
Abstract This paper examines how to obtain species bi-
plots in unconstrained or constrained ordination without
resorting to the Euclidean distance [used in principal-
component analysis (PCA) and redundancy analysis
(RDA)] or the chi-square distance [preserved in corre-
spondence analysis (CA) and canonical correspondence
analysis (CCA)] which are not always appropriate for the
analysis of community composition data. To achieve this
goal, transformations are proposed for species data ta-
bles. They allow ecologists to use ordination methods
such as PCA and RDA, which are Euclidean-based, for
the analysis of community data, while circumventing the
problems associated with the Euclidean distance, and
avoiding CA and CCA which present problems of their
own in some cases. This allows the use of the original
(transformed) species data in RDA carried out to test for
relationships with explanatory variables (i.e. environ-
mental variables, or factors of a multifactorial analysis-
of-variance model); ecologists can then draw biplots dis-
playing the relationships of the species to the explanato-
ry variables. Another application allows the use of spe-
cies data in other methods of multivariate data analysis
which optimize a least-squares loss function; an example
is K-means partitioning.

Keywords Biplot diagram · Canonical correspondence
analysis · Correspondence analysis · Principal-component
analysis · Redundancy analysis

Introduction
Correspondence analysis (CA) and canonical correspon-
dence analysis (CCA) are widely used to obtain uncon-

strained or constrained ordinations of species abundance
data tables and the corresponding biplots or triplots
which are extremely useful for ecological interpretation
(Fig. 1a, c). Empirical work during the 1970s established
that CA was appropriate for such data, while ter Braak
(1985) showed that the chi-square distance preserved in
CA provided a good approximation for species with uni-
modal distributions along a single environmental gradi-
ent. There is a problem with this metric, however: a dif-
ference between abundance values for a common species
contributes less to the distance than the same difference
for a rare species, so that rare species may have an unduly
large influence on the analysis (Greig-Smith 1983; ter
Braak and Smilauer 1998; Legendre and Legendre
1998). To avoid this, users of CA and CCA may remove
the rarest species from the analysis, or resort to empirical
methods giving small weights to rare species, as found
for instance in the ordination program Canoco (ter Braak
and Smilauer 1998). The chi-square distance is not
unanimously accepted among ecologists: using simulat-
ed data, Faith et al. (1987) concluded that it was one of
the worst distances for community composition data.

Alternatives to CA and CCA are principal-component
analysis (PCA, for unconstrained ordination) and redun-
dancy analysis (RDA, for constrained ordination)
(Fig. 1a, c). In the full-dimensional space, these methods
preserve the Euclidean distances among sites. For the
analysis of sites representing short gradients, PCA and
RDA may be suitable. For longer gradients, many spe-
cies are replaced by others along the gradient and this
generates many zeros in the species data table. Commu-
nity ecologists have repeatedly argued that the Euclidean
distance (and thus PCA and RDA) is inappropriate for
raw species abundance data involving null abundances
(e.g. Orlóci 1978; Wolda 1981; Legendre and Legendre
1998; Table 1). For that reason, CCA is often the method
favoured by researchers who are analysing compositional
data, despite the problem posed by rare species.

Other alternatives are available for unconstrained or-
dination analysis. One may compute a resemblance ma-
trix (similarity or distance) among sites using any of a
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Fig. 1 Schematic comparison
of techniques that can be used
to obtain unconstrained (a,b) or
constrained (c–e) ordination bi-
plots or triplots of species data
tables

Table 1 Species abundance paradox, modified from Orlóci
(1978). The paradox is that the Euclidean distance between sites 1
and 2, which have no species in common, is smaller than that be-
tween sites 1 and 3 which share species 2 and 3. This example
shows that the Euclidean distance is not appropriate for species

community composition data containing zeros. With the other co-
efficients used here, the distance between sites 1 and 2 is larger
than between sites 1 and 3, and the distance between sites 1 and 2
is the same as between sites 2 and 3, or very nearly so

Species 1 Species 2 Species 3

Species abundance paradox data Site 1 0 1 1
(three sites, three species) Site 2 1 0 0

