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of measurement uses, and consequently it should
be viewed within a much larger system of reliabil-
ity analysis, generalizability theory. Moreover,
alpha focused attention on reliability coefficients
when that attention should instead be cast on
measurement error and the standard error of
measurement.

For Cronbach, the extension of alpha (and clas-
sical test theory) came when Fisherian notions of
experimental design and analysis of variance were
put together with the idea that some “treatment”
conditions could be considered random samples
from a large universe, as alpha assumes about item
sampling. Measurement data, then, could be col-
lected in complex designs with multiple variables
(e.g., items, occasions, and rater effects) and ana-
lyzed with random-effects analysis of variance
models. The goal was not so much to estimate
a reliability coefficient as to estimate the compo-
nents of variance that arose from multiple vari-
ables and their interactions in order to account for
observed score variance. This approach of parti-
tioning effects into their variance components pro-
vides information as to the magnitude of each of
the multiple sources of error and a standard error
of measurement, as well as an “alpha-like” reliabil-
ity coefficient for complex measurement designs.
Moreover, the variance-component approach
can provide the value of “alpha” expected by
increasing or decreasing the number of items (or
raters or occasions) like those in the test. In addi-
tion, the proportion of observed score variance
attributable to variance in item difficulty (or, for
example, rater stringency) may also be com-
puted, which is especially important to contem-
porary testing programs that seek to determine
whether examinees have achieved an absolute,
rather than relative, level of proficiency. Once
these possibilities were envisioned, coefficient
alpha morphed into generalizability theory, with
sophisticated analyses involving crossed and
nested designs with random and fixed variables
(facets) producing variance components for
multiple measurement facets such as raters and
testing occasions so as to provide a complex
standard error of measurement.

By all accounts, coefficient alpha—Cronbach’s
alpha—has been and will continue to be the most
popular method for estimating behavioral
measurement reliability. As of 2004, the 1951

coefficient alpha article had been cited in more
than 5,000 publications.

Jeffrey T. Steedle and Richard ]. Shavelson

See also Classical Test Theory; Generalizability Theory;
Internal Consistency Reliability; KR-20; Reliability;
Split-Half Reliability
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COEFFICIENT OF CONCORDANCE

Proposed by Maurice G. Kendall and Bernard
Babington Smith, Kendall’s coefficient of concor-
dance (W) is a measure of the agreement among
several (m) quantitative or semiquantitative vari-
ables that are assessing a set of 7 objects of inter-
est. In the social sciences, the variables are often
people, called judges, assessing different subjects
or situations. In community ecology, they may be
species whose abundances are used to assess habi-
tat quality at study sites. In taxonomy, they may
be characteristics measured over different species,
biological populations, or individuals.

There is a close relationship between Milton
Friedman’s two-way analysis of variance without
replication by ranks and Kendall’s coefficient of
concordance. They address hypotheses concerning
the same data table, and they use the same y? sta-
tistic for testing. They differ only in the formula-
tion of their respective null hypothesis. Consider
Table 1, which contains illustrative data. In Fried-
man’s test, the null hypothesis is that there is no
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Table | lllustrative Example: Ranked Relative Abundances of Four Soil Mite Species (Variables) at 10 Sites (Objects)
Ranks (column-wise) Sum of Ranks
Species 13 Species 14 Species 15 Species 23 R;
Site 4 5 6 3 S 19.0
Site 9 10 4 8 2 24.0
Site 14 7 8 5 4 24.0
Site 22 8 10 9 2 29.0
Site 31 6 5 7 6 24.0
Site 34 9 7 10 7 33.0
Site 45 3 3 2 8 16.0
Site 53 1.5 2 4 9 16.5
Site 61 1.5 1 1 2 5.5
Site 69 4 9 6 10 29.0

Source: Legendre, P. (2005) Species associations: The Kendall coefficient of concordance revisited. Journal of Agricultural,
Biological, & Environmental Statistics, 10, 230. Reprinted with permission from the Journal of Agricultural, Biological, &
Environmental Statistics. Copyright 2005 by the American Statistical Association. All rights reserved.

