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In studies of spatial or temporal beta diversity, community composition data, often con-
taining many zeros, must be transformed in some way before they are analysed by multi-
variate methods of data analysis. Data are transformed to reduce the skewness of species 
distributions and make dissimilarities double-zero asymmetrical. Criteria have recently 
been proposed to determine which dissimilarity functions (or the corresponding data 
transformations) can be used for beta diversity assessment. The chord transformation is 
often used as the preliminary transformation for frequency data. When the Euclidean 
distance is computed on chord-transformed data, a chord dissimilarity matrix D is pro-
duced, which obeys the proposed criteria. The Hellinger transformation, i.e. the chord 
transformation applied to square-root transformed frequencies, is also often used with 
community composition data prior to multivariate analyses; it leads to the Hellinger 
dissimilarity, which is another widely used D function in beta diversity studies. Among 
the data transformations often used in simple or multivariate data analysis, the Box–
Cox method provides a useful series of transformations to make data distributions more 
symmetrical, where exponent 1 is the absence of a transformation, exponent 0.5 is the 
square-root, exponent 0.25 is the fourth-root, and the log transformation is the limit of 
the Box–Cox function corresponding to exponent 0. Combining the two previous ideas, 
this paper proposes to combine any transformation of the Box–Cox family with expo-
nent in the [0,1] range with the chord transformation. In particular, one can compute 
the loge(y + 1) transformation of a community composition (or other frequency) data 
table and follow with a chord transformation. A D matrix can be computed from the 
doubly-transformed data. The transformations and D functions in that family inherit the 
properties of the chord dissimilarity, and this ensures that they all follow the necessary 
criteria for beta diversity assessment that have recently been proposed.

Keywords: Box–Cox-chord family, double-zero asymmetrical coefficients, skewness 
reduction

Introduction

Before analysis by linear methods such as PCA, RDA and k-means clustering, 
community composition data, which often contain lots of zeros, should be transformed 
to satisfy two objectives. The first is to reduce the skewness of the data distributions. 
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The second objective is to make the dissimilarity, preserved 
during the analysis, double-zero asymmetrical. These two 
conditions are explained in the first two sections of this paper.

Satisfying these two conditions can be achieved by a 
family of transformations that we are proposing to call the 
Box–Cox-chord family, which includes some of the transfor-
mations widely used by ecologists. These transformations are 
the first step before computing dissimilarity indices. While 
investigating this family of transformations, a new approach 
emerged, the log-chord transformation, which fills a gap in 
the array of transformations that ecologists can use for the 
analysis of community data.

Log-chord transformed data can be used to compute a 
new dissimilarity function, the log-chord D coefficient. It 
combines the log transformation, which belongs to the Box–
Cox family, and the chord distance. The interest of this new 
D index for ecological analysis will be discussed.

Skewness reduction

Community composition data are notorious for their highly 
skewed distributions. Artificial data with lognormal distribu-
tions, rounded to integers, have long been used to represent 
community composition data in simulation studies (Gauch 
and Whittaker 1972) because their skewness is comparable 
to that often encountered in real community data (Preston 
1948). This is the reason why real community data are often 
log-transformed before analysis, especially when using lin-
ear models such as principal component analysis (PCA) and 
canonical redundancy analysis (RDA). Reducing data skew-
ness helps disperse clouds of points in ordination and other 
methods of multivariate analysis, thus facilitating visualiza-
tion and interpretation.

Not all ecological data are as strongly skewed as lognormal 
data, but for data distributions that are increasingly skewed to 
the right, the Box–Cox method (Box and Cox 1964) proposes 
a continuum of transformations that goes from exponent 
1 (no transformation) to 0.5 (square root) to 0.25 (fourth 
root) to 0 (log transformation). The complete equation of  
the Box–Cox transformation is: f y y, /λ λλ( ) = −( )1 ; the 
limit of this equation as λ approaches 0 is loge(y) (Box and 
Cox 1964).

Double-zero asymmetrical D coefficients

Ecologists have long known that untransformed (site  species) 
community composition data should not be analysed using 
the Euclidean distance, or through methods of multivariate 
analysis that preserve the Euclidean distance, such as prin-
cipal component analysis and redundancy analysis, where 
calculations are carried out in Euclidean space. This is the 
case, for example, with k-means clustering, where the sums 
of squared deviations from the group centroids are com-
puted using Euclidean distances. Clear demonstrations of the 
difficulties encountered when using the Euclidean distance, 
or methods that preserve it, for the analysis of community 
composition data have been given by Orlóci (1978), Legendre 

and Gallagher (2001) and Legendre and Legendre (2012). 
These authors based their demonstrations on the fact that the 
Euclidean distance was not a double-zero asymmetrical coef-
ficient, which led to contradictory results and aberrant dis-
tance matrices when applied to real or simulated community 
composition data sets. For example, the Euclidean distance 
may produce D values indicating that sites with no species 
in common are closer (i.e. less dissimilar) to each other than 
sites that share most or all of their species.

On the contrary, in coefficients that have the property of 
double-zero asymmetry, the dissimilarity D does not change 
with the addition of double-zeros to the comparison of two 
sites, but it decreases when double-X are added, where X 
is any value of equal abundances other than zero. This is a 
formalization of the idea, known for a long time by ecolo-
gists, that the absence of a species from two sites cannot be 
interpreted as an indication of similarity between the sites, 
whereas equal abundances for a species that is present at two 
sites should make the dissimilarity smaller.

The Euclidean distance is also missing other proper-
ties that are necessary for sound assessment of beta diver-
sity. Besides the double-zero asymmetry property described 
above, the missing necessary properties are the following 
(Legendre and De Cáceres 2013): 1) pairs of sites without 
species in common should have the largest D value; 2) spe-
cies replication invariance, i.e. if the community composi-
tion data are repeated in two or several copies, the D matrix 
should be identical to the original D matrix; 3) invariance 
to measurement units; for example, the D matrix should be 
the same if biomass data are expressed in g or in kg; 4) a 
D function should have a fixed upper bound, Dmax. The 14 
properties investigated by Legendre and De Cáceres (2013) 
over 16 dissimilarity coefficients are described in Appendix 3 
of their paper.