Site 3 0 4 8

Distance function D(site 1, site 2) D(site 1, site 3) D(site 2, site 3)
DEuclidean 1.7321 7.6158 9.0000
Dchord 1.4142 0.3204 1.4142
Dχ2

metric 1.0382 0.0930 1.0352
Dχ2

distance 4.0208 0.3600 4.0092
Dspecies profiles 1.2247 0.2357 1.2472
DHellinger 1.4142 0.1697 1.4142



number of resemblance coefficients that are appropriate
for species presence-absence or abundance data (see
Legendre and Legendre 1998 for a review). Following
this, principal-coordinate analysis (PCoA) or non-metric
multidimensional scaling (NMDS) can be used to obtain
an ordination in a small number of dimensions, usually
two or three. To obtain biplots of species and sites from
PCoA or NMDS, one can (1) compute correlations be-
tween the original species vectors (i.e. the vectors whose
ith components are the counts of a species at site i) and
the site scores along the PCoA or NMDS ordination axes
and scale these correlations as described in Eq. 14 (be-
low), or (2) use the site scores along the two or three
PCoA or NMDS ordination axes retained for ordination,
together with the original species data, and carry out a
PCA of this larger data table in which the original spe-
cies will be treated as supplementary variables having
weights of zero in the analysis; the use of supplementary
variables in PCA is described, for example, in ter Braak
and Smilauer (1998) and Legendre and Legendre (1998).

Resemblance matrices cannot be used directly in ca-
nonical ordination, however. Legendre and Anderson
(1999) have proposed a solution to this problem, called
distance-based redundancy analysis (db-RDA; Fig. 1e):
(1) compute a matrix of distances Dij among sites using a
measure appropriate to species data, e.g. the Stein-
haus/Odum/Bray-Curtis measure (called Bray-Curtis for
simplicity) which is often the preferred choice of ecolo-
gists; (2) compute all the principal coordinates, using
PCoA; they preserve the original distances Dij in full or-
dination space; if negative eigenvalues and correspond-
ing complex-number axes are produced during eigen-
value decomposition, a correction can be applied to the
distance matrix to eliminate them; (3) use RDA to ana-
lyse the relationship between the principal coordinates,
representing the species data, and the explanatory vari-
ables. db-RDA is well-suited to test the significance of
relationships between the explanatory and response data
tables, but not to produce biplots or triplots of species,
sites and environmental variables, which may be needed
for interpretation (Gabriel 1982; ter Braak 1994), be-
cause the species matrix is replaced in step 3 by another
matrix whose columns are principal coordinates. Each
column now represents a non-linear combination of the
original species, so that their roles cannot easily be un-
tangled. The db-RDA approach can be used either for
regular redundancy analysis of community composition
against environmental variables, or to obtain a Manova-
like analysis in which the factors of the Manova are cod-
ed in the matrices of environmental variables and co-
variables of the canonical analysis. See Legendre and
Anderson (1999) for details.

The present paper describes transformations of the
species data that allow ecologists to use ordination meth-
ods such as PCA and RDA, which are Euclidean-based,
with community composition data containing many ze-
ros (long gradients). These transformations offer alterna-
tives, for ordination analysis of community data, to CA
and CCA, which are based upon the chi-square metric

(Fig. 1b). They allow the use of the original (trans-
formed) species data in RDA to test the relationships
with explanatory variables (i.e. environmental variables
or factors of a multifactorial analysis-of-variance model;
Fig. 1d), as an alternative to db-RDA (Fig. 1e), thus al-
lowing one to draw biplots displaying the relationships
of the species to the explanatory variables. An additional
application allows the use of community composition
data in other methods of multivariate analysis which op-
timize a least-squares loss function. An example is K-
means partitioning which separates the objects (e.g. sam-
pling sites) into groups obtained by minimizing the sum
of the squared Euclidean distances of the objects to the
group centroids.

Transform species composition data to obtain
targeted (dis)similarity coefficients

Some (dis)similarity measures commonly used by com-
munity ecologists can be obtained by first modifying the
species data, then computing the Euclidean distance
among sites on the modified data set. We are proposing
here to transform the species presence-absence or abun-
dance data and use the transformed data in PCA, RDA or
K-means partitioning. The net result is an analysis that
will preserve the chosen distances among objects. Not all
similarity coefficients that have been proposed to ana-
lyse community structure data can be obtained through
such a transformation, however (see Discussion).

