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A GENERALIZATION OF JACCARD’S ASSOCIATION COEFFICIENT FOR Q
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ABSTRACT: A new association coefficient is described, for comparing localities described
by species abundance data on a normalized or a relative scale. It uses a partial similarity function
adjustable to the scale used. Computer program is available.
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1. INTRODUCTION

Very many similarity coefficients have been described in the biological literature, and many
of them have been discussed in recent textbooks, for instance in Sneath and Sokal
(1973) andin Orloci (1975). These coefficients have been classified under four headings by
Sneath and Sokal (1973): distance, association, correlation and probabilistic. Distance
and association coefficients are both used for () studies (comparison of objects over all
descriptors) and usually correspond to one another, where the distance coefficient is to be used
when a metric is needed, and the association coefficient is used for instance for hierarchical
clustering. Correlation coefficients are used for R studies (comparison of descriptors through all
the objects) and the choice of the appropriate correlation coefficient depends mainly on the
type of descriptors to compare. Probabilistic coefficients form a small group of Q- or R-type
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coefficients which tend to compare the behaviour of pairs of objects or descriptors, in relation
to the behaviour of all the other objects or descriptors in the study.

Association coefficients are the most diversified, probably because they are more readily
interpreted as to their meaning and results. They can be divided in two main categories,
although some have been used for both purposes: coefficients developed by taxonomists, and
coefficients directed towards ecology. The main difference between these categories resides in
the interpretation of a double-nought: in taxonomy, where a nought usually (but not always)
refers to the absence of the morphological descriptor under consideration, the fact for this
structure to be absent in two of the (otherwise somewhat related) objects under study, means
something as to the relationship existing between these two objects, as much as the presence of
one of the forms of that structure would. Coefficients from this group are also adequate to
handle, in ecology, physical and chemical characteristics of the milieu, where the “‘zero” for a
variable i8 a valid basis for the comparison of two localities. However, when the nought refers to
the absence of a species, the fact for a species to be absent from two localities does not mean
much about the relationship of these two stations. The absence of blue whales from two of
several pools, for instance, does not mean that these two pools are any more similar to one
another, which illustrates that negative matches have to be excluded from such comparisons.
On the other hand, replacement species may well be present. This is the main difference
between the association coefficients developed by taxonomists and by ecologists, although
authors have at times borrowed a coefficient from one field to apply it to the other.

Ecological association coefficients have been developed at first to deal with presence-absence
type of data. Jaccard (1908) was the first to introduce such a coefficient, which compared
two stations by counting the number of species present at the two locations, divided by the
number of species present in the combination of the two stations. This coefficient has also been
applied to abundance data (Fig. 1A), where it works nicely as long as there are not too many
classes of abundance, and as long as the species are diversified enough.

In the case of a diversified environment, when one is trying to différentiate stations which
are very close (similar) to one another, it may be helpful to use such a strong coefficient, in

order to get a better spreading. But in a less diversified environment, where every piece of
information has to be used, it is quite another story. In the search of taxocenes (Chodo-
rowski 1959, 1960) we need a coefficient sensitive enough .to account for partial
similarities of two stations with respect to a given species. As an example, let us take two pools
from a group of semi-permanent pools, in which zooplankton species can be found, and imagine
that a single species, the same one, is found in the two pools, but in different abundances, on a
scale from 0 to 5. The vectors representing the 21 potentially present species in the two pools
would look as follows:

pool 1: 000 000 030 000 000 000 000
pool2 000 000 010 000 000 000 000

Considering only presence-absence, Jaccard’s would give a similarity of 1 between these two
pools, and 0 with multi-state abundance data. Obvicusly, the truth is somewhere in between,
and Jaccard’s coefficient shows here its incompleteness since it can take two opposite values
with the same data, depending on how it is applied.
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Fig. 1. Comparison of five association coefficients for pairs of objects .
A —coefficient of Jaccard (1908), B — the gencralization of Jaccard’s coefficient presented in this
paper, using the equation of partial similarity f{d, k), with k = 2 in the example, C —coefficient attributed to
Steinhaus by Motyka, Dobrzanski and Zawadzki (1950), D — coefficient of Sgrensen
(1948) also used by D ice (1945)as “coincidence index” for R studies, E — coefficientof Estabrook
and Rogers (1966) for k= 2, it was developed for taxonomic purposes and uses the same partial simi-
larity function f{d, k). In this coefficient, state zero means “no information available”.