Examples of double-zero asymmetrical coefficients, listed 
in Legendre and De Cáceres (2013), are the chord (especially 
important in this paper, see next section), Hellinger, per-
centage difference (aka Bray–Curtis), Canberra, Whittaker, 
divergence, Wishart, and Kulczynski dissimilarity coeffi-
cients, plus their binary counterparts, which are the Jaccard, 
Sørensen and Ochiai dissimilarity indices. Legendre (2014) 
also found that the quantitative Ružička dissimilarity, whose 
binary form is the Jaccard D coefficient, had this property. 
The double-zero asymmetry property depends on the pres-
ence of a denominator in the formula of a coefficient, which 
induces an upper bound for the D value and ensures that 
double-zeros (that do not change the denominator) and dou-
ble-X values (that do) are treated differently. The Euclidean 
and Manhattan distance formulas, for example, have no 
denominator; for that reason, they do not have fixed upper 
bounds and they are double-zero symmetrical.

The Box–Cox-chord family of transformations

The chord distance has been known for a long time. The 
chord of a circle was described in Book III of Euclid’s 
Elements (in ancient Greek: Στοιχεῖα, Stoicheia) about 300 
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BC. The chord distance was used by Hipparchus of Nicaea 
(190 to 120 BC) and, later, by Claudius Ptolemy (100 to 
170 AD) to compute the first trigonometric tables, which 
were applied by these astronomers to calculate the motion 
of celestial bodies. The chord distance was first applied to 
community composition data by Orlóci (1967).

The same year, Cavalli-Sforza and Edwards (1967) pro-
posed a variant of the chord distance for the analysis of 
genetic data, where the relative frequencies are square-rooted 
before being used in the chord distance formula. The result 
is not the chord distance of Orlóci (1967) but the Hellinger 
distance, often used by ecologists, as shown below. To our 
knowledge, this difference has never been mentioned in the 
literature. During the past 50 yr, ecologists and geneticists 
may have thought that the chord distances they were using 
were the same, but that was not the case. In the version of 
the chord distance described in their paper, Cavalli-Sforza 
and Edwards (1967) further divide the computed distances 
by π/2. This transformation facilitates interpretation of the 
distances in terms of gene substitution.

The Box–Cox family of transformations gave us the idea 
to compute the chord distance on community composition 
data that have been transformed with various exponents of 
the Box–Cox family. Here is the reasoning.

1) Untransformed community data are the same as data 
transformed with exponent 1. The chord distance computed 
on untransformed data is thus equivalent to computing that 
distance on data transformed with exponent 1.

2) The Hellinger distance is the chord distance applied 
to square-root transformed data, where the square root is 
exponent 0.5 in the Box–Cox family of transformations. The 
demonstration is the following: 1) the chord transformation 

formula is y y yij ij ijj

p
′

=
= ∑/ 2

1 ; 2) let us replace yij in the for-

mula by square-rooted data z yij ij= ; 3) the chord trans-

formation formula becomes y z zij ij ijj

p″
=

= ∑/ 2
1

; hence (4), 

y y y y yij ij ijj

p
ij ijj

p″
= =

= =∑ ∑/ /
1 1 , which is the formula 

of the Hellinger transformation. The chord and Hellinger  
dissimilarities are obtained by computing the Euclidean dis-
tance from chord and Hellinger transformed data, respec-
tively. Taking the square root is thus a possibility before 
computing the chord distance. The square root reduces the 
asymmetry of modestly asymmetric data distributions before 
subjecting data to linear methods of analysis.

3) Following this line of reasoning, why not compute the 
chord distance on community composition data transformed 
with any exponent in the [0,1] interval? This paper describes 
the resulting log-chord transformation and distance.

The log-chord transformation and distance

For data that are strongly asymmetrical, the Box–Cox 
family suggests that one could log-transform the data before 

computing the chord distance. The log transformation is the 
limit of the Box–Cox function when the exponent tends 
to 0. The novel idea of the present note is to use a chord 
transformation, or compute the chord distance, after having  
log-transformed the data.

Ecologists often apply the y′ = loge(y + 1) transformation  
to community composition data after adding the constant  
1, because species frequency data contain zeros and 
log(0) = –Infinity. If y = 0, the y′ = loge(y + 1) function returns 
the value y′ = 0. The log base is of no importance as long as 
all data in the matrix are transformed using logarithms with 
the same base. However, when subjecting log(y + 1) trans-
formed data to multivariate linear methods of analysis that 
preserve the Euclidean distance, the analysis implements the 
Euclidean distance, which is an inappropriate dissimilar-
ity for community composition data, as shown in the sec-
tion on Double-zero asymmetrical D coefficients. The main 
problems with this distance are that it does not have an upper 
bound and it is double-zero symmetrical even for loge(y + 1) 
transformed data.

The log-chord distance possesses the 9 necessary prop-
erties described by Legendre and De Cáceres (2013) and 
would thus be appropriate for beta diversity studies. This  
D coefficient combines two objectives: the log transforma-
tion makes the species distributions more symmetric, reduc-
ing the importance of the very abundant species, whereas 
the chord transformation produces a double-zero asym-
metrical D coefficient, which can be used in beta diversity 
studies. This combination represents a fully justified use of 
log-transformed data in community analysis. In the com-
putation of the log-chord distance matrix, since the chord 
distance is computed after the log transformation, the D 
matrix inherits all properties of the chord distance (Legendre 
and De Cáceres 2013, Table 2) that these authors considered 
important for beta diversity studies.