Consider a species abundance data table Y=[yij] of
size (n×p) with sites (rows) i={1...n} and species (col-
umns) j={1...p}; the row sums are noted yi+ and the col-
umn sums y+j; the overall sum is y++. We will define
transformations of the data Y→Y′ | such that the Euclidean
distance (Eq. 4) among the rows of the transformed data
table is equal to some other distance computed among
the rows of the original data table Y′ (Fig. 2). In the re-
mainder of this paper, we will consider only distance co-
efficients; if required by the software, the corresponding
similarities can be obtained by S(i, j)=1-D(i, j) or 
S(i, j)=1-D2(i, j), after ranging the distances to the inter-
val [0, 1] if necessary.
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Fig. 2 Illustration of the role of the data transformations as a way
of obtaining a given distance function. The example uses the
chord distance



The transformations described below are precursors
of distances that have all been described as appropriate
for community composition data. They allow users to re-
tain the identity of the individual species in PCA or
RDA biplots.

(1) Chord distance

The chord distance, proposed by Orlóci (1967) and
Cavalli-Sforza and Edwards (1967), is the Euclidean dis-
tance computed after scaling the site vectors to length 1,
i.e. dividing each value by the norm, or length, of the
vector. After normalization, the Euclidean distance be-
tween two objects (sites) is equivalent to the length of a
chord joining two points within a segment of a hyper-
sphere of radius 1. The formula for the chord distance
between sites x1 and x2 across the p species is thus:

(1)

The chord distance may also be computed using the fol-
lowing formula found in several textbooks and papers
(e.g. Orlóci 1967):

(2)

It is clear from Eq. 1 that if the data [yij] are first trans-
formed into [y′ ij] as follows:

(3)

then the Euclidean distance

(4)

between row vectors of transformed data is identical to
the chord distance between the original row vectors of
species abundances. The inner part of Eq. 2 is actually
the cosine of the angle (θ) between the two site vectors,
normalized or not; this is easily derived from the scalar
product of two vectors: b·c=(length of b)×(length of
c)×cos θ. So the chord distance may be written as:

(5)

This distance is maximum when the two sites have no
species in common; the normalized site vectors may then
be represented by points at 90° from each other on the

circumference of a sector of a circle (for two species) or
the surface of a segment of a hypersphere (for p species)
and the distance between the two sites is . Trueblood
et al. (1994) used a form of Eq. 3 in their PCA-H meth-
od, with yij being the probability of sampling species j in
sample i with a random draw of m individuals from the
sample. They called the Euclidean distances between
these transformed row vectors CNESS, the chord nor-
malized expected species shared. CNESS is a metric ver-
sion of Grassle and Smith’s (1976) NESS similarity in-
dex. Orlóci’s chord distance equals CNESS when m=1.

(2) Chi-square metric and chi-square distance

The chi-square metric is often used for clustering or or-
dination of species abundance data. Although this mea-
sure has no upper limit, it produces distances smaller
than 1 in most cases. The formula is:

(6)

The inner part is the Euclidean distance computed on rel-
ative abundances, weighted by the inverse of the column
(species) sums y+j. If a species j is rare, its column sum
y+j is small and this species contributes a great deal to
the sum of squares. If the data [yij] are transformed into
[y′ ij] as follows:

(7)

then the Euclidean distance (Eq. 4) between row vectors
of transformed data is identical to the chi-square metric
(Eq. 6) between the original row vectors of species abun-
dances.

The chi-square distance is the chi-square metric mul-
tiplied by the square root of the sum of abundances in
the data table, . This distance is particularly impor-
tant in numerical ecology because it is the distance pre-
served in CA and CCA. These two distances are treated
together because they only differ by a multiplicative con-
stant. The formula for the chi-square distance is:

(8)

If the data [yij] are transformed into [y′ ij] as follows:

(9)

a little algebra shows that the Euclidean distance (Eq. 4)
between row vectors of transformed data is identical to
the chi-square distance (Eq. 8) between the original row
vectors of species abundances. This is not to say that a
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PCA of data transformed as in Eq. 9, or a PCoA of a ma-
trix of chi-square distances, will exactly reproduce a CA
ordination; the rotation of the data point distribution in
CA does not maximize inertia in the same way as in
PCA or PCoA.

