of the Gabriel graph, which in turn 
is a subset of the Delaunay triangulation. 



Appendix 2 
Theory of the Mantel test 

Hypo~es~ 

Ho: Distances among points in matrix X are not linearly 
related to the corresponding distances in matrix Y. When ¥ 
represents geographic distances, H o reads as follows: the 
variable (or the multivariate data) in X is not autocorrelated 
as a gradient. 

Hi:Distances among points in matrix X are correlated to 
the corresponding distances in matrix Y. 

Statistics 

- Mantel (1967) statistic: 

z = ~ ~ x~yij (5) 
i j 

for i :~ j ,  where i and j are row and column indices. 

- Normalized Mantel statistic: 

r = [1/(n - 1)] ~. ~ [(x U - YOIsxl [(Yu - Y)lsy] (6) 
i j 

for i ~: j ,  where i and j are row and column indices, and n 
is the number of distances in one of the matrices (diagonal 
excluded). 

Distribution of the auxiliary variable 

- According to H o, the values observed at any one point 
could have been obtained at any other point. 

- H o is thus realized by permuting the points, holding with 
them their vectors of values for the observed variables. 

- An equivalent result is obtained by permuting at random 
the rows of matrix X as well as the corresponding columns. 

- Either X or Y can be permuted at random, with the same 
net effect. 

- Repeating this operation, the different permutations pro- 
duce a set of values of the Mantel statistic, z or r, obtained 
under H o. These values represent the sampling distribu- 
tion of z or r under H o. 

Z or  r 
Statistical decision 

As in any other statistical test, the decision is made by 
comparing the actual value of the auxiliary variable (z or r) 
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to the reference distribution obtained under H 0. If the actual 
value of the Mantel statistic is one likely to have been 
obtained under the null hypothesis (no relation between X 
and Y), then H 0 is accepted; if it is too extreme to be con- 
sidered a likely result under Ho, then H o is rejected. 

Remarks 

The z or the r statistics can be transformed into another 
statistic, called t by Mantel (1967), which can be tested by 
referring to a table of the standard normal distribution. This 
test gives a good approximation of the probability when the 
number of objects is large. 

Like Pearson's correlation coefficient, the Mantel statistic 
formula is a linear model, that brings out the linear com- 
ponent of the relationship between the values in the two 
distance matrices. Strong non-linearity can probably prevent 
relationships from expressing themselves through the Mantel 
test; this led Dietz (1983) to suggest the use of a non- 
parametric correlation formula. The influence of lack of 
linearity, and of transformations in one or both of the dis- 
tance matrices, has not yet been fully investigated. 
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