When applied to presence–absence data, the chord, Hellinger 
and log-chord distances produce the Ochiai dissimilarity, or 
more precisely: D D D SHellinger log chord Ochiai= = = −−chord 2 1  
where SOchiai is the Ochiai similarity index (Legendre and 
Legendre 2012). Transformation of presence–absence data 
using any exponent, followed by a chord transformation and 
calculation of the Euclidean distance, produces the same 
result. All these dissimilarities have a maximum value of 2 , 
reached when two sites have completely different community 
compositions. By opposition, for untransformed presence–
absence community data, the Euclidean distance produces 

p Simple matching similarity1−( )  where p is the number of 
species; it does not produce the Ochiai dissimilarity.

There were, up to now, four known ecological dissimi-
larities that could be computed in two steps, where the first 
step is a transformation of the data and the second is the 
calculation of the Euclidean distance. These transforma-
tions have been described by Legendre and Gallagher (2001) 
and are implemented in computer software, including the 
decostand() function of the ‘vegan’ package in R. The chord 
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transformation is one of them. It consists of dividing each 
frequency value in a row (site) vector by the norm, or length, 
of that vector. The Hellinger transformation is another; it 
is obtained by dividing each value in a row vector by the 
row sum, then taking the square root of the relative value. 
As shown above, the Hellinger transformation can also be 
obtained by taking the square root of the raw abundance data 
(y0.5) and applying the chord transformation to the square-
rooted values. The last two dissimilarities in that group are 
based upon the profile and chi-square transformations; they 
do not produce distances that are fully appropriate for beta 
diversity studies (Legendre and De Cáceres 2013, Table 2) 
and will not be discussed further here.

The log-chord transformation is obtained as follows:
1)	 Log-transform the raw abundance data, as explained in 

the previous section:

y yij ij
′ +( ) = log 1

2)	 Compute a chord transformation of the log-transformed 
data y′

ij:

log-chord transformation: y y yij ij ijj

p″ ′ ′
=

= ∑/ ( )2
1

This double transformation is computed by function box.
cox.chord(); see the Discussion section below, as well as 
Supplementary material Appendix 1 (example 1) and 
Supplementary material Appendix 4. One can stop at this 
point and directly use the transformed data y′′

ij as input into 
linear methods of analysis, such as principal component 
analysis (PCA), redundancy analysis (RDA) or k-means clus-
tering, that preserve the Euclidean distance. The results of 
these analyses will preserve the log-chord distance among 
sites instead of the Euclidean distance. Note that the trans-
formed data do not vary with the logarithm base because  
log-transformed values y′

ij are found in both the numerator 
and the denominator.

Else, if a dissimilarity matrix is needed, for example for 
clustering, one can compute the Euclidean distance from the 
log-chord-transformed data to obtain a matrix of log-chord 
dissimilarities. See Supplementary material Appendix 1, 
examples 1, 2 and 3.

Or else, in studies of beta diversity, one can pass the 
untransformed abundance data to the beta.div() function of 
the ‘adespatial’ package and run it with method = ‘log.chord’ 
to compute total beta diversity (BDTotal), which is then the 
variance of the transformed multivariate input data.

The chord distance, and hence also the new log-chord 
distance, are distances in the strict sense, i.e. metric dissimilar-
ities, since these D indices have the four properties of a metric: 
minimum of 0 (if x1 = x2, then D(x1,x2) = 0), positiveness (if 
x1  x2, then D(x1,x2)  0), symmetry (D(x1,x2) = D(x2,x1)), 
and triangle inequality (D(x1,x2) + D(x2,x3)  D(x1,x3)) for 
any three objects x1, x2 and x3. However, several of the mea-
sures used in ecology, including those that are appropriate 
for beta diversity studies, are not metric, so we use the more 

general term dissimilarity to refer to measures of resemblance 
between site vectors.

Discussion: the Box–Cox-chord transformation

1) Why would we need another dissimilarity function? A 
log transformation reduces the asymmetry of the species dis-
tributions, but it does not produce a distance that is dou-
ble-zero asymmetrical. We need to go one step further and 
compute a chord transformation of the log-transformed data, 
as described in the previous section, to obtain a double-zero 
asymmetrical D matrix, which is one of the important condi-
tions to carry out beta diversity assessment; see Legendre and 
De Cáceres (2013). The log-chord transformation represents 
a correct way of using the log transformation in beta diversity 
analysis of community composition data.

2) Different exponents of the Box–Cox series can be used 
before the chord transformation to produce different forms of 
transformed data and dissimilarity matrices that are all appro-
priate for beta diversity assessment. We call this combination 
the Box–Cox-chord transformation. Any exponent in the 
[0,1] interval can be used. The regular chord transformation 
corresponds to Box–Cox exponent 1 and leaves the frequency 
distributions of the data unchanged. The Hellinger transfor-
mation includes a square-root transformation of the data and 
corresponds to Box–Cox exponent 0.5. The double square 
root (exponent 0.25) is sometimes used by ecologists. The 
log-chord transformation described in this paper corresponds 
to Box–Cox exponent λ = 0. The log transformation offers 
the possibility of normalizing more strongly asymmetrical 
frequency distributions than the square-root or fourth-root 
transformations.

We wrote a function capable of implementing a transfor-
mation with any exponent, followed by chord transforma-
tion of the data. That function, called box.cox.chord(), is 
available as a text file in Supplementary material Appendix 4. 
Examples are presented in Supplementary material Appendix 
1. Ecologists usually prefer using exponents in the series {0, 
0.25, 0.5, 1} because these correspond to conventional ways 
of transforming community composition data with various 
degrees of asymmetry. We also modified functions dist.ldc() 
and beta.div() of ‘adespatial’ and included the log-chord 
transformation among the available methods. The functions 
can now compute the chord, Hellinger and log-chord dis-
tances, which correspond, respectively, to exponents 1, 0.5, 
and 0 of the Box–Cox transformation followed by computa-
tion of the chord transformation.

3) Users may wish to select the exponent that produces 
the largest probability of obtaining the (untransformed 
or transformed) observed data as a sample from a statisti-
cal population with multinormal distribution. We wrote 
another R function that transforms the data using a selec-
tion of exponents (chosen by the user), then carries out 
Dagnelie’s (1975) test of multinormality. The function, called 
BCD(), is presented as a text file (Supplementary material 
Appendix 5). Dagnelie’s test of multinormality is described 

http://box.cox.chord
http://box.cox.chord
http://beta.div
http://log.chord
http://box.cox.chord
http://dist.ldc
http://beta.div
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in Supplementary material Appendix 3. That Appendix also 
reports the results of a simulation study indicating when the 
test has correct rates of type I error.