The transformation proposed here (Eq. 9) had been
described by Chardy et al. (1976) and used by Pinel-
Alloul et al. (1995) to prepare matrices of phytoplankton
(87 taxa) and fish (18 taxa) data, prior to using them as
matrices of explanatory variables in a CCA where the
dependent matrix was a table of zooplankton abundances
(54 taxa).

(3) Distance between species profiles

A variant of the chi-square metric can be obtained by re-
moving the standardization by the inverse of y+j. The
species data are simply transformed into profiles of rela-
tive frequencies before computing Euclidean distances.
This equation does not give extra weight to the rare spe-
cies; the most abundant species contribute predominantly
to the sum of squares. The formula is:

(10)

This formula is constructed in the same way as Eq. 1; it
is the Euclidean distance (Eq. 4) between species pro-
files. If the data [yij] are first transformed into [y′ ij]as fol-
lows:

(11)

then the Euclidean distance (Eq. 4) between rows of
transformed data (which are also called “compositional
data”) is identical to the distance between species pro-
files computed on the original species abundance data
(Eq. 10).

(4) Hellinger distance

The Hellinger distance is also a measure recommended
for clustering or ordination of species abundance data
(Rao 1995). The formula is:

(12)

Rao (1995) recommends it as a basis for a new ordina-
tion method. Using simulations, Legendre and Legendre
(1998) concluded that for linear ordination, the Hellinger
distance offers a better compromise between linearity
and resolution than the chi-square metric and the chi-
square distance. If the data [yij] are first transformed into
[y′ ij] as follows:

(13)

then the Euclidean distance (Eq. 4) between row vectors
of transformed data is identical to the Hellinger distance
between the original row vectors of species abundances.

The transformations described in this section form a
set in the sense that the corresponding distances have all
been recommended for analysis of community composi-
tion data and can all be obtained by transforming the
species abundance data followed by computation of
Euclidean distances between the rows of transformed
data. Other coefficients, described for instance in
Legendre and Legendre (1998), that are appropriate for
community composition analysis cannot be obtained us-
ing simple transformations of the species abundance data.

Example

To illustrate the differences among ordination methods,
an artificial ecological gradient was created by generat-
ing abundances for nine species at 19 sites along a tran-
sect (Fig. 3a). Species 2 to 4, represented by 36 individu-
als each, replace each other along the gradient. Species 1
and 5 have the same kind of distribution and appear at
the ends of the transect. Rare species 6–9 occur in nar-
row ranges of conditions along the gradient; they are
represented by 2–5 individuals.

Distance functions that are suitable for the analysis of
community composition data should, minimally, be able
to produce reasonable reconstructions of such a simple
gradient. This can be assessed by looking either at the
distance matrices themselves (Fig. 3) or at the biplots
(Fig. 4).

When examining distance matrices, one expects dis-
tances to increase monotonically as sites get further
apart, until a maximum is reached for sites that have no
species in common. This can be displayed using graphs
of the computed ecological distances (ordinate) against
the true geographic distances along the transect (abscis-
sa). A model of the relationship can be drawn by joining
the mean ecological distances computed for each geo-
graphic distance. If sampling has taken place on a geo-
graphic surface instead of a transect, the geographic dis-
tances will not fall into a small number of discrete dis-
tances; a smooth function can be drawn using moving
averages, splines, or LOWESS smoothing. We call this
type of graph a diastemogram, from the Greek
διαστεµα (diastema) distance, and γραµµα (gramma)
drawing.

In Fig. 3, the diastemogram function is monotonically
increasing for the chord, chi-square, Hellinger and Bray-
Curtis distances, as sites get farther away along the gra-
dient. Even though the Bray-Curtis distance cannot be
obtained using one of the transformations of the previous
section, it has been included in Fig. 3 for comparison
and reference because of its wide use in community
ecology. The diastemogram function is not monotonic
for the Euclidean distance and the distance between spe-
cies profiles. On the other hand, the coefficient of deter-
mination (R2) measures how much of the variance of the
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ecological distance matrix is explained by the diastemo-
gram function; the value of R2 is low for the Euclidean
distance and the distance between species profiles. These
are indications that these two distances should not be
used to represent at least this particular ecological gradi-
ent. Note, however, that PCA based on species profiles
can be interpreted in terms of alpha and beta diversity
(ter Braak 1983).