Notes: The ranks are computed columnwise with ties. Right-hand column: sum of the ranks for each site.

real difference among the 7 objects (sites, rows of
Table 1) because they pertain to the same statisti-
cal population. Under the null hypothesis, they
should have received random ranks along the vari-
ous variables, so that their sums of ranks should
be approximately equal. Kendall’s test focuses on
the m variables. If the null hypothesis of Fried-
man’s test is true, this means that the variables
have produced rankings of the objects that are
independent of one another. This is the null
hypothesis of Kendall’s test.

Computing Kendall’s W

There are two ways of computing Kendall’s W sta-
tistic (first and second forms of Equations 1 and
2); they lead to the same result. S or §' is computed
first from the row-marginal sums of ranks R;
received by the objects:

n
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ZRZ = SSR, (1)

where S is a sum-of-squares statistic over the row
sums of ranks R, and R is the mean of the R;
values. Following that, Kendall’s W statistic can be
obtained from either of the following formulas:
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where 7 is the number of objects and 2 is the
number of variables. T is a correction factor for
tied ranks:

tk — 1), (3)
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in which #, is the number of tied ranks in each (k)
of g groups of ties. The sum is computed over all
groups of ties found in all 7 variables of the data
table. T = 0 when there are no tied values.

Kendall’s W is an estimate of the variance of the
row sums of ranks R; divided by the maximum
possible value the variance can take; this occurs
when all variables are in total agreement. Hence
0<W<1, 1 representing perfect concordance. To
derive the formulas for W (Equation 2), one has to
know that when all variables are in perfect agree-
ment, the sum of all sums of ranks in the data table
(right-hand column of Table 1) is mn(n + 1)/2 and
that the sum of squares of the sums of all ranks is
m*n(n+ 1)(2n+ 1)/6 (without ties).

There is a close relationship between Charles
Spearman’s correlation coefficient g and Kendall’s
W statistic: W can be directly calculated from the
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mean (7s) of the pairwise Spearman correlations g
using the following relationship:

W:(m—ln)jg—i-l’ (4)

where m is the number of variables (judges) among
which Spearman correlations are computed. Equa-
tion 4 is strictly true for untied observations only;
for tied observations, ties are handled in a bivariate
way in each Spearman rg coefficient whereas in
Kendall’s W the correction for ties is computed in
a single equation (Equation 3) for all variables.
For two variables (judges) only, W is simply a lin-
ear transformation of rg: W= (rg+ 1)/2. In that
case, a permutation test of W for two variables is
the exact equivalent of a permutation test of rg for
the same variables.

The relationship described by Equation 4 clearly
limits the domain of application of the coefficient of
concordance to variables that are all meant to esti-
mate the same general property of the objects: vari-
ables are considered concordant only if their
Spearman correlations are positive. Two variables
that give perfectly opposite ranks to a set of objects
have a Spearman correlation of — 1, hence W=0
for these two variables (Equation 4); this is the
lower bound of the coefficient of concordance. For
two variables only, 7g=0 gives W=0.5. So coeffi-
cient W applies well to rankings given by a panel of
judges called in to assess overall performance in
sports or quality of wines or food in restaurants, to
rankings obtained from criteria used in quality tests
of appliances or services by consumer organizations,
and so forth. It does not apply, however, to variables
used in multivariate analysis in which negative as
well as positive relationships are informative. Jerrold
H. Zar, for example, uses wing length, tail length,
and bill length of birds to illustrate the use of the
coefficient of concordance. These data are appropri-
ate for W because they are all indirect measures of
a common property, the size of the birds.

In ecological applications, one can use the
abundances of various species as indicators of
the good or bad environmental quality of the
study sites. If a group of species is used to pro-
duce a global index of the overall quality (good
or bad) of the environment at the study sites,
only the species that are significantly associated
and positively correlated to one another should

be included in the index, because different
groups of species may be associated to different
environmental conditions.