4) The Dagnelie test of multivariate normality requires 
that n  (rank + 1) where n is the number of observations 
and rank is the rank of the column-centred data matrix, or 
equivalently the rank of its covariance matrix. The rank of a 
covariance matrix is rank = min((n – 1), p) unless collinearity 
among the p variables further reduces the rank. When n is 
smaller than (rank + 2), the Dagnelie test cannot be computed 
because all Mahalanobis distances to the multivariate cen-
troid are equal. In that case, one could determine empirically 
which transformation of the community composition data 
produces the highest adjusted R-square, or the lowest AICc, 
in redundancy analysis (RDA) of the species data Y against 
explanatory (e.g. environmental) variables X of interest. The 
selected exponent could be used to transform community 
data prior to linear analyses such as RDA. This approach does 
not aim at normalizing the community data but at optimiz-
ing the linear relationships between the transformed data and 
the explanatory variables.

Supplementary material Appendix 2 presents transfor-
mation results for 7 data sets; six of them are multivariate 
data from the community ecology literature and the 7th is a 
simulated data set. In each case, we transformed the count 
data using exponents from 0 to 1 by steps of 0.1, plus expo-
nent 0.25 which corresponds to the double square root, a 
transformation occasionally found in the ecological litera-
ture. The data raised to each exponent were then chord-
transformed. All these data were submitted to a Dagnelie 
test of multivariate normality to determine which version 
provided the largest probability of obtaining the observed 
data as a sample from a statistical population with multi-
normal distribution: data with exponent transformation 
only or exponent plus chord transformation. Analysis shows 
that different data sets may be best transformed using any 
one of the exponents in the [0,1] range under investigation 
here. Using this strategy will produce data that are closer 
to multivariate normality. This may, in turn, lead to better 
analyses by Euclidean-based linear methods like PCA, RDA 
and k-means clustering.

5) When the community composition data are analysed 
by RDA with explanatory variables, a better approach would 
be to apply in turn various values of the Box–Cox expo-
nent to the community data, compute the RDA, and test 
the normality of the residuals. A computer function could 
be written to carry out these analyses in a loop for a series 

of values of the Box–Cox exponent. One could then select 
the transformation that produces RDA residuals closest to 
normality.

Selecting the best normalizing transformation in a linear 
modelling situation is easy for univariate data, using func-
tion boxcox() of the MASS package in R. That function looks 
for the Box–Cox exponent that maximizes the log-likelihood 
described by Box and Cox (1964), yielding the best transfor-
mation of the model residuals to meet univariate normality. 
That function is only applicable to analyses conduced with 
the linear modelling functions lm() or aov() of R, though. It 
cannot be applied to multivariate data and to RDA.
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Appendix 1 

Example of log-chord transformation of multivariate data 

This Appendix uses an example to describe the transformation of a data matrix into log(y+1) 
followed by the chord transformation. The log-chord transformed data can then be used directly 
as input into linear methods of analysis such as PCA, RDA or k-means partitioning, or used to 
compute a log-chord dissimilarity matrix D. Three calculation methods are presented. 

The example uses a small subset of the mite data (70 site × 35 morpho-species). The 
transformation is computed using the box.cox.chord() function found in the text file 
“box.cox.chord.R” (Appendix 4). The soil mite data, collected by D. Borcard, were first used in 
the paper of Borcard et al. (1992). They have been used as test data in a number of 
methodological papers and are available in the vegan R package. Package adespatial, available 
on CRAN, is required to run examples 2 and 3. 
 
library(vegan) 
data(mite) 
### Select a small data set for the following calculations, so that 
### the resulting D matrix will be small and easy to examine. 
(mite.small <- mite[1:5,1:8]) 
 
### Example 1: transformation using function box.cox.chord() (App. 4) 
### Proof of concept for computation of the log.chord dissimilarity: 
(mite.new.tr <- box.cox.chord(mite.small, bc.exp=0)) 
### 
### Compute the log.chord D matrix using function dist() of {base} 
(mite.log.chord.D <- dist(mite.new.tr)) 
 
### Example 2: compute the log.chord D matrix using dist.ldc 
library(adespatial) 
(mite.log.chord.D.2 <- dist.ldc(mite.small, "log.chord")) 
 
### Example 3: compute the log.chord D matrix in two steps 
### Log-transform the data, then compute 
### the chord dissimilarity matrix with dist.ldc() of adespatial 
tmp <- log(mite.small + 1) 
library(adespatial) 
(mite.log.chord.D.3 <- dist.ldc(tmp, "chord")) 
 
Reference 

Borcard, D., Legendre, P. and Drapeau, P. 1992. Partialling out the spatial component of 
ecological variation. Ecology 73: 1045–1055. 
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Appendix 2 

Examples of search for best Box-Cox transformation 

This Appendix shows examples of Box-Cox transformations, with and without subsequent chord 
transformation, of real and simulated multivariate data matrices, followed by tests of multivariate 
normality. 

1. Mite data (70 × 35), vegan package: best transformations obtained with exponents 0.7 and 0.8. 

2. Mite data, panphytophagous species (70 × 23), vegan package: best transformations obtained 
with exponents 0.6 and 0.8. 

3. Mite data, microphagous species (70 × 12), vegan package: best transformations obtained 
with exponents 0.2 and 0.5. 

4. Spider data (28 × 12) available from http://adn.biol.umontreal.ca/~numericalecology/data/: 
best transformations obtained with exponents 0.2 and 0.1. 

