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Abstract
Beta diversity can be measured in different ways. Among these, the total variance of the community data

table Y can be used as an estimate of beta diversity. We show how the total variance of Y can be calcu-

lated either directly or through a dissimilarity matrix obtained using any dissimilarity index deemed appro-

priate for pairwise comparisons of community composition data. We addressed the question of which

index to use by coding 16 indices using 14 properties that are necessary for beta assessment, comparability

among data sets, sampling issues and ordination. Our comparison analysis classified the coefficients under

study into five types, three of which are appropriate for beta diversity assessment. Our approach links the

concept of beta diversity with the analysis of community data by commonly used methods like ordination

and ANOVA. Total beta can be partitioned into Species Contributions (SCBD: degree of variation of individ-

ual species across the study area) and Local Contributions (LCBD: comparative indicators of the ecological

uniqueness of the sites) to Beta Diversity. Moreover, total beta can be broken up into within- and among-

group components by MANOVA, into orthogonal axes by ordination, into spatial scales by eigenfunction

analysis or among explanatory data sets by variation partitioning.
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INTRODUCTION

A most interesting property of species diversity is its organisation

through space. This phenomenon, now well known to community

ecologists, was first discussed by Whittaker in two seminal papers

(1960, 1972) where he described the alpha, beta and gamma

diversity levels of natural communities. Alpha is local diversity,

beta is spatial differentiation and gamma is regional diversity. The

interest of community ecologists for beta diversity stems from the

fact that spatial variation in species composition allows them to

test hypotheses about the processes that generate and maintain

biodiversity in ecosystems. Sampling through space, time or along

gradients representing processes of interest is a way of carrying

out mensurative experiments (Hurlbert 1984) involving natural pro-

cesses without the constraints (e.g. small sample size) of con-

trolled experiments.

Beta diversity is conceptually the variation in species composition

among sites within a geographical area of interest (Whittaker 1960).

Several authors have used that description of the concept, including

Legendre et al. (2005), Anderson et al. (2011) and Baselga & Orme

(2012). Different equations have been proposed to measure that

variation. Vellend (2001) and Anderson et al. (2011) pointed out

that studies of beta diversity might focus on two aspects of commu-

nity structure, distinguishing two types of beta diversity. The first is

turnover, or the directional change in community composition from

one sampling unit to another along a predefined spatial, temporal

or environmental gradient. The second is variation in community

composition among sampling units, which is a non-directional

approach because it does not make reference to any explicit gradi-

ent. Both approaches are legitimate.

Regardless of whether beta diversity is defined as directional or

non-directional, one can be interested in summarising it using a sin-

gle number that quantifies the variation. A lot of interest has been

centred on the choice of the best index to produce that number. In

the directional approach, the slope of the similarity decay in species

composition with geographical distance can be used as a measure of

beta (Nekola & White 1999). In his 1960 paper, Whittaker sug-

gested to compute a non-directional beta index for species richness

as b = c/a where c is the number of species in the region and a is

the mean number of species at the study sites within the region.

Since then, several other indices have been suggested to estimate a

value corresponding to beta in the turnover and non-directional

frameworks; see Vellend (2001), Koleff et al. (2003) and Anderson

et al. (2011) for reviews. Currently, the most popular indices belong

to two families that can be labelled the additive (Ha + Hb = Hc)

and multiplicative (Ha 9 Hb = Hc) approaches (Jost 2007; Chao

et al. 2012). A detailed discussion of these two families is found in a

Forum section published by Ecology (2010:1962–1992).
In his introduction to the Forum, Ellison (2010) noted that in the

additive and multiplicative approaches, beta is a derived quantity
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that is numerically related to alpha and gamma. He pointed out that

it would be most useful to have a method to estimate beta diversity

without prior computation of alpha and gamma; he called for com-

putational independence, which does not imply statistical indepen-

dence. The approach adopted and developed in this article is to use

the total variance of the site-by-species community table Y as a sin-

gle-number estimate of beta diversity (Pelissier et al. 2003; Legendre

et al. 2005; Anderson et al. 2006). Fulfilling Ellison’s wish, it is com-

puted without reference to the values of alpha and gamma and its

statistical dependence on gamma can be accounted for using null

models (Kraft et al. 2011; De C�aceres et al. 2012). While acknowl-

edging that other measures of beta can also achieve computational

and statistical independence (e.g. Chao et al. 2012), one of our aims

is to stress an important advantage of the total variance of Y over

other measures: it allows ecologists to go beyond the single-number

approach and partition the spatial variation in several ways to

answer precise ecological questions and test hypotheses about the

origin and maintenance of beta diversity in ecosystems.

We will explore the advantages and limitations of estimating

beta diversity (BDTotal) as the total variation of the community

matrix Y. (1) In a first section, we show that BDTotal can be

obtained in two equivalent ways, i.e. by computing the sum-of-

squares of the species occurrence or abundance data or via a dis-

similarity matrix. When the first method is used, species abun-

dances should be transformed in an appropriate way before

computing BDTotal. The second method is also appealing because

it allows the estimation of beta using the dissimilarity functions

that are appropriate for the analysis of community data. (2) There

are, however, many different dissimilarity coefficients, and not all

of them are appropriate for estimating beta diversity. A compara-

tive analysis of 16 coefficients is undertaken in the next section to

guide users faced with the problem of choosing a coefficient. (3)

We then present an example to illustrate the calculation of beta as

the total variance of Y and the contributions of individual species

and sampling units. (4) Following that, we show that the proposals

of Whittaker (1972) and Ricotta & Marignani (2007) are special

cases of BDTotal computed from a dissimilarity matrix, and that

the beta diversity statistic of Anderson et al. (2006) is closely

related to BDTotal. (5) Finally, we show that the total variance of

Y links beta diversity assessment with the description (through

ordination) and hypothesis testing (through regression and canoni-

cal analysis) phases of community ecology, as well as other vari-

ance partitioning methods.

BETA DIVERSITY AS THE TOTAL COMMUNITY COMPOSITION

VARIANCE

Equivalent ways of computing Var(Y)

This section presents two equivalent ways of computing the total

variance of the community composition matrix Y. The first one is

straightforward, it is simply the total variance of matrix Y. The sec-

ond one is based on community dissimilarity matrices computed

using the indices developed by ecologists over more than a century.

The section also shows that the total variance can be divided into

the contributions of individual species and individual sampling sites.

Readers can follow the explanation on the diagram in Fig. 1.

Let Y = [yij] be a data table containing the presence-absence or

the abundance values of p species (column vectors y1, y2, … yp of

Y) observed in n sampling units (row vectors x1, x2, … xn of Y).

We will use indices i and h for sampling units, index j for species

and yij for individual values in Y. The total variance of Y, noted

Var(Y), can be computed as follows:

Sums of squares

The usual way to obtain Var(Y) consists in computing a matrix of

squared deviations from the column means. Let S (for ‘square’) be

a n 9 p rectangular matrix where each element sij is the square of

the difference between the yij value and the mean value of the cor-

responding jth species:
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Figure 1 Schematic diagram representing the different ways of computing beta diversity as the total variance in the species composition data table Y, as well as the

contributions of individual species and sampling units. Numbers in parentheses refer to equations in the text.
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sij ¼ yij ��yj

� �2
: ð1Þ

All sij values in column j are zero if all sites have the same abun-

dance for species j. If we sum all values of S, we obtain the total

sum of squares (SS) of the species composition data:

SSTotal ¼
Xn

i¼1

Xp

j¼1
sij : ð2Þ

This quantity forms the basis of BDTotal, which is the index of

beta diversity whose properties are studied in this article:

BDTotal ¼ VarðYÞ ¼ SSTotal=ðn� 1Þ: ð3Þ
Equation 3 converts the sum of squares into the usual unbiased

estimator of the variance, whose values can be compared between

data matrices having different numbers of sampling units. SSTotal
and Var(Y) = BDTotal were both proposed by Legendre et al. (2005)

as measures of beta diversity. The two indices are equally useful to

compare repeated surveys of a region involving the same sites, or

for simulation studies, but there is a clear advantage in using Var(Y)

for comparisons among regions.

Although we advocate using Var(Y) as a measure of beta diver-

sity, it is important to note that eqns 1–3 should not be computed

directly on raw species abundance or biomass data. Because calcu-

lating Var(Y) on raw species abundances entails that the dissimilarity

between sites is assessed using the Euclidean distance (eqn 7) and

this coefficient is not appropriate for compositional data (see sec-

tion ‘Dissimilarity coefficients and beta assessment’), species abun-

dance data should be transformed in an ecologically meaningful way

before BDTotal is calculated using eqns 1–3.
An advantage of conceiving beta as the total variation in Y is that

SSTotal allows the assessment of the contributions of individual species

and of individual sampling units to the overall beta diversity. That is, one

can compute the sum of squares corresponding to the jth species,

SSj ¼
Xn

i¼1
sij ð4aÞ

which is the contribution of species j to the overall beta diversity.

SSj divided by (n�1) is the variance of species j. The relative contri-

bution of species j to beta, which we call Species Contribution to Beta

Diversity (SCBD), is thus:

SCBDj ¼ SSj
�
SSTotal: ð4bÞ

In an analogous way, one can compute the sum of squares corre-

sponding to the ith sampling unit,

SSi ¼
Xp

j¼1
sij : ð5aÞ

The SSi values represent a genuine partitioning of beta diversity

among the sites. Because the sij values are squared deviations from

the species means, SSi is the squared distance of sampling unit i to

the centroid of the distribution of sites in species space. SSi also

measures the leverage of site i in a principal component analysis

(PCA) ordination. The relative contribution of sampling unit i to beta

diversity, which we call Local Contribution to Beta Diversity (LCBDi), is

thus:

LCBDi ¼ SSi=SSTotal: ð5bÞ

LCBD values can be mapped, as will be shown in the ecological

illustration below. Ecologically, they represent the degree of uniqueness

of the sampling units in terms of community composition. Mapping the

centred values using different symbols or colours is a way to high-

light the sites with LCBD values higher and lower than the mean.

LCBD indices can be tested for significance by random, indepen-

dent permutations within the columns of matrix Y; testing the

LCBDi is the same as testing the SSi indices. This permutation

method tests H0 that the species are distributed at random, inde-

pendently of one another, among the sites, while preserving the

species abundance distributions found in the observed data. How-

ever, it destroys the association of the species to the site ecological

conditions, as well as the spatial structure of community composi-

tion resulting from assembly processes (e.g. dispersal, environmental

filtering). Note that the species richness (alpha diversity) of the sites

is changed by this permutation method; species-poor sites become

richer in most permutations and species-rich sites become poorer.

Arguably, these two kinds of sites may have large LCBD for that

reason, so this permutation method includes randomisation of spe-

cies richness in its null hypothesis. Other null hypotheses may be

tested using other permutation schemes, e.g. by preserving site attri-

butes such as total species richness or number of individuals (e.g. in

De C�aceres et al. 2012). A simulation study that we performed

showed that the LCBD test described here has correct rates of type

I error for all coefficients that are suitable for beta diversity study

(identified in section ‘Comparative study’).

Hence, the two decompositions of SSTotal are

SSTotal ¼
Xp

j¼1
SSj and SSTotal ¼

Xn

i¼1
SSi : ð6a; bÞ

Dissimilarity

As mentioned above, there is an alternative path starting from Y

and leading to SSTotal (Fig. 1). That is, SSTotal can also be obtained

from an n 9 n symmetric dissimilarity matrix D = [Dhi] containing

Euclidean distances among points, computed using the classical

Euclidean distance formula:

Dhi ¼ D xh; xið Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

j¼1
ðyhj � yijÞ2

r
: ð7Þ

The following equivalence is described in Legendre et al. (2005) and

in Legendre & Legendre (2012, chapter 8):

SSTotal ¼ 1

n

Xn�1

h¼1

Xn

i¼hþ1
D2

hi : ð8Þ

That is, one can obtain SSTotal by summing the squared distances in

the upper or lower half of matrix D and dividing by the number of

objects n (not by the number of distances). This equality (eqn 8) is

demonstrated in appendix 1 of Legendre & Fortin (2010).

The Euclidean distance has long been known to be inappropriate

for the analysis of community composition data (see next section).

For that reason, eqns 7–8 should not be used to compute SSTotal
unless species abundance data have been appropriately transformed

so that the resulting dissimilarity assessments are ecologically mean-

ingful (e.g. using the Hellinger or chord transformations described in

Appendix S1 in Supporting Information). Equation 8 can also be gen-

eralised to distance matrices obtained using other dissimilarity indices.

These indices may or may not have the Euclidean property (P13

below), but their other properties may make them appropriate for

beta diversity assessment. Thus, a valid method to calculate BDTotal

consists in computing a dissimilarity matrix D using a selected ecolog-

ical dissimilarity coefficient instead of the Euclidean distance, and

applying eqn 8 to obtain SSTotal, followed by eqn 3. That eqn 8

© 2013 John Wiley & Sons Ltd/CNRS
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applies to ecological dissimilarities that have the Euclidean property,

or not, is shown in Appendix S2. How to choose an appropriate dis-

similarity coefficient for a given study is described in the next section.