Testing the Significance of W

Friedman’s chi-square statistic is obtained from W
by the formula

X = mn—1)W. ()

This quantity is asymptotically distributed like
chi-square with v = (7 — 1) degrees of freedom; it
can be used to test W for significance. According to
Kendall and Babington Smith, this approach is satis-
factory only for moderately large values of 7 and 7.

Sidney Siegel and N. John Castellan Jr. recom-
mend the use of a table of critical values for W
when 7 <7 and m < 20; otherwise, they recommend
testing the chi-square statistic (Equation 5) using the
chi-square distribution. Their table of critical values
of W for small # and m is derived from a table of
critical values of S assembled by Friedman using the
z test of Kendall and Babington Smith and repro-
duced in Kendall’s classic monograph, Rank Corre-
lation Methods. Using numerical simulations, Pierre
Legendre compared results of the classical chi-
square test of the chi-square statistic (Equation 3) to
the permutation test that Siegel and Castellan also
recommend for small samples (small 7). The simula-
tion results showed that the classical chi-square test
was too conservative for any sample size (7) when
the number of variables 7 was smaller than 20; the
test had rejection rates well below the significance
level, so it remained valid. The classical chi-square
test had a correct level of Type I error (rejecting
a null hypothesis that is true) for 20 variables and
more. The permutation test had a correct rate of
Type I error for all values of 7 and n. The power of
the permutation test was higher than that of the
classical chi-square test because of the differences in
rates of Type I error between the two tests. The dif-
ferences in power disappeared asymptotically as the
number of variables increased.

An alternative approach is to compute the fol-
lowing F statistic:

F=(m—1W/1-W), (6)

which is asymptotically distributed like F with
vy =n—1—(2/m) and vy = vi(m — 1) degrees
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of freedom. Kendall and Babington Smith
described this approach using a Fisher z transfor-
mation of the F statistic, 2=0.5 log.(F). They
recommended it for testing W for moderate values
of m and n. Numerical simulations show, however,
that this F statistic has correct levels of Type I
error for any value of # and m.

In permutation tests of Kendall’s W, the objects
are the permutable units under the null hypothesis
(the objects are sites in Table 1). For the global test
of significance, the rank values in all variables are
permuted at random, independently from variable
to variable because the null hypothesis is the inde-
pendence of the rankings produced by all vari-
ables. The alternative hypothesis is that at least
one of the variables is concordant with one, or
with some, of the other variables. Actually, for
permutation testing, the four statistics SSR
(Equation 1), W (Equation 2), x> (Equation 5),
and F (Equation 6) are monotonic to one another
since 7 and m, as well as T, are constant within
a given permutation test; thus they are equivalent
statistics for testing, producing the same permuta-
tional probabilities. The test is one-tailed because
it recognizes only positive associations between
vectors of ranks. This may be seen if one considers
two vectors with exactly opposite rankings: They
produce a Spearman statistic of — 1, hence a value
of zero for W (Equation 4).

Many of the problems subjected to Kendall’s
concordance analysis involve fewer than 20 vari-
ables. The chi-square test should be avoided in
these cases. The F test (Equation 6), as well as the
permutation test, can safely be used with all values
of m and n.

Contributions of Individual Variables
to Kendall’s Concordance

The overall permutation test of W suggests
a way of testing a posteriori the significance of
the contributions of individual variables to the
overall concordance to determine which of the
individual variables are concordant with one or
several other variables in the group. There is
interest in several fields in identifying discordant
variables or judges. This includes all fields that
use panels of judges to assess the overall quality
of the objects or subjects under study (sports,

law, consumer protection, etc.). In other types of
studies, scientists are interested in identifying
variables that agree in their estimation of a com-
mon property of the objects. This is the case in
environmental studies in which scientists are
interested in identifying groups of concordant
species that are indicators of some property of
the environment and can be combined into indi-
ces of its quality, in particular in situations of
pollution or contamination.