5. Ichtyo data (32 × 9), ade4 package: best transformations obtained with exponents 0.2 and 1.0. 

6. Baran95 data (95 × 33), ade4 package: best transformations obtained with exponent 0.1. 

7. Simulated random lognormal data: best transformations obtained with exponents 0.1 
and log. 

These examples show that different data sets are best transformed using different exponents, 
followed by the chord transformation. Users should preferably choose the combination of 
“exponent plus chord transformation” that yields the most normal data when this is the data set 
that will be analysed by methods of multivariate analysis. 

One may prefer to use the transformation that maximizes the multivariate normality of the data 
before or after the chord transformation. 

The BCD.R function used in these analyses is displayed in Appendix 5. 

Output details of the BCD.R function for the 7 data sets follow. The function output is a table 
showing the Box-Cox exponent in the first column of each row. In columns 2 and 3, one finds the 
Shapiro-Wilk W statistic (BC_W) of the Dagnelie test of multivariate normality and associated p-
value (BC_p-val) after the exponent has been applied to the original data. Columns 4 and 5 show 
the same statistics (BC.chord_W and BC.chord_p-val) after the chord transformation has been 
applied to the Box-Cox transformed data.   

In each table of results, the statistics corresponding to the most normal data sets after Box-Cox 
and Box-Cox+chord transformations are in bold. 
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1. Mite data, full data matrix 
The mite data are available in package vegan 
library(vegan) 
data(mite) 
 
( out1 = BCD(mite, chord=TRUE) ) 
      BC.exp      BC_W   BC_p-val BC.chord_W BC.chord_p-val 
 [1,]   0.00 0.9603061 0.02602953  0.9419801    0.002819179 
 [2,]   0.10 0.9530738 0.01053773  0.9610871    0.028754177 
 [3,]   0.20 0.9583455 0.02030527  0.9569133    0.016960910 
 [4,]   0.25 0.9568211 0.01676630  0.9504914    0.007693903 
 [5,]   0.30 0.9603525 0.02618375  0.9539955    0.011802819 
 [6,]   0.40 0.9682930 0.07296080  0.9553200    0.013904805 
 [7,]   0.50 0.9697667 0.08841214  0.9583125    0.020220975 
 [8,]   0.60 0.9705510 0.09792945  0.9645633    0.044949363 
 [9,]   0.70 0.9731090 0.13657654  0.9712284    0.106965366 <= Best Box-Cox 
[10,]   0.80 0.9727516 0.13039029  0.9745991    0.165558765 <= Best Box-Cox+chord 
[11,]   0.90 0.9695962 0.08646857  0.9741643    0.156542433 
[12,]   1.00 0.9652421 0.04907666  0.9726766    0.129127979 
 
dim(mite) 
[1] 70 35 

 
# Note —  n < 3*p, hence the test is too liberal. If H0 is not rejected in this situation (e.g. when p 
> 0.05), the result is trustworthy; the hypothesis of normality cannot be rejected. 
 
---------- 
 
2. Mite data, 23 panphytophagous species 
The mite data are available in package vegan 
library(vegan) 
data(mite) 

The 23 panphytophagous species are: 
panphyto <- c(2:6,12,13,16:22,24:29,31:33) 
 
( out2 = BCD(mite[,panphyto], chord=TRUE) ) 
      BC.exp      BC_W    BC_p-val BC.chord_W BC.chord_p-val 
 [1,]   0.00 0.9707035 0.099896315  0.9554181     0.01407531 
 [2,]   0.10 0.9509091 0.008092884  0.9677674     0.06813249 
 [3,]   0.20 0.9619885 0.032267774  0.9668447     0.06042394 
 [4,]   0.25 0.9671025 0.062484201  0.9646912     0.04569879 
 [5,]   0.30 0.9669149 0.060978084  0.9613699     0.02981177 
 [6,]   0.40 0.9665992 0.058526060  0.9549857     0.01333983 
 [7,]   0.50 0.9743179 0.159671920  0.9569023     0.01693773 
 [8,]   0.60 0.9790461 0.290016669  0.9610209     0.02851221 <= Best Box-Cox 
 [9,]   0.70 0.9753870 0.183171576  0.9652367     0.04904228 
[10,]   0.80 0.9700347 0.091556520  0.9654409     0.05035754 <= Best Box-Cox+chord 
[11,]   0.90 0.9644316 0.044190770  0.9624732     0.03433710 
[12,]   1.00 0.9567580 0.016634525  0.9582571     0.02008019 
 
dim(mite[,panphyto]) 
[1] 70 23 
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# Note —  n > 3*p: the test has correct type I error. At the 0.05 significance level, if p > 0.05, the 
hypothesis of multivariate normality cannot be rejected. 
 
---------- 
 
3. Mite data, 12 microphagous species 
The mite data are available in package vegan 
library(vegan) 
data(mite) 

The 12 microphagous species are: 
microphyto <- c(1,7:11,14,15,23,30,34,35) 
 
( out3 = BCD(mite[,microphyto], chord=TRUE) ) 
      BC.exp      BC_W     BC_p-val BC.chord_W BC.chord_p-val 
 [1,]   0.00 0.9389853 0.0020038883  0.9525446   0.0098762913 
 [2,]   0.10 0.9694429 0.0847579427  0.9137939   0.0001421749 
 [3,]   0.20 0.9820120 0.4123702927  0.9389190   0.0019889337 <= Best Box-Cox 
 [4,]   0.25 0.9791737 0.2945817873  0.9474531   0.0053454700 
 [5,]   0.30 0.9768387 0.2203113404  0.9535511   0.0111742005 
 [6,]   0.40 0.9542870 0.0122350834  0.9605179   0.0267410108 
 [7,]   0.50 0.9473766 0.0052970920  0.9623839   0.0339459038 <= Best Box-Cox+chord 
 [8,]   0.60 0.9433451 0.0033005076  0.9561124   0.0153456846 
 [9,]   0.70 0.9377345 0.0017407543  0.9554642   0.0141560551 
[10,]   0.80 0.9313931 0.0008663729  0.9558659   0.0148815865 
[11,]   0.90 0.9255321 0.0004650655  0.9538361   0.0115731823 
[12,]   1.00 0.9180240 0.0002159836  0.9489935   0.0064242512 
 
dim(mite[,microphyto]) 
[1] 70 12 

 
# Note —  n > 3*p and < 7.5*p: the test has correct type I error. At the 0.05 significance level, if 
p > 0.05, the hypothesis of multivariate normality cannot be rejected. 
 