It is possible to calculate the contributions of individual sampling

units from D. Indeed, the algebra of principal coordinate analysis

(PCoA, Gower 1966) offers a way of computing the sum of squares

SSi, corresponding to each sampling unit i, directly from D. In

PCoA, prior to eigen-decomposition, the distance matrix is trans-

formed into matrix A ¼ ahi½ � ¼ �0:5D2
hi

� �
, then centred as pro-

posed by Gower (1966) using the equation

G ¼ I� 110

n

� 	
A I� 110

n

� 	
ð9Þ

where I is an identity matrix of size n, 1 is a vector of ones (length

n) and 1′ is its transpose (Legendre & Legendre 2012; eqns 9.40

and 9.42). The diagonal elements of matrix G are the SSi values, or

the squared distances of the points to the multivariate centroid of

Y, which is located at the centroid of the principal coordinate

space:

SSi½ � ¼ diag Gð Þ: ð10aÞ

The vector of local contributions of the sites to beta diversity

(LCBDi) is computed as follows:

LCBDi½ � ¼ diag Gð Þ=SSTotal: ð10bÞ
Despite its advantages, working from matrix D instead of the

matrix of squared centred values S entails the drawback that one

looses track of the species. Because D is computed among sampling

units over all species, the contributions of individual species cannot

be recovered from D.

To summarise:

(1) The community data table Y should be transformed in an

appropriate way before beta diversity is computed. One can then

compute the total sum of squares in the community data Y, SSTotal,

from either the transformed community composition matrix Y

(eqns 1 and 2) or from a Euclidean distance matrix D computed

from the transformed data (eqns 7 and 8). The two modes of calcu-

lation produce the same statistic, SSTotal, and from it one can com-

pute the total variance, BDTotal = Var(Y) (eqn 3).

(2) Alternatively, one can use eqn 8 to compute SSTotal from a dis-

similarity matrix D obtained using any appropriate dissimilarity coef-

ficient (next section). Equation 8 applies to ecological dissimilarity

indices that have the Euclidean property, or not, as demonstrated in

Appendix S2.

(3) The contribution of the ith sampling unit to the overall beta

diversity can be computed using eqn 5a. From these, Local Contribu-

tion to Beta Diversity (LCBD) coefficients can be derived. LCDB

coefficients are comparative indicators of the ecological uniqueness

of the sites in terms of community composition. The SSi values are

also found on the diagonal of matrix G (eqns 9 and 10a). The rela-

tive contributions (LCDB) are computed using eqns 5b and 10b.

(4) If BDTotal is calculated from Y (eqn 3) transformed in an

appropriate way, the contribution of species j to the overall beta

diversity, SSj, is computed using eqn 4a, and the relative contribu-

tions, called the Species Contributions to Beta Diversity (SCBD), are

computed using eqn 4b. SCBD coefficients represent the degree of

variation of individual species across the study area. SSj and SCDB

coefficients cannot be derived from a distance matrix.

DISSIMILARITY COEFFICIENTS AND BETA ASSESSMENT

Since the description of the first floristic similarity coefficient by

Paul Jaccard (1900), community ecologists have developed a broad

array of similarity and dissimilarity coefficients. Ecologists are often

faced with the question: Which community data transformation

and/or (dis)similarity coefficient should I use in my study? When

assessing beta diversity through the variation in community compo-

sition, one needs to specify what is meant by ‘variation in commu-

nity composition’. The answer will determine the choice of a

community data transformation and/or dissimilarity measure, and

must be carefully articulated (Anderson et al. 2006).

There is no single coefficient that is appropriate in all occasions.

Choice should be guided by the properties of coefficients and the

objective of the research. Several studies have compared resem-

blance coefficients, focusing on their linearity and resolution along

simulated gradients (e.g. Bloom 1981; Hajdu 1981; Gower & Legen-

dre 1986; Faith et al. 1987; Legendre & Gallagher 2001), or investi-

gating theoretical properties (e.g. Janson & Vegelius 1981; Hub�alek
1982; Wilson & Shmida 1984; Gower & Legendre 1986; Koleff

et al. 2003; Chao et al. 2006; Clarke et al. 2006). Complementing

these studies, we present in this section a comparative review of

several abundance- and incidence-based dissimilarity coefficients,

listed in Table 1. Our aim is to determine which coefficients are the

most appropriate for assessing beta diversity under the present

approach. We restricted the list to the coefficients originally

designed for pairwise comparisons, thus excluding multiple-site dis-

similarity measures (e.g. Baselga 2010, 2013). In addition, we

focused on properties that are easy to understand and interpret eco-

logically, with preference for those that could be checked unequivo-

cally.

Properties of dissimilarity indices for the study of beta diversity

Fourteen properties, divided into four groups, are described in

Appendix S3, which also outlines procedures to check which dis-

similarity indices possess them. The first two groups (P1–P9) con-
tain the minimum requirements for assessing beta diversity. The

remaining two groups (P10–P14) are not necessarily required in all

beta diversity studies. Practitioners should determine whether the

context of their analyses requires these properties, or not. Other

properties are also considered interesting by authors of other studies

on dissimilarity coefficients.

The dissimilarity coefficients

A selection of 16 quantitative dissimilarity coefficients commonly

used for beta diversity assessment was considered in our compari-

son study. They represent a broad hand among the available coef-

ficients. Equations are shown in Table 1 for community

composition abundance and for presence–absence (i.e. incidence)

data. Table 2 indicates which dissimilarity coefficients possess the

properties mentioned in the previous paragraph and described in

Appendix S3, as well as their maximum values (Dmax) when they

exist.

The first coefficient in the list is the Euclidean distance. Although

this distance is known to be inappropriate for the analysis of com-

munity composition data sampled under varying environmental con-

ditions (Orl�oci 1978; Legendre & Gallagher 2001), it is included in

© 2013 John Wiley & Sons Ltd/CNRS
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the comparison where it will serve as a reference point. It is the

failure of the Euclidean distance to correctly account for beta diver-

sity (it lacks properties P4, P5, P7–P9) that makes it necessary for

ecologists to rely on the other dissimilarity measures investigated in

this article. The Euclidean distance may, however, become appropri-

ate after transformation of the community data (Appendix S1).

Likewise, the Manhattan distance is inappropriate per se; neverthe-

less, it is included in the comparison because it becomes the Whit-

taker dissimilarity after profile transformation of Y, and that index

is appropriate for beta diversity studies (Whittaker 1952; Faith et al.

1987; Appendix S1).

The other coefficients included in the comparative study are dou-

ble-zero asymmetric (property P4); they have been recommended

and used for community composition assessment or beta diversity

studies. Four of these dissimilarities can be computed using the for-

mula in Table 1 or through the alternative method corresponding

to property P14. For the species profile, Hellinger, chord and chi-

square distances, the data are first transformed using the same-name

transformation (Appendix S1); computing the Euclidean distance

(eqn 7) on the transformed data produces the targeted profile,

Hellinger, chord or chi-square distance.

When applied to presence-absence data, several quantitative coef-

ficients in Table 1 produce either the one-complement of the

Jaccard similarity index or the one-complement of the Sørensen

index. The Hellinger and chord distances both produce

D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1�Ochiai similarityÞp

.

Comparative study

The properties of the selected coefficients were coded into a data

matrix with the coefficients as rows and properties P4–P14 as col-

umns (Table 2). Most properties were coded as presence–absence
(0–1), except for P13 which was coded on a semiquantitative 0-1-2

scale (0 = not Euclidean, 1 = D(0.5) is Euclidean, 2 = D(0.5) and D

are Euclidean). The missing value in Table 2 (coded ‘NA’) was

transformed to 1; the reason is that the chi-square distance has

property P7, so it would likely have P10 if a binary form was avail-

able for that coefficient. The data matrix was subjected to PCA of

the correlation matrix.

The analysis produced an ordination of the dissimilarities (Fig. 2)

where similar coefficients are close to one another and dissimilar

ones are more distant. Properties P4–P14, which are the variables

of the matrix subjected to PCA, are shown as red arrows. One can

identify five types of coefficients using the data in Table 2 and the

ordination diagram:

Type I contains the Euclidean and Manhattan distances, as well

as the mean character difference and the species profile distance.

They all lack several of the important properties in the first two

classes (P4–P9). Most notably, the Euclidean and Manhattan dis-

tances do not have the double-zero asymmetry property (P4), and

the four coefficients fail to give the largest dissimilarity values to

pairs of sites without species in common (P5). The distance

between species profiles decreases when the number of unique spe-

cies in the compared sites increases (P6). The Euclidean distance,

Manhattan distance and species profile distances are not species-rep-

lication invariant (P7). Moreover, the Euclidean, Manhattan and

modified mean character difference do not fulfil P8 and P9. The

species profile distance is invariant to the measurement units of the

data (P8), but the upper bound of
ffiffiffi
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a single, unique species per site; with more species, the maximum

distance decreases with the number of unique species. Due to these

shortcomings, the four coefficients belonging to type I do not allow

proper assessment and comparison of beta diversity estimates

among data sets.

Coefficients in types II–IV provide asymmetrical treatment of

double zeros (P4) and they all have properties P5–P9, which are

required for comparability of beta estimates among data sets. They

are thus all appropriate for beta diversity assessment.

Type II contains the Hellinger and chord distances. These two

distances are closely related: the Hellinger distance is equal to the

chord distance computed on square-root-transformed species fre-

quencies. They share all properties in classes 1 and 2, which are

necessary for beta diversity assessment. Furthermore, type II coeffi-

cients are Euclidean (P13) and they can be emulated by transforma-

tions of the raw frequency or biomass data (P14). Hence, D

matrices computed using these coefficients are fully suitable for

ordination by principal coordinate analysis (PCoA), which will not

produce negative eigenvalues and complex axes. For an easier and

more informative ordination, species frequency (or frequency-like,

such as biomass) data transformed using the Hellinger and chord

transformations (Appendix S1) can be analysed directly by PCA and

by canonical redundancy analysis (RDA); this is not the case for the

type III and IV coefficients. (PCoA of Hellinger and chord distance

matrices produces the same ordinations as PCA of the Hellinger

and chord transformed data.) Moreover, SSTotal corresponding to

the Hellinger and chord distances can be obtained by computing

the transformation in Appendix S1, then applying eqns 1 and 2 to

the transformed data. This is simpler than computing the distance

matrix and using eqn 8 to obtain SSTotal. Furthermore, the Hellinger

and chord transformed data allow the computation of SCBD statis-

tics (eqn 4b), which cannot be obtained from a distance matrix.

Type III contains the divergence, Canberra, Whittaker, percentage

difference (alias Bray–Curtis), Wishart and Kulczynski dissimilarities.

They share properties (P1-P9), which are necessary for beta diver-

sity assessment. The coefficient of divergence, which is Euclidean,

can be used directly in PCoA ordination. For four coefficients

(Canberra, Whittaker, percentage difference and Wishart), the square

root of the distances must be taken before they are used in PCoA.

The matrix of principal coordinates can be used as the response

data in RDA; this is the distance-based RDA method proposed by

Legendre & Anderson (1999). Among the six coefficients in this

group, only the Whittaker index is invariant to the total abundance

of each sampling unit (P11); the remaining indices are thus affected

to some extent by differences in total abundances between the two

compared sites. The Kulczynski coefficient is suitable for beta

diversity assessment, but not for ordination, and it does not correct

for undersampling. Considering the properties analysed in this arti-

cle, this coefficient does not offer any particular advantage not

available in other coefficients; it is thus not recommended for gen-

eral use.