In the upper part of the figure, the new coefficient presented in this paper (B) is compared to two other
coefficients used on the same kind of data. The lower part of the figure presents mathematical variants of the
coefficients just above: the coefficient of Sgrensen is monotonic to the coefficient of Jaccard, and our new
coefficient (B) uses the same partial amilarity funetion as the coefficient of Estabrook and Rogers.

In examples 4 to D, the various descriptors have up to three states of abundance, plus state 0 for absence.
For each coefficient, the upper matrix (numerator) and the lower matrix (denoninator) are separated by a
dark bar which symbolizes division. n represents the numker of descriptors which code the two objects in the
pair of states corresponding to the position in the matrix. A blank represents a structural zero. The numera-
tor of the coefficient is obtained by summing the squares of the upper matrix, and the denominator likewise

by summing the squares of the lower matrix

2. A PARTIAL SIMILARITY FUNCTION

The way around this difficulty, which we would like to suggest and illustrate in this paper, is
to apply to the various abundances of each species, a function, f, from the family of decreasing
functions, which gives the value of association for the various abundance combinations of a
given species. This function should map the distance (d) between two abundances, together
with a measure of the spreading (k) one wants to make of partial similarity, into the partial
similarity relation (s) of the various pairs (i and j) of abundances of a species E:
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sE; E) = f(d k)

Among all such functions available, the following one is here proposed because it has been
proven useful in parallel cases in taxonomy, although it is clear that any other function with the
same properties, which a worker would feel corresponds better to reality, could be used as well.
The similarity value on species E, for.a pair of sampling stations in which abundances i and j of
species £ have been respectively found, is thus a function of two parameters, d and k, such that

2k +1-d
Sy E) = f(d k) = A =) whenever d <k (part 1)
0 when d > &k (part 2)

i H.

0 when E; or Ej =0 (part 3)

where d is the “distance” between abundance E; and abundance E;, expressed by the absolute
value |i— j| =d;k is a parameter set by the biologist for each species, which indicates the
largest “‘distance” |i - j| between abundances of the given species, for which the worker
wishes to make a non-zero assignment (Estabrook and Rogers 1966). Legendre
and Rogers (1972: 593) discuss in detail the criteria for fixing the value of k for each
variable. »

If for instance the various abundance states of a species are coded O to 7, if one established
the maximum *‘distance” in which partial similarity is allowed, to be k = 2, then two sampling
stations with abundances E, =2 and E, = 3 would have, for that species, a similarity equal to

2+1 -
f12-31,2)=f(1,2) = EEL=2) < 5 aceording to part | of the equation.

But for another species, if E; = 2 and E, = 5 with k = 2:
{2—5|=3and 3>k, then f(3, 2) = 0 according to part 2 of the equation.

With a third species, if E; =2 and E, = 0, there is not much sense recognizing a partial
similarity between an abundance of 0 and any other abundance, even though d is not larger
than k. This is why the limitation has been added in part 3 of the equation, that f(d, k) = 0
when E; orE} =0. ‘

3. THE SIMILARITY MEASURE FOR PAIRS OF LOCALITIES

After the two localities have been compared for each one species, it is now possible to
combine these species similarity measures into a measure of the similarity S(a, b) between two
sampling stations a and b,\for their species composition. It is calculated as the sum of the
partial similarity values for all species, divided by the total number of species found in the
combination of the two sampling stations (Fig. 1B).
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Z s(E (a), E (b))
total n. of species present at one or the other station

S (ab)=

In this equation, the theoretical abundances i and j of species E are replaced by their actual
values obtained by sampling localities a and b, and are noted E(a) and E(b) respectively:

There are two main differences with the taxonomic coefficient of Estabrook and
‘Rogers (1966) illustrated in Figure 1E: first, the description 0 means “no information
available” in Estabrook-Rogers’ coefficient. Secondly, and since it is a taxonomic coefficient,
all the comparisons are included in the denominator, except in the case of “no information
available”: so, the denominator in Estabrook-Rogers’ measure includes only the variables with
information available for both objects.