---------- 
 
4. Spider data 
Available from http://adn.biol.umontreal.ca/~numericalecology/data/ 
 
( out4 = BCD(spiders, chord=TRUE) ) 
      BC.exp      BC_W    BC_p-val BC.chord_W BC.chord_p-val 
 [1,]   0.00 0.9181606 0.031245851  0.9804109     0.86013321 
 [2,]   0.10 0.9685690 0.542784991  0.9819122     0.89345046 <= Best Box-Cox+chord 
 [3,]   0.20 0.9762135 0.752131082  0.9587561     0.32565132 <= Best Box-Cox 
 [4,]   0.25 0.9715565 0.622891779  0.9544723     0.25610404 
 [5,]   0.30 0.9470945 0.167369454  0.9708013     0.60223169 
 [6,]   0.40 0.9046355 0.014714676  0.9700679     0.58240671 
 [7,]   0.50 0.9265783 0.050572929  0.9470717     0.16714642 
 [8,]   0.60 0.9319738 0.069146153  0.9433082     0.13416276 
 [9,]   0.70 0.9321922 0.070030999  0.9378295     0.09734019 
[10,]   0.80 0.9225437 0.040105550  0.9348596     0.08182024 
[11,]   0.90 0.9084913 0.018187368  0.9314085     0.06690839 
[12,]   1.00 0.8941633 0.008373844  0.9266658     0.05082874 
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dim(spiders) 
[1] 28 12 

 
# Note —  n < 3*p, hence the test is too liberal. If H0 is not rejected in this situation (e.g. when p 
> 0.05), the result is trustworthy; the hypothesis of normality cannot be rejected. 
 
---------- 
 
5. ichtyo data 
The data are available in package ade4 
library(ade4) 
data(ichtyo) 
 
( res.ich = BCD(ichtyo$tab, chord=TRUE) ) 
      BC.exp      BC_W   BC_p-val BC.chord_W BC.chord_p-val 
 [1,]   0.00 0.9772254 0.71584034  0.9663527     0.40528267 
 [2,]   0.10 0.9509547 0.15340171  0.9404767     0.07723569 
 [3,]   0.20 0.9848224 0.92117555  0.9565073     0.21990253 <= Best Box-Cox 
 [4,]   0.25 0.9830138 0.88086210  0.9606957     0.28695288 
 [5,]   0.30 0.9726086 0.57430371  0.9607060     0.28713777 
 [6,]   0.40 0.9700021 0.49945594  0.9586042     0.25144776 
 [7,]   0.50 0.9664837 0.40842375  0.9496523     0.14088281 
 [8,]   0.60 0.9482464 0.12849457  0.9407500     0.07862820 
 [9,]   0.70 0.9300625 0.03931990  0.9438962     0.09661361 
[10,]   0.80 0.9225076 0.02432857  0.9560140     0.21303551 
[11,]   0.90 0.9212837 0.02252885  0.9638683     0.34916082 
[12,]   1.00 0.9228731 0.02489464  0.9655391     0.38617609 <= Best Box-Cox+chord 
 
dim(ichtyo$tab) 
[1] 32  9 

 
# Note —  n > 3*p and < 7.5*p: the test has correct type I error. At the 0.05 significance level, if 
p > 0.05, the hypothesis of multivariate normality cannot be rejected. 
 
---------- 
 
6. baran95 data 
The data are available in package ade4 
library(ade4) 
data(baran95) 
 
( res.baran95 = BCD(baran95$fau, chord=TRUE) ) 
      BC.exp      BC_W   BC_p-val BC.chord_W BC.chord_p-val 
 [1,]   0.00 0.9894593 0.65611464  0.9794748    0.141788600 
 [2,]   0.10 0.9946292 0.97084927  0.9868997    0.468508483 <= Best Box-Cox 
 [3,]   0.20 0.9938864 0.94596086  0.9806581    0.173362783    and Box-Cox+chord 
 [4,]   0.25 0.9936129 0.93448592  0.9779096    0.108437094 
 [5,]   0.30 0.9914625 0.80734280  0.9769826    0.092449482 
 [6,]   0.40 0.9884609 0.57991662  0.9794200    0.140470587 
 [7,]   0.50 0.9879013 0.53860631  0.9858741    0.402931113 
 [8,]   0.60 0.9874182 0.50411127  0.9854637    0.378614164 
 [9,]   0.70 0.9860602 0.41432926  0.9816065    0.203342446 
[10,]   0.80 0.9836253 0.28347171  0.9752519    0.068613607 
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[11,]   0.90 0.9786790 0.12374654  0.9678170    0.019352968 
[12,]   1.00 0.9723297 0.04153992  0.9602194    0.005604097 
 
dim(baran95$fau) 
[1] 95 33 

 
# Note —  n < 3*p, hence the test is slightly too liberal. If H0 is not rejected in this situation (e.g. 
when p > 0.05), the result is trustworthy; the hypothesis of normality cannot be rejected. 
 