Type IV contains the abundance-based quantitative forms of the

Jaccard, Sørensen and Ochiai indices. Like coefficients of type II,

type IV coefficients fulfil property P11 (invariance to total abun-

dance in individual sampling unit). In addition, they have property

P12 (correction for undersampling), but not properties P13 and

Table 2 Properties P4–P14 of the coefficients in Table 1. P1–P3 (not shown) are fulfilled by all coefficients. Property descriptions are found in Appendix S3. 1 indicates

that a coefficient has the property, 0 that it does not. For P13, code 2 indicates that both D and D(0.5) are Euclidean, 1 that only Dð0:5Þ ¼ D0:5
hi

� �
is Euclidean, and 0 that

neither D nor D(0.5) is Euclidean. NA: there is no binary form for the chi-square distance, hence P10 could not be assessed. Last column: maximum possible dissimilarity

value (Dmax) when it exists. P1–P9 are essential properties for beta assessment; P10–P14 describe additional properties, useful for special applications

Dissimilarity P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 Dmax

Euclidean distance 0 0 1 0 0 0 0 0 0 2 1 —
Manhattan distance 0 0 1 0 0 0 0 0 0 1 0 —
Modified mean

character difference

1 0 1 1 0 0 1 0 0 0 0 —

Species profile

distance

1 0 0 0 1 1 0 1 0 2 1
ffiffiffi
2

p

Hellinger distance 1 1 1 1 1 1 1 1 0 2 1
ffiffiffi
2

p
Chord distance 1 1 1 1 1 1 1 1 0 2 1

ffiffiffi
2

p
Chi-square

distance

1 0 1 1 1 1 NA 0 0 2 1
ffiffiffiffiffiffiffiffiffiffi
2yþþ

p

Coefficient of

divergence

1 1 1 1 1 1 1 0 0 2 0 1

Canberra metric 1 1 1 1 1 1 1 0 0 1 0 1

Whittaker’s index

of association

1 1 1 1 1 1 1 1 0 1 0 1

Percentage difference

(alias Bray–Curtis)
1 1 1 1 1 1 1 0 0 1 0 1

Wishart coefficient =
(1�similarity ratio)

1 1 1 1 1 1 1 0 0 1 0 1

D = (1�Kulczynski

coefficient)

1 1 1 1 1 1 1 0 0 0 0 1

Abundance-based

Jaccard

1 1 1 1 1 1 1 1 1 0 0 1

Abundance-based

Sørensen

1 1 1 1 1 1 1 1 1 0 0 1

Abundance-based

Ochiai

1 1 1 1 1 1 1 1 1 0 0 1
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P14, which are desirable for ordination. In particular, type IV coef-

ficients are not Euclidean (P13) in quantitative form, although the

Jaccard, Sørensen and Ochiai similarities, which are their binary

counterparts, produce coefficients that have the Euclidean property

when transformed to D ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� similarity

p
(Legendre & Legendre

2012, table 7.2).

The chi-square distance forms type V. This distance is widely

used to analyse communities since it is the basis for correspondence

analysis. The chi-square distance gives more importance to rare than

common species in the assessment of the distance between sites,

the rare species (when their abundances are correctly estimated by

sampling) being considered more important indicators of special

environmental conditions prevailing at some sites. Unfortunately, it

lacks property P5, and this makes it unsuitable for beta diversity

studies.

Maximum value of BD

All dissimilarities in types II–IV have a maximum value, reached

when two sites have completely different community compositions.

For example, the Hellinger and chord distances in type II have a

minimum value of 0 and a maximum of
ffiffiffi
2

p
(Table 2). If all sites

have entirely different species compositions, all n(n�1)/2 distances

in D are
ffiffiffi
2

p
and eqns 8 and 3 produce BDTotal = 1. Hence, for

these two dissimilarity indices, BDTotal is in the range [0, 1]. All

other indices that are appropriate for beta assessment (types III and

IV) have maximum values of 1. When all sites have different spe-

cies compositions, the distances are all equal to 1 and BDTotal com-

puted through eqns 8 and 3 is 0.5, so that BDTotal is in the range

[0, 0.5]. For these distances, multiplying BDTotal by 2 would directly

produce relative BD values (BDrel, Appendix S3, property P9) in

the range [0, 1]. Hence, BDTotal has a fixed range of values for any

community, which does not depend on the total abundance in the

community composition table.

ECOLOGICAL ILLUSTRATION: FISH BETA DIVERSITY IN DOUBS

RIVER

Freshwater fish were collected by Verneaux (1973) in the Doubs

River, a tributary of the Saône that runs near the France–Switzer-
land border in the Jura Mountains in eastern France. In his article,

Verneaux proposed to use fish communities to characterise ecologi-

cal zones along European rivers and streams. The data include fish

community composition at 30 sites along the 453 km course of the

river, the site geographical coordinates and environmental data

(source: http://www.bio.umontreal.ca/numecolR/). Twenty-seven

species were captured and identified. No fish were caught at site 8,

hence that site was excluded from the reanalyses made by Borcard

et al. (2011), as well as here. As in that book, we subjected the fish

data to a chord transformation before analysis (Appendix S1).

SSTotal (eqn 2) was 15.243 and BDTotal (eqn 3) was 0.544 for the

fish data. The local contributions of individual sites were computed;

the values of SSi (eqn 5a) ranged from 0.291 to 0.971. An ordina-

tion diagram (Fig. 3) illustrates the mathematical meaning of SSi

Figure 2 Principal component biplot relating properties P4–P14 (red arrows) to the dissimilarity coefficients (grey points; see Table 1 for the full coefficient names). The

five types of coefficients (blue labels), shown in the figure, are described in the text. PCA axis 1 accounts for 46% of the multivariate variation and axis 2 for 23%.
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indices: they are the squares of the distances of the sites to the mul-

tivariate centroid, as discussed under eqn 9.

The relative contributions (LCBDi ¼ SSi=SSTotal, eqn 5b) were in

the range [0.019, 0.064]. LCBD indices indicate the uniqueness of

the fish community at each site. They are plotted on a schematic

map of the river in Fig. 4a, which also shows the two sites where

LCBD was statistically significant. Comparison with species richness

(Fig. 4b) showed that for this data, LCBD was negatively correlated

to richness (r = �0.60), indicating that high LCBD (i.e. high unique-

ness of species composition) was often related to a small number of

species. This is not, however, a general or obligatory relationship.

Environmental variables were also available for each site: distance

from the source, altitude, riverbed slope, mean minimum discharge,

pH, concentrations in calcium, phosphate, nitrate, ammonium and

dissolved oxygen and biochemical oxygen demand (BOD). The

LCBD values were regressed on the environmental variables to

determine the factors that make LCBD vary along the river (adjusted

R2 = 0.58). Only two environmental variables were retained by

backward elimination in regression: riverbed slope and BOD. Both

variables had positive coefficients in the model, indicating that sites

with high BDTotal either had a large slope (specially true at the head-

waters) or were strongly eutrophic (high BOD). Note that regressing

LCBD values on environmental variables is not the same as canoni-

cal analysis of the community data. For the chord-transformed Do-

ubs fish data, forward selection of environmental variables in RDA

produced a different model (adjusted R2 = 0.61) containing five sig-

nificant variables at the 0.05 level: distance from the source, altitude,

slope, dissolved oxygen and BOD. The question in RDA is to iden-

tify the factors driving the observed variation in community compo-

sition; RDA truly analyses beta diversity by decomposing the total

variance of the species data, i.e. BDTotal, into explained and residual

components. In contrast, in regression analysis of the LCBD indices,

the question is why some sites have higher degrees of uniqueness in

species composition than others.

Four species contributed to beta diversity well above the mean of

the 27 species: the stone loach (Barbatula barbatula, Balitoridae), the

common bleak (Alburnus alburnus, Cyprinidae), the Eurasian minnow

(Phoxinus phoxinus, Cyprinidae), and the brown trout (Salmo trutta

fario, Salmonidae) which had the highest SCBD index. The chord-

transformed abundances of these species varied the most among

sites. The brown trout, Eurasian minnow and stone loach are found

Figure 3 Ordination diagram of Doubs River fish data sites (nonmetric

multidimensional scaling, nMDS; chord distance). SSi indices are the squares of

the distances of the sites to the multivariate centroid. The significant indices

(P < 0.05) are represented by red lines joining the points to the centroid (full

lines: P < 0.05 after Holm correction for 29 simultaneous tests).
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Figure 4 Maps of Doubs River (blue line) showing (a) the local contributions to

beta diversity (LCBD) of the fish assemblage data and (b) the species richness at

the 29 study sites. Size of the circles is proportional to the LCBD or richness

values. Two sites have significant LCDB (or SSi) indices at the 0.05 significance

level after Holm correction for multiple testing: site 1 (P = 0.003) and site 23

(P = 0.042). The arrows indicate flow direction.
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in the unpolluted sites with high LCBD upriver, which have high

conservation status, whereas the common bleak is abundant in the

eutrophic sites with agricultural pollution in the middle course of

the river. Sites in the latter group, which also have high LCBD val-

ues, are in need of restoration.

One may wonder: For the coefficients that are appropriate for

beta diversity studies, are the LCBD estimates similar or very differ-

ent? Using the software in Appendix S4, calculation of LCBD was

repeated for the 11 dissimilarities belonging to types II–IV, which
are appropriate for beta assessment. The 11 LCBD vectors were

quite similar: their mean Spearman correlation was 0.905. Kendall

concordance analysis (Legendre 2005) showed that the contributions

of all 11 vectors to the concordance of the group were significant.

(These are not genuine tests of significance since the LCBD vectors

were all computed from the same data; the concordance results pro-

vide, however, a clustering validation criterion.) These results show

that LCDB indices computed using all dissimilarities that were suit-

able for beta diversity assessment were highly concordant.

DISCUSSION

Different concepts of beta diversity

We will first address the appropriateness of using ‘beta diversity’ to

designate the approach described in this article. We acknowledge

that this is an unsettled issue. Authors, e.g. Anderson et al. (2011),

have rightfully argued that there are several meanings and measures

associated with the concept of beta diversity. Authors agree that

alpha and beta diversities are essentially different; alpha measures

how diversified the species are within a site, i.e. in a single row of

the site-by-species data table Y, whereas beta measures how diversi-

fied the sites are in species composition within a region, i.e. the var-

iation among the rows of Y. Some ecologists prefer to reserve the

expression beta diversity for the additive or multiplicative

approaches, and we will not dispute their choice.

However, if beta diversity can be seen as ‘the variation in species

composition among sites’, as stated by many authors, then the vari-

ance of Y, which specifically measures that variation, certainly quali-

fies as a measure of beta. The literature is growing that adopts this

broader concept and measure of beta, because it links the ecological

concept of beta diversity to methods of analysis that can be applied

to test hypotheses about the mechanisms that generate and maintain

beta diversity in ecosystems (subsection ‘Multiple ways of partition-

ing total beta diversity’). Those who prefer to limit the meaning of

beta diversity to the additive or multiplicative approaches do not

deny that variation in species composition among sites can be analy-

sed, and hypotheses tested, but they prefer to call that variation by

some other name, e.g. compositional heterogeneity among sites.

Compositional heterogeneity – be it called beta diversity, or not –
measures community differentiation, which results from evolution-

ary and ecological processes operating at several spatial (from site

to global) and temporal scales.

After proposing the concept in his seminal papers, Whittaker

(1960, 1972) detailed different measures of beta diversity. One of his

measures corresponds precisely to the variance of Y measured

through some dissimilarity coefficients, as will be shown in the next

subsection. We are in good company here. Ecologists largely agree

with Whittaker (1972) that beta diversity conceptually corresponds to

the variation in species composition among sites in the geographical region of inter-

est. (Whittaker used a slightly different expression, ‘the extent of dif-

ferentiation of communities along habitat gradients’. He was

interested in the response of communities to environmental variation,

hence his interest for ordination methods.) Legendre et al. (2005) were

perhaps the first to use precisely that expression, based on their read-

ing of Whittaker, and they were followed in its use by many authors,

including Anderson et al. (2006, 2011). Leaving the terminological

issue aside, we may discuss what are the different ways of estimating

the variation in species composition among sites, or beta diversity.

For example, Baselga (2013) suggested calculating multiple-site dis-

similarity coefficients to measure variation in species composition

between more than two sites, instead of using an average of pairwise

dissimilarity values. Alternative estimation methods are not in opposi-

tion but complementary; each one offers a different way of explaining

beta diversity, or expressing it in a way that makes it useful for ecolog-

ical interpretation, impact assessment or conservation studies. Future

studies should focus on comparing alternative estimation approaches

in order to clarify their differences and domains of application.

Related approaches to beta diversity assessment

In this article, we used the total variance of Y as an estimate of beta

diversity (BDTotal) for a region of interest (eqn 3, Fig. 1). Var(Y)

should not be computed using raw abundance data but after some

appropriate transformation of the community composition data, or

through a carefully selected dissimilarity function. The values of

BDTotal are comparable among data sets having the same or differ-

ent numbers of sampling units (n), provided that the sampling units

are of the same size or represent the same sampling effort, and that

the calculations have been done using the same index chosen

among those that have been found to be suitable for beta diversity

assessment in this article. Depending on the index, BDTotal may

have a maximum value of 1 or 0.5 when all sites under study have

different species compositions.

Alternative equations to estimate total BD have been proposed

by Whittaker (1972), Ricotta & Marignani (2007) and Anderson

et al. (2006). We will now show that these proposals are special

cases of eqn 3 or are related to it.

In section ‘Equivalent ways of computing Var(Y)’, we saw that

SS(Y) can be computed as the sum of the squared dissimilarities

divided by n (eqn 8). This is appropriate for the Euclidean distance

and for dissimilarities that have the property of being Euclidean

(P13). Appendix S2 shows that SSTotal can also be computed in that

way for dissimilarities that do not lead to a fully Euclidean represen-

tation; these will not concern us in the present paragraph. Several

dissimilarities, coded 1 for P13 in Table 2, are Euclidean only when

taking their square roots; the square-rooted distances form matrix

Dð0:5Þ ¼ D0:5
hi

� �
. That group includes the Canberra metric, Whittaker’s

index, the percentage difference (alias Bray–Curtis) and Wishart’s

coefficient. Many of the incidence-based (i.e. binary) coefficients are

also in that situation, including the widely used Jaccard, Sørensen

and Ochiai coefficients (Legendre & Legendre 2012, table 7.2). We

will show here that the method of calculation of beta diversity

proposed in other papers is equivalent to DBTotal of the present

paper if D(0.5) is used for the calculation.