In our example, R2 is highest for the Hellinger dis-
tance, followed by the Bray-Curtis and chord distances;
the chi-square distance, which does not reach an asymp-
tote, comes last by that criterion. The diastemogram
function is monotonic for these three distances. So, the
best choices for this example seem to be the Hellinger
and chord distances, for which ordinations can be ob-
tained through the simple transformations described in
the previous section followed by PCA or RDA (Fig. 1b,
d), or the Bray-Curtis distance for which ordination dia-
grams can be obtained by PCoA; biplots of species and
sites are more difficult to obtain, however, in that case.

Another criterion for the comparison of distance mea-
sures is the importance given to rare species in the analy-
sis. If rare species are well sampled and truly rare, they

may be used as indicators of the conditions that may ex-
ist at some sites only. In that case, they should receive
high weight, as they do in CA and, to a lesser extent, in
PCA after the chi-square transformation (Table 2). In
contrast, when rare species are observed sporadically at
some sites but, as the result of “sampling error”, not at
others where they are also present, giving them high
weight in the analysis is unwise. This phenomenon is ex-
acerbated in environments where sampling is conducted
blindly – for example, in aquatic and soil ecology. Co-
efficients such as the Euclidean, chord, species profile or
Hellinger distances do not give high weights to the rare
species (Table 2).

The combined effect of the various types of transfor-
mation and the most commonly used ordination methods
was assessed by carrying out ordination of the data, first
by PCA and CA, then by PCA after transforming the
data as described above. We observe the following:

● After PCA of the raw data (Fig. 4a), axis 1 displays
the gradient with strong inward folding of the sites at
the ends of the gradient (horseshoe effect). Because
the Euclidean distance function considers double ze-
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Fig. 3a–g Analysis of artificial
gradient data. a The gradient
comprises 19 sites (numbers
along abscissa) and nine spe-
cies (different symbols).
b–g Diastemograms comparing
true geographic distances (ab-
scissa) to the computed ecolog-
ical distances among sites
(ordinate). The construction
and interpretation of these
graphs is described in the text
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Fig. 4a–g Ordination of artificial gradient data from Fig. 3a. Per-
centage of variance in the data explained by ordination axes I and
II: 69% (a), 49% (b), 50% (c), 67% (d), 69% (e), 71% (f), 59%
(g). Dots, numbered 1–19, represent the sampling sites; they are
connected to materialize the gradient. Species are represented by
lines. a PCA, correlation biplot. b CA, species at the centroids of
the sites in the biplot (CA scaling type 2). c–f PCA of transformed
data (as specified in each panel), correlation biplots; these biplots
preserve the correlations among species but may expand or other-
wise distort the distances among sites. d–f The lengths of the spe-
cies lines have been multiplied by 3 for clarity. g PCoA of a Bray-
Curtis distance matrix with superimposed species scores; see text,
Eq. 14. The lengths of the species lines have been divided by 25

Table 2 Fraction of the total variance occupied by each species,
either for the raw species data from Fig. 3a (in the case of PCA
and CA), or after the stated transformation (tr.) of the data. Each

row sums to 1. The variance of a species vector measures its rela-
tive importance in the analysis. Species (Sp.) 6–9 are the rare spe-
cies

Sp. 1 Sp. 2 Sp. 3 Sp. 4 Sp. 5 Sp. 6 Sp. 7 Sp. 8 Sp. 9

PCA (original data) 0.1070 0.2434 0.2434 0.2434 0.1070 0.0032 0.0081 0.0164 0.0281
CA (original data)a 0.1060 0.0355 0.0349 0.0344 0.1037 0.1725 0.1725 0.1725 0.1679
Chord tr. (Eq. 3) 0.1248 0.2303 0.2245 0.2192 0.1208 0.0065 0.0148 0.0249 0.0343
Chi-square tr. (Eq. 9) 0.1686 0.1410 0.1393 0.1382 0.1644 0.0428 0.0584 0.0700 0.0773
Profile tr. (Eq. 11) 0.1143 0.2458 0.2427 0.2409 0.1114 0.0041 0.0085 0.0136 0.0187
Hellinger tr. (Eq. 13) 0.1216 0.2161 0.2126 0.2100 0.1166 0.0206 0.0284 0.0346 0.0395

a ter Braak and Smilauer (1998, Eq. 6.36)



ros as an indication of similarity, PCA brings together
sites from the two ends of the gradient that have no
species in common. PCA after the transformation into
species profiles (Eq. 11) produces similar results
(Fig. 4e). The inadequacy of ordinations displaying
strong horseshoes has been discussed in the ecologi-
cal literature since Goodall (1954).