To summarize, the properties of this coefficient are the following:

1. When d is larger than k&, the two sampling stations are considered as not similar at all for
that species, i.e., s(E, E.) = 0 (equation, part 2).

2. When d = 0, the value s(E, Ej) i8 equal to 1, as expected, except when i and j are equal to
0 (equation, part 1; Fig. 2).

3. f(d, k) decreases as d increases for fixed k (Fig. 2).

4. f(d, k) increases as k increases for fixed d (Fig. 2).

5. When E; or E, equals 0, the two sampling stations are considered as not similar for that
species, i.e., s(El., j) =0, even though d is not larger than k (equation, part 3; Fig. 1B,
numerator).

6. Jaccard’s coefficient is obtained by setting k = 0 (Figs. 1A, B).

Table I. The values of f(d, k) for the most commonly used values of k. See equation in text. (Modified from

Legendre and Rogers 1972)

d

k k-3
0 1 2 3 4 5 6 7
0 1 0.00 0.00 0.00 0.00 0.00 °; 0.00 0.00
1 1 .40 0.00 0.00 0.00 0.00 ~ 0.00 1 o0.00
2 1 .50 .20 0.00 0.00 0.00 0.00 0.00
3 1 .55 .28 12 0.00 0.00 . 0.00 0.00
4 1 .57 .33 18 .08 0.00 8.00 . 0.00
5 1 .59 .36 .22 .13 .05 0.00 0.00

Even though this formnula is empirical, its properties reflect the judgments an ecologist can
make about the problem of partial similarity. The values of f(d, k) for the most commonly
used values of k are given in Table I.

4. NEGATIVE VALUES OF PARTIAL SIMILARITY?

To help the user appreciate the rates of decrease associated with the various values of k,
f(d, k) has been plotted in Figure 2A. A direct consequence of this exercise is to make one
wonder: why could not f(d, k) take negative values? This could be done by removing from the
definition above, the line which says that f(d, k) = 0 when d > k. This solution is plotted as
Figure 2B, and it changes f(d, k) from a monotone decreasing function into a strictly decreasing
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function on interval [0,»). It has the consequence that f(d, k) takes negative values when
d >(k + 1). Whether this modification would be of any interest could only be assessed by trying
it on real data. For sure, it would help to spread apart things which are not alike, and as such it
could compensate for the overestimation of the similarity (compared to Jaccard’s formula)
which results from using f(d, k) as defined above.

5. CONTINUOUS DESCRIPTORS

In the present paper, only integer values of d are used, since abundance classes are
discontinuous ordered descriptors. The curves of Figure 2 suggest however that the same partial
similarity function could be used with continuous data, since the domain of the function is the
set of natural numbers.

-0 . -1.0 ks0Q

Fig. 2. f(d, k) is plotted as a function of d for the various of k. A — with the restriction that fld, k) = 0 when
d>k. B — without this restriction

6. COMPUTER PROGRAM

A program written in Fortran—IV and optimijzed for Control Data series 6,000 computers is
available from the authors'. This is actually a modified version of a clustering model in graph
theory which has been described and published before (Legendre and Rogers 1972;
Estabrock etal 1972), in which the similarity measure has been replaced with the one
described here. . ,

The procedure starts by calculating, in Q mode, the said measure of association between all
pairs of sampling stations in the study. Then these similarities are placed in order of decreasing
value, and the clusters are formed following this list of ordered similarities. The procedure is

! Please speeify which of the three following listings is required: (a) the measure of association only, or
(b) the measure of association together with the clustering program it is a part of, or (c) the graph-clustering
package which includes 7 measures of association designed for problems of taxonomy and ecology, in.Q and
R modes. Listings will be sent free of charge. If cards or tape are needed, please write for further instructions.
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agglomerative and of the single-linkage type. An histogram-type. visual display summarizes the

clustering activity.