(a) Whittaker (1972, p. 233) stated that ‘The mean CC [Jaccard or

Sørensen coefficient of community] for samples of a set compared

with one another in all possible directions is one expression [of]

their relative dissimilarity, or beta differentiation’. The mean is
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obtained by summing the dissimilarities and dividing by the number

of dissimilarities in the half-matrix, nðn� 1Þ=2. This is equivalent to
computing eqns 8 and 3 on the square-rooted dissimilarities (matrix

D(0.5)) and multiplying by 2. Hence, Whittaker’s formula only differs

by a factor 2 from DBTotal computed from D(0.5).

(b) There is also a relationship between the equation for DBTotal

used in this article and the suggestion of Ricotta & Marignani

(2007) to estimate beta diversity by Rao’s (1982) quadratic entropy,

Q ¼Pn�1
h¼1

Pn
i¼hþ1 dhi phpi , where pi and ph contain the relative abun-

dances of sampling units i and h in the data table, respectively, and

dhi is the dissimilarity between i and h computed with any measure

of one’s choice. If all sampling units are considered equally impor-

tant, say pi = 1/n, then Q ¼ 1
n2

Pn�1
h¼1

Pn
i¼hþ1 dhi , which is very close

to DBTotal computed from D(0.5) through eqn 8 followed by eqn 3.

The difference is that the last division is by n in Q instead of (n�1)

in eqn 3.

(c) The beta diversity statistic developed by Anderson et al. (2006)

belongs to the same family as DBTotal. It is the sum of the dissimilari-

ties from the sampling units to the group centroid in multivariate space

divided by n, producing a maximum likelihood estimate of the vari-

ance. It differs from DBTotal, which is the sum of the squared dissimilar-

ities from the sampling units to the group centroid divided by n� 1ð Þ
(eqn 3). The squared dissimilarities from the sampling units to the

group centroid are found in vector SSi½ � obtained by eqns 9 and 10a

computed from D. Because it can be computed from any dissimilarity

matrix, the Anderson et al. (2006) statistic can be computed from D

or D(0.5), both producing a different statistic than DBTotal.

Regarding the choice of a dissimilarity measure and the equiva-

lence of the beta diversity approaches described in the last para-

graphs, different situations should be considered. (1) For

dissimilarity measures that are not Euclidean for D but are Euclid-

ean for D(0.5), then the approaches of Whittaker (1972) and Ricotta

& Marignani (2007) are essentially equivalent to the calculation of

DBTotal in this article. (2) If the dissimilarity measure can be

obtained by applying a transformation to the original data (Appen-

dix S1) followed by the computation of the Euclidean distance, the

equivalence between these methods holds in the transformed space

and BDTotal can be computed by applying eqns 2 and 3 to the

transformed data. (3) If the dissimilarity measure cannot be

obtained by applying a transformation to the original data followed

by Euclidean distance calculation, the distances to the centroid can

still be computed using the square root of eqn 10a. This result

holds for non-Euclidean embeddable dissimilarities as well, although

with some additional complexities (Anderson 2006; Appendix S2).

Multiple ways of partitioning total beta diversity

The strongest advantage of adopting the present approach to the

analysis of beta diversity lies in the possibility of partitioning the

total sum-of-squares of the community composition data into addi-

tive components. The total variance is the basic currency of many

statistical methods, univariate and multivariate, through which Var

(Y) can be partitioned in different ways. Available partitioning

methods include the following.

Contributions of individual species

The SSTotal statistic can be partitioned into species contributions to

beta diversity (SCBDj , eqn 4b). SCBD indices can, in principle, be

computed for raw or transformed abundance data, but it should in

practice be limited to data subjected to the Hellinger or chord trans-

formations, which are the only two that correspond to distances

suitable for beta assessment. After centring, the SCBD values have

signs which indicate the species that vary more (or less) than the

mean across the sites. A mathematical limitation restrains the use of

SCBD coefficients: they can only be computed from raw or trans-

formed data tables with species in columns; they cannot be com-

puted from a D matrix. Calculating SCBD indices is useful to

determine which species exhibit large variations across the study

area. Note that SCBD indices do not have the same interpretation

as indicator species for groups of sites (Dufrêne & Legendre 1997;

De C�aceres & Legendre 2009). The sites where species with large

SCBD values are abundant and dominate the community will nor-

mally also have large LCBD indices, as we found in our example.

Contributions of individual sampling units

Likewise, the SSTotal statistic can be partitioned into local contribu-

tions of individual sampling units to beta diversity (LCBDi, eqn 5b or

10b). The LCBD values, which can be mapped, indicate the sites that

contribute more (or less) than the mean to beta diversity. LCBD are

comparative indicators of site uniqueness; hence, large LCBD values

indicate sites that have strongly different species compositions. For

conservation biology, large LCBD values may indicate sites that have

unusual species combinations and high conservation value, or

degraded and species-poor sites in need of ecological restoration.

They may also correspond to special ecological conditions or

result from the effect of invasive species on communities. LCBD may

be inversely correlated with species richness, as in our example, but

in other ecosystems large LCBDs may indicate rare species

combinations that are worth studying in more detail.

In data analysis, sites with high LCBD may be removed before

simple or canonical ordination because they may have an undue influ-

ence on the results. This may prove a useful criterion to remove sites

prior to ordination, instead of other criteria like low species richness.

Within- and among-group contributions

Groups of sites may be known a priori from the sampling design, or

they may be obtained by clustering based on the environmental

variables. For these groups of sites, the total sum-of-squares of the

species data can be divided by multivariate analysis of variance

(computed using MANOVA or canonical analysis) into within- and

among-group sums of squares. Alternatively, groups of sites where

the species respond in the same way to environmental variables can

be identified by multivariate regression tree analysis.

Simple and canonical ordination

The total sum-of-squares, which estimates beta diversity, can be

partitioned into orthogonal axes by simple ordination methods

(PCA, CA, PCoA). Alternatively, SSTotal can be partitioned by

canonical analysis (RDA or CCA) into orthogonal axes related to

the environmental variables.

Contributions of sets of explanatory factors

SSTotal can be partitioned as a function of different sets of explana-

tory variables by variation partitioning (Borcard et al. 1992; Peres-

Neto et al. 2006). Partitioning can be done, e.g. between different

sets of environmental variables, or between explanatory matrices

representing environmental and spatial variables (e.g. sets of spatial
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eigenfunctions), depending on the hypotheses under study. This is a

major approach for estimating the relative contributions of groups

of explanatory variables representing different hypotheses about the

origin of beta diversity.

Spatial scales

SSTotal can be partitioned as a function of spatial scales by spatial ei-

genfunction analysis. See Legendre & Legendre (2012) for a review

of these methods. These and other methods of multivariate multi-

scale analysis were also reviewed by Dray et al. (2012).

Multivariate variogram and multiscale ordination

SSTotal can also be partitioned into spatial scales by multivariate vari-

ogram analysis (Wagner 2003). Furthermore, the species–environ-
ment relation, which represents a portion of SSTotal, can be

partitioned into spatial scales by multiscale ordination; see Wagner

(2003, 2004) and Legendre & Legendre (2012).

Choosing a dissimilarity index for beta diversity assessment

Analysing the spatial variation in species composition necessarily

implies choosing a dissimilarity coefficient, either implicitly or

explicitly (Legendre et al. 2005; Anderson et al. 2006). Choosing an

appropriate coefficient is crucial to ensure the interpretation of the

results and allow the comparison of beta diversity estimates among

regions and types of organisms.

In this article, we studied several properties of coefficients, sepa-

rating those that were purely mathematical from those that had an

ecological interpretation. This conceptual separation was important

to help users make choices on ecological grounds. Comparison of

the 16 selected dissimilarity coefficients based on 14 ecological, sta-

tistical and mathematical properties led to a model where the coeffi-

cients were divided into five main types. Three of those types are

suitable for beta diversity studies and comparison of beta diversity

estimates computed from different ecological data sets. These

different types of coefficients can be used to address different

questions.

Among the unsuitable coefficients are the Manhattan and Euclidean

distances. As shown in this article, these distances are appropriate for

beta diversity assessments only after transformation of the raw abun-

dance data. In the case of the Manhattan distance (L1 norm), the nat-

ural transformation is the division of each value by the total

abundance, which leads to the Whittaker coefficient. In the case of

the Euclidean distance (L2 norm), the natural transformation is the

division of each value by the norm of the row vector, which leads to

the chord distance. The Hellinger distance is the chord distance com-

puted on square-root-transformed abundance data.

When choosing a coefficient, users should check the properties

the coefficient has, and determine whether they are suitable for the

objectives of the study. Further research is needed about the mathe-

matical and ecological properties of dissimilarity coefficients and the

situations where these properties are desirable or needed.
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Appendix S1 

COMMUNITY COMPOSITION DATA TRANSFORMATIONS 

The following data transformations (Legendre & Gallagher 2001), applied to species frequency 

data (or frequency-like data such as biomass) before computing the Euclidean or Manhattan 

distance, produce distance coefficients that are included in our comparative study: 

• Species profile transformation: 

! 

" y ij = yij yi+ ; 

• Hellinger transformation: 

! 

" y ij = yij yi+ ; 

• Chord transformation: 

! 

" y ij = yij yij
2

j=1

p

# ; 

• Chi-square transformation:  

! 

" y ij = y++

yij

yi+ y+ j

  where 

! 

yi+ = yijj=1

p

" ,  

! 

y+ j = yiji=1

n

" ,  and 

! 

y++ = yijj=1

p

"
i=1

n

" . 

After computation of the Euclidean distance, the corresponding dissimilarities are the species 

profile, Hellinger, chord, and chi-square distances. The Hellinger and chord distances are 

appropriate for beta diversity studies, but the distance between species profiles and the chi-square 

distance are not; see Comparative study in the main paper.  

 Before calculation of the Euclidean or Manhattan distance, another approach is to transform 

community composition data using simple transformations. Examples are the usual square-root 

and 

! 

" y ij = log(yij + c) transformations (constant c is usually 1 when transforming species 

frequency data, but it could take other values for biomass data for example), or the special log 

transformation of Anderson et al. (2006), which makes allowance for species frequencies of 



 2 

zeros. Log transformations are appropriate for species data with log-normal distribution; log-

transformed data can then be used as input into the percentage difference and Kulczynski 

dissimilarities. Other transformations that are appropriate for community composition data were 

described by Faith et al. (1987), among other authors. 

 The Euclidean distance computed on data transformed using the square-root, 

! 

log(yij + c) , 

or Anderson’s log transformations still lacks properties P4, P5, P7, P8 and P9 that are essential 

for beta diversity assessment (Appendix S3). These transformations do not solve the problems of 

the Euclidean distance computed on raw abundance data (Table 2). 

 Community composition data transformed following any of the transformations described 

in this section can be used in linear models such as simple (PCA) and canonical (RDA) 

ordination, K-means partitioning, and multivariate regression tree analysis (MRT); these methods 

implicitly preserve the Euclidean distance among sites. 

 Computing the Manhattan distance on data transformed into species profiles produces 

Whittaker’s index of association multiplied by 2, which is an appropriate coefficient for beta 

diversity studies (Whittaker 1952). The Manhattan distance is, however, not the distance implicit 

in linear models, so that Whittaker’s index of association does not lend itself to linear modelling 

nor to the calculation of Species Contributions to Beta Diversity (SCDB indices) described in the 

main paper, eqn. 4b. 
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Appendix S2 

COMPUTING THE TOTAL SUM OF SQUARES FROM A DISSIMILARITY MATRIX 

Equation 8 in the main paper shows how to compute the total sum of squares, SSTotal, for a matrix 

of Euclidean distances. The equivalence of eq. 2 (computed on raw data) and eq. 8 (computed on 

distances) was demonstrated in Appendix 1 of Legendre & Fortin (2010). The profile, chord, 

Hellinger, and chi-square distances are obtained by first transforming the raw abundance data as 

described in Appendix S1, then computing the Euclidean distance formula on the transformed 

data. As a consequence, for these distances computed using the Euclidean distance formula, it is 

clear that SSTotal can be computed either from the transformed data through eq. 2 or from the 

distances through eq. 8. 

  For the other distances that have the Euclidean property as either D or D(0.5) = [

€ 

Dhi
0.5] 

(Table 2, column P13, codes 1 or 2), eq. 8 also applies. That point is demonstrated as follows: 

any dissimilarity matrix that has the Euclidean property can be decomposed into principal 

coordinates by principal coordinate analysis (PCoA, Gower 1966), obtaining a fully Euclidean 

representation of the data (Gower & Legendre 1986). Calculation of dissimilarity matrix D 

followed by PCoA of D or D(0.5) acts as a data transformation. The total sum of squares of the 

matrix of principal coordinates, computed through eq. 2, is equal to the total sum of squares 

computed from dissimilarity matrix D or D(0.5) through eq. 8. 