● CA displays the gradient correctly along axis 1
(Fig. 4b); so does PCA on data transformed by Eq. 9,
where the ordination preserves the chi-square distance
among sites (Fig. 4c); Eq. 7 leads to similar results
(not shown). The small differences in the ordination of
sites between Figs. 4b and c is due to the fact that CA
does not define inertia in the same way and, so, does
not apportion it among axes in the same way as PCA.

● PCAs on data transformed using Eqs. 3 (chord trans-
formation; Fig. 4d) and 13 (Hellinger transformation;
Fig. 4f) produce good representations of the gradient
along axis 1, with some inward folding of three sites
at both ends of the transect.

● PCoA of a Bray-Curtis distance matrix is shown in
Fig. 4g for comparison. Linear correlations were com-
puted between the original species vectors and the
first two principal coordinates. The correlations were
weighted as follows to obtain the species scores for
the biplot:

(14)

where rjk is the correlation between species j and site
score vector k, sj is the standard deviation of species j,
and sk is the standard deviation of site score vector k. The
term sk adjusts the species scores to the scaling used in
any particular analysis: the variance of site score vector k
is λk in PCoA and in PCA distance biplots (λk=eigen-
value), whereas it is 1 in PCA correlation biplots.

For the present example, the ordinations of sites ob-
tained for the chord and Hellinger transformations have
inward folding of three sites at both ends of the transect
(horseshoe effect); the horseshoe is not stronger than in
the ordination obtained using the Bray-Curtis distance
(Fig. 4). The horseshoe effect is much stronger in the
case of the Euclidean distance and the species profile
transformation. CA as well as PCA after chi-square dis-
tance transformation produced no horseshoe effect in
this example. Noticeably, the fraction of variance of the
species data accounted for by the first two ordination axes
is much lower in CA and in the PCA following chi-
square distance transformation (49–50%) than in the other
PCAs (67–71%). The Bray-Curtis PCoA ordination is in-
termediate in that respect (57%).

In the biplots, where only the first two axes were
used, all methods based upon PCA gave a fair represen-
tation of the relative numerical importance of the rare
species. This included the PCA after chi-square distance
transformation of the data: even though the rare species
have high weights in the analysis (higher variance in
Table 2 than in the other PCA results), they only load
heavily on the lesser ordination axes. In CA, where the
rare species have high weights (Table 2), the importance

of a species for an ordination subspace is given, e.g. in
the program Canoco, by the “cumulative fit per species
as fraction of variance of species”. Here again, the rare
species only load heavily on the last ordination axes.
Fig. 4b (CA) shows the species at the centroids of the
sites where they are present; compare Figs. 3a and 4b.
The lengths of the lines joining the species to the origin
are not a measure of their importance in the analysis; in
CA biplots, species scores are slopes with respect to the
axes (ter Braak and Smilauer 1998, Eq. 6.17).

Discussion

The transformations described above are precursors of
distances that have all been described as appropriate for
community composition data. This is not to say that these
five are the only appropriate distances for species abun-
dance data; see for example Faith et al. (1987) or Legendre
and Legendre (1998) for reviews of appropriate coeffi-
cients. These distances, however, can be obtained through
transformations that allow users to retain the identity of
the individual species in biplots. Prior to computing these
transformations, any of the standardizations investigated
by Faith et al. (1987) may also be used.

Theoretical considerations

The distance functions that can be obtained by transfor-
mation of the species data followed by calculation of
Euclidean distances have some interesting mathematical
properties:

1. All distance functions pertaining to this group are
Euclidean, meaning that the distances among objects
that they produce can be entirely represented in
Euclidean space. A representation is Euclidean when
PCoA of the distance matrix does not produce nega-
tive eigenvalues. These concepts are explained, for
example, by Legendre and Legendre (1998).

2. The distances corresponding to the transformations
described above can be computed on presence-
absence species data. Hence the transformations can
also be applied to this type of data.