---------- 
 
7. Random lognormal species-like data  
Generate a (100×20) matrix of lognormally distributed integers: 
n=100; p=20 
mat2 <- matrix(round(exp(rnorm((n*p),mean=0,sd=2.5))),n,p) 

 
# How many zeros are found in that data matrix? 
length(which(mat2==0))         # How many zeros = 803 
length(which(mat2==0))/(n*p)   # Proportion of zeros = 0.402 
 
( out6 = BCD(mat2, chord=TRUE) ) 
      BC.exp      BC_W     BC_p-val BC.chord_W BC.chord_p-val 
 [1,]   0.00 0.9804151 1.431889e-01  0.9859730   3.723374e-01 <= Best Box-Cox+chord 
 [2,]   0.10 0.9949069 9.726818e-01  0.9836121   2.511896e-01 <= Best Box-Cox 
 [3,]   0.20 0.9805744 1.473243e-01  0.9831265   2.310064e-01 
 [4,]   0.25 0.9774183 8.349209e-02  0.9855276   3.464196e-01 
 [5,]   0.30 0.9686773 1.752362e-02  0.9822390   1.978718e-01 
 [6,]   0.40 0.9460294 4.585089e-04  0.9695589   2.045315e-02 
 [7,]   0.50 0.9264652 3.153650e-05  0.9602401   4.183005e-03 
 [8,]   0.60 0.9063748 2.855237e-06  0.9496614   7.881005e-04 
 [9,]   0.70 0.8867167 3.531224e-07  0.9382393   1.508004e-04 
[10,]   0.80 0.8664618 5.060082e-08  0.9246952   2.519923e-05 
[11,]   0.90 0.8471390 9.310615e-09  0.9058429   2.689940e-06 
[12,]   1.00 0.8286615 2.082671e-09  0.8869547   3.617015e-07 
 
dim(mat2) 
[1] 100  20 

 
# Note —  n > 3*p and < 7.5*p: the test has correct type I error. At the 0.05 significance level, if 
p > 0.05, the hypothesis of multivariate normality cannot be rejected. 
 
========== 
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Appendix 3 

The Dagnelie test of multivariate normality 

 

Dagnelie (1975) proposed an elegant way of testing the multivariate normality of a set of 
multivariate observations. This Appendix describes the method. 

The Dagnelie method is based on the Mahalanobis generalized distance. Generalized distances 
are computed, in multivariate space, between each object and the multivariate mean of all objects. 
The distance between object 𝐲! and the mean point 𝐲 is computed as: 

 𝐷 𝐲! , 𝐲 = 𝐲!.!  𝐒!!𝐲!.!′ eq. 1 

where 𝐲!.!  is row vector i in the matrix of column-centred data and S is the multivariate variance-
covariance matrix. For standardized variables 𝐳!, eq. 1 becomes: 

 𝐷 𝐲! , 𝐲 = 𝐳!  𝐑!!𝐳!′ eq. 2 

where R is the correlation matrix. Dagnelie’s approach is that, for multinormal data, the 
generalized distances should be normally distributed. He suggested to visually examine the 
cumulative frequency distribution and determine if the distribution of distances seemed normal.  
Actually, the generalized distances can be subjected to a Shapiro-Wilk test of normality, whose 
conclusions are applied to the multinormality of the original multivariate data. This is our 
improvement of Dagnelie’s method.  

The Dagnelie test of multinormality requires that n > (rank+1), where n is the number of 
observations and rank is the rank of the column-centred data matrix, or equivalently the rank of 
its covariance matrix. The rank of a covariance matrix is min((n–1), p) unless collinearity among 
the p variables further reduces the rank. When the covariance matrix is not of full rank, its inverse 
can still be computed using generalized inversion through singular value decomposition (SVD). 
However, when n is smaller than (rank+2), the Dagnelie test cannot be computed because all 
Mahalanobis distances to the multivariate centroid are all equal. 

Numerical simulations conducted by one of us (D. Borcard) for type I error, using normal random 
deviates, showed the following:  

• The Dagnelie test of normality, based on the Shapiro-Wilk test of Mahalanobis generalized 
distances, is not meant to be used with univariate data; in simulations conducted with univariate 
data, the type I error rate was higher than the significance level for all values of n. The Shapiro-
Wilk test of univariate normality should be used in that case. 

• The test had correct levels of type I error for values of n between 3p and 7.5p, where n is the 
number of objects and p the number of variables in the data table (simulations with 1 ≤ p ≤ 50).  

• Outside that range of n values, the results were too liberal, meaning that the test rejected too 
often the null hypothesis of normality.  

• For p = 2, the simulations showed the test to be valid for 6 ≤ n ≤ 11 and too liberal outside that 
range of n values.  
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• If H0 is not rejected in a situation where the test is too liberal, the result is trustworthy. 