 Finally, for dissimilarities that do not lead to a fully Euclidean representation (i.e. those that 

do not have the Euclidean property; Table 2, column P13, code 0), the same equivalence still 

exists although these matrices produce negative eigenvalues in PCoA. The demonstration 

involves two steps. On the one hand, the trace of the Gower-centred matrix on which eigen-
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decomposition is computed, which is equal to the sum of all eigenvalues (positive and negative), 

is equal to SSTotal computed from the dissimilarity matrix through eq. 8. On the other hand, 

McArdle & Anderson (2001) and Anderson (2006) have shown how to compute SSTotal of the 

principal coordinate representation using the real and complex principal coordinates, and this is 

equal again to the trace of the Gower-centred matrix on which eigen-decomposition is computed 

in PCoA. Their method has three steps: (1) square all values in the matrix of eigenvectors (which 

were produced by eigen-decomposition with a norm of 1), (2) multiply each squared eigenvector 

by its eigenvalue, and (3) sum all the resulting values. The calculation is demonstrated in the R 

function pcoa.short() in R, below. 

Illustration: calculation of SSTotal for a non-Euclidean dissimilarity matrix 

For the example, we will use the first 10 rows of the mite data available in package vegan and 
compute the percentage difference dissimilarity. The calculations are done in the R language. 

require(vegan) 
data(mite) 
 
### Compute the percentage difference dissimilarity for the mite data (first 10 rows) 
mite.D <- vegdist(mite[1:10,], "bray") 
# Is the dissimilarity matrix Euclidean? 
require(ade4) 
is.euclid(mite.D) # Available in R package ade4 
# [1] FALSE 
  
### Compute SSTotal from the dissimilarities 
 
SS.D <- function(D, n) sum(D^2) / (n) # Equation 8 
res.SS.D <- SS.D(mite.D, 10) 
res.SS.D 
# [1] 0.9626073 # Result: SSTotal 
 
### A short function for principal coordinate analysis (PCoA) 
 
########################################################################### 
pcoa.short <- function(D, include.zero=FALSE, only.values=FALSE) 
# 
# Compute PCoA for a Euclidean or non-Euclidean dissimilarity matrix. 
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# The eigenvectors are not scaled to sqrt(eigenvalues),  
# hence they are not principal coordinates in the PCoA sense. 
# 
# When 'n' is very large, users may choose not to compute the eigenvectors. 
# This is obtained by selecting the option only.values=TRUE. 
# The statistic VarTotal=SS will not be computed and printed in that case. 
# 
# License: GPL-2 
# Author:: Pierre Legendre 
{ 
 D <- as.matrix(D) 
 n <- nrow(D) 
 epsilon <- sqrt(.Machine$double.eps)  
# 
# Gower centring, matrix formula 
 One <- matrix(1,n,n) 
 mat <- diag(n) - One/n 
 G <- -0.5 * mat %*% (D^2) %*% mat 
 trace <- sum(diag(G)) 
 SSi <- diag(G) 
# 
# Eigenvalue decomposition 
 eig <- eigen(G, symmetric=TRUE, only.values=only.values) 
# Exclude the null eigenvalue/s if include.zero is FALSE 
 select <- 1:n 
 exclude <- which(abs(eig$values) < epsilon) 
 cat("Note - Eigenvalue/s", exclude, "is/are null\n") 
 if(!include.zero) { 
  cat("Note - Eigenvalue/s and eigenvector/s", exclude, "was/were excluded\n") 
  select <- select[-exclude] 
  } 
 values <- eig$values[select] 
# 
if(!only.values) { # Compute SS from the eigenvectors 
 vectors <- eig$vectors[,select] 
 vectors.sq <- vectors^2 %*% diag(values) 
 SS <- sum(vectors.sq)  
 } else { 
 vectors <- NA 
 SS <- NA 
 } 
# 
list(values=values, vectors=vectors, trace=trace, SS.total=SS, SSi=SSi, site.names=rownames(D), 
select=select) 
} 
########################################################################### 
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res <- pcoa.short(mite.D) 
# Note - Eigenvalue/s 9 is/are null 
# Note - Eigenvalue/s and eigenvector/s 9 was/were excluded 
 
### Compute SSTotal as the trace of the Gower-centred matrix 
 
res$trace 
# [1] 0.9626073  # Result: SSTotal 
 
### Compute SSTotal as the sum of the PCoA eigenvalues 
 
sum(res$values) 
# [1] 0.9626073  # Result: SSTotal 
 
### Compute SSTotal as the sum of squares of the principal coordinates scaled to lengths equal to 
the square roots of the eigenvalues, including the one with a negative eigenvalue. The result is the 
same with options include.zero=FALSE or include.zero=TRUE. 
 
res$SS.total 
# [1] 0.9626073  # Result: SSTotal 
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Appendix S3 

DETAILS ABOUT THE PROPERTIES OF DISSIMILARITY COEFFICIENTS 

We describe four groups of properties and indicate the reason why we consider them relevant. 

The first two groups (i.e. from P1 to P9) contain the minimum requirements for assessing beta 

diversity. The remaining two groups (i.e. P10 to P14) are not necessarily required in all beta 

diversity assessments. Practitioners should determine whether the context of their analyses 

requires these latter properties or not. Similarity coefficients should be transformed into 

dissimilarities before assessing the following properties. 

Property class 1: Basic necessary properties. — Properties P1 to P9 must be fulfilled by all 

resemblance coefficients used for beta diversity assessment. P1 and P2 are actually mathematical 

axioms that define a dissimilarity function. Thus, they are fulfilled by all coefficients considered 

in this paper. P3 (monotonicity) is a necessary condition for any coefficient used to study species 

assemblages. All coefficients investigated in the present study are monotonic. Properties P1 to P3 

are therefore not shown in Table 1 of the paper. 

P1 – Minimum of zero and positiveness. A dissimilarity value should never be negative and it 

should be zero when comparing a site to itself. When comparing two different sites, it can be zero 

or greater than zero, depending on the species abundance values and how the dissimilarity is 

defined. For example, with some coefficients, D is zero when comparing two site vectors whose 

abundance values are proportional to each other; that is the case with the profile, chi-square, 

chord, and Hellinger distances. Dissimilarities that violate this property by taking negative values 

are called nonmetric, by opposition to the metric and semimetric coefficients (see Legendre & 

Legendre 2012). 
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P2 – Symmetry. Consider two community abundance vectors, x1 and x2, whose dissimilarity is 

to be assessed. In symmetric indices, D(x1,x2) = D(x2,x1). In the incidence-based counterparts of 

these coefficients (Table 1 in the main paper), the values b and c play exchangeable (symmetric) 

roles. When studying beta diversity, there is no reason to make a distinction between the two 

sampling units that are compared using a coefficient. Therefore, dissimilarity coefficients must be 

symmetric. The property of being double-zero symmetrical, referred to in P4, is different. 

P3 – Monotonicity to changes in abundance. Increasing the difference in abundances of one of 

several species between two sites increases their dissimilarity. Property P3 was verified using 

ordered comparison case series (OCCAS), corresponding to linear changes in the abundances of 

two species along different types of simulated environmental gradients. The OCCAS method was 

proposed by Hajdu (1981) and used by Gower & Legendre (1986) to assess monotonicity in 

dissimilarity coefficients. 

P4 – Double-zero asymmetry. Coefficients that have this property do not change when double-

zeros are added to the data, but the dissimilarity decreases when double-X (where X > 0) values 

are added. The reasoning implies two conditions, derived from ecological niche theory. 

1. Ecological statement: double-zeros in species abundance are not interpretable. — In his 

seminal paper, Whittaker (1972) published a figure (his Fig. 4, p. 228) showing simulated species 

represented by bell-shaped curves with different widths (species tolerances), succeeding one 

another along three ecological gradients. (1.1) For species j observed at a pair of sites, the 

presence of that species (in any abundance) at both sites indicates that the two sites are similar to 

some extent, i.e. they are close in positions along the gradient. Because the two sites are within 

the tolerance zone of species j, that species can be found at these two sites. (1.2) Ruling out 

sampling error, the presence at one site and absence at the other unambiguously indicates that the 
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sites occupy different positions along the gradient. (1.3) Ruling out sampling error again, double 

absence of species j is not interpretable, because it can result from the two sites being either at 

close positions along the gradient but outside the tolerance zone of species j (e.g. pH too high at 

both sites for that species), or at positions far away along the gradient, both sites being outside 

the tolerance zone of species j (e.g. pH too low at one site and too high at the other).  

2. Lemma. — The presence of species j at two sites (point 1.1 above) is an indication of 

resemblance of these sites whatever the abundances observed. It follows that presence of species j 

with the same abundance X at two sites (a difference (X – X) = 0 for that species; point 1.1 

above) has a different meaning from the double-absence (which also corresponds to a difference 

(0 – 0) = 0; point 1.3 above).  

3. This reasoning leads to the following conclusions. (3.1) Double-zeros (0, 0) have a different 

meaning than double-presences (X, X), whatever the abundances. (3.2) Coefficients that produce 

the same effect (i.e. no change in dissimilarity) for double zeros as they do for double presences 

with identical abundances (i.e. (X,X), which we call double-X), where X > 0) are called double-

zero symmetrical because they treat double zeros like any other pair of identical values. These 

coefficients are not admissible for the study of ecological differentiation of communities, i.e. for 

beta diversity studies. The Euclidean and Manhattan distances belong to that type: double-zeros 

and double-X produce no change in distance, whereas any other pair of non-identical abundances 

does produce a change in the distance. (3.3) Coefficients useful for beta diversity studies must be 

double-zero asymmetrical (term used in Legendre and Legendre 2012), meaning that their value 

does not change with the addition of double zeros, but it decreases when species with double-X 

abundances that are not double-zeros are added to the comparison of two sites.  
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 The difference between double-zero and double-X is clearly recognized in binary 

coefficients. In double-zero symmetrical similarity coefficients such as the simple matching 

index, the numbers of double-presences and of double-absences (usually respectively represented 

by a and d) are used as indications of similarity. In contrast, double-zero asymmetrical similarity 

coefficients such as the Jaccard and Sørensen indices exclude double-absences (d) from both their 

numerator and denominator and use only the double-presences (a) in their formula in addition to 

b and c. Some binary dissimilarity coefficients can be expressed as function of b and c only (see, 

for example, the presence-absence formulas for the Euclidean and Manhattan distances in Table 1 

of the main paper). These are also double-zero symmetrical, because neither double-presences (a) 

nor double-absences (d) can change the value of the coefficient. A double-zero asymmetrical 

binary dissimilarity coefficient must include double-presences (a) and exclude double-absences 

(d) from its formula. 

P5 – Sites without species in common have the largest dissimilarity. Coefficients that violate 

this property are not suitable for beta diversity studies. For the coefficients that have a fixed 

upper bound (last column of Table 2), the largest dissimilarity is the upper bound. The following 

data sets were used to test the 16 coefficients analysed in this paper. In each example, the rows 

are sites S1-S4, the columns represent species. 

Example data 1 – 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

S1 3 7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S2 7 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

S3 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 
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S4 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 

 

Example data 2 –  

 1 2 3 4 

S1 1 4 0 0 

S2 4 1 0 0 

S3 0 1 1 0 

S4 1 0 0 1 

 

Example data 3 – 

 1 2 3 4 

S1 1 2 0 0 

S2 2 1 0 0 

S3 0 1 40 0 

S4 1 0 0 40 

 

Some dissimilarity functions present the following paradox with one of more of these data sets: 

for sites 3 and 4 that have no species in common, these coefficients produce dissimilarities that 

are smaller than for sites that have some (e.g. sites 1 and 3) or all (sites 1 and 2) their species in 

common. These examples are extensions of the Orlóci (1978, p. 46) paradox data.  
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P6 – Dissimilarity does not decrease in series of nested species assemblages. For pairs of 

sites having any number of unique species, i.e. species that are not found at the other site, the 

dissimilarity should be the same or increase with the number of unique species. In particular, the 

dissimilarity should not decrease when the number of unique species in one or both sites 

increases. To assess this property, we carried out simulations where we added unique species to 

one of the sites (which corresponds to the data structure described as nestedness of species 

assemblages by Wright & Reeves 1992 and Baselga 2010) or to both sites (data structure 

described as monotonic by Jost et al. 2011). Violation of P6 leads to the paradox that the total 

sum of squares for a pair of sites, which is D2/2 (eq. 8 in the main paper), tends to 0 as the 

number of unique species increases.  