3. Coefficients that are non-Euclidean cannot be ob-
tained through transformation of the data followed by
calculation of Euclidean distances. If it were possible
to do so, the resulting distances would be Euclidean,
while they are not. In particular, distances which are
one-complements of similarity coefficients for binary
(0–1) data, such as the simple matching, Jaccard or
Sørensen coefficients, cannot be obtained through
such transformations since none of them are Euclidean
(Gower and Legendre 1986; Legendre and Legendre
1998, Table 7.2); Sørensen’s coefficient is not even a
metric. The widely used Bray-Curtis coefficient for
community data, which ranked among the best of the
coefficients studied by Faith et al. (1987), cannot be
obtained through such a transformation because it is
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neither Euclidean nor metric; likewise for the NESS
similarity coefficient of Grassle and Smith (1976). To
use these otherwise excellent coefficients in con-
strained ordination, one should use either the db-RDA
approach of Legendre and Anderson (1999) or the al-
ternative computation procedure proposed by McArdle
and Anderson (2001).

4. The coefficients that can be obtained by data transfor-
mation are those that can be expressed as an equation
where each value yij is weighted by some function of
the values in the same row and/or column (e.g. the
sum, or the sum of squares, of the values). The sum of
all values y++ may also be included in the transforma-
tion. As a result, these coefficients only compare spe-
cies profiles, normalized in various ways. To obtain
distances that preserve total abundances at the sites,
instead of normalized profiles, one has to use the co-
efficient of Bray-Curtis or that of Kulczynski; see
Faith et al. (1987) or Legendre and Legendre (1998)
for details.

Practical considerations

For the analysis of community gradients, it does not mat-
ter that an analysis gives high weights to the rare species
when the end-product is simply a reduced-space ordina-
tion diagram. In CA or CCA, and in PCA or RDA based
upon the chi-square metric (Eq. 7) or the chi-square dis-
tance transformation (Eq. 9), the rarest species are well
fitted by the axes with the smallest eigenvalues. The
contributions of these species to the first few axes, used
for reduced-space ordination, are small. The weights giv-
en to rare species do matter, however, when the end-
product is a test of significance of the relationship be-
tween species composition and a set of explanatory vari-
ables, or a test of factors in a multiple analysis-of-vari-
ance model following the db-RDA approach of Legendre
and Anderson (1999). CCA, or the chi-square distance
transformation followed by RDA, should not be used un-
less one specifically wants to give high weight to the
rare species that may indicate the presence of particular
environmental conditions.

The chord and Hellinger transformations are appro-
priate alternatives giving low weights to rare species. In
our example, the diastemogram functions for these two
transformations showed that the resulting distances were
monotonically related to the geographic distances along
the gradient, as in the case of the Bray-Curtis coefficient;
they reached an asymptote for sites that had no species
in common; they produced little horseshoe effect in ordi-
nations; and they allowed the representation of species
and sites in biplots.

For simple ordination analysis, the difference between
CA and PCA after the chi-square distance transformation
is small. With appropriate scalings of the species and site
scores, the same distance is preserved in the two forms
of analysis, but the eigenvalues may differ slightly.
There is a more important difference in canonical ordina-

tion, however: the multiple regressions of the species on
the set of explanatory variables are done with weights in
CCA; this is not the case in RDA. The weights in CCA
are given by a diagonal matrix containing the square
roots of the row sums of the species data table. This
means that a site where many individuals have been ob-
served contributes more to the regression than a site with
few individuals. CCA should only be used when the sites
have approximately the same number of individuals, or
when one explicitly wants to give high weight to the
richest sites. This problem of CCA was one of our incen-
tives for looking for alternative methods for canonical
ordination of community composition data. RDA based
upon the transformations proposed in this paper (includ-
ing the chi-square metric or distance transformations)
offers an alternative solution.

PCA of raw data, which preserves the Euclidean dis-
tance among sites in full-dimensional space, is inappro-
priate for species composition data. PCA of the species
profiles allows a quick view of both alpha diversity (as
Simpson’s diversity) and beta diversity (at the cost of
severe distortion at the ends of long gradients).

Applications

Here are some cases where the proposed data transfor-
mations may be useful for the analysis of species abun-
dance tables, or other types of frequency data:

● In unconstrained or canonical ordination, when one
does not wish to use the chi-square distance preserved
by CA and CCA because of the differential weighting
of rare species.