The contribution of individual variables to
the W statistic can be assessed by a permutation
test proposed by Legendre. The null hypothesis
is the monotonic independence of the variable
subjected to the test, with respect to all the other
variables in the group under study. The alterna-
tive hypothesis is that this variable is concordant
with other variables in the set under study, hav-
ing similar rankings of values (one-tailed test).
The statistic W can be used directly in a poste-
riori tests. Contrary to the global test, only the
variable under test is permuted here. If that vari-
able has values that are monotonically indepen-
dent of the other variables, permuting its values
at random should have little influence on the W
statistic. If, on the contrary, it is concordant with
one or several other variables, permuting its
values at random should break the concordance
and induce a noticeable decrease on W.

Two specific partial concordance statistics can
also be used in a posteriori tests. The first one is the
mean, 7, of the pairwise Spearman correlations
between variable j under test and all the other vari-
ables. The second statistic, W, is obtained by apply-
ing Equation 4 to 7; instead of 7, with 7 the number
of variables in the group. These two statistics are
shown in Table 2 for the example data; 7, and W,
are monotonic to each other because 7 is constant
in a given permutation test. Within a given a poster-
iori test, W is also monotonic to W; because only
the values related to variable j are permuted when
testing variable j. These three statistics are thus
equivalent for a posteriori permutation tests, produc-
ing the same permutational probabilities. Like 7;, W;
can take negative values; this is not the case of W.

There are advantages to performing a single
a posteriori test for variable j instead of (m—1)
tests of the Spearman correlation coefficients
between variable j and all the other variables: The
tests of the (m— 1) correlation coefficients would
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Table 2

Results of (a) the Overall and (b) the A Posteriori Tests of Concordance Among the Four Species of Table

I; (c) Overall and (d) A Posteriori Tests of Concordance Among Three Species

(a) Overall test of W statistic, four species. Hy : The four species are not concordant with one another.

Kendall’s W = 0.44160
F statistic = 2.37252
Friedman’s chi-square = 15.89771

Permutational p value = .0448*
F distribution p value = .0440*
Chi-square distribution p value = .0690

(b) A posteriori tests, four species. Hy : This species is not concordant with the other three.

7; W, p Value Corrected p Decision at @ = 5%
Species 13 0.32657 0.49493 .0766 1532 Do not reject Hy
Species 14 0.39655 0.54741 .0240 .0720 Do not reject Hy
Species 15 0.45704 0.59278 .0051 .0204* Reject Hy
Species 23 —0.16813 0.12391 .7070 .7070 Do not reject Hy

(c) Overall test of W statistic, three species. Hy : The three species are not concordant with one another.

Kendall’s W = 0.78273
F statistic = 7.20497
Friedman’s chi-square = 21.13360

Permutational p value = .0005*
F distribution p value = .0003*
Chi-square distribution p value = .0121*

(d) A posteriori tests, three species. Hy : This species is not concordant with the other two.

7 W; p Value Corrected p Decision at o = 5%
Species 13 0.69909 0.79939 .0040 .0120* Reject Hy
Species 14 0.59176 0.72784 .0290 .0290* Reject Hy
Species 15 0.73158 0.82105 .0050 .0120* Reject Hy

Source: (a) and (b): Adapted from Legendre, P. (2005). Species associations: The Kendall coefficient of concordance revisited. Journal of
Agricultural, Biological, and Environmental Statistics, 10, 233. Reprinted with permission from the Journal of Agricultural, Biological
and Environmental Statistics. Copyright 2005 by the American Statistical Association. All rights reserved.

Notes: 7; = mean of the Spearman correlations with the other species; W; = partial concordance per species; p value = permutational
probability (9,999 random permutations); corrected p = Holm-corrected p value. * = Reject Hy at @ = .0S5.

have to be corrected for multiple testing, and they
could provide discordant information; a single test
of the contribution of variable j to the W statistic
has greater power and provides a single, clearer
answer. In order to preserve a correct or approxi-
mately correct experimentwise error rate, the proba-
bilities of the a posteriori tests computed for all
species in a group should be adjusted for multiple
testing,.