 Property class 2: Comparability between data sets. — The following three properties are 

needed to appropriately compare beta diversity values calculated for different data tables, even if 

the sampling unit are the same size (e.g. quadrat size for vegetation) and the sampling effort is the 

same. Therefore, we consider they should also be required in beta diversity studies. 

P7 – Species replication invariance. A community composition table with the columns in two 

or several copies should produce the same dissimilarities among sites as the original data table. 

Procedure: select a community composition data table, compute a dissimilarity index and obtain a 

dissimilarity matrix. Then, duplicate the data table, combining the two copies side by side, using 

for example function cbind() in R. Compute the same dissimilarity function and obtain a new 

dissimilarity matrix. Repeat the duplication step to include three copies of the data and compute 

the dissimilarity matrix again. The three dissimilarity matrices should be identical if the 

dissimilarity function has the property of replication invariance. For the abundance-based 

coefficients, the property is computed using the population formula, not the sample formula. This 
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property was first described by Jost et al. (2011).  

 A special case of this property (not included as a separate property in the present study), for 

presence-absence data, is called homogeneity, for example by Janson and Vegelius (1981), Koleff 

et al. (2003) and Chao et al. (2006). The homogeneity property allows the comparison of beta 

values computed from data tables containing different total species richness. This property is 

verified on the binary form of the coefficients, by multiplying a, b, c and d by a constant factor 

and checking whether the resulting index value is changed. 

P8 – Invariance to the measurement units. This property concerns abundance-based formulas 

only. It allows the comparison of beta values between data tables (e.g. regions) with different 

productivities (abundance or biomass), or where biomass has been measured using different units 

(e.g. in g and mg). To see whether a given quantitative coefficient is invariant to changes of 

measurement scale, we multiplied the abundance values by a constant factor and checked 

whether the resulting index was altered.  

P9 – Existence of a fixed upper bound. The existence of an upper bound for a coefficient 

facilitates the interpretation and comparison of beta values because an upper bound in the 

dissimilarity index leads to an upper bound in the beta diversity value. The maximum beta value 

for a region is obtained when all site pairs have the maximum dissimilarity Dmax permitted by the 

chosen coefficient. One can apply eq. 8 to that situation to compute the maximum sum of 

squares: 

  SSmax = 

€ 

1
n
n(n −1)
2

Dmax
2 

 
 

 

 
  = 

€ 

n −1
2

Dmax
2   

then eq. 3 to obtain the maximum beta diversity value: 
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  BDmax = SSmax/(n–1) = 

€ 

n −1
2

Dmax
2 

 
 

 

 
 
1
n −1

 = 

€ 

1
2
Dmax
2   

The upper bound varies among dissimilarity coefficients (Table 2 of the pain paper, right-hand 

column). For coefficients with Dmax = , BDmax = 1; for those with Dmax = 1, BDmax = 0.5 (see 

section “Maximum value of BD” in the pain paper). For the chi-square distance, Dmax =  

and BDmax = y++ which is the sum of the species abundances in Y. Although y++ varies from data 

table to data table, the chi-square distance is considered as belonging to the group of the 

coefficients that have a fixed upper bound because its sister index, the chi-square metric (not 

otherwise discussed in this paper), has an upper bound of  (see e.g. Legendre and Legendre 

2012). The chi-square distance is the chi-square metric multiplied by y++ , hence it has an upper 

bound of . The chi-square distance is the one computed in software packages; this is why 

its properties are described here. The chi-square metric and distance have the same properties 

besides their different maximum values. Hence, for coefficients that have a fixed maximum (see 

section “The dissimilarity measures” in the main paper), we can compute a relative value of beta 

diversity, BDrel, as follows: 

  

€ 

BDrel = BDTotal BDmax   

which is a value between 0 and 1. BDrel is useful to compare beta values computed using different 

coefficients.  

 Property class 3: Sampling issues. — This group of properties is mostly related to sampling 

issues. The fulfilment of properties P10 and P11 facilitates (but does not ensure) the 

comparability of beta values obtained from sampling units having different sizes or sampled 

using different efforts. Indeed, both the number of species and the total abundance may be 
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strongly affected by changes in the size of sampling units or in sampling effort. On the other 

hand, if the size of sampling units and sampling effort are sufficiently homogeneous, ecologists 

may be interested in allowing differences in the numbers of species, and perhaps also in the total 

abundances between sites, to influence the dissimilarity and beta diversity assessments. 

The last property deals with correction for undersampling (P12) of the community composition. 

This property is also related to sampling effort. It is related to sampling unit size as well because 

small sampling units can lead to undersampling the richness of the targeted community. 

P10 – Invariance to the number of species in each sampling unit. This property analyses 

whether a double-zero asymmetrical binary coefficient changes its value depending on the 

number of species in each of two sampling units x1 and x2 that are compared. Does the 

dissimilarity value change if the two communities are species rich, compared to when the two 

communities are species poor or when one is rich and the other poor?  

 This property was verified algebraically on the binary form of the coefficients; it could not 

be checked for the chi-square metric which does not have a binary form. We start with the usual 

a, b, c notation for binary indices: 

 a = number of species shared between x1 and x2 

 b = number of unique species in x1 that do not appear in x2 

 c = number of unique species in x2 that do not appear in x1 

We then define the number of species in x1 and x2 as n1 = a + b and n2 = a + c, and the proportion 

of shared species with respect to each site as p1 = a / n1 = a / (a + b) and p2 = a / n2 = a / (a + c). 

After defining n1, n2, p1 and p2, one can reformulate the binary dissimilarity measures found in 

column Incidence-based of Table 1 of the main paper in terms of these four quantities, instead of 

using the notation a, b, c. The idea of the proof is to see whether a dissimilarity measure can be 
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reformulated using a notation that uses n1, n2, p1 and p2, and then see if these terms n1 and n2 

cancel out in the formula. In other words, we ask whether D(a, b, c) = D(n1, n2, p1, p2) can be 

reduced to D(p1, p2). The following equivalences are useful for reformulation: 

 a = (a + b) × (a / (a + b)) = n1 × p1 = (a + c) × (a / (a + c)) = n2 × p2 

 b = (a + b) × (1 – (a / (a + b))) = n1 × (1 – p1) 

 c = (a + c) × (1 – (a / (a + c))) = n2 × (1 – p2) 

Using the presence-absence form of each dissimilarity measure (column Incidence-based in 

Table 1), property P10 is verified algebraically by trying to cancel n1 and n2 out of the formula.  

 P10 is a stricter property than homogeneity (see P7, second paragraph). It is easy to show 

that fulfilling P10 leads to a coefficient that is homogeneous (invariant to the total number of 

species of the data set), because if D(a, b, c) = D(p1, p2), and knowing that p1 = a / (a + b) = k·a / 

(k·a + k·b) and p2 = a / (a + c) = k·a / (k·a + k·c), then we have D(a, b, c) = D(ka, kb, kc), which 

proves homogeneity. However, the reverse does not follow. Indeed, a given coefficient may be 

homogeneous without satisfying P10. An example is the asymmetric binary similarity coefficient 

proposed by Kulczynski (1928), S12 = a / (b + c) (S12 in Legendre & Legendre 2012), which is 

homogeneous but does not fulfil P10. 

Proofs for individual coefficients – 

(1) Euclidean distance. When this distance is calculated on presence-absence data it can be 

formulated as: 

E = 

! 

b + c = n
1
" (1# p

1
) + n

2
" (1# p

2
)  

Because n1 and n2 cannot be cancelled out, the Euclidean distance does NOT satisfy P10. 
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(2) Manhattan distance. When this distance is calculated on presence-absence data it can be 

formulated as: 

M = 

! 

b + c = n
1
" (1# p

1
) + n

2
" (1# p

2
)  

As before, the Manhattan distance does NOT satisfy P10. 

(3) Jaccard similarity index (proof thanks to A. Chao). 

J = 

! 

a

a + b + c
=

a

2a + b + c " a
=

n1p1

(n1p1 + n2p2) +n1(1" p1) +n2(1" p2) " n1p1 
 

! 

=
n1p1

n1 + n2 " n1p1 
=

1

(1/ p1) + (1/ p2) "1
 

Thus, the Jaccard index DOES satisfy P10. All resemblance coefficients that are equal to the 

Jaccard index for presence-absence data satisfy P10: the modified mean character difference, 

coefficient of divergence, Canberra metric, Wishart coefficient (1- Similarity ratio), and 

abundance-based Jaccard. 

(4) Sørensen similarity index (proof thanks to A. Chao) The Sørensen similarity index is 

! 

S =
2a

2a + b + c
=

2n
1
p

1

n
1
p

1
+ n

2
p

2
+ n

1
(1" p

1
) + n

2
(1" p

2
) 

 

! 

=
2n

1
p

1

n
1

+ n
2
 
 

! 

=
2

(1/ p
1
) + [n

2
/(n

1
p
1
)]

 and, since 

! 

n
1
p
1

= n
2
p
2
, 

! 

=
2

(1/ p
1
) + (1/ p

2
)

 

Thus, the Sørensen index DOES satisfy P10. All resemblance coefficients that are equal to the 

Sørensen index for presence-absence data satisfy P10: the percentage difference and 

abundance-based Sørensen. 
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(5) Ochiai similarity index: 

! 

O =
a

(a + b)(a + c)
=

a

(a + b)
"

a

(a + c)
= p

1
" p

2  

Thus, the Ochiai index DOES satisfy P10. All resemblance coefficients that are equal to the 

Ochiai index for presence-absence data satisfy P10: the Hellinger distance, chord distance, and 

abundance-based Ochiai. In this coefficient, the similarity is the geometric mean of p1 and p2. 

(6) Species profile distance. When this distance coefficient is calculated on presence-absence 

data, it can be written using the a-b-c-d notation as: 

SP = 

! 

b + c

(a + b)(a + c)  

After reformulating this index, we can reduce it to: 

€ 

SP =
n1 ⋅ (1− p1) + n2 ⋅ (1− p2)

n1 ⋅ n2
=
1− p2
n1

+
1− p1
n2  

Because n1 and n2 cannot be cancelled out, the species profile distance does NOT satisfy P10. 

(7) Whittaker’s index of association. When this distance coefficient is calculated on presence-

absence data, it can be written using the a-b-c-d notation as: 

! 

W =
1

2

b

a + b
+

c

a + c
+

a

a + b
"

a

a + c

# 

$ 
% 

& 

' 
( 
 

After reformulating this index, we can reduce it to: 

! 

W =
1

2

n1 " (1# p1)

n1
+
n2 " (1# p2)

n2
+
n1 " p1
n1

#
n2 " p2
n2

$ 

% 
& 

' 

( 
) 
 

! 

W =
1

2
(1" p1) + (1" p2) + p1 " p2( ) =

1

2
2 " (p1 + p2) + p1 " p2[ ] 

Thus, the Whittaker index of association also DOES satisfy P10.  
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(8) Kulczynski similarity index. When this similarity is calculated on presence-absence data it 

can be straightforwardly formulated as: 

€ 

K =
1

2

a
a + b

+
a

a + c
 

  
 

  
=
1

2
p1 + p2[ ] 

Thus, the Kulczynski similarity also DOES satisfy P10. In this coefficient, the similarity is the 

arithmetic mean of p1 and p2. 

P11 – Invariance to the total abundance in each sampling unit. Except when researchers only 

count and identify a fixed number of individuals (which is often the case in plankton or 

palaeoecological studies), sampling units in the data table are likely to have different total 

abundances. Some abundance-based dissimilarity indices are only sensitive to relative 

abundances per site whereas others reflect differences in site total counts. This property was 

called “density invariance” by Jost et al. (2011). It is not the same as property P7 above. One can 

check property P11 by determining whether a coefficient is altered when the abundances are 

multiplied by a constant factor that is different for each sampling unit.  

P12 – Coefficients with corrections for undersampling. With higher sampling effort, i.e. larger 

sampling units, rare species, and in particular those that are not found at the two sites under 

comparison, are more likely to be observed (Chao et al. 2006, Cardoso et al. 2009). For that 

reason, dissimilarity coefficients generally underestimate the dissimilarities among sites, the bias 

decreasing when sampling effort increases. For some binary similarity coefficients, Chao et al. 

(2006) and Jost et al. (2011) suggested abundance-based counterparts that incorporate corrections 

for undersampling bias.  

 Property class 4: Ordination-related properties. — The remaining properties are not 

related to the ecological interpretation of a coefficient or the comparability of beta diversity 
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values. They are, however, useful for ordination and linear modelling of community 

composition data. 

P13 – Euclidean property of D or D(0.5). A dissimilarity matrix D is Euclidean if it can be 

embedded in a Euclidean space of real axes such that the Euclidean distances among points are 

equal to the dissimilarity values in D. For coefficients that are Euclidean, principal coordinate 

analysis of D produces ordinations that are fully represented in Euclidean space (i.e. without 

negative eigenvalues). Several coefficients have the Euclidean property. Some coefficients that 

are not Euclidean for D become Euclidean after taking the square root of the dissimilarity values 

(Gower & Legendre 1986); the resulting matrix, which contains values [

! 