In the program, a sophistication added to the calculation of the measure of association
makes it possible for a worker to enter for any one species a new set of partial similarity values
(between 0 and 1) replace those produced by function f(d, k), together with the input data, if
he so wishes, without modifying the program. This facility may be useful in the following cases:
(a) if the worker does not like the slope of function f(d, k) for the particular problem at hand;
(b) if some of the states do not follow the other ordered states of abundance: for example, in a
study of pools, if the various states of abundance are followed by the state “dry pool™; (c) if
some of the states are built on a different scale of abundance than the others: for example,
0-10, 10-20, 20--30, 3040, 40-50, then 50—100, 100—-1,000, 1,000 and more; (d) if,
instead of the coefficient described hereinbefore, another measure of similarity is to be used,
which differs from this one only by the numerator (see section3 and Fig.1); (e)in
comparisons implying ecological variables, other than abundances, which are not logically
ordered on a-scale, when some pairs of stations in non-identical states of a variable are still
judged by the worker to be more similar to each other, for this variable, than some other pairs '
of stations in another pair of states.

7. EXAMPLE: PLANKTONIC SIMILARITY OF POOLS

To illustrate the use of this generalization of Jaccard’s asociation coefficient, we present
hereafter data from a problem which has been treated with this method,in which various astatic
pools located on islands of the St. Lawrence river southeast of Montreal (Quebec) were
characterized for their content in zooplankton. Abundance of the 38 species found was coded
on an estimative scale from O (absent) to 5 (very abundant) as used in the description of
taxocenes (Chodorowski 1960). This scale, quite helpful when results are needed
rapidly, corresponds roughly to a log transformation of actual counts.

Figure 3 illustrates the results when the planktonic similarity was calculated with the
generalized Jaccard’s coefficient presented here (k = 2). The pools are positioned in a space
formed by the.first (abscissa) and the second (ordinate) principal coordinates (Gower
1966), calculated from the association matrix of the 20 pools. The program used for principal
coordinates analysis was basically' the one listed in Blackith and Reyment (1971).
The lines between the pools, called primary connections, or dendrites (Eukaszewics
1951, adapted to taxocenes by Moraczewski 1962), stand for the highest similarity
values which link a pool to another, until all the pools are linked by a single chain of
connections. In other words, it is the chain of primary connections in a single linkage clustering
strategy. This projection of single linkage clusters onto a space of reduced dimensionality
obtained by principal coordinates analysis, is documented elsewhere (L egendre 1976).

In: Figure 3, the astatic pools surrounded by a circle are dry at least part of the year. They
are filled during the high water season and/or by the rain, and they are referred to as
“periodic”. Figure 3 shows that the association coefficient is doing its job as expected: periodic
and permanent or semi-permanent pools form two well-defined groups. On the other hand, the
tendency is for a pool to be close to, and to cluster first with, pools of the same area.

Figure 4 illustrates very similar results, obtained with the association coefficient attnbuted
to the Polish mathematician Steinhaus by Motyka, Dobrzanski and Zawadzki
(1950) instead of the generalized Jaccard’s coefficient. :
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Fig. 3. Twenty astatic pools are compared for their planktonic similarity, through the use of the generalized

association coefficient introduced in the present paper (with k=2). From the association coefficient,

principal coordinates were calculated (see text), and the pools are presented here in the space formed by the

first (abscissa) and second (ordinate) principal coordinates. The highest similarity values are also drawn,

which unite all the pools through a single chain of primary connections. Pools in a circle are periodic.
Numbering system as in Figure 4

8. WHEN TO USE THIS GENERALIZED COEFFICIENT

This generalization of Jaccard’s association coefficient has been designed for Q analysis
(comparison of sampling stations) of ecological data matrices in which the abundance of the
species characterizing the samples is known. So it pertains to the small group of quantitative
Q-type ecological coefficients, the most famous of which is the one attributed to Steinhaus by
Motyka, Dobrzanski and Zawadzki (1950), which compares the smallest
number to the average abundance of each species at the two stations:

.4

S= T B2
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where W is the sum (for all the species) of the lesser values at two stations; 4 and B are the sum
of abundances at each of the two stations compared?.