● In canonical ordination, when one does not wish to
use the CCA weighting system for sites.

● When RDA or CCA is used to depict biotic control
through top-down or bottom-up interactions (Lindeman
1942; Southwood 1987). In such studies, the analysis
of a species matrix Y is constrained using another spe-
cies matrix X representing predators or prey. The spe-
cies data in X need to be transformed in such a way
that the Euclidean distances among rows of X corre-
spond to meaningful distances in species space, be-
fore X is used in a linear model; the transformations
proposed in this paper can be used to do this. See
Pinel-Alloul et al. (1995) for an example.

● The transformations described in this paper offer new
ways of partitioning sites described by species abun-
dance data, i.e. dividing them into groups. One com-
monly used partitioning method is K-means, which is
a Euclidean method minimizing a least-squares loss
function. To preserve a distance function which is
appropriate for community composition data, instead
of the Euclidean distance which is inappropriate
(Table 1), one can, prior to K-means, transform the
species abundances using Eqs. 3, 7, 9, 11 or 13.

Theoretical criteria are not known at the moment that
would allow one to select the best distance function (or
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data transformation) for any specific situation. In canoni-
cal analysis, one may empirically select the transforma-
tion which leads to the highest fraction of explained vari-
ation. Computer programs to carry out these transforma-
tions are available on the WWW sites http://www.fas.
umontreal.ca/biol/legendre/ (Fortran source code and
compiled versions) and http://www.es.umb.edu/edgwebp.
htm (Matlab code).
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Fig. 2 (alternative).  Species abundance paradox data, modified from Orlóci (1978). The paradox
is that the Euclidean distance between sites 1 and 2, which have no species in common, is smaller
than that between sites 1 and 3 which share species 2 and 3; this example shows that the
Euclidean distance is not appropriate for species abundance data. With the other coefficients in
the Table, the distance between sites 1 and 2 is larger than that between sites 1 and 3; furthermore,
the distance between sites 1 and 2 is the same as between sites 2 and 3, or very nearly so.

Species abundance paradox data ⇒
(3 sites, 3 species)

DEuclidean x1 x2,( ) y1 j y2 j–( ) 2

j 1=

p

∑=

Dchord x1 x2,( )
y1 j

y1 j
2

j 1=

p

∑
----------------------

y2 j

y2 j
2

j 1=

p

∑
----------------------–

 
 
 
 
 
 
  2

j 1=

p

∑=

D
χ2

metric
x1 x2,( ) 1

y+ j
--------

y1 j

y1+
--------

y2 j

y2+
--------–

 
 
  2

j 1=

p

∑=

D
χ2

distance
x1 x2,( ) 1

y+ j y++⁄--------------------
y1 j

y1+
--------

y2 j

y2+
--------–

 
 
  2

j 1=

p

∑=

Dspecies profiles x1 x2,( )
y1 j

y1+
--------

y2 j

y2+
--------–

 
 
  2

j 1=

p

∑=

DHellinger x1 x2,( )
y1 j
y1+
--------

y2 j
y2+
--------–

2

j 1=

p

∑=

Species 1 Species 2 Species 3

Site 1 0 1 1

Site 2 1 0 0

Site 3 0 4 8

D
0.0000 1.7321 7.6158
1.7321 0.0000 9.0000

7.6158 9.0000 0.0000

=

D
0.0000 1.4142 0.3204
1.4142 0.0000 1.4142

0.3204 1.4142 0.0000

=

D
0.0000 1.0382 0.0930
1.0382 0.0000 1.0352

0.0930 1.0352 0.0000

=

D
0.0000 4.0208 0.3600
4.0208 0.0000 4.0092

0.3600 4.0092 0.0000

=

D
0.0000 1.2247 0.2357
1.2247 0.0000 1.2472

0.2357 1.2472 0.0000

=

D
0.0000 1.4142 0.1697
1.4142 0.0000 1.4142

0.1697 1.4142 0.0000

=

y'ij
yij

yi+
-------=

y'ij
yij

yi+
-------=

y'ij
yij

yij
2

j 1=

p

∑
---------------------=

y'ij
yij

yi+ y+ j

--------------------=

y'ij y++

yij

yi+ y+ j

--------------------=

Transformations
⇓