A posteriori tests are useful for identifying the
variables that are not concordant with the others,
as in the examples, but they do not tell us whether
there are one or several groups of congruent vari-
ables among those for which the null hypothesis of
independence is rejected. This information can be
obtained by computing Spearman correlations
among the variables and clustering them into
groups of variables that are significantly and posi-
tively correlated.

The example data are analyzed in Table 2. The
overall permutational test of the W statistic is sig-
nificant at « = 5%, but marginally (Table 2a). The
cause appears when examining the a posteriori
tests in Table 2b: Species 23 has a negative mean
correlation with the three other species in the
group (7;= —.168). This indicates that Species 23
does not belong in that group. Were we analyzing
a large group of variables, we could look at the
next partition in an agglomerative clustering den-
drogram, or the next K-means partition, and pro-
ceed to the overall and a posteriori tests for the
members of these new groups. In the present illus-
trative example, Species 23 clearly differs from the
other three species. We can now test Species 13,
14, and 15 as a group. Table 2¢ shows that this
group has a highly significant concordance, and all
individual species contribute significantly to the
overall concordance of their group (Table 2d).
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In Table 2a and 2c, the F test results are concor-
dant with the permutation test results, but due to
small 72 and #, the chi-square test lacks power.

Discussion

The Kendall coefficient of concordance can be
used to assess the degree to which a group of vari-
ables provides a common ranking for a set of
objects. It should be used only to obtain a state-
ment about variables that are all meant to measure
the same general property of the objects. It should
not be used to analyze sets of variables in which
the negative and positive correlations have equal
importance for interpretation. When the null
hypothesis is rejected, one cannot conclude that all
variables are concordant with one another, as
shown in Table 2 (a) and (b); only that at least one
variable is concordant with one or some of the
others.

The partial concordance coefficients and a pos-
teriori tests of significance are essential comple-
ments of the overall test of concordance. In several
fields, there is interest in identifying discordant
variables; this is the case in all fields that use
panels of judges to assess the overall quality of the
objects under study (e.g., sports, law, consumer
protection). In other applications, one is interested
in using the sum of ranks, or the sum of values,
provided by several variables or judges, to create
an overall indicator of the response of the objects
under study. It is advisable to look for one or sev-
eral groups of variables that rank the objects
broadly in the same way, using clustering, and
then carry out a posteriori tests on the putative
members of each group. Only then can their values
or ranks be pooled into an overall index.

Pierre Legendre

See also Friedman Test; Holm’s Sequential Bonferroni
Procedure; Spearman Rank Order Correlation
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COEFFICIENT OF VARIATION

The coefficient of variation measures the vari-
ability of a series of numbers independent of the
unit of measurement used for these numbers. In
order to do so, the coefficient of variation elimi-
nates the unit of measurement of the standard
deviation of a series of numbers by dividing the
standard deviation by the mean of these num-
bers. The coefficient of variation can be used to
compare distributions obtained with different
units, such as the variability of the weights of
newborns (measured in grams) with the size of
adults (measured in centimeters). The coefficient
of variation is meaningful only for measurements
with a real zero (i.e., “ratio scales”) because the
mean is meaningful (i.e., unique) only for these
scales. So, for example, it would be meaningless
to compute the coefficient of variation of the
temperature measured in degrees Fahrenheit,
because changing the measurement to degrees
Celsius will not change the temperature but will
change the value of the coefficient of variation
(because the value of zero for Celsius is 32 for
Fahrenheit, and therefore the mean of the tem-
perature will change from one scale to the
other). In addition, the values of the measure-
ment used to compute the coefficient of variation
are assumed to be always positive or null. The
coefficient of variation is primarily a descriptive
statistic, but it is amenable to statistical infer-
ences such as null hypothesis testing or confi-
dence intervals. Standard procedures are often
very dependent on the normality assumption,
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