A related coefficient is that of Kulczynski (1928), which compares the sum of
minima to the sam total at each station, then averages the two values obtained® :

i
2 A B
In his study Kulczynski(1928), multiplied this value by 100 to obtain percentages.
Since Kulczynski’s method of averaging two comparisons is somewhat more arbitrary than
comparing directly minima to averages as does Steinhaus, the latter should be preferred,
although the results should be almost monotonic. McConnaughey (1964) has used a
truncated linear transformation of this coefficient on presence-absence data in an R study.

The relation between Steinhaus coefficient and the genefalized coefficient introduced in
this paper is one of interest. In the example above (Figs. 3, 4), it can be seen that both do the
job quite similarly, that is, in both cases the same pools lie close to and cluster (primary
connection) mainly with each other, although the two measures are not algebraically

" monotonic. Indeed, both measures manage to account for partial similarity, but not in the same
manner: our generalized coefficient uses function f(d, k), while Steinhaus uses the lesser value
of each pair of species abundances. Figure 1 (B and C) illustrates this difference in the case of a
3-states abundance scale..

A comparison has been made between our generahzed coefficient and Steinhaus’ coefficient,
for the data of the example above. Association has been calculated between all pairs of pools
with the generalized coefficient (for k=0 to k=5), and with Steinhaus’ coefficient.
Comparison of the five association matrices was made using Pearson’s r linear correlation
coefficient, thus controlling for scale differences (Steinhaus’ values are conmstently larger than
those obtained with the generalized coefficient).

These comparisons are listed in Table II. It shows that the correlation with Steinhaus’
coefficient increases as the value of k, the maximum “distance” on which partial similarity is

2Following the symbolism introduced above, the coefficient of Steinhaus could be written:

2 min [E(a), E(b)]

for the n species E.

z
E=1
‘n
El [E(a), E(b)])

3Likewise, the coefficient of Kulezyhisks could be written as follows:

n
L min (E), E(b)) ’
E=1 1 1
K(a, b) = - +

2 P Ea) 5 E®)

8 — FEkol. pol., 25, 2
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Table [I. Correlation between the generalized coefficient introduced in this paper
and Steinhaus’ coefficient, on the planktonic data of the example. The generalized
coefficient has been calculated for six values of k (descriptors were coded 0 to 5)

k=0 ko=l k=2 | k=3 | k=4 | k=5
k=1 .8961
k=2 .8537 .9896
k=3 .8282 9767 .9955
k=4 8113 9662 9894 .9986
k=35 7995 .9583 9842 19962 9994
Steinhaus 6326 .8209 8714 9001 9129 9195

allowed, increases. On the other hand, and as expected, the similarities calculated with each
value of k are in higher correlation with those of the closest values of k.

Looking into the equations, and referring to Figure 1 (B and C), the difference between the
coefficient of Steinhaus (or the one of Kulczynski) and the one introduced here becomes
obvious. With our coefficient , the partial similarity between equally distant states remains the

123

Fig. 4. As in Figure 3, but the similarity was calculated through.the use of the association coefficient of
Steinhaus. Each pool was given a 3-digits name built as follows: the first digit for the area, the second digit
for the indand; the third digit designates the pool on the insland. Areas I and 2 are located before Montreal
on the St. Lawrence, and areas 3 and 4 are located in front of Montreal. 12X = Maple Island; 15X = Ste-

-Timothée Island: 21X = Claude Island; 23X = Pointe-des-Cascades; 32X = Des Soeurs (Nuns) Island;.