Dhi
0.5], is noted D(0.5). 

Legendre & Legendre (2012, Tables 7.2 and 7.3) describe the Euclidean properties of 43 

commonly-used similarity and dissimilarity coefficients, including several of the coefficients 

listed in Table 1. 

P14 – Emulated by transformation of the raw frequency data followed by Euclidean 

distance. Legendre & Gallagher (2001) described how some distance coefficients can be 

obtained by computing the Euclidean distance (eq. 7 in the main paper) after transforming the 

raw data values in some appropriate way. Four such transformations are described in Appendix 

S1. Coefficients that can be obtained in that way are interesting because one can obtain BDTotal by 

computing the transformation and then applying eqs 1-3. Moreover, transformed data allow the 

computation of the beta diversity contributions of individual species through eqs 4a and 4b 

(SCBD indices) and of sites through eqs 5a and 5b (LCBD indices). One can also use the 

transformed data directly in linear modelling of community composition data, e.g. by simple 

(PCA) or canonical (RDA) ordination, K-means partitioning, or multivariate regression tree 

analysis (MRT), because these methods implicitly preserve the Euclidean distance among sites.  
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 In addition to the coefficients obtained by transformation followed by calculation of the 

Euclidean distance (Appendix S1), the Whittaker index can also be obtained by applying the 

Manhattan distance to profile transformed data; see section “The dissimilarity coefficients” in the 

main paper. This produces twice Whittaker’s index of association; for that reason, Whittaker’s 

index was dubbed “relativized Manhattan” by Faith et al. (1987). The Manhattan distance is, 

however, not the distance implicit in linear models, so that Whittaker’s index of association does 

not lend itself to linear modelling nor to the calculation of Species Contributions to Beta 

Diversity (SCDB indices) described in the main paper, eq. 4b. 
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beta.div R Documentation 
 
Beta diversity computed as Var(Y) 
 
Description 
 
Compute estimates of total beta diversity as the total variance in a community data matrix Y, as 
well as derived SCBD and LCBD statistics, for 20 dissimilarity coefficients or the raw data table. 
Computing beta diversity as Var(Y) for raw, untransformed community composition data is not 
recommended. Tests of significance of the LCDB indices are also produced. 
 
Usage 
 
beta.div(Y,method="hellinger",sqrt.D=FALSE,samp=TRUE,nperm=999,save.D=FALSE) 
 
Arguments 
 
Y Community composition data. The file class can be either data.frame or matrix. 
method One of the 20 dissimilarity coefficients, or "none". See Details. Names can be 

abbreviated to a non-ambiguous set of first letters. Default: method="hellinger". 
sqrt.D If sqrt.D=TRUE, the dissimilarities in matrix D are square-rooted before 

computation of SStotal, BDtotal and LCBD. This transformation may be useful for 
methods {"manhattan", "modmeanchardiff", "whittaker", "divergence", "canberra", 
"percentagedifference", "wishart"} since square-root transformation of the 
dissimilarities makes these D matrices Euclidean.  

 Note 1 – Euclideanarity is useful for ordination by principal coordinate analysis; 
lack of this property does not adversely affect SStotal, BDtotal and LCBD.  

 Note 2 – The logical value given to parameter sqrt.D has no incidence on 
calculations through methods {"euclidean", "profiles", "hellinger", "chord", 
"chisquare", "none"} since no D matrix is computed in those cases. 

samp If samp=TRUE, the abundance-based distances (ab.jaccard, ab.sorensen, ab.ochiai, 
ab.simpson) are computed for sample data. If samp=FALSE, they are computed for 
true population data. 

nperm Number of permutations for the tests of significance of LCBD indices. 
save.D If save.D=TRUE, the distance matrix will appear in the output list. 
clock If clock=TRUE, the computation time is printed. Useful when nperm is large. 
 
Details 
 
Calculations may be carried out in two ways, depending on the selected method.  

• For untransformed or transformed raw data, the total sum of squares (SStotal) is first computed, 
then the total beta diversity (BDtotal), which is SStotal divided by (n – 1), is calculated. This 
algorithm is used for methods {"euclidean", "profiles", "hellinger", "chord", "chisquare", 
"none"}. No dissimilarity matrix nor transformation of the data is computed when the method is 



2 

"euclidean" or "none" (no transformation). For methods "profiles", "hellinger", "chord" and 
"chisquare", the algorithm begins with computation of the same-name transformation of the 
community data (Legendre and Gallagher 2001; Legendre and Legendre 2012, Section 7.7); 
SStotal and BDtotal are then computed for the transformed data.  

• Calculations can also be conducted from a dissimilarity matrix. SStotal is computed by 
summing the squared dissimilarities in the lower triangular dissimilarity matrix and dividing by 
n; then, total beta diversity (BDtotal) is computed as above. Choices are: method = {"manhattan", 
"modmeanchardiff", "whittaker", "divergence", "canberra", "percentagedifference", "wishart", 
"kulczynski", "ab.jaccard", "ab.sorensen", "ab.ochiai", "ab.simpson", “jaccard”, “sorensen”, 
“ochiai”}. Equations for these dissimilarities are presented in Table 1 of Legendre and De 
Cáceres (2013). See Chao et al. (2006) for details about the abundance-based (ab) coefficients. 

The Jaccard, Sørensen and Ochiai coefficients are the binary forms of 9 of the 11 dissimilarity 
coefficients that are suitable for beta diversity assessment. The equivalences are described in 
Legendre and De Cáceres (2013, Table 1). These popular coefficients can be computed directly 
using function beta.div() without going to the trouble of applying the quantitative forms of these 
coefficients to data reduced to presence-absence form. The transformation to presence-absence is 
done directly by function dist.binary() of package ade4, which is used by beta.div() to compute 
these coefficients. That function produces the dissimilarity matrix in the form sqrt(D), which is 
Euclidian. Hence for these three coefficients, function beta.div() should be used with option 
sqrt.D=FALSE. 

(1) Species contributions to beta diversity (SCBD indices for the species) are computed for the 
untransformed or transformed raw data, but not for dissimilarity matrices. (2) Local contributions 
to beta diversity (LCBD indices) represent the degree of uniqueness of the sites in terms of their 
species compositions. They can be computed in all cases: raw (not recommended) or transformed 
data, as well as dissimilarity matrices. See Legendre and De Cáceres (2013) for details. 

LCBD indices are tested for significance by random, independent permutations within the 
columns of Y. This permutation method tests H0 that the species are distributed at random, 
independently of one another, among the sites, while preserving the species abundance 
distributions in the observed data. See Legendre and De Cáceres (2013) for discussion. 
 
Value 
 
Function beta.div returns a list containing the following results: 
 
SStotal_BDtotal Total sum of squares and total beta diversity [= Var(Y)] of the data matrix. 

BDtotal statistics computed with the same D index are comparable among 
data sets having the same or different numbers of sampling units (n), 
provided that they are of the same size or represent the same sampling effort. 

SCBD Vector of Species contributions to beta diversity (SCBD), if computed. 
LCBD Vector of Local contributions to beta diversity (LCBD) for the sites. 
p.LCBD P-values associated with the LCBD indices. 
method Method selected. 
note Notes indicate whether the selected coefficient is Euclidean or not. 
D The distance matrix if save.D=TRUE. 
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Author 
 
Pierre Legendre, Département de sciences biologiques, Université de Montréal. 
License: GPL-2. 
 
Example 
 
### Example: mite data available in the vegan package 
require(vegan) 
data(mite) 
res = beta.div(mite, "hellinger", nperm=999) 
 
# Plot a map of the LCDB indices 
# First, load the file of Cartesian coordinates of the 70 mite sampling sites 
data(mite.xy) 
plot(mite.xy, asp=1, type="n", xlab="x coordinates (m)", ylab="y coordinates (m)", main="Map 
of mite LCBD") 
points(mite.xy, pch=21, col="white", bg="brown", cex=120*res$LCBD) 
 
### Example using the mite abundance data and the percentage difference dissimilarity 
res = beta.div(mite, "percentage", nperm=999, clock=TRUE) 
 
# Plot a map of the LCDB indices 
# First, load the file of cartesian coordinates of the 70 mite sampling sites 
data(mite.xy) 
signif = which(res$p.LCBD <= 0.05) # Which are the significant LCDB indices? 
nonsignif = which(res$p.LCBD > 0.05) # Which are the non-significant LCDB indices? 
plot(mite.xy, asp=1, type="n", xlab="x coordinates (m)", ylab="y coordinates (m)", main="Map 
of mite LCBD (red = significant indices)") 
points(mite.xy[nonsignif,], pch=21, col="white", bg="blue", cex=100*res$LCBD[nonsignif]) 
points(mite.xy[signif,], pch=21, col="white", bg="red", cex=100*res$LCBD[signif]) 
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beta.div <- function(Y, method="hellinger", sqrt.D=FALSE, samp=TRUE, nperm=999, save.D=FALSE, 
clock=FALSE)
#
# Compute estimates of total beta diversity as the total variance in Y, 
# for 20 dissimilarity coefficients or analysis of raw data (not recommended). 
# LCBD indices are tested by permutation within columns of Y.
# This version includes direct calculation of the Jaccard, Sorensen and Ochiai 
# coefficients for presence-absence data.
#
# Arguments --
# 
# Y : community composition data matrix.
# method : name of one of the 20 dissimilarity coefficients, or "none" for
#          direct calculation on Y (also the case with method="euclidean").
# sqrt.D : If sqrt.D=TRUE, the distances in matrix D are square-rooted before 
#          computation of SStotal, BDtotal and LCBD. 
# samp : If samp=TRUE, the abundance-based distances (ab.jaccard, ab.sorensen,
#        ab.ochiai, ab.simpson) are computed for sample data. If samp=FALSE, 
#        they are computed for true population data.
# nperm : Number of permutations for test of LCBD.
# save.D : If save.D=TRUE, the distance matrix will appear in the output list.
# clock : If clock=TRUE, the computation time is printed in the R console.
#
# License: GPL-2 
# Author:: Pierre Legendre, December 2012, April-May 2013
{
### Internal functions
centre <- function(D,n)
 # Centre a square matrix D by matrix algebra
 # mat.cen = (I - 11'/n) D (I - 11'/n)
 { One <- matrix(1,n,n)
  mat <- diag(n) - One/n
  mat.cen <- mat %*% D %*% mat
 }
###
BD.group1 <- function(Y, method, save.D, per)
 {
 if(method=="profiles") Y = decostand(Y, "total")
 if(method=="hellinger") Y = decostand(Y, "hellinger")
 if(method=="chord") Y = decostand(Y, "norm")
 if(method=="chisquare") Y = decostand(Y, "chi.square")
 #
 s <- scale(Y, center=TRUE, scale=FALSE)^2   # eq. 1
 SStotal <- sum(s)          # eq. 2
 BDtotal <- SStotal/(n-1)   # eq. 3
  if(!per) { SCBD<-apply(s,2,sum)/SStotal }else{ SCBD<-NA }  # eqs. 4a and 4b
 LCBD <- apply(s, 1, sum)/SStotal  # eqs. 5a and 5b
 #
 D <- NA
 if(!per & save.D)   D <- dist(Y)
 #
 out <- list(SStotal_BDtotal=c(SStotal,BDtotal), SCBD=SCBD, LCBD=LCBD, 
 method=method, D=D)
 }
###
BD.group2 <- function(Y, method, sqrt.D)
 {
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 if(method == "divergence") {
  D = D11(Y)  

 } else if(any(method == 
   c("jaccard","sorensen","ochiai"))) 
  {
  if(method=="jaccard") D = dist.binary(Y, method=1) # ade4 takes sqrt(D)
  if(method=="sorensen")  D = dist.binary(Y, method=5) #ade4 takes sqrt(D)
  if(method=="ochiai") D = dist.binary(Y, method=7) # ade4 takes sqrt(D)