An R function to carry out this test, dagnelie.test(), is available in package ade4 (Dray et al. 2017) 
on CRAN. An alternative method is the Henze-Zirker test of multinormality, available in function 
hzTest() of the R package MVN (Korkmaz et al. 2014). Numerical simulations conducted by 
D. Borcard showed that the Henze-Zirker test has correct rates of type I error for a large range of 
combinations of number of objects (n) and variables (p). 
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¬
#                                 Appendix 4, R function¬
#¬
# An R function to compute the box.cox.chord transformation.¬
¬
¬
#' Compute the box.cox.chord transformation on quantitative community composition ¬
#' data for any exponent. Usual exponents are larger than or equal to 0.¬
#'¬
#' Arguments --¬
#' @param mat : matrix or data.frame of quantitative non-negative community ¬
#'    composition data (frequencies, biomasses, energy measures, etc.)¬
#' @param bc.exp : Box-Cox exponent to the data before chord transformation. ¬
#'    Usual exponent values are {1, 0.5, 0.25, 0}, where ¬
#'    bc.exp=1: no transformation; ¬
#'    bc.exp=0.5: square-root transformation; ¬
#'    bc.exp=0.25: fourth-root (or double square-root) transformation; ¬
#'    bc.exp=0: log(y+1) transformation (default value). ¬
#'    Default value: bc.exp=0 (log(y+1) transformation).¬
#'¬
#' Value --¬
#' A Box-Cox+chord transformed matrix of the same size as the original data 
matrix.¬
#'¬
#' Author:: Pierre Legendre¬
#' License: GPL (>=2)¬
¬
box.cox.chord <- ¬
! function(mat, ¬
             bc.exp=0) ¬
{ ¬
# Internal function¬
vec.norm <- function(vec)  sqrt(sum(vec^2))¬
#¬
chck <- apply(mat, 1, sum)¬
if(any(chck == 0)) stop("Rows",which(chck==0)," of the data matrix sum to 0")¬
#¬
# Apply the user-selected Box-Cox exponent (bc.exp) to the frequency data¬
if(bc.exp==0) {¬
! tmp <- log(mat+1) ¬
! } else { ¬
! tmp <- mat^bc.exp ¬
! }¬
row.norms <- apply(tmp, 1, vec.norm)¬
#¬
# Apply the chord transformation to matrix "tmp" before returning it¬
res <- sweep(tmp, 1, row.norms, "/")¬
}¬
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¬
#                                 Appendix 5, R function¬
#¬
# An R function to find the best exponent for Box-Cox transformation to normality.¬
¬
¬
#' Box-Cox transformation: find the best exponent to reach multivariate normality.¬
#'¬
#' Box-Cox-Dagnelie (BCD) method – Transform the data using different exponents. ¬
#' Default: exponents in the [0,1] interval by steps of 0.1. Test the multivariate ¬
#' normality of the data after each transformation using function dagnelie.test() ¬
#' from package ade4.¬
#' Note: the Dagnelie test requires that n > (rank+1) where 'n' is the number of ¬
#' obsevations and 'rank' is the rank of the covariance matrix.¬
#'¬
#' Arguments --¬
#' @param mat  Multivariate data table (object class: matrix or data.frame).¬
#' @param bc.exp  vector of exponents from the Box-Cox series for transformation, ¬
#'    for example bc.exp = c(0,0.1,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1)¬
#'    Positive and negative exponents are allowed by the function, although ¬
#'    it is recommended to use exponent values in the range [0,1].¬
#' @param chord  Chord-transform the data and recompute the Dagnelie test of ¬
#'    normality. Default: chord=TRUE; if chord=FALSE, do not transform data and ¬
#'    do not recompute the test.¬
#'¬
#' Value --¬
#' A table showing the Box-Cox exponent in the first column of each row. In ¬
#' columns 2 and 3, one finds the Shapiro-Wilk W statistic (BC_W) of the Dagnelie ¬
#' test of multivariate normality and the associated p-value (BC_p-val) after the ¬
#' exponent has been applied to the original data. Columns 4 and 5 show the same  ¬
#' statistics(BC.chord_W and BC.chord_p-val) after the chord transformation has    ¬
#' been applied to the Box-Cox transformed data.¬
#' ¬
#' References --¬
#'  Dagnelie, P. 1975. L'analyse statistique a plusieurs variables. ¬
#'  Les Presses agronomiques de Gembloux, Gembloux, Belgium.¬
#'¬
#'  Legendre, P. and L. Legendre. 2012. Numerical ecology, 3rd English¬
#'  edition. Elsevier Science BV, Amsterdam, The Netherlands.¬
#'¬
#' Author  Pierre Legendre¬
#' License GPL (>=2)¬
¬
BCD <- ¬
! function(mat, ¬
             bc.exp=c(0,0.1,0.2,0.25,0.3,0.4,0.5,0.6,0.7,0.8,0.9,1), ¬
             chord=TRUE)¬
{¬
# Internal function¬
vec.norm <- function(vec)  sqrt(sum(vec^2))¬
#¬
require(ade4)¬
epsilon <- sqrt(.Machine$double.eps)¬
mat <- as.matrix(mat)¬
n <- nrow(mat)¬
p <- ncol(mat)¬
n.exp <- length(bc.exp)¬
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#¬
if(chord) {¬
! res <- matrix(NA,n.exp,5)¬
! colnames(res) <- c("BC.exp","BC_W","BC_p-val","BC.chord_W","BC.chord_p-val")¬
! } else {¬
! res <- matrix(NA,n.exp,3)¬
! colnames(res) <- c("BC.exp", "BC_W", "BC_p-val")! ¬
! }¬
res[,1] <- bc.exp¬
#¬
if(any(mat < 0)) stop("Negative values not allowed in community data", ¬
! call. = FALSE)¬
¬
chck1 <- apply(mat, 1, sum)¬
if(any(chck1 == 0)) stop("One or several rows of 'mat' sum to 0", ¬
! call. = FALSE)¬
¬
chck2 <- apply(mat, 2, var)¬
keep.spec <- which(chck2 > epsilon)¬
if(length(keep.spec) < p) {¬
! cat(length(keep.spec),"species have variances > 0 and were kept\n")¬
! cat("Species",which(chck2 <= epsilon)," were excluded\n")¬
! mat2 <- mat[,keep.spec] ¬
! } else { mat2 <- mat }¬
#¬
for(k in 1:n.exp) {¬
! if(bc.exp[k]==0) {¬
! ! # If BC exponent = 0, compute log(x+1)¬
! ! # Add 1 to the data before log transformation¬
! ! tmp <- log(mat2+1)                ¬
! ! # Add 1 to the data before applying a negative exponent¬
! ! } else if(bc.exp[k]<0) { tmp <- (mat2+1)^bc.exp[k]¬
! ! # No transformation when bc.exp=1¬
! ! } else if(bc.exp[k]==1) { tmp <- mat2¬
! ! # Apply the exponent to the data¬
! ! } else { tmp <- mat2^bc.exp[k] }¬
#¬
! tmp2 <- dagnelie.test(tmp)¬
! if((max(tmp2$D)-min(tmp2$D)) < epsilon)¬
! ! stop("All D values are equal, Dagnelie's test cannot be computed. ",¬
! ! "Check the data.", call. = FALSE)¬
! res[k,2] <- tmp2$Shapiro.Wilk$statistic¬
! res[k,3] <- tmp2$Shapiro.Wilk$p.value¬
! if(chord) {¬
! ! # Apply the chord transformation to matrix "tmp"¬
! ! row.norms <- apply(tmp, 1, vec.norm)¬
! ! mat3 <- sweep(tmp, 1, row.norms, "/")¬
! ! tmp2 <- dagnelie.test(mat3)¬
! ! res[k,4] <- tmp2$Shapiro.Wilk$statistic¬
! ! res[k,5] <- tmp2$Shapiro.Wilk$p.value¬
! ! }¬
! }¬
res¬
}