42X = Grosbois Island; 43X = de la commune Island
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same, independently from the position on the scale. With k = 2 for instance, a partial similarity
of 0.5 will always be attributed to neighbouring states: states 1 and 2 or states 7 and 8 alike.
With Steinhaus on the other hand, and with only one descriptor, the partial similarity between
statesl and 2 is 2min(l, 2)/(1 +2) =.6667, while between states7 and8, it is

2 min(7, 8)/(7. + 8) = .9333. One should then use coefficients like Steinhaus’ or Kulczyhski’s on

real abundance data (actual number of individuals) where one wants partial similarity to
increase as the value increases, and the coefficient presented here on normalized abundance
data (log transformation and the like), or corresponding estimative scales, like the scale used in
our example, where the difference between two successive values corresponds approximately to

an equal amount of dissimilarity. Depending upon the scale used (0 to 5 or 0 to 50, for
instance), f(d, k) makes it possible for the worker to establish how much he wants to depart
from the case of no partial similarity, by adjusting the value of k, for each species if necessary.

9. SUMMARY

A new association coefficient is described, which has been designed for comparing sampling stations
described by species abundance data.

The coefficient uses, for each species on which the two stations are compared, an empirical decreasing
partial similarity function (Table I, Fig. 2) of two parameters, d and k, where d is the “distance” between the
abundances of the given species at the two stations, and k is a parameter set by the biologist for each species,
which indicates the largest “distance’ on which he wishes to allow partial similarity.

This function is derived from that used in the taxonomic association coefficient of Estabrook and Rogers.
The similatity between two sampling stations, for their species composition, is given by the sum of the value
of partial similarity on each species, divided by the total number of species present at the two localities.
A computer program is available from the authors, which contains an extra facility to input some matrix of
predetermined values the worker wishes to use instead of the values given by the function of partial
similarity. This is particularly useful when the abundance states are not well ordered. The new coefficient is
compared with some other related messures of association (Fig. 1). Comparison with the coefficients of
Steinhaus (Figs. 3, 4, Table II) and of Kulczyhski indicates that these are best used with raw abundance data,
while this new coefficient has been designed for transformed species sbundance data: log or other
normalizing transformation, or relative sbundances. : .

10. POLISH SUMMARY (STRESZCZENIE)

Autorzy opisujy nowy wskaZnik podobieristwa stuZacy do poréwnania liczebnosci gatunkéw w badanych
stanowiskach. Do wyliczania wskaZnika (dia kaidego z gatunkéw obecnych w dwéch poréwnywanych
stanowiskach) utywa si¢ empirycznie zmniejszanej funkcji czefciowego podobiesistwa (tab. I, fig. 2) dwéch
parametréw: d i k& Parametr d jest wodlegtosciy” migdzy liczebnodciami danych gatunkéw w obu stano-
wiskach, a k jest parametrem wyznaczonym przez biologa dla kazdego gatunku wskazujacym najwigkszg
»odlegto$¢” igdans, dla znalezienis czeéciowego podobieristwa. Funkcja.ta jest wyprowadzona ze wskaZnika
pokrewieristwa taksonomicznego Estabrooka i Rogersa.

Podobierfistwo skfadu gatunkowego dwéch badanych stacji jest wykazane przez sume wartosci czeécio-
wych podobieristw podzielong przez ogélng liczbe gatunkéw obecnych w obu stacjach.

Autorzy dysponujg programem komputerowym, ktéry umozliwia ponadto wprowadzenie tablic z przy-
gotowanymi uprzednio przez uZytkownika danymi, na miejsce wartodci otrzymanych przez zastosowanie
funkcji czeéciowego podobieristwa, Jest to szczegélnie uZyteczne, gdy dane dotyczqce liczebnosci nie sg
dobrze uporzadkowane. '

Nowy wskainik jest poréwnywany z kilkoma innymi wspStczynnikami o zblizonym charakterze (fig. 1).
Poréwnania ze wskaZnikami Steinhausa (fig. 3, 4, tab. II) i Kulczyriskiego wskazuja, Ze te ostatnie shuig
lepiej do poréwnywania surowych danych liczebnoéci, podczas gdy nowy wskaZnik jest przeznaczony
gtéwnie do przeksztatconych danych liczebnosci gatunkéw (przeksztatcenia logarytmiczne i normalizacyjne
albo liczebnofci wzgledne). -
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