 } else if(any(method == 
   c("manhattan","canberra","whittaker","percentagedifference","wishart"))) 
  {
  if(method=="manhattan") D = vegdist(Y, "manhattan")
  if(method=="canberra")  D = vegdist(Y, "canberra")
  if(method=="whittaker") D = vegdist(decostand(Y,"total"),"manhattan")/2
  if(method=="percentagedifference") D = vegdist(Y, "bray")
  if(method=="wishart")   D = WishartD(Y)
  } else {
  if(method=="modmeanchardiff") D = D19(Y)
  if(method=="kulczynski")  D = vegdist(Y, "kulczynski")
  if(method=="ab.jaccard")  D = chao(Y, coeff="Jaccard", samp=samp)
  if(method=="ab.sorensen") D = chao(Y, coeff="Sorensen", samp=samp)
  if(method=="ab.ochiai")   D = chao(Y, coeff="Ochiai", samp=samp)
  if(method=="ab.simpson")  D = chao(Y, coeff="Simpson", samp=samp)
  }
 #
 if(sqrt.D) D = sqrt(D)
 SStotal <- sum(D^2)/n      # eq. 8
 BDtotal <- SStotal/(n-1)   # eq. 3
 delta1 <- centre(as.matrix(-0.5*D^2), n)   # eq. 9
 LCBD <- diag(delta1)/SStotal               # eq. 10b
 #
 out <- list(SStotal_BDtotal=c(SStotal,BDtotal), LCBD=LCBD, 
 method=method, D=D)
 }
###
###
method <- match.arg(method, c("euclidean", "manhattan", "modmeanchardiff", "profiles", 
"hellinger", "chord", "chisquare", "divergence", "canberra", "whittaker", 
"percentagedifference", "wishart", "kulczynski", "ab.jaccard", 
"ab.sorensen","ab.ochiai","ab.simpson","jaccard","sorensen","ochiai","none"))
#
if(any(method == c("profiles", "hellinger", "chord", "chisquare", "manhattan", 
"modmeanchardiff", "divergence", "canberra", "whittaker", "percentagedifference", 
"kulczynski"))) require(vegan)
if(any(method == c("jaccard","sorensen","ochiai"))) require(ade4)
#
if(is.table(Y)) Y <- Y[1:nrow(Y),1:ncol(Y)]    # In case class(Y) is "table"
n <- nrow(Y)
#
aa <- system.time({
if(any(method == 
c("euclidean", "profiles", "hellinger", "chord", "chisquare","none"))) {
 note <- "Info -- This coefficient is Euclidean"
 res <- BD.group1(Y, method, save.D, per=FALSE)
 #
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 # Permutation test for LCBD indices, distances group 1
 if(nperm>0) {
  p <- ncol(Y)
  nGE.L = rep(1,n)
  for(iperm in 1:nperm) {
   Y.perm = apply(Y,2,sample)
   res.p <- BD.group1(Y.perm, method, save.D, per=TRUE)
   ge <- which(res.p$LCBD >= res$LCBD)
   nGE.L[ge] <- nGE.L[ge] + 1
   }
  p.LCBD <- nGE.L/(nperm+1)
  } else { p.LCBD <- NA }
 #
 if(save.D) { D <- res$D } else { D <- NA }
 #
 out <- list(SStotal_BDtotal=res$SStotal_BDtotal, SCBD=res$SCBD, 
 LCBD=res$LCBD, p.LCBD=p.LCBD, method=method, note=note, D=D)

} else {
#
 if(method == "divergence") {
  note = "Info -- This coefficient is Euclidean"
 } else if(any(method == c("jaccard","sorensen","ochiai"))) {
  note = c("Info -- This coefficient is Euclidean because dist.binary ",
  "of ade4 computes it as sqrt(D). Use beta.div with option sqrt.D=FALSE")
 } else if(any(method == 
   c("manhattan","canberra","whittaker","percentagedifference","wishart"))) {
  if(sqrt.D) {
  note = "Info -- This coefficient, in the form sqrt(D), is Euclidean"
  } else {
  note = c("Info -- For this coefficient, sqrt(D) would be Euclidean", 
  "Use is.euclid(D) of ade4 to check Euclideanarity of this D matrix")
  }
 } else {
  note = c("Info -- This coefficient is not Euclidean", 
  "Use is.euclid(D) of ade4 to check Euclideanarity of this D matrix")
 }
#
 res <- BD.group2(Y, method, sqrt.D)
 #
 # Permutation test for LCBD indices, distances group 2
 if(nperm>0) {
  nGE.L = rep(1,n)
  for(iperm in 1:nperm) {
   Y.perm = apply(Y,2,sample)
   res.p <- BD.group2(Y.perm, method, sqrt.D)
   ge <- which(res.p$LCBD >= res$LCBD)
   nGE.L[ge] <- nGE.L[ge] + 1
   }
  p.LCBD <- nGE.L/(nperm+1)
  } else { p.LCBD <- NA }
#
 if(sqrt.D) note.sqrt.D<-"sqrt.D=TRUE"  else  note.sqrt.D<-"sqrt.D=FALSE"
 if(save.D) { D <- res$D } else { D <- NA }
 #
 out <- list(SStotal_BDtotal=res$SStotal_BDtotal, LCBD=res$LCBD,  
 p.LCBD=p.LCBD, method=c(method,note.sqrt.D), note=note, D=D)
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}
#
})
aa[3] <- sprintf("%2f",aa[3])
if(clock) cat("Time for computation =",aa[3]," sec\n")
#
class(out) <- "beta.div"
out
}

D11 <- function(Y, algo=1)
#
# Compute Clark's coefficient of divergence. 
# Coefficient D11 in Legendre and Legendre (2012, eq. 7.51).
#
# License: GPL-2 
# Author:: Pierre Legendre, April 2011
{
Y <- as.matrix(Y)
n <- nrow(Y)
p <- ncol(Y)
# Prepare to divide by pp = (p-d) = no. species present at both sites
Y.ap <- 1 - decostand(Y, "pa")
d <- Y.ap %*% t(Y.ap)
pp <- p-d   # n. species present at the two compared sites
#
if(algo==1) {   # Faster algorithm
 D <- matrix(0, n, n)
 for(i in 2:n) {
  for(j in 1:(i-1)) {
   num <- (Y[i,]-Y[j,])
   den <- (Y[i,]+Y[j,])
   sel <- which(den > 0)
   D[i,j] = sqrt(sum((num[sel]/den[sel])^2)/pp[i,j])
   }
  }
#
} else {   # Slower algorithm 
 D <- matrix(0, n, n)
 for(i in 2:n) {
  for(j in 1:(i-1)) {
   temp = 0
   for(p2 in 1:p) {
    den = Y[i,p2] + Y[j,p2]
    if(den > 0) {
     temp = temp + ((Y[i,p2] - Y[j,p2])/den)^2
     }
    }
   D[i,j] = sqrt(temp/pp[i,j])
   }
  }
#
 } 
DD <- as.dist(D)
}

D19 <- function(Y)
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#
# Compute the Modified mean character difference.
# Coefficient D19 in Legendre and Legendre (2012, eq. 7.46).
# Division is by pp = number of species present at the two compared sites
#
# License: GPL-2 
# Author:: Pierre Legendre, April 2011
{
Y <- as.matrix(Y)
n <- nrow(Y)
p <- ncol(Y)
# Prepare to divide by pp = (p-d) = n. species present at both sites
Y.ap <- 1 - decostand(Y, "pa")
d <- Y.ap %*% t(Y.ap)
pp <- p-d   # n. species present at the two compared sites
#
D <- vegdist(Y, "manhattan")
DD <- as.dist(as.matrix(D)/pp)
}

WishartD <- function(Y)
#
# Compute dissimilarity - 1 - Wishart similarity ratio (Wishart 1969).
#
# License: GPL-2 
# Author:: Pierre Legendre, August 2012
{
CP = crossprod(t(Y))
SS = apply(Y^2,1,sum)
n = nrow(Y)
mat.sq = matrix(0, n, n)
for(i in 2:n) {
 for(j in 1:(n-1)) { mat.sq[i,j] = CP[i,j]/(SS[i] + SS[j] - CP[i,j]) }
 }
mat = 1 - as.dist(mat.sq)
}

chao <- function(mat, coeff="Jaccard", samp=TRUE)
#
# Compute Chao et al. (2006) abundance-based indices.
#
# Arguments -
# mat = data matrix, species abundances
# coef = "Jaccard" : modified abundance-based Jaccard index
#        "Sorensen": modified abundance-based Sørensen index
#        "Ochiai"  : modified abundance-based Ochiai index
#        "Simpson" : modified abundance-based Simpson index
# samp=TRUE : Compute dissimilarities for sample data
#     =FALSE: Compute dissimilarities for true population data
#
# Details -
# For coeff="Jaccard", the output values are identical to those
# produced by vegan's function vegdist(mat, "chao").
#
# Help received from A. Chao and T. C. Hsieh in July 2012 for the computation  
# of dissimilarities for true population data is gratefully acknowledged.
#
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# Reference --
# Chao, A., R. L. Chazdon, R. K. Colwell and T. J. Shen. 2006. 
# Abundance-based similarity indices and their estimation when there 
# are unseen species in samples. Biometrics 62: 361–371.
#
# License: GPL-2 
# Author:: Pierre Legendre, July 2012
{
require(vegan)
nn = nrow(mat)
res = matrix(0,nn,nn)
if(samp) {   # First for sample data
for(k in 2:nn) {
 for(j in 1:(k-1)) {
  #cat("k =",k,"  j =",j,"\n")
  v1 = mat[j,]   # Vector 1
  v2 = mat[k,]   # Vector 2
  v1.pa = decostand(v1,"pa")   # Vector 1 in presence-absence form
  v2.pa = decostand(v2,"pa")   # Vector 2 in presence-absence form
  N.j = sum(v1)   # Sum of abundances in vector 1
  N.k = sum(v2)   # Sum of abundances in vector 2
  shared.sp = v1.pa * v2.pa   # Vector of shared species ("pa")
  if(sum(shared.sp) == 0) { 
   res[k,j] = 1
  } else {
  C.j = sum(shared.sp * v1)   # Sum of shared sp. abundances in v1
  C.k = sum(shared.sp * v2)   # Sum of shared sp. abundances in v2
  # a1.j = sum(shared.sp * v1.pa)
  # a1.k = sum(shared.sp * v2.pa)
  a1.j = length(which((shared.sp * v2) == 1)) # Singletons in v2
  a1.k = length(which((shared.sp * v1) == 1)) # Singletons in v1
  a2.j = length(which((shared.sp * v2) == 2)) # Doubletons in v2
  if(a2.j == 0) a2.j <- 1
  a2.k = length(which((shared.sp * v1) == 2)) # Doubletons in v1
  if(a2.k == 0) a2.k <- 1
  # S.j = sum(v1[which(v2 == 1)]) # Sum abund. in v1 for singletons in v2
  # S.k = sum(v2[which(v1 == 1)]) # Sum abund. in v2 for singletons in v1
  sel2 = which(v2 == 1)
  sel1 = which(v1 == 1)
  if(length(sel2)>0) S.j = sum(v1[sel2]) else S.j = 0
  if(length(sel1)>0) S.k = sum(v2[sel1]) else S.k = 0
  
  U.j = (C.j/N.j) + ((N.k-1)/N.k) * (a1.j/(2*a2.j)) * (S.j/N.j) # Eq. 11
  if(U.j > 1) U.j <- 1
  U.k = (C.k/N.k) + ((N.j-1)/N.j) * (a1.k/(2*a2.k)) * (S.k/N.k) # Eq. 12
  if(U.k > 1) U.k <- 1
  
  if(coeff == "Jaccard") {                     # "Jaccard"
   res[k,j] = 1 - (U.j*U.k/(U.j + U.k - U.j*U.k))
   } else if(coeff == "Sorensen") {         # "Sorensen"
   res[k,j] = 1 - (2*U.j*U.k/(U.j + U.k))
   } else if(coeff == "Ochiai") {           # "Ochiai"
   res[k,j] = 1 - (sqrt(U.j*U.k))
   } else if(coeff == "Simpson") { 
   # Simpson (1943), or Lennon et al. (2001) in Chao et al. (2006)
   res[k,j] = 1 -
   (U.j*U.k/(U.j*U.k+min((U.j-U.j*U.k),(U.k-U.j*U.k))))
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   } else { # 
   stop("Incorrect coefficient name")
   }
  }
  }
 }

} else {   # Now for complete population data

for(k in 2:nn) {
 for(j in 1:(k-1)) {
  v1 = mat[j,]   # Vector 1
  v2 = mat[k,]   # Vector 2
  v1.pa = decostand(v1,"pa")   # Vector 1 in presence-absence form
  v2.pa = decostand(v2,"pa")   # Vector 2 in presence-absence form
  shared.sp = v1.pa * v2.pa    # Vector of shared species ("pa")
  if(sum(shared.sp) == 0) { 
   res[k,j] = 1
  } else {
  N1 = sum(v1)   # Sum of abundances in vector 1
  N2 = sum(v2)   # Sum of abundances in vector 2
  U = sum(shared.sp * v1)/N1   # Sum of shared sp. abundances in v1
  V = sum(shared.sp * v2)/N2   # Sum of shared sp. abundances in v2
  
  if(coeff == "Jaccard") {                     # "Jaccard"
   res[k,j] = 1 - (U*V/(U + V - U*V))
   } else if(coeff == "Sorensen") {         # "Sorensen"
   res[k,j] = 1 - (2*U*V/(U + V))
   } else if(coeff == "Ochiai") {           # "Ochiai"
   res[k,j] = 1 - (sqrt(U*V))
   } else if(coeff == "Simpson") { # "Simpson"
   res[k,j] = 1 - (U*V/(U*V+min((U-U*V),(V-U*V)))) # Eq. ?
   } else { # 
   stop("Incorrect coefficient name")
   }
  }
  }
 }
}
res <- as.dist(res)
}

######## End of beta.